

Delft University of Technology

Receding Horizon Re-Ordering of Multi-Agent Execution Schedules

Berndt, Alexander; Van Duijkeren, Niels; Palmieri, Luigi; Kleiner, Alexander; Keviczky, T.

DOI
10.1109/TRO.2023.3344051
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Robotics

Citation (APA)
Berndt, A., Van Duijkeren, N., Palmieri, L., Kleiner, A., & Keviczky, T. (2024). Receding Horizon Re-
Ordering of Multi-Agent Execution Schedules. IEEE Transactions on Robotics, 40, 1356-1372.
https://doi.org/10.1109/TRO.2023.3344051

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TRO.2023.3344051
https://doi.org/10.1109/TRO.2023.3344051

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1356 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Receding Horizon Re-Ordering of Multi-Agent
Execution Schedules

Alexander Berndt , Niels van Duijkeren , Luigi Palmieri , Member, IEEE, Alexander Kleiner ,
and Tamás Keviczky , Senior Member, IEEE

Abstract—The trajectory planning for a fleet of automated
guided vehicles (AGVs) on a roadmap is commonly referred to
as the multi-agent path finding (MAPF) problem, the solution to
which dictates each AGV’s spatial and temporal location until it
reaches its goal without collision. When executing MAPF plans
in dynamic workspaces, AGVs can be frequently delayed, e.g.,
due to encounters with humans or third-party vehicles. If the
remainder of the AGVs keeps following their individual plans,
synchrony of the fleet is lost and some AGVs may pass through
roadmap intersections in a different order than originally planned.
Although this could reduce the cumulative route completion time
of the AGVs, generally, a change in the original ordering can cause
conflicts, such as deadlocks. In practice, synchrony is therefore
often enforced by using a MAPF execution policy employing, e.g.,
an action dependency graph (ADG) to maintain ordering. To safely
re-order without introducing deadlocks, we present the concept of
the switchable action dependency graph (SADG). Using the SADG,
we formulate a comparatively low-dimensional mixed-integer lin-
ear program that repeatedly re-orders AGVs in a recursively fea-
sible manner, thus maintaining deadlock-free guarantees, while
dynamically minimizing the cumulative route completion time of all
AGVs. Various simulations validate the efficiency of our approach
when compared to the original ADG method as well as robust
MAPF solution approaches.

Index Terms—Mixed integer programming, multi-agent
path finding (MAPF), robust plan execution, scheduling and
coordination.

I. INTRODUCTION

MULTIPLE autonomous mobile robots (AMRs) have been
shown to significantly increase the efficiency of per-

forming intralogistics tasks, such as moving inventory in dis-
tribution centers [1]. Coordinating AMRs navigating a shared

Manuscript received 20 September 2023; accepted 14 November 2023. Date
of publication 18 December 2023; date of current version 18 January 2024. This
paper was recommended for publication by Associate Editor J. Alonso-Mora
and Editor P. Robuffo Giordano upon evaluation of the reviewers’ comments.
This work was supported in part by the Robert Bosch GmbH and in part by the
European Union’s Horizon 2020 research and innovation program under Grant
101017274 (DARKO). (Corresponding author: Niels van Duijkeren.)

Alexander Berndt is with the Overstory B.V., 1018 VN Amsterdam, The
Netherlands (e-mail: berndtae@gmail.com).

Niels van Duijkeren, Luigi Palmieri, and Alexander Kleiner are with the
Robert Bosch GmbH, Corporate Research, 71272 Renningen, Germany (e-mail:
Niels.vanDuijkeren@de.bosch.com; Luigi.Palmieri@de.bosch.com; Alexan-
der.Kleiner@de.bosch.com).

Tamás Keviczky is with the Delft Center for Systems and Control (DCSC),
TU Delft, 2628 CN Delft, The Netherlands (e-mail: T.Keviczky@tudelft.nl).

Digital Object Identifier 10.1109/TRO.2023.3344051

environment can be formulated as the multi-agent path find-
ing (MAPF) problem [2]. The MAPF problem is to find
trajectories for each AMR along a roadmap such that each
AMR reaches its goal without colliding with the others, while
minimizing a cost metric, such as the makespan or cumula-
tive route completion time (also referred to as sum-of-costs).
Throughout this manuscript, we refer to AMRs as automated
guided vehicles (AGVs) to be consistent with the MAPF
literature.

Minimizing temporal cost metrics when solving the MAPF
problem has received a lot of attention in the literature [3].
However, even if an optimal MAPF solution is found, blindly
executing the plans can still result in deadlocks when the AGVs
experience delays. This introduces the need for plan execution
policies, used to maintain the ordering between AGVs and thus
avoiding deadlocks. Hönig et al. [4] proposed compiling an
action dependency graph (ADG) from an MAPF solution to
enforce the ordering during plan execution. However, this work,
and most other works, such as the authors in [5], [6], and [7]
considered AGVs that are only marginally delayed. This means
that delays are seen as a lack of synchronization between AGVs,
rather than significantly affecting the overall route completion
times. With the advent of Industry 4.0 (such as the VDA5050
protocol [8] and the Robot Middleware Framework [9]), we turn
our attention to AGV fleets navigating dynamic and complex
environments occupied by humans and third-party vehicles.
These dynamic environments are far less predictable than those
typically considered in the MAPF literature, implying that AGVs
can experience large delays when waiting for, e.g., a human to
move out of its path.

These large, unpredictable delays can result in inefficient plan
execution because the implicit ordering of the original MAPF
solution requires AGVs to wait for largely delayed AGVs. Not
adhering to this implicit ordering, however, can result in dead-
locks. Approaches, such as in [10] and [11] propose re-ordering
schemes, which maintain the deadlock-freeness properties of
the original plan. The decision to switch the order between two
robots or not, however, is based only on performance measures of
the two involved AGVs. This means that although these switches
are performed throughout the fleet, they do not necessarily lead
to an overall performance increase in terms of a sum-of-costs or
a makespan metric.

Contributions: To address the shortcomings of robust
MAPF approaches and local path repair methods, we present
the following.

1941-0468 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3290-6125
https://orcid.org/0000-0002-7132-1595
https://orcid.org/0000-0002-4908-5434
https://orcid.org/0000-0001-6746-9098
https://orcid.org/0000-0002-2428-2300
mailto:berndtae@gmail.com
mailto:Niels.vanDuijkeren@de.bosch.com
mailto:Luigi.Palmieri@de.bosch.com
mailto:Alexander.Kleiner@de.bosch.com
mailto:Alexander.Kleiner@de.bosch.com
mailto:T.Keviczky@tudelft.nl

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1357

Fig. 1. Top: Our proposed optimization-based feedback control scheme. Bot-
tom: Typical MAPF plan execution schemes. Our approach significantly reduces
the cumulative route completion of AGVs subjected to large delays by optimizing
the ordering of AGVs based on their progress in a receding horizon fashion, while
maintaining collision- and deadlock-free plan execution guarantees.

1) The switchable action dependency graph (SADG), a novel
data structure, which formalizes the definition of switch-
able dependencies between AGVs in multi-agent plans.

2) An online optimization-based shrinking horizon control
(SHC) scheme, which re-orders AGVs based on the
AGVs’ current progress along their paths while maintain-
ing collision- and deadlock-freeness guarantees.

3) Extension of the SHC to a receding horizon control
(RHC) scheme, which significantly reduces computation
times and thereby enables real-time applications for all
of the presented maps and team sizes without sacrificing
collision- and deadlock-freeness guarantees.

Our approach is illustrated in Fig. 1. We compare our approach
to the baseline ADG method presented in [4] as well as the state-
of-the-art robust MAPF solver K-CBSH-RM [5], yielding up to a
25% overall decrease in average route completion times as robots
are confronted with large delays. Our method is available online
as an open-source software package called sadg-controller.1

Outline: The rest of this article is organized as follows.
Section II presents existing solutions and their capabilities and
shortcomings in the context of our proposed solution. Prelim-
inaries regarding the routing of multiple AGVs, as well as the
problem formulation, is presented in Section III. We present the
concept of the switchable action dependency graph (SADG) in
Section IV and formulate the mixed-integer OCP in Section V.
The method is extended to a receding horizon feedback control
scheme in Section VI. We evaluate our approach in Section VII.
Finally, Section VIII concludes this article.

II. RELATED WORK

Recently, solving the MAPF problem has garnered wide-
spread attention [2], [13]. This is mostly due to the abundance of
application domains, such as intralogistics, airport taxi schedul-
ing [14], and computer games [15]. Solutions to the MAPF

1[Online]. Available: https://github.com/alexberndt/sadg-controller

problem include conflict-based search (CBS) [16], prioritized
planning [17], declarative optimization approaches using answer
set programming [18], heuristic-guided coordination [19], and
graph-flow optimization approaches [20].

Algorithms, such as CBS, have been improved by exploiting
properties, such as geometric symmetry [21], or using purpose-
built heuristics [22]. Lam et al. [23] reformulated the multi-
agent path finding (MAPF) as a mixed-integer linear program
(MILP) and solve it using a branch-cut-and-price approach.
MILP formulations have also been used in numerous binary-
decision-based RHC problems, referred to as hybrid control
systems [24]. Practical applications using these formulations
include coordinating agents in urban road networks [25], co-
ordinating autonomous cars at intersections [26], [27], UAV
trajectory planning [28], multi-agent persistent coverage [29],
and train scheduling [30]. Similarly, the development of bounded
suboptimal solvers, such as enhanced conflict-based search
(ECBS) [31] have further improved planning performance for
higher dimensional state spaces. In turn, continuous conflict-
based search extends CBS by enabling planning on roadmap
graphs with weighted edges and considering continuous time
intervals to describe collision avoidance constraints, albeit with
increased solution times [32].

The abstraction of the MAPF to a graph search problem
requires simplifying assumptions to manage complexity. These
assumptions include the use of very crude vehicle motion mod-
els and neglecting most of the effects of unpredictable delays
in stochastic and dynamic environments. In order to maintain
validity of the MAPF plan during execution, it is required to
synchronize the progress of all AGVs by closely monitoring the
fleet. This synchronization can be achieved using a so-called ex-
ecution policy to manage the AGVs according to their individual
plans.

An ADG encodes the ordering between AGVs as well as their
kinematic constraints in a post-processing step after solving
the MAPF [6]. Combined with a plan execution policy, this
allows AGVs to execute MAPF plans successfully despite kine-
matic constraints and unforeseen delays. Closely related to the
ADG-based execution policy to account for disturbances is RM-
TRACK [10]. For every pair of robots, RMTRACK identifies
collision regions (i.e., relative delays that lead to collisions) in
their coordination space. It is imposed that the trajectory in the
coordination space remains homotopic to the undisturbed trajec-
tory. This leads to an equivalent coordination approach as [6] and
guarantees deadlock-freeness. Follow-up work [33] proposes to
relax the homotopy equivalence condition and allow flipping the
order, in which robots pass through a certain region considering
two different optimization strategies. The latter approach was
later extended to guarantee deadlock-free plan execution [11]
by asserting that the so-called “segment graph” that results from
flipping the order has no cycles. Note that the “segment graph”
is closely related to the ADG [6]. Moreover, the concept that
flipping the order of two robots results in a different “segment
graph” in turn relates to the SADG presented in [12] and this
article. Contrary to these works, Coskun et al. [11] did not
consider changing the order of robots at every possible conflict

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

https://github.com/alexberndt/sadg-controller

1358 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 2. Running example: Roadmap G = (V, E) occupied by N = 4 AGVs overlayed with the MAPF plan P indicated by the colored routes. AGV ordering is
indicated by the z-height relative to other routes, i.e., AGV3 before AGV1 before AGV2. This ordering is more explicitly indicated by the SE-ADG, GSE-ADG =
(VSE-ADG, ESE-ADG), constructed from P using Algorithm 1. (a) Roadmap G = (V, E) with P . (b) SE-ADG GSE-ADG = (VSE-ADG, ESE-ADG).

simultaneously. They thereby avoid the need to solve a costly
MILP, but sacrifice optimality of the overall plan execution.
Since the MAPF considers a fleet of AGVs each with a unique
start and goal position, an additional framework is required to
allow for the persistent planning of AGVs. Such a framework
is proposed in [4], where the aforementioned ADG can be used
to anticipate where AGVs will be in a future time-step (called a
commit), allowing the MAPF to be solved from there, while the
AGVs execute the plans up until this commit.

Several MAPF methods have been introduced to particularly
handle delays. kR-MAPF solvers such as K-CBSH-RM address
this by permitting delays up to a duration of k time-steps
[5], [34]. Stochastic AGV delay distributions are considered
in [7], where the MAPF is solved by minimizing the expected
overall delay. These robust MAPF formulations and solutions
inevitably result in more conservative plans compared with their
nominal counterparts. A robust approach to handle communi-
cation delays and packet losses for AGVs with second-order
dynamics is considered in [35]. However, all these solutions do
not specifically address the effects of significantly large delays.
These approaches typically view delays as a bounded lack of
synchronization between AGVs, rather than as significantly
impacting the route completion time.

The contribution of this article is a method that extends the
concept of an ADG by modeling the allowed re-orderings of
AGVs at intersections, obtaining an SADG. The routes for
each AGV are considered given and remain unaltered. Typi-
cally they would be computed using an existing MAPF solver.
The result is a comparatively low-dimensional decision-making
problem, to continuously and reactively modify the MAPF plan
online to improve the cumulative route completion time. We
formulate the problem as an MILP that can be solved using
off-the-shelf—commercial as well as open-source—solvers. By
our re-ordering approach we allow AGVs to continue with their
tasks without needing to unnecessarily wait for delayed AGVs,
while guaranteeing deadlock- and collision-free execution.

III. COORDINATING MULTIPLE AGVS

In this section, we introduce the concepts of a valid MAPF
plan as well as a formal introduction of the spatially exclusive
action dependency graph (SE-ADG), a concept derived from the

ADG originally proposed in [4]. The SE-ADG and properties
introduced will form the foundation of the methods introduced
in subsequent sections.

A. Valid MAPF Plans

Consider a workspace represented by a graph G = (V, E),
which is occupied by a fleet of N AGVs, e.g., as in Fig. 2(a).
Each AGV has a unique start and goal position si ∈ V, si �= sj if
i �= j ∀ i, j ∈ {1, . . . , N} and gi ∈ V, gi �= gj if i �= j ∀ i, j ∈
{1, . . . , N}, respectively. The task is for AGVi to navigate from
si to gi without collisions ∀ i ∈ {1, . . . , N}. A solution to this
task is called a MAPF solution, which we represent as a set
P = {P1, . . . ,PN}, where Pi = {p1i , . . . , pNi

i } is a sequence
of Ni plan tuples representing the actions AGVi must take to
navigate from si to gi. A plan tuple pki = (v̂(pki), t̂(p

k
i)) where

the operators v̂(pi) : Pi → V , and t̂(pi) : Pi → N0 return the
roadmap vertex and planned time when AGVi must be at vertex
v̂(pi), respectively. Note that we consider the planned time in
a discrete fashion, as used in almost all MAPF formulations
and algorithms [2]. Definition 1 lists the conditions for a valid
MAPF solution. Essentially, for a MAPF solution to be valid,
all AGVs must reach their goals in finite time, and there can be
no collisions between the AGVs along their planned routes.

Definition 1 (Valid MAPF solution): A valid MAPF solution
is a setP = {P1, . . . ,PN} such that the vertices v̂(pki) �= v̂(plj)

if t̂(pki) = t̂(plj), k ∈ {1, . . . , Ni}, l ∈ {1, . . . , Nj} ∀ i, j ∈
{1, . . . , N}. In addition, AGVi and AGVj if i �= j must never
traverse an edge e ∈ E in opposite directions in the same time-
step. Finally, v̂(p1i) = si and v̂(pNi

i) = gi ∀ i, j ∈ {1, . . . , N}.

B. Spatially Exclusive Action Dependency Graph

Although a valid MAPF solution guarantees that all AGVs
reach their respective goals in finite time without collision,
the underlying assumption is that all AGVs execute the plan
without time-delays. To relax this assumption, we introduce
the SE-ADG, a graph-based data-structure used to define the
ordering of AGVs as they navigate G. The idea is that a valid
MAPF solution can be used to generate an SE-ADG, which
can be used to execute the MAPF plans while maintaining
collision-avoidance and route-completion guarantees.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1359

Note that the SE-ADG we present here is directly borrowed
from the original ADG presented in [4], but with the additional
property that each vertex must involve a movement from two
locations, which are spatially exclusive of one another.

Definition 2 (Spatially Exclusive Action Dependency Graph):
An SE-ADG is a directed graph GSE-ADG = (VSE-ADG, ESE-ADG).
VSE-ADG is a set of vertices v = ({p1, . . . , pq}, status),
which define the movement of AGVi from v̂(p1), via
intermediate locations, to v̂(pq). The variable status ∈
{staged, in-progress, completed} indicates the current status of
each movement. ESE-ADG is a set of directed edges e = (v, v′)
with v, v′ ∈ VSE-ADG.

The SE-ADG represents the implicit ordering of the vertex
visitation by each AGV using a valid MAPF plan P and can be
constructed using Algorithm 1. Aside from the usage of differ-
ent data structures, Algorithm 1 is practically identical to the
ADG algorithm in [4], except for lines 7–13. loc(pi) : Pi → R2

returns location of plan tuple p, SAGV ⊂ R2 represents the
area occupied by an AGV, ⊕ is the Minkowski-sum. Finally,
s(v) : VSE-ADG → V returns the roadmap vertex associated with
the first plan tuple in v; g(v) : VSE-ADG → V the last plan tuple in
v. t̂g(v) : VSE-ADG → N0 returns t̂(pq) where pq is the last plan
tuple in v. Once again, we use the hat to indicate that we are
dealing with planned times. The subscript g in t̂g(·) is short for
goal. Going forward, we use the following notation to refer to
AGVs and SE-ADG vertices: i and j are both AGV indices such
that i, j ∈ {1, . . . , N}. Furthermore, k and l are the SE-ADG
vertex index of AGV i and j, respectively, i.e., k ∈ {1, . . . , Ni}
and l ∈ {1, . . . , Nj}.

Algorithm 1 takes a valid MAPF solution as input, and uses a
two-stage approach to convert this into an SE-ADG. In the first
stage (cf., lines 1–13), each AGV’s plan is considered individu-
ally. Spatial exclusivity of each vertex is guaranteed in line 7. The
interaction between AGVs is considered in the second stage (cf.,
lines 14–20). Here, dependencies are generated between AGVs
if their planned routes cover the same location at any point in
time.

Initially, the status of vki is staged ∀ i, k. The directed edges
e ∈ ESE-ADG, from here on referred to as dependencies, de-
fine event-based constraints between two vertices. Specifically,
(vki , v

l
j) implies that vlj cannot be in-progress or completed until

vki = completed. A dependency (vki , v
l
j) ∈ ESE-ADG is classified

as intra-AGV if i = j and inter-AGV if i �= j. If an SE-ADG
execution policy is used to execute a valid MAPF solution, an
important property to ensure finite-time task completion times
for all AGVs is that the SE-ADG must be acyclic. In this
context, finite-time task completion for all AGVs is the same
as deadlock-free plan execution.

The key difference between Algorithm 1 and the ADG al-
gorithm in [4] is the fact that subsequent vertices are spatially
exclusive cf., lines 7–14. The plans referenced in [4] contain
actions, such as in-place rotations. Despite an AGV not changing
location by performing such an action, the ADG will have two
inter-AGV edges. Using spatial exclusivity, as in the SE-ADG,
an in-place rotation is merged with a spatially transitional action
in one vertex, resulting in one inter-AGV edge to express this

Algorithm 1: Compiling a SE-ADG. Notable functional
differences to the ADG Algorithm in [4] in lines 7–13.

Input:P = {P1, . . . ,PN} // valid MAPF solution
Result:GSE-ADG

// Add sequence of events for each AGV
1: for Pi = {p1i , . . . , pNi

i } in P do
2: p← p1i
3: v ← ({p}, staged)
4: vprev ← None
5: for k = 2 to Ni do
6: Append pki to sequence of plan tuples of v

// Check for spatial exclusivity
7: if loc(p)⊕ SAGV ∩ loc(pki)⊕ SAGV = ∅ then
8: Add v to VSE-ADG

9: if vprev not None then
10: Add edge e = (vprev, v) to ESE-ADG

11: end if
12: vprev ← v
13: p← pki
14: v ← ({p}, staged)
15: end if
16: end for
17: end for // Add inter-AGV ordering constraints
18: for i = 1 to N do
19: for j = 1 to N , i �= j do
20: for k = 1 to Ni do
21: for l = 1 to Nj do
22: if s(vki) = g(vlj) and t̂g(v

k
i) ≤ t̂g(v

l
j) then

23: Add edge e = (vki , v
l
j) to ESE-ADG

24: end if
25: end for
26: end for
27: end for
28: end for
29: return GSE-ADG = (VSE-ADG, ESE-ADG)

inter-AGV dependency. Not only does this mean that the SE-
ADG has fewer vertices and edges, it will also be an important
component for the definition of a switched dependency presented
in the next section.

C. SE-ADG as a Plan Execution Policy

In the following we detail how an SE-ADG can be used as an
execution policy to coordinate the AGVs and to accommodate
for possible delays. From Definition 2, we recall that the operator
status(v) : VSE-ADG → status returns the status of a vertex v.
An AGV is said to be executing an SE-ADG vertex v if it
is performing the actions defined by the plan tuple sequence
{p1, . . . , pq} of v.

Definition 3 (SE-ADG plan execution policy): Consider a
valid MAPF plan P and the corresponding SE-ADG, GSE-ADG,
constructed using Algorithm 1. The SE-ADG-execution policy
is defined as follows.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

1360 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

1) Initially, status(v) = staged ∀v ∈ VSE-ADG.
2) Each AGVi’s first vertex is v1i ∀ i ∈ {1, . . . , N}.
3) AGVi can only start executing vki if status(v) =

completed ∀ e = (v, vki) ∈ ESE-ADG.
The SE-ADG vertex statuses are updated by this policy as

follows.
1) status(vki) changes from staged to in-progress if AGVi is

busy executing vki .
2) status(vki) changes from in-progress to completed if

AGVi has finished executing vki .

D. Properties of the SE-ADG

With the SE-ADG execution policy from Definition 3, we now
show that if the SE-ADG is acyclic, we can guarantee that AGVs
can execute their plans in finite time in a collision-free manner.
In this context, we anticipate that guaranteeing finite-time plan
completion is equivalent to ensuring the plan execution is persis-
tently deadlock-free. First, we make the following assumption.

Assumption 1: A single AGV can navigate the workspace
(represented by roadmap G) occupied by static and dynamic
obstacles in a collision-free manner using on-board navigation
methods.

In the context of multiple AGVs and MAPF, Assumption 1
is relatively nonconstraining. It requires AGVs to be able to
follow the roadmap G and navigate around or wait for static
and dynamic third-party obstacles, which might partially or tem-
porarily block its path, respectively. This single AGV navigation
problem has already been addressed in numerous works [36],
[37], [38], [39].

If Assumption 1 is satisfied, guaranteeing collision-free task
execution in the multi-AGV case requires us to ensure that AGVs
do not collide with each other. Results in resource allocation
of concurrent system analysis, such as [40], show that if a
dependency graph is acyclic, plan execution is guaranteed to
be deadlock-free. In this context, if the SE-ADG is constructed
from a valid MAPF plan, we know that following the execution
policy in Definition 3 will ensure each AGV will complete its
task in a collision- and deadlock-free manner.

Corollary 1 (SE-ADG guarantees collision-free plan execu-
tion): Consider a valid MAPF plan abstracted to an SE-ADG
using Algorithm 1. AGVs are guaranteed to execute the SE-ADG
plans in a collision-free manner if all AGVs adhere to the
execution policy in Definition 3.

Proof: Consider the nominal execution of a MAPF plan: from
Definition 1, v̂(pki) �= v̂(plj) if t̂(pki) = t̂(plj), implying that no
two AGVs will occupy the same location at the same time.
In addition, by Definition 1, each i’th AGV reaches its goal
v̂g(p

Ni
i) ∀ i ∈ {1, . . . , N}. Next, consider Algorithm 1 lines 22

and 23, which ensure that ∀i, j ∈ 1, . . . , N and k ∈ 1, . . . , Ni,
l ∈ 1, . . . , Nj where s(vki) = g(vlj) and t̂g(v

k
i) ≤ t̂g(v

l
j), a de-

pendency e = (vki , v
l
j) is added to ESE-ADG. By the execution

policy Definition 3, item 3, each AGV will only move from
a vertex s(v) to g(v) if all edges pointing to v have status
completed. Because the AGVs can only collide by visiting the
same location at the same time, and each instance of an AGV
occupying the same location as another yields an edge in the

SE-ADG, no AGV will occupy the same location at the same
time, implying zero collitions during plan execution.

Corollary 2 (Acyclic SE-ADG is sufficient to guarantee
deadlock- and collision-free plan execution): Consider an SE-
ADG, GSE-ADG, constructed from a valid MAPF plan P using
Algorithm 1. If GSE-ADG is acyclic and Assumption 1 holds, each
AGVi will reach gNi

in finite time without collisions for all
i ∈ {1, . . . , N}.

Proof: Individually, the completion time of each vertex v ∈
VSE-ADG is finite by Assumption 1. If GSE-ADG is acyclic, it has
a topological ordering, implying that at each point, at least one
SE-ADG vertex can be executed, until all vertices are completed.
This proves deadlock-free execution. Collision-free movement
is proven in Corollary 1

Note that we are not able to extend Corollary 2 to be a neces-
sary condition for deadlock-free plan execution, since methods
guaranteeing deadlock-free plan execution exist which do not
use an SE-ADG approach. Nevertheless, this sufficient condition
is still very useful, as will be shown in subsequent sections.

Finally, we address the fact that not all valid MAPF solutions
yield an acyclic SE-ADG. A cyclic SE-ADG comes from a
plan, which essentially requires perfect synchronization among
AGVs. However, with little limitation to practical cases (see
Remark 1), we assume that MAPF solutions will yield acyclic
SE-ADGs.

Assumption 2: MAPF problems are such that they initially
yield an acyclic SE-ADG.

Remark 1: Acyclicity of the SE-ADG can be ensured when
the roadmap vertices outnumber the AGV fleet size i.e.,|V| > N
(as is typically the case in warehouse robotics) or a MAPF solver,
such as kR-MAPF, is used with k = 1[5]. Alternatively, simple
modification (e.g., an extra edge constraint in CBS) to existing
MAPF solvers is sufficient to ensure acyclicity [4].

IV. REORDERING AGV PLANS: INTRODUCING THE SADG

In Section III, we introduced the SE-ADG and showed that an
acyclic SE-ADG is a sufficient condition to guarantee deadlock-
and collision-free plan execution for multiple AGVs executing a
valid MAPF plan. In this section, we address the core challenge
we are tackling throughout this manuscript: how can we adjust
plans online to account for delays while maintaining deadlock-
and collision-free plan execution guarantees? To this end, we
introduce a new data-structure, the SADG, which facilitates the
systematic re-ordering of AGVs based on time-delays. We go on
to show that the SADG provides the ability to maintain deadlock-
and collision-free guarantees of the original SE-ADG on which
it is based.

A. Switched Dependencies

Before introducing the SADG, we need to introduce the
fundamental building block on which it is based: the switched
dependency. Consider an inter-AGV (i.e., i �= j) dependency
eoriginal = (vlj , v

k
i) ∈ ESE-ADG. From here on, we refer to an inter-

AGV dependency simply as a dependency. As per Definition 3,
eoriginal implies status(vlj) = completed before status(vki) =
in − progress when executing the SE-ADG-based plans. In

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1361

Fig. 3. Visual illustration of a switched dependency: Original dependency
(black) and its reversed counterpart (red).

terms of the roadmap G, this is equivalent to requiring AGVj to
leave s(vlj) (reach g(vlj)) before AGVi can advance to g(vki).
Note the implicit ordering that AGVj must go to s(vlj) = g(vki)
before AGVi. The idea of a switched dependency is to reverse
this implicit ordering while ensuring AGVs do not occupy the
same vertex in G at the same time.

Definition 4 (Switched inter-AGV dependency): Given a de-
pendency efwd = (vki , v

l
j) ∈ ESE-ADG, a switched dependency is

an edge erev = (v, v′), which ensures AGVi reaches s(vlj) =

g(vki) before AGVj without collision.
Given a dependency efwd, a switched dependency which

fulfills Definition 4 can be determined using Lemma 1.
A dependency and its reversed counterpart are illustrated
in Fig. 3.

Lemma 1 (Switched inter-AGV dependency): Let vki , v
l
j ,

vl+1
j , vk−1i ∈ VSE-ADG, where GSE-ADG = (VSE-ADG, ESE-ADG)

from Definition 2. Then, d′ = (vl+1
j , vk−1i) is the switched coun-

terpart of d = (vki , v
l
j) which adheres to Definition 4.

Proof: The dependency d = (vki , v
l
j) encodes the constraint

ts(v
l
j) ≥ tg(v

k
i). The switched counterpart of d is denoted

as d′ = (vl+1
j , vk−1i). d′ encodes the constraint ts(v

k−1
i) ≥

tg(v
l+1
j). By definition, ts(v

k
i) ≥ tg(v

k−1
i) and ts(v

l+1
j) ≥

tg(v
l
j). Since tg(v) ≥ ts(v), this implies that d′ encodes the

constraint ts(vki) ≥ tg(v
l
j), satisfying Definition 4.

Note that, as discussed in Section III, the SE-ADG is spatially
exclusive, allowing us to use only a single dependency as the
switched counterpart of one dependency.

B. Switchable Action Dependency Graph

Lemma 1 provides us with a method to maintain collision
avoidance while re-ordering AGVs. We are now in the position
to extend the SE-ADG to enable the re-ordering of AGVs using
switchable dependencies. To this end, we introduce the SADG,
a mapping from a binary vector, b, to an SE-ADG, GSE-ADG.

Definition 5 (Switchable Action Dependency Graph): An
SADG is a mapping GSADG(b) : {0, 1}mT → GSE-ADG, which
outputs the resultant SE-ADG based on the dependency se-
lection represented by b = {b1, . . . , bmT

}, where bm = 0 and
bm = 1 imply selecting the forward and reverse dependency of
pair m, respectively, m ∈ {1, . . . ,mT }.

In Definition 5, GSE-ADG refers to the set of all possible
GSE-ADG’s. Depending on the value of b, GSADG(b) will result
in a different GSE-ADG. Similarly to the SE-ADG, an SADG
can be constructed from a valid MAPF solution P using

Algorithm 2: Compiling an SADG.

Input:P = {P1, . . . ,PN} // valid MAPF solution
Result:GSADG(b)
// Add sequence of events for each AGV

1: for Pi = {p1i , . . . , pNi
i } in P do

2: p← p1i
3: v ← ({p}, staged)
4: vprev ← None
5: for k = 2 to Ni do
6: Append pki to sequence of plan tuples of v
// Check for spatial exclusivity
7: if loc(p)⊕ SAGV ∩ loc(pki)⊕ SAGV = ∅ then
8: Add v to VSADG(b)
9: if vprev not None then

10: Add (vprev, v) to ESADG(b)
11: end if
12: vprev ← v
13: p← pki
14: v ← ({p}, staged)
15: end if
16: end for
17: end for // Add switchable dependency pairs
18: for i = 1 to N do
19: for j = 1 to N , j �= i do
20: for k = 1 to Ni do
21: for l = 1 to Nj do
22: if s(vki) = g(vlj) and t̂g(v

k
i) ≤ t̂g(v

l
j) then

23: efwd ← (vki , v
l
j)

24: if (vk−1i , vl+1
j) ∈ VSADG(b) then

25: erev ← (vl+1
j , vk−1i)

26: Add depSwitch(bm : {efwd, erev}) to ESADG(b)
27: else
28: Add efwd to ESADG(b)
29: end if
30: end if
31: end for
32: end for
33: end for
34: end for
35: return GSADG(b) = (VSADG(b), ESADG(b))

Algorithm 2. Like Algorithm 1, Algorithm 2 also consists of
two-stages. In fact, the only difference between Algorithm 2
and Algorithm 1 is in lines 19–25. Instead of just creating
the dependency efwd, a check is done to validate if its reverse
counterpart, erev, can be constructed (cf., line 24). If so, a binary
switching function depSwitch : {0, 1} → ESE-ADG is appended
to the set of dependencies ESADG(b) (cf., line 26), where, as
per Definition 5, depSwitch(bm = 0 : {efwd, erev}) = efwd, and
depSwitch(bm = 1 : {efwd, erev}) = erev. Conversely, if the re-
verse counterpart of efwd cannot be constructed, dependency
switching is not possible for efwd and there is no need for a
binary variable bm. In this case, the dependency efwd is appended
to ESADG(b) (cf., line 28).

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

1362 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 4. SADGGSADG(b) constructed from the same valid MAPF solution used
to construct the SE-ADG in Fig. 2(b).

Fig. 4 shows an illustration of the SADG for the running exam-
ple illustrated in Fig. 2. Note that all the forward dependencies
(solid, black arrows), are identical to those in Fig. 2(b). This
is because Algorithm 2 follows the same process to generate
the forward dependencies as Algorithm 1. Note also how the
forward dependency efwd = (v31 , v

1
3) has no reverse counterpart.

This is because its reverse counterpart, as specified by Lemma 1,
would be erev = (v41 , v

0
3), which does not exist (as checked in

Algorithm 2, line 24).

C. SADG Properties and Execution Policy

With the aim of introducing an SADG-based control scheme
in Section V, we need to ensure the SE-ADG execution policy
in Definition 3 can be applied to SADGs. To this end, recall
that GSADG(b) yields an SE-ADG for a particular b. When all
AGVs are at their starting positions and b = 0, GSADG(b) =
GSE-ADG, the same SE-ADG as obtained with Algorithm 1, which
was shown to ensure collision-free and deadlock-free plans in
Corollary 2.

Although we have proven collision- and deadlock-avoidance
if AGVs follow the execution policy in Definition 3, this only
holds if the underlying SE-ADG remains constant. We will now
show that if b is chosen such that the all edges in ESADG(b)
in GSE-ADG = GSADG(b) do not violate the assumptions in the
execution policy of Definition 3, Corollary 1 can be extended to
SADGs.

Corollary 3 (Persistent collision-free plan execution for
SADGs): For varying b, the resultant SE-ADG from GSADG(b)
will guarantee collision-free plan execution as long as

1) b is chosen such that ∀ e = (vki , v
l
j) ∈ ESADG(b) the head

of e, vlj , has status(vlj) = staged at the time b is changed
and

2) AGVs follow the plan execution policy Definition 3 based
on the changing ESADG(b) at all times.

Proof: Proof by induction. Initially, at time t = T0, b = 0
and GSE-ADG is acyclic which guarantees collision-free plan
execution by Corollary 1. Consider at time t = T1 > T0, b. Let
bswitched ⊂ b refer to the subset of b that is different between
t ≤ T1 and t > T1. Since ∀ b ∈ bswitched, status(vlj) = staged,
status(vl

′
j) ∀l′ ≥ l, by the construction of intra-AGV dependen-

cies in Algorithm 1, cf., lines 1–13. Hence, at time t > T1, the
constraints imposed by all the newly active edges introduced by
bswitched have not been violated. Since all constraints are adhered,

Fig. 5. Illustration of GSADG(b) for b = 0. The resultant GSE-ADG is depicted
with solid black arrows. The dependencies not part of GSADG(0) are indicated
by dotted lines.

collision-avoidance is guaranteed. The same logic applies for a
subsequent switching at time t = T2 > T1, thus proving persis-
tent collision-avoidance.

Note that although Corollary 3 provides us constraints on
the changing of b at any time to ensure persistent collision-
avoidance guarantees, no guarantees are made regarding dead-
locks. Hence, it is possible that, following Corollary 3, b is
chosen which causes the AGVs to enter into a deadlock. Viewed
from the perspective of the SE-ADG: it is possible that a value
of b causes a cycle in the resultant SE-ADG. Finding a value
of b which also guarantees deadlock-free plans, i.e., persistent
acyclicity of GSADG(b), will be considered in Section V.

For our running example, in the case that b = 0, the active SE-
ADG is shown in Fig. 5. Note that Fig. 5 is practically identical
to Fig. 2(b) because b = 0 corresponds to the original SE-ADG
constructed using Algorithm 1.

V. SHRINKING HORIZON CONTROL (SHC) SCHEME

Consider AGVs executing their respective plans, as described
by an SE-ADG G0SE-ADG = GSADG(0), adhering to execution
policy in Definition 3. In the case that any subset of the AGVs
is delayed, the cumulative route completion times of the AGVs
could be reduced if the SE-ADG is modified at a time T1 > T0,
whereT0 refers to the time the AGVs started executing the plans.
In Section IV, we showed that if, at time T1, b is chosen in
accordance with Corollary 3, persistent collision-avoidance of
the AGVs is guaranteed when following the execution policy
in Definition 3. However, Corollary 3 does not guarantee plan
completion (i.e., deadlock-free movement). This is because
changing b at T1 could result in a cyclic SE-ADG, causing
a deadlock. Therefore, the objective is to find b∗ at T1 to
ensure G∗SE-ADG = GSADG(b

∗) is acyclic, while minimizing the
route-completion time of the AGV fleet, based on the individual
AGV delays at time T1.

In this section, we show that finding b∗ is equivalent to solving
an optimal control problem (OCP). We go on to solve this OCP
using a MILP formulation, which we integrate into a shrinking
horizon feedback control scheme.

A. Optimal Control Problem

At any time during the execution of their respective plans,
given an initial SE-ADG,GSADG(b0), the OCP can be formulated

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1363

as follows:

fOCP(b) = min
b,tg,ts

N∑
i=1

tg(v
Ni
i) (1a)

s.t.

tg(v
k
i) > ts(v

k
i) + ΔT (vki) ∀ vki ∈ Π(VSADG(b)) (1b)

ts(v
k+1
i) > tg(v

k
i) ∀ vk+1

i ∈ Γ (VSADG(b)) (1c)

status(v′) = staged ∀ (v, v′) ∈ Ψ(b, b0) (1d)

tg(v
k
i) < ts(v

l
j) ∀ (vki , vlj) ∈ ESADG(b) if i �= j (1e)

where Ψ(b, b0) returns only the edges in ESADG(b), which do
not exist in ESADG(b0)

Ψ (b, b0) = {e | e ∈ ESADG(b) ∧ e /∈ ESADG(b0)}.
Furthermore, Π(·) and Γ(·) are filters such that

Π(V) = {v ∈ V | status(v) ∈ {staged, in-progress}}
Γ (V) = {v ∈ V | status(v) = staged} .

Finally, ΔT (vki) is the estimated time AGVi will take to com-
plete vki , defined as

ΔT (vki) =

⎧⎪⎨
⎪⎩

Test(v
k
i) if status(vki) = staged

μTest(v
k
i) if status(vki) = in-progress

0 if status(vki) = completed

where Test(v
k
i) is the total estimated time it will take AGVi to

complete vki , andμ ∈ [0, 1] is the fraction of vki that still needs to
be completed. Since tg(v

Ni
i) refers to the time where AGVi will

reach its goal position, the cost function in (1a) is the cumulative
route completion time of all N AGVs. Note that (1b) and (1c)
enforce the route sequence of each individual AGV, whereas (1d)
and (1e) enforce ordering constraints between AGVs. Moreover,
(1d) ensures the heads of all switched dependencies point to
staged vertices.

Corollary 4 (Cyclic SE-ADG yields constraint violation):
A cycle in the SE-ADG violates constraints of OCP (1) and
therefore any feasible solution of OCP (1) is acyclic.

Proof: Without loss of generality, consider the cyclic depen-
dency chain formed by a dependency from vki to vlj , and from
vlj back to vki . The dependencies forming this cycle translate to
the following constraints, as specified in (1e):

vki → vlj : tg(v
k
i) < ts(v

l
j) (2a)

vlj → vki : tg(v
l
j) < ts(v

k
i). (2b)

Furthermore, by (1b), we require that

tg(v
k
i) > ts(v

k
i) + ΔT (vki) (3a)

tg(v
l
j) > ts(v

l
j) + ΔT (vlj). (3b)

Since ΔT (v∗∗) ≥ 0, observe that (2) and (3) lead to the con-
tradiction that both tg(v

k
i) < ts(v

j
l) and tg(v

k
i) > ts(v

j
l) must

hold. Such a contradiction appears for every (possibly longer)
cycle within the SE-ADG. This result directly implies that any
feasible solution to OCP (1) is acyclic.

Next, we show that if the initial SE-ADG is acyclic, the OCP
is feasible and in turn yields an acyclic SE-ADG.

Corollary 5 (A solution to (1) exists if GSADG(b0) is acyclic):
IfGSADG(b0) is acyclic, the minimizer to (1), b∗, exists, fOCP(b

∗)
is finite., implying GSADG(b

∗) is acyclic.
Proof: A direct result from Corollary 2 is that if GSADG(b0) is

acyclic, the route completion time of all AGVs is finite. Because
the cost function of (1) equals the cumulative route completion
time of all AGVs, fOCP(b0) is necessarily finite and b0 is a
solution to (1). Consequently, the minimizer b∗ exists and is a
solution of (1). From Corollary 4, this means that GSADG(b

∗) is
acyclic.

B. Formulation as MILP

Working toward the definition of a feedback control scheme,
we now formulate the OCP in (1) as an MILP as follows:

min
b,tg,ts

N∑
i=1

tg(v
Ni
i) (4a)

s.t.

tg(v
k
i) > ts(v

k
i) + ΔT (vki) ∀ vki ∈ Π(VSADG(b)) (4b)

ts(v
k+1
i) > tg(v

k
i) ∀ vk+1

i ∈ Γ (VSADG(b)) (4c)

status(v′) = staged ∀ (v, v′) ∈ Ψ(b, b0) (4d)

tg(v
k
i) < ts(v

l
j) ∀ (vki , vlj) ∈ ESADG(b) if i �= j (4e)

ts(v
l
j) > tg(v

k
i)− bM ∀ b ∈ b (4f)

ts(v
k−1
i) > tg(v

l+1
j)− (1− b)M ∀ b ∈ b (4g)

where M � 0 is a large constant, and i and j are both indices
referring to a specific AGV such that i, j ∈ {1, . . . , N}. Fur-
thermore, k and l are the SE-ADG vertex index of AGV i and
j, respectively, i.e., k ∈ {1, . . . , Ni} and l ∈ {1, . . . , Nj}. The
constraints (4f) and (4g) encode the switching decision for each
of the switchable dependencies pairs using the big-M binary
decision formulation [26]. Consider a b ∈ b, if b = 1, (4f) is
relaxed because of the−bM factor. Conversely, if b = 0, (4g) is
relaxed, because of the −(1− b)M factor.

C. Shrinking Horizon Feedback Control Scheme

Having defined the MILP in (4), we present an optimization-
based shrinking horizon feedback control scheme to minimize
the cumulative route completion times of the AGVs based on
delays as they occur. The scheme consists of an initial planning
phase followed by an online phase. During the planning phase,
the roadmap and AGV start- and goal-positions are used to
define a MAPF problem. The MAPF problem is solved using
an algorithm, such as CBS, ECBS, and the solution P is used
to construct an SADG using Algorithm 2. Once constructed,
the execution policy in Definition 3 is used to navigate the
the SADG’s trivial solution, GSE-ADG = GSADG(0). As AGVs
traverse the roadmap, potentially incurring delays, the MILP
formulation in (4) is parameterized based on the current AGV
route progress, and solved. This solution is then used to update

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

1364 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 6. Shrinking horizon feedback control diagram: The planning phase consists of 1. MAPF Planner and SADG Compiler, which yields an SADG given a
roadmap and AGV tasks. Initially, in 3. Optimizer, the SADG is initialized with b = 0 yielding an initial SE-ADG which can be used by AGVs to execute their
plans. As AGVs progress, and are inevitably delayed, their status is tracked in 5. Progress Tracker, and an optimization iteration is performed to re-order the AGVs
in 3. Optimizer. The solution to the MILP is used to update the active SE-ADG used for plan execution in a feedback loop. The feedback loop runs at a sampling
frequency of h.

the SE-ADG used by the execution policy, until the next opti-
mization iteration, where the MILP is reparameterized, and the
SE-ADG is updated. This iterative loop repeats until all AGVs
reach their respective goals. This scheme is illustrated in Fig. 6.

Having defined the feedback control scheme, we now prove
that the feedback scheme is recursively feasible. This implies
that if the initial planning phase is completed, the MILP will
remain feasible until all AGVs have reached their respective goal
positions. We use the notation b∗Tm

to refer to the minimizer of
(4), parameterized by the AGV positions and solved at some
time t = Tm, m ∈ N.

Proposition 1 (Recursive Feasibility of SHC scheme): If the
initial SE-ADG, GSE-ADG = GSADG(0), obtained from the plan-
ning phase, is acyclic, the shrinking horizon feedback control
scheme will guarantee that GSADG(b

∗) is acyclic at each subse-
quent optimization step.

Proof: Proof by induction. Initially the SE-ADG, GSE-ADG =
GSADG(b

∗
T0
) is acyclic. If the MILP in (4) is solved at t = T1 >

T0, Corollary 5 guarantees that the SE-ADG at T1, GSE-ADG
T1 ,

obtained from GSADG(b
∗
T1
), is acyclic. Subsequent optimization

steps will always result in acyclic SE-ADGs, proving recursive
feasibility of the feedback control scheme.

To illustrate this feedback control scheme, an example of the
online optimization step is shown in Fig. 7. The example starts
at time t, where T1 ≤ t ≤ T2, and AGV4 has been delayed.
However, because of the dependencies in GSADG(b

∗
T1
), AGV3

must wait for AGV4 before it can proceed, as illustrated in
Fig. 7(a). At t = T2, the optimization step is performed and a
new SE-ADG is obtained,GSADG(b

∗
T2
), as illustrated in Fig. 7(b).

Note that GSADG(b
∗
T2
) has switched the dependencies between

AGV3 and AGV4, and remains acyclic. For t > T2, the AGVs
continue executing their plans, but using the newly obtained
SE-ADG, GSADG(b

∗
T2
).

D. Grouping Switchable Dependency Pairs

Two patterns of switchable dependencies often occur with
multi-agent planning problems. The first pattern is shown in

Fig. 7. Illustrative example of switching performed by the shrinking horizon
feedback control scheme. (a) AGV progress illustrated by vertex statuses. AGV4

is delayed. (b) Based on AGV progress, ordering can be adjusted by considering
the valid switching pairs within the MILP formulation. (c) Switching enables
AGV3 to continue without waiting for AGV4, and AGV2 without waiting for
AGV1.

Fig. 8(a) and occurs when a MAPF plan requires two AGVs to
travel across multiple roadmap vertices in the same direction.
This pattern can be found by sequentially visiting each inter-
AGV dependency (vki , v

l
j) in the SADG and searching for any

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1365

Fig. 8. Dependency grouping patterns for AGVs planned to cross roadmap
vertices in the (a) same and (b) opposite directions. .

Fig. 9. Graphical illustration of how the original SADG can be split into a
finite horizon SADG subset and an SE-ADG, while ensuring if the finite horizon
SADG subset yields an acyclic SE-ADG subset, the resultant SE-ADG will be
acyclic.

sequence of dependencies of the pattern

(vk+n
i , vl+n

j), n ∈ 1, 2,

A dependency group DG then consists of the sequence

DG = ((vki , v
l
j), (v

k+1
i , vl+1

j), (vk+2
i , vl+2

j), . . .).

Similarly, the second pattern is shown in Fig. 8(b), corre-
sponding to two AGVs travelling in the opposite direction. This
pattern can be found by sequentially visiting each inter-AGV de-
pendency (vki , v

l
j) in the SADG and searching for any sequence

of dependencies of the pattern

(vk+n
i , vl−nj), n ∈ 1, 2,

A dependency group DG then consists of the sequence

DG = ((vki , v
l
j), (v

k+1
i , vl−1j), (vk+2

i , vl−2j), . . .).

In both cases, a single binary variable is sufficient to express
the switching for all the dependency pairs in the group, since
the only way for the switching to yield an acyclic SE-ADG is if
either all the forward dependencies and none of the reverse de-
pendencies are active (or vice-versa). Depending on the roadmap
topography, the size of b can be significantly reduced, greatly
reducing the complexity of the MILP problem at each iteration.
Identifying dependency groups is an O(n) operation, and can
be done during SADG construction, i.e., before plan execution.

Fig. 10. Illustrative example of how Algorithm 3 extracts the finite horizon
SADG subset from the original SADG for a user-specified horizon H . The
magenta region refers to the stack VFH in Algorithm 3. (a) Refers to line 1, with
the vertices within H added to VFH. (b) Refers to line 2, where all forward or
reverse dependencies pointing to within H are added to VFH. (c) Refer to lines
3 and 4, where any forward dependencies pointing to VFH in (b) are included.
(d) Switchable dependencies, in red, as identified in lines 5–8.

Fig. 11. Highlighted finite horizon SADG subset connected to the acyclic
SE-ADG subset with unidirectional dependencies. The horizon H is indicated
by the horizontal black arrow.

E. Summary

The result of this section is that we have an SADG from which
an OCP is derived which can be solved at any time-step to re-
order the AGVs based on their progress of the plans. A feasible
solution is guaranteed to yield a deadlock-free, collision free
plan for the AGVs.

VI. RHC SCHEME

We now address the fact that the OCP in (1) could yield an
optimization problem too large for feasible real-time implemen-
tation as it considers the entire, finite-length plans. Specifically,
we show how the OCP in (1) can be approximated by a receding
horizon variant of the MILP in (4). The motivation for this is
predicated on the fact that MILP problems are exponentially
complex in the number of discrete variables. Furthermore, a
receding horizon formulation allows for ad-hoc re-planning of
AGVs without needing to wait for all AGVs to reach their goals.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

1366 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

To this end, we first introduce a method to split an SADG into
a smaller SADG and an acyclic SE-ADG. We then show how
reformulating the MILP to consider the smaller SADG approx-
imates a solution to the original OCP and maintains recursive
feasibility guarantees.

Note that we extend the approach originally presented in [12]
by introducing a method to split the SADG. This enables the
persistent resolving of the MAPF mid-route as shown for the
original ADG method in [4].

A. Introducing the Finite Horizon SADG Subset

RHC approaches are predicated on the fact that a sufficiently
accurate solution to an OCP can be obtained by only considering
the system trajectories within a finite horizon. For discrete
systems, such as the one described by a SADG, defining the finite
horizon which guarantees the RHC presents a unique challenge:
reordering AGVs within a finite horizon could still yield a cyclic
SE-ADG, despite the portion of the SE-ADG within the horizon
being acyclic.

To this end, we present Algorithm 3 to split an SADG into
1) a finite horizon SADG and 2) an acyclic SE-ADG such that if
the finite horizon SADG (a subset of the original SADG) yields
an acyclic, finite horizon SE-ADG for a particular brhc ⊂ b, the
entire SE-ADG will be acyclic. This finite horizon SADG can
then be used, instead of the original SADG, to parameterize
MILP formulation, greatly reducing the computational load
and maintaining collision- and deadlock-free plan execution
guarantees.

To this end, we introduce Lemma 2, a result which enables
the splitting of an SADG into a finite horizon SADG subset
and an SE-ADG subset, the resulting SE-ADG will be acyclic
if the switching within the finite horizon SADG subset yields
an acyclic SE-ADG. Lemma 2 builds on the more general
fact that a graph G is acyclic if 1) it is constructed from two
acyclic graphs, G1 = (V1, E1) and G2 = (V2, E2), and 2) all
edges connecting G1 and G2 point from V1 to V2. This result
is proven in Appendix A, Lemma 3. The result in Lemma 2 is
illustrated by the example in Fig. 9. The gray partition line splits
the SADG into a SADG subset and an SE-ADG. Note how all
the dependencies connecting the SADG subset and the SE-ADG
go from the SADG subset to the SE-ADG.

The application of Algorithm 3 to our running example is
illustrated in Fig. 11. Here, the finite horizon SADG subset is
highlighted in orange.

Extracting a finite horizon SADG subset from the SADG can
be done with Algorithm 3. To illustrate the intuition behind
Algorithm 3, consider Fig. 10. In line 1, Algorithm 3 navigates
the graph GSADG(b) by first pushing all the vertices estimated
to be completed within a user-specified time horizon H to a
stack VFH, shown in Fig. 10(a). Next, each forward–reverse
dependency pair pointing to a vertex in VFH is identified, and its
associated binary variable is appended to brhc. This is illustrated
by the magenta region in Fig. 10(b). The remaining forward
dependencies pointing to vertices in VFH are appended to EFH,
until no dependencies point from a vertex in VFH to a vertex
outsideVFH. This is shown in Fig. 10(c) The resulting switchable

Algorithm 3: Extracting a Finite Horizon SADG Subset.

Input:GSADG(b), H
Result:GrhcSADG(brhc)

// Add switching dependency pairs within horizon H
1: Add vertices to VFH within H
2: Add all edges to/from VFH to EFH

3: Add b ∈ b to brhc if b is related to edges in EFH

4: Add all edges pointing to v ∈ VFH to Einwards

// Expand VFH until no dependencies point into VFH

5: while Einwards �= ∅ do
6: e← pop(Einwards)
7: Add all v’s pointing to e
8: Add all edges pointing from v out of VFH to Einwards

9: end while
10: return GrhcSADG(brhc) = (VFH, EFH(brhc))

dependencies, which are considered within brhc are shown in
Fig. 10(d).

Lemma 2 (Finite horizon SADG subset solution guarantees
acyclicity of resultant SE-ADG): Consider a SADG, GSADG(b),
split into a finite horizon SADG subset and an SE-ADG subset
using Algorithm 3. If b∗rhc is such that GrhcSADG(b

∗
rhc) is acyclic, the

resultant SE-ADG is acyclic.
Proof: By lines 5–9, Algorithm 3 ensures all dependencies

connecting the finite horizon SADG subset, GrhcSADG(), and the
SE-ADG subset, GrhcSE-ADG, are directed from GrhcSADG() to GrhcSE-ADG
only. Using the result in Lemma 3, if a particular brhc is chosen
such that GrhcSADG(brhc) is acyclic, the resultant SE-ADG will be
acyclic, since GrhcSE-ADG is acyclic as well.

B. Reformulation of MILP

We now reformulate the MILP to consider the finite horizon
SADG subset instead of the entire SADG as was done in (4)

min
b,tg,ts

N∑
i=1

tg(v
ni
i) (5a)

s.t.

tg(v
k
i) > ts(v

k
i) + ΔT (vki) ∀ vki ∈ Π(VFH(b)) (5b)

ts(v
k+1
i) > tg(v

k
i) ∀ vk+1

i ∈ Γ (VFH(b)) (5c)

status(v′) = staged ∀ (v, v′) ∈ Ψ(b, b0,VFH(b)) (5d)

tg(v
k
i) < ts(v

l
j) ∀ (vki , vkj) ∈ EFH(b) if i �= j (5e)

ts(v
l
j) > tg(v

k
i)− bM ∀ b ∈ b (5f)

ts(v
k−1
i) > tg(v

l+1
j)− (1− b)M ∀ b ∈ b (5g)

where M � 0 is a large constant and ni is the horizon length as
determined for AGVi as determined by Algorithm 3.

C. Receding Horizon Feedback Control Scheme

Having reformulated the MILP in (5) such that a subset of the
SADG is considered at each optimization step, we present the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1367

Fig. 12. Receding horizon feedback control diagram. Differences from Fig. 6 are highlighted in red. As AGVs progress, and are inevitably delayed, their status
is tracked, and an optimization iteration is performed to re-order the AGVs based on a Finite Horizon SADG subset calculated by Algorithm 3. The solution of the
MILP is used to update the SE-ADG used for plan execution in a feedback loop.

Fig. 13. Improvement for various simulated AGV delays navigating roadmaps
in Fig. 14. EachΔtdelay seconds, a randomly selected subset of 20% of the AGVs
are stopped for Δtdelay seconds. Horizon H = 5. Bounds correspond to ±1σ.

receding horizon feedback control scheme as shown in Fig. 12.
The main difference between the RHC scheme and the SHC
scheme presented in Section V is the inclusion of Algorithm 3
in the step 5. Track AGV Progress. Finally, we prove recursive
feasibility of the RHC scheme.

Proposition 2 (Recursive feasibility of RHC scheme): If the
initial SE-ADG, GSE-ADG = GSADG(0), obtained from the plan-
ning phase, is acyclic, the RHC scheme will guarantee that
GSADG(b

∗) is acyclic at each subsequent optimization step.
Proof: Proof by induction. Initially the SE-ADG, GSE-ADG =
GSADG(b

∗
T0
) is acyclic. Algorithm 3 is used to extract the finite

horizon SADG subset at t = T1 > T0. If the MILP in (5) is
solved at t = T1 > T0, Corollary 5 guarantees that the SE-ADG
at T1, GSE-ADG

T1 , obtained from GSADG(b
∗
T1
), is acyclic. Subse-

quent optimization steps will always result in acyclic SE-ADGs,
proving recursive feasibility of the feedback control scheme.

VII. EVALUATION

We perform extensive evaluations of our proposed feedback
control scheme. Our simulations consist of multiple AGVs
occupying various roadmaps with randomized start and goal
locations. Each simulation starts with a planning step where the
MAPF is solved given the start and goal locations.

To gain insight into our proposed control schemes, we per-
form evaluations in three different settings. In the first, we
aim to gain statistical insight into the performance gains of
our approach compared with the original ADG baseline by
considering various roadmap topologies and AGV fleet sizes. In
the second setting, we compare our method to the state-of-the-art
robust MAPF planner K-CBSH-RM [34]. In the third setting,
we showcase our method in a high-fidelity ROS and Gazebo
simulation environment. In all three settings, the RHC SADG
is used in combination with dependency grouping as described
in Section V-D. All simulations were conducted on a Lenovo
Thinkstation with an Intel Xeon E5-1620 3.5 GHz processor
and 64 GB RAM.

A. Setting 1: Statistical Analysis

We compare our proposed receding horizon feedback control
scheme, referred to from here on as the RHC SADG approach, to
the original ADG approach in [4]. We consider the roadmaps in
Fig. 14, inspired by intralogistic warehouse layouts [1], [8], [9].
For each simulation run, AGVs are given randomized start and
goal locations on the map. The execution policy in Definition 3 is
used for both the ADG and RHC SADG approaches. The AGVs
are simulated as simple differential-drive robots with constant
rotational and translational velocities of 3 rad·s−1 and 1m·s−1,
respectively. The coordination of AGVs is performed using
ROS, where a central coordination ROS node solves the MAPF,
constructs the RHC SADG (or ADG), and communicates the
vertex statuses to each AGV. The feedback loop sampling time
h is set to 2 s. AGVs are artificially delayed as follows: at the
start of each interval of length Δtdelay, 20% of the AGV fleet is
randomly selected and stopped for the next Δtdelay seconds. For
the next interval, a different subset of the AGVs is randomly
selected and delayed, and so on. Improvement is quantified
by comparing the cumulative route completion time of all the
AGVs for the same MAPF plan when using the baseline ADG
approach to our receding horizon feedback control scheme,
defined as

improvement =

∑
tADG −

∑
tRHCSADG∑

tADG
· 100% (6)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

1368 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 14. Roadmaps used for the statistical analysis in Section VII-A, inspired by [1], [8], and [9]. AGVs are indicated by colored circles, and their corresponding
goal location by the same colored ring. Roadmap vertices are represented by black squares. (a) Warehouse. (b) Full Maze. (c) Half Maze. (d) Islands.

Fig. 15. Improvement for delays Δtdelay of 5 and 25 s given various horizons
H . Bounds correspond to ±1σ.

Fig. 16. Improvement for various percentages of AGVs delayed at each
interval of Δtdelay. Δtdelay = 20 s and horizon H = 5 s. Bounds correspond to
±1σ.

where
∑

t∗ refers to the cumulative plan completion time for
all AGVs using approach ∗.

Improvement and Delays: We consider delays of Δtdelay ∈
{1, 3, 5, 10, 15, 20, 25, 30, 40, 50} seconds for AGV fleet sizes

of {30, 40, 50, 60, 70} navigating the four roadmaps in Fig. 14.
We run 100 simulations for each fleet size and delay time
permutation. For each simulation, the MAPF is solved us-
ing ECBS with suboptimality bound w chosen such that
the initial planning time is below ten minutes. Fig. 13
shows the improvement for various AGV fleet sizes and
delays. The horizonH is set to 5 s. We observe that the improve-
ment is almost linear with respect to the delays of the AGVs,
for all the considered fleet sizes. The improvement standard
deviation, σ, indicated by the lightly colored bands, is relatively
small, indicating that improvement is consistent for a given fleet
size and delay configuration.

Improvement and Horizon: For the RHC SADG approach,
we consider various horizons H ∈ {1, . . . , 15} s. We consider
delays Δtdelay = 5 s and Δtdelay = 25 s, with the improvement
shown in Fig. 15. We run 100 simulations for each fleet size,
horizon, and delay time permutation. Notice how for both shorter
and longer delays, the improvement already significantly in-
creases with low horizons H , indicating that the RHC MILP
in (5) performs a consistently good approximation of the OCP
in (1) for small H .

Varying Percentage of Delayed AGV Fleet: We evaluate
different proportions of the AGVs delayed at each Δtdelay =
20 s, with the improvement for an horizon H = 5 s, shown in
Fig. 16. When 0% of the AGVs are delayed, the improvement is
0% since none of the AGVs are re-ordered with the RHC SADG
approach. Similarly, when 100% of the AGVs are delayed, the
cumulative route completion times for both the ADG and SADG
methods is∞, yielding an improvement of 0%. Improvement is
highest when 40% randomly selected AGVs are delayed each
Δtdelay.

Different Roadmaps: We evaluate the improvement sepa-
rately for each roadmap in Fig. 14. Results are shown in Fig. 17
for horizon H = 5 s and Δtdelay = 10 s. We note that the least
improvement is seen for the sparser Islands map, and the best
improvement is seen for the denser Full Maze and Warehouse
maps. We conclude that our method is best suited to maps which
present the opportunity for switching, as this increases the binary
decision space of the OCP.

RHC MILP Computation Times: For our simulations, the
MILP was solved using the coin-or branch-and-cut solver [41].
The computation times for different AGV fleet sizes and horizon
lengths are shown in Fig. 18. We note that the MILP can be solved

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1369

Fig. 17. Improvement for the roadmaps shown in Fig. 14 for various AGV
fleet sizes. 20% of the AGVs are delayed by Δtdelay = 20 s and the H = 5 s.
Bounds correspond to ±1σ.

Fig. 18. Computation times of 3. Optimizer in Fig. 12 for varying horizon
lengths and AGV fleet sizes. Bounds correspond to ±3σ.

below 1 s for fleet sizes of up to 70 AGVs for horizons below
H = 5 s. Recall that even smaller horizons can yield significant
improvement as in Fig. 15.

Summary: We observe significant reductions in average
route completion times for AGVs. Specifically, the larger the
delays observed by the AGVs, the larger the improvement
is observed when using the RHC SADG approach compared
with the ADG baseline using the same initial MAPF solution.
Significant improvements are observed for small RHC SADG
horizons, across multiple roadmap topologies.

B. Setting 2: Comparison With Robust MAPF Solver

In this section we compare our proposed receding horizon
feedback control scheme to the state-of-the-art robust MAPF
solver K-CBSH-RM [34]. We consider the roadmap in Fig. 19(a)
with AGV fleets of size 20 and 25 with the horizon of the RHC
SADG approach set toH = 10 s. The smaller roadmap and fleet
sizes were chosen because K-CBSH-RM and CBS failed to yield
valid MAPF solutions for larger maps or fleet sizes. Recall that
we used the bounded suboptimal equivalent of CBS, ECBS, in
Setting 1, allowing us to find feasible solutions to the MAPF for
larger solution spaces. As in Setting 1, improvement is measured
using the original ADG approach with CBS as the initial MAPF
planner.

Fig. 19. Roadmaps with AGVs indicated by colored circles, and their cor-
respondingly colored rings denoting their goal locations. (a) Roadmap for the
comparison with K-CBSH-RM in Section VII-B. (b) Roadmap used for the
Gazebo evaluation in Section VII-C.

Fig. 20. Average improvement and initial MAPF solver computation times for
100 simulations with AGVs velocity profiles from Fig. 21 comparing the RHC
SADG method with the K-CBSH-RM planner for k ∈ {1, 2}s for H = 10 s.

Fig. 21. Normalized velocity distribution for Setting 2. Each AGV is given
a randomly sampled velocity to complete its next SADG event from this
distribution.

Simulating Interactions with Dynamic Obstacles: To sim-
ulate random interactions with dynamic obstacles, each AGV is
prescribed a different, randomly sampled velocity when com-
pleting an SE-ADG event. These velocities are sampled from
the distribution shown in Fig. 21. This distribution was created
to simulate the fact that, most often, AGVs move at a velocity
close to a nominal velocity vnominal, but occasionally travel at
significantly slower velocities when navigating around dynamic
obstacles, modeled here by the velocity distribution centered
around 0.3vnominal, with vnominal = 1m·s−1. Fig. 20 shows the
comparison of the RHC SADG approach with K-CBSH-RM
for k ∈ {1, 2} seconds for 100 simulations. We observe that
the RHC SADG approach yields a higher improvement during
plan execution for both AGV fleet sizes. As expected, we ob-
served that improvement increased for increasing values of k in
K-CBSH-RM. However, for k > 2, K-CBSH-RM only found
valid MAPF solutions for 1% of the simulations within the
240 s cutoff time, making a comparison with our approach for
k > 2 impossible. The success rate of K-CBSH-RM for different
values of k is shown in Fig. 22. These results highlight the fact

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

1370 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 22. Initial MAPF planner success for 100 simulations using CBS and
K-CBSH-RM with k ∈ {1, 2, 3}s.

Fig. 23. Average improvement and initial MAPF solver computation times for
100 simulations with AGVs velocity profiles from Fig. 24 comparing the RHC
SADG method with the K-CBSH-RM planner for k ∈ {1, 2}s for H = 10 s.

Fig. 24. Normalized velocity distribution for Setting 2. Each AGV is given
a randomly sampled velocity to complete its next SADG event from this
distribution.

that our approach can be used with a nonrobust planner, such as
CBS or ECBS, to ensure a valid solution to the MAPF is found,
while adding robustness to delays in an online fashion through
the re-ordering of AGV plans.

Simulating Workspaces with Bounded Delays: The fam-
ily of robust MAPF solvers assume delays of all AGVs are
upper-bounded byk seconds [5], [34]. We compare our proposed
approach to K-CBSH-RM with a velocity distribution in Fig. 24
resulting in smaller delays. Fig. 23 shows that K-CBSH-RM
performs better than our approach in this case, which only yields
marginal improvements compared with the ADG baseline.

Remark 2: Our approach is agnostic to the original MAPF
planner. Hence, it would be possible to use K-CBSH-RM to
solve the initial MAPF, and the RHC SADG to re-order AGVs
based on delays observed during plan execution.

Summary: We observe that although K-CBSH-RM yields
theoretically lower cumulative route completion times when
delays are bounded by k seconds, our proposed RHC SADG
approach yields better improvement when delays are larger. In
addition, the robust MAPF planners require significantly more
time to solve the robust MAPF problem, as opposed to the
standard MAPF solver, CBS, or ECBS, used by our approach.

Fig. 25. Graphical illustration of Lemma 3: two acyclic graphs G1 and G2,
connected by unidirectional edges, indicated by the dotted lines, yield a larger,
acyclic graph.

TABLE I
AVERAGE IMPROVEMENT FOR 20 SIMULATIONS USING RHC SADG

WITH H = 10S IN GAZEBO

C. Setting 3: High-Fidelity Gazebo Simulations

We evaluate our proposed approach in a high-fidelity Gazebo
simulation environment. We consider 20 AGVs with randomly
selected goal and start locations navigating the roadmap in
Fig. 19(b). AGVs use the open-source ROS move_base motion
planner to execute the SE-ADG events. Delays occur naturally
as AGVs navigate the workspace and negotiate interactions with
other dynamic obstacles. Improvement is quantified as in (6) and
the results are given in Table I. We observe positive improve-
ments for all 20 simulations with slightly higher improvement
in the Gazebo simulation compared with the equivalent start-
goal positions when simulating dynamic obstacles in Setting 2.
The Gazebo simulations yielded a higher improvement because
AGVs were found to experience larger delays than modeled in
Fig. 21.

VIII. CONCLUSION

In this manuscript, we propose an optimization-based reced-
ing horizon feedback control scheme to re-order AGVs sub-
ject to delays when executing MAPF plans. When compared
with the state-of-the-art MAPF planners, our approach yields a
significant reduction in cumulative route completion times for
AGVs subjected to large delays, often experienced in uncertain
environments with dynamic obstacles. Our optimization-based
re-ordering scheme is derived to obtain approximate solutions to
a newly formulated optimal control problem (OCP). This OCP
is described using a SADG, a novel data-structure introduced
in this manuscript. The SADG extends the ADG introduced
in [4] by enabling the re-ordering of AGVs while provably main-
taining collision-avoidance guarantees of the original MAPF
plan. Moreover, our approach guarantees deadlock-free plan ex-
ecution while simultaneously minimizing the cumulative route
completion time of the AGVs.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

BERNDT et al.: RECEDING HORIZON RE-ORDERING OF MULTI-AGENT EXECUTION SCHEDULES 1371

We evaluate our approach in three settings. In Setting 1, we
illustrate the efficiency of our approach, reducing the cumula-
tive route completion time for AGVs by up to 25% compared
with the baseline ADG approach. Here, we also illustrate the
real-time implementability of our feedback scheme, showing
that the RHC MILP problem can consistently be solved un-
der 1 s, even for AGV fleet sizes of up to 70 AGVs, all the
while significantly reducing route completion times. In Setting
2, we compare our approach to the state-of-the-art in robust
MAPF planner K-CBSH-RM, showing a significant reduction in
cumulative route completion times for AGVs subjected to larger
delays, and comparable cumulative route completion times for
smaller delays. In Setting 3, we showcased our approach in
a high-fidelity Gazebo simulation environment with 20 AGVs
navigating around dynamic obstacles, reducing the cumulative
route completion time by 8%, thereby validating the results
obtained in Settings 1 and 2.

In all simulation settings, the AGVs exhibited collision- and
deadlock-free plan execution, a result we prove for both the
SHC and RHC feedback schemes. Our approach is also agnostic
with respect to the planner used to solve the initial MAPF
problem. This means that most MAPF planners, e.g., CBS,
ECBS, K-CBSH-RM, can be used, as long as the initial MAPF
solution yields an acyclic SE-ADG, a constraint which is easy
to adhere to as long as the number of roadmap vertices is larger
than the number of AGVs. Although we only consider AGVs
executing intralogistics tasks, our approach can be extended
to other use-cases covered in the MAPF literature. For future
work, we recommend a detailed comparison of our approach to
real-time re-planning of the MAPF using bounded, suboptimal
MAPF solvers as in [2].

APPENDIX A

Lemma 3 (Two acyclic graphs connected by unidirectional
edges yield an acyclic graph): Consider a directed graph G =
(V, E) subdivided into two subgraphs G1 = (V1, E1) and G2 =
(V2, E2) such that V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅, V1 ∪ V2 = V
and the edges connecting vertices in G1 and G2 are contained
within the set E12, such that E1 ∪ E2 ∪ E12 = E . If both G1 and
G2 are acyclic and e = (v1, v2) is such that v1 ∈ V1 and v2 ∈ V2
for all e ∈ E12, then the graph G is also acyclic.

Proof: Consider two acyclic graphs, G1 = (V1, E1) and
G2 = (V2, E2), illustrated in Fig. 25. ForG1, consider an inbound
edge e = (v, v′), which implies that v /∈ V1 and v′ ∈ V1. Any
number of inbound edges e will not cause G1 to be cyclic.
Similarly, consider an outbound edge e = (v, v′), which implies
that v ∈ V1 and v′ /∈ V1. Any number of outbound edges e will
not causeG1 to be cyclic. The same arguments apply toG2. Since
neither G1 nor G2 have an internal cycle, the only possibility for
a cycle within G is a cycle through both subgraphs G1 and G2.
Since all edges connecting G1 and G2 can be defined by edge
e = (v, v′) such that v ∈ V1 and v′ ∈ V2, such a cycle cannot
exist. This guarantees that the entire graph is acyclic, completing
the proof.

ACKNOWLEDGMENT

The authors would like to thank Musa Morena Marcusso Man-
hães for her help with setting up the ROS and Gazebo frame-
works as well as Zhe Chen for the help setting up the code to
compare our approach with K-CHSH-RM solver.

REFERENCES

[1] P. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of co-
operative, autonomous vehicles in warehouses,” AI Mag., vol. 29, pp. 9–20,
2008.

[2] R. Stern et al., “Multi-agent pathfinding: Definitions, variants, and bench-
marks,” in Proc. Int. Symp. Combinatorial Search, vol. 12, pp. 151–158,
2019.

[3] J. Yu and S. M. LaValle, “Multi-agent path planning and network flow,”
Algorithmic Foundations Robot. X, pp. 157–173, 2013.

[4] W. c, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Persistent and robust
execution of MAPF schedules in warehouses,” IEEE Robot. Autom. Lett.,
vol. 4, no. 2, pp. 1125–1131, Apr. 2019.

[5] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, and N.-F. Zhou,
“Robust multi-agent path finding and executing,” J. Artif. Intell. Res.,
vol. 67, pp. 549–579, 2020.

[6] W. Hönig et al., “Summary: Multi-agent path finding with kinematic
constraints,” in Proc. Int. Joint Conf. Artif. Intell., 2017, pp. 4869–4873.

[7] H. Ma, S. Kumar, and S. Koenig, “Multi-agent path finding with delay
probabilities,” in Proc. AAAI Conf. Artif. Intell., 2017, pp. 3605–3612.

[8] Assoc. Automot. Ind., “Interface for the communication between auto-
mated guided vehicles (AGV) and a master control,” Assoc. Automot. Ind.
(VDA) Tech. Rep. v2.0, 2022. Accessed: Oct. 4, 2023. [Online]. Available:
https://github.com/VDA5050/VDA5050

[9] Open Source Robotics Foundation, Inc., “Open-RMF,” 2022. Accessed:
Oct. 15, 2022. [Online]. Available: https://www.open-rmf.com

[10] M. Čáp, J. Gregoire, and E. Frazzoli, “Provably safe and deadlock-free
execution of multi-robot plans under delaying disturbances,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 5113–5118.

[11] A. Coskun, J. O’Kane, and M. Valtorta, “Deadlock-free online plan repair
in multi-robot coordination with disturbances,” in Proc. Int. FLAIRS Conf.
Proc., vol. 34, pp. 1–6, 2021.

[12] A. Berndt, N. van Duijkeren, L. Palmieri, and T. Keviczky, “A feedback
scheme to reorder a multi-agent execution schedule by persistently opti-
mizing a switchable action dependency graph,” in Proc. Distrib. Multi-
Agent Plan. Workshop ICAPS, vol. 6, pp. 1–9, 2020.

[13] A. Felner et al., “Search-based optimal solvers for the multi-agent pathfind-
ing problem: Summary and challenges,” in Proc. 10th Int. Symp. Combi-
natorial Search„ 2017, pp. 29–37.

[14] R. Morris et al., “Planning, scheduling and monitoring for airport surface
operations,” in Proc. AAAI Workshop: Plan. Hybrid Syst., 2016, pp. 608–
614.

[15] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M.
Preuss, “A survey of real-time strategy game ai research and competi-
tion in starcraft,” IEEE Trans. Comput. Intell. AI Games, vol. 5, no. 4,
pp. 293–311, Dec. 2013.

[16] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search
for optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp. 40–66,
2015.

[17] M. Cáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 835–849, Jul. 2015.

[18] A. Bogatarkan, V. Patoglu, and E. Erdem, “A declarative method for
dynamic multi-agent path finding,” in Proc. 5th Glob. Conf. Artif. Intell.,
2019, pp. 54–67.

[19] F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov, “A loosely-coupled
approach for multi-robot coordination, motion planning and control,” in
Proc. 28th Int. Conf. Automated Plan. Scheduling, 2018, pp. 485–493.

[20] J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots on
graphs,” in Proc. IEEE Int. Conf. Robot. Automat., 2013, pp. 3612–3617.

[21] J. Li, D. Harabor, P. Stuckey, H. Ma, and S. Koenig, “Symmetry-breaking
constraints for grid-based multi-agent path finding,” in Proc. AAAI Conf.
Artif. Intell., 2019, pp. 6087–6095.

[22] A. Felner et al., “Adding heuristics to conflict-based search for multi-
agent path finding,” in Proc. Int. Conf. Automated Plan. Scheduling, 2018,
pp. 83–87.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

https://github.com/VDA5050/VDA5050
https://www.open-rmf.com

1372 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

[23] E. Lam, P. L. Bodic, D. Harabor, and P. Stuckey, “Branch-and-cut-and-
price for multi-agent pathfinding,” in Proc. Int. Joint Conf. Artif. Intell.,
vol. 28, pp. 1289–1296, 2019.

[24] A. Bemporad, W. Heemels, and B. D. Schutter, “On hybrid systems and
closed-loop MPC systems,” IEEE Trans. Autom. Control, vol. 47, no. 5,
pp. 863–869, May 2002.

[25] S. Lin, B. De Schutter, Y. Xi, and H. Hellendoorn, “Fast model predictive
control for urban road networks via MILP,” IEEE Trans. Intell. Transp.
Syst., vol. 12, no. 3, pp. 846–856, Sep. 2011.

[26] R. Hult, G. R. Campos, P. Falcone, and H. Wymeersch, “An approximate
solution to the optimal coordination problem for autonomous vehicles at
intersections,” in Proc. Amer. Control Conf., 2015, pp. 763–768.

[27] S. Ravikumar, R. Quirynen, A. Bhagat, E. Zeino, and S. Di Cairano,
“Mixed-integer programming for centralized coordination of connected
and automated vehicles in dynamic environment,” in Proc. IEEE Conf.
Control Technol. Appl., 2021, pp. 814–819.

[28] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
trajectory planning with avoidance constraints using mixed-integer linear
programming,” AIAA J. Guid., Control, Dyn., vol. 25, pp. 755–764, 2001.

[29] M. Charitidou and T. Keviczky, “An MILP approach for persistent cov-
erage tasks with multiple robots and performance guarantees,” Eur. J.
Control, vol. 64, 2022, Art. no. 100610.

[30] T. van den Boom and B. D. Schutter, “Dynamic railway network man-
agement using switching max-plus-linear models,” IFAC Symp. Control
Transp. Syst., vol. 11, pp. 343–348, 2006.

[31] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants of the
conflict-based search algorithm for the multi-agent pathfinding problem,”
in Proc. Eur. Conf. Artif. Intell., 2014, pp. 961–962.

[32] A. Andreychuk, K. Yakovlev, D. Atzmon, and R. Stern, “Multi-agent
pathfinding with continuous time,” in Proc. 28th Int. Joint Conf. Artif.
Intell., 2019, pp. 39–45.

[33] A. Coskun and J. M. O’Kane, “Online plan repair in multi-robot co-
ordination with disturbances,” in Proc. Int. Conf. Robot. Autom., 2019,
pp. 3333–3339.

[34] Z. Chen, D. Harabor, J. Li, and P. J. Stuckey, “Symmetry breaking
for k-robust multi-agent path finding,” in Proc. 35th AAAI Conf. Artif.
Intell., 2021, pp. 12267–12274.

[35] A. Mannucci, L. Pallottino, and F. Pecora, “Provably safe multi-robot
coordination with unreliable communication,” IEEE Robot. Autom. Lett.,
vol. 4, no. 4, pp. 3232–3239, Oct. 2019.

[36] T. Schoels, L. Palmieri, K. O. Arras, and M. Diehl, “An NMPC approach
using convex inner approximations for online motion planning with guar-
anteed collision avoidance,” in Proc. IEEE Int. Conf. Robot. Autom., 2020,
pp. 3574–3580.

[37] C. Rösmann, F. Hoffmann, and T. Bertram, “Kinodynamic trajectory
optimization and control for car-like robots,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2017, pp. 5681–5686.

[38] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path
integral control: From theory to parallel computation,” J. Guid., Control,
Dyn., vol. 40, no. 2, pp. 344–357, 2017.

[39] R. Triebel et al., “Spencer: A socially aware service robot for passenger
guidance and help in busy airports,” in Field and Service Robotics, Berlin,
Germany: Springer, 2016, pp. 607–622.

[40] E. Schrock, “Dynamic lock dependency analysis of concurrent systems,”
Ph.D. thesis, Dept. Comput. Sci., Brown Univ., Providence, RI, USA,
2003.

[41] J. Forrest et al., “coin-or/Cbc: Version 2.9.9,” 2018, doi: 10.5281/zen-
odo.1317566. [Online]. Available: https://zenodo.org/doi/10.5281/
zenodo.2720283

Alexander Berndt received the M.Sc. degree in sys-
tems and control from the Delft Center for Systems
and Control, Delft University of Technology, Delft,
The Netherlands, in 2020.

He is currently a ML/Software Engineer with Over-
story B.V. working on geospatial data intelligence
applied to vegetation management. He has authored
articles published in ECC, ICAPS, and ISTVS span-
ning the domains of data-driven control, set-based es-
timation, and multi-agent robotics and coordination.
His research interests include data-driven control and

estimation schemes with guarantees, the control of multi-agent systems, and
learning-based control.

Niels van Duijkeren received the M.Sc. degree in
systems & control in systems and control from the
Delft University of Technology, The Netherlands, in
2014, and the Ph.D. degree in mechanical engineering
from the Motion Estimation Control and Optimiza-
tion group, Mechanical Engineering, KU Leuven,
Belgium, in 2019.

He is currently a Research Scientist with Robert
Bosch GmbH - Corporate Research. During his Ph.D.,
he focused on methods for time-optimal geomet-
ric motion control of robot manipulators and user-

friendly efficient numerical solvers. He has co-authored papers in e.g., TAC,
CDC, IROS, and RSS on topics spanning model predictive control, optimization
methods, and machine learning. His current research interests include motion
planning and control of mobile robots, software and methods for optimization-
based control and estimation, robust motion planning in dynamic environments,
system identification and model learning for adaptive robot control.

Luigi Palmieri (Member, IEEE) received the Ph.D.
degree in robot motion planning from the University
of Freiburg, Freiburg im Breisgau, Germany, in 2018.

He is a Senior Expert with Robert Bosch GmbH—
Corporate Research. During his Ph.D., he was re-
sponsible for the motion planning task of the EU
FP7 project Spencer. Since then, he has the same
responsibility in the EU H2020 project ILIAD. He has
co-authored multiple papers at RA-L, ICRA, IROS,
FSR on the combinations of motion planning with
control, search, machine learning, and human motion

prediction. His research interests include kinodynamic motion planning in
dynamic and crowded environments, control of non linear dynamic systems,
hybrid systems of learning–planning–control, MPC and numerical optimization
techniques, planning considering human motion predictions, and social con-
straints.

Alexander Kleiner received the M.Sc. degree in
computer science from the Stafford University, Lon-
don, U.K., in 2000, the Ph.D. degree in computer
science from the University of Freiburg, Freiburg im
Breisgau, Germany, and a docent degree (habilitation)
from the Linköping University, Linköping, Sweden,
in 2008.

He is Chief Expert for navigation and coordina-
tion of autonomous systems with Bosch Cooperate
Research, Renningen, Germany. From 2017 to 2018
he worked as President for AI and Machine Learning

at the startup FaceMap LLC, Malibu, CA, USA, and from 2014 until 2018 as
Senior Principal Robotics Scientist with technical lead at iRobot in Pasadena,
CA. From 2011 to 2014 he served as Associate Professor with the Linköping
University, where he headed the research group on collaborative robotics. He
worked as a Postdoctoral Fellow with Carnegie Mellon University, Pittsburgh,
PA, USA, and at La Sapienza University, Rome, Italy. His research interests
include collaborative robotics, multirobot navigation planning, and machine
learning.

Tamás Keviczky (Senior Member, IEEE) received
the M.Sc. degree in electrical engineering from the
Budapest University of Technology and Economics,
Budapest, Hungary, in 2001, and the Ph.D. degree in
control science and dynamical systems from the Con-
trol Science and Dynamical Systems Center, Univer-
sity of Minnesota, Minneapolis, MN, USA, in 2005.

He was a Postdoctoral Scholar of control and
dynamical systems with the California Institute of
Technology, Pasadena, CA, USA. He is currently a
Professor with Delft Center for Systems and Control,

Delft University of Technology, Delft, The Netherlands. His research interests
include distributed optimization and optimal control, model predictive control,
embedded optimization-based control and estimation of large-scale systems with
applications in aerospace, automotive, mobile robotics, industrial processes, and
infrastructure systems, such as water, heat, and power networks.

Dr. Keviczky was the co-recipient of the AACC O. Hugo Schuck Best Paper
Award for Practice in 2005. He was an Associate Editor for Automatica from
2011 to 2017 and for IEEE TRANSACTIONS ON AUTOMATIC CONTROL since
2021.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2024 at 07:53:09 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.5281/zenodo.1317566
https://dx.doi.org/10.5281/zenodo.1317566
https://zenodo.org/doi/10.5281/zenodo.2720283
https://zenodo.org/doi/10.5281/zenodo.2720283

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

