
Automatic feature augmentation ranking: XGBoost

Oliver Neut
Supervisors: Dr. Rihan Hai, Andra Ionescu

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

20-6-2022

Abstract
Automatic machine learning is a subfield of ma-
chine learning that automates the common proce-
dures faced in predictive tasks. The problem of
one such procedure is automatic data augmenta-
tion, where one desires to enrich the existing data
to increase model performance. In relational data
repositories, the data is stored in normal form. This
causes problems, since joining all tables and subse-
quently performing feature selection is highly inef-
ficient. This paper provides AFAR, an approach to
efficiently and effectively perform automated fea-
ture augmentation by ranking candidate joins in a
data repository. Additionally, an experimental eval-
uation that validates the approach’s capabilities, is
presented.

1 Introduction
An increasing amount of machine learning users are non-
experts in the field and rely upon automated ML to perform
predictive tasks in their professional environment [12]. In
most cases, users of these systems are prompted with pro-
viding a dataset containing features and their corresponding
labels and a goal on which to optimize [11]. Automatic
machine learning (AML) is a subfield of machine learning
that focuses on automating the process of building predictive
models. The goal of AML is to compose a coherent pipeline
of ML tasks: data cleaning, feature engineering and hyperpa-
rameter tuning.

Problems arise when model performance is not satisfac-
tory, this can be due to the quality of the dataset that is relied
upon. A solution to this is to augment the data with new fea-
tures that can be obtained from a relational data repository.
When joining new data to the existing base table by means
of key-foreign key joins, it is not assured that the model
performance (F1-score, accuracy...) will increase. Exhaus-
tively joining all tables, in order to obtain a better perform-
ing model, is a computationally expensive task, that tends to
overfit often.

To illustrate the problem in-depth and demonstrate the need
for a viable solution, we look at an example. Figure 1 depicts
a database diagram of the predictive problem of whether an
employee will stay at a company. There are many different
ways to augment the base table with new features. Joining
the Employee with Company could benefit the model’s per-
formance. Consequently, the transitive join of Employee with
City could entail an even higher accuracy since the city de-
velopment index likely has an impact on the employee being
satisfied. However, the transitive join of Employee with Class
will likely not result in a better performing model. This is not
as intuitive for a machine compared to a human to detect. To
perform all combinations of joins on the table is an expensive
task and not scalable for AML systems. Thus more efficient
and effective solutions are needed for feature discovery situ-
ations like this.

The challenges in this field consist of whether the auto-
matic feature augmentation approach is effective and effi-

Figure 1: Example of relational data repository

cient. Meaning, does it entail a good accuracy for the predic-
tive task your model tackles. This can be validated by com-
paring it against the performance of the base table. Secondly,
does the data augmentation method add an acceptable amount
of time to the AML pipeline? By which a more efficient way
of selecting tables is used as opposed to iteratively joining all
possible key-foreign-key joins and ranking the tables based
on that.

“To join or not to join”, by Kumar et al. (2016) solves part
of this problem by identifying the joins that can be avoided
[8] without significantly affecting the accuracy of the model.
Since this leaves potential joins that could be model perfor-
mance boosters, Chepurko et al. (2020) present ARDA [3],
a complementary system. It allows for automatically aug-
menting a base dataset with new features by selecting benefi-
cial joins from a data repository. Since both only address the
problem of joining tables directly associated with the base ta-
ble with key-foreign-key joins. They neglect the fact that a
feature could be found on a join path of more than 1 hop. Ta-
bles 4, 5 and 6 in figure 1 illustrate this problem. Besides this,
these approaches do not look into other performance metrics
such as overfitting.

The paper answers the question: ”how can automatic data
augmentation be applied efficiently and effectively in an
AML pipeline that uses XGBoost”. The main motivation for
this research is to make the process of feature discovery more
effective and to improve the efficiency of data augmentation
by narrowing the problem down to 1 specific model. Sec-
ondly, its robustness is validated by combining it with other
classifiers. The XGBoost decision tree classifier or extreme
gradient boosting is an ensemble model that is known for
being one of the fastest models in the space and is applicable
to a wide range of problems [2]. While extreme gradient
boosting is able to build models for regression and multiclass
classification problems, the main focus of this paper remains
within the boundaries of binary classification.

In summary the following contributions are made:

• A set of heuristics to select joins in the data augmen-
tation process for XGBoost in an efficient and effective
manner.

• An approach AFAR (Automatic Feature Augmentation
Ranking) that ranks join paths from a relational data
repository, using the previously defined heuristics.

• An extensive experimental evaluation using 4 datasets to
validate that the approach AFAR:

– selects candidate joins that have a similar accuracy
as compared to selecting all joins

– selects candidate joins that have a smaller depth as
compared to selecting all joins

– has a significantly faster run time compared to se-
lecting all joins

– is robust against other decision tree algorithms

Section 2 explains the background of the research in more
depth by discussing the related work. Section 3 presents the
approach: AFAR (Automatic Feature Augmentation Rank-
ing), the methodology of how it is derived and an overview
of the approach. The experiments and their evaluation are de-
scribed in section 4. In section 5, the responsible research is
discussed. Finally, a conclusion is outlined in section 6.

2 Related work
The following section covers the range of problems and its
existing work related to automatic feature augmentation.

2.1 AML
Automatic Machine Learning (AML) has recently arisen as a
separate field of study aimed at automating the method of es-
tablishing the optimal machine learning pipelines for a given
learning objective [3]. These systems enable the possibil-
ities of performing machine learning for people unfamiliar
with ML, by automating feature selection, model selection
and hyperparameter tuning. Alpine Meadow, Google Cloud
ML, Auto sklearn and Microsoft Azure Auto ML are exam-
ples of existing AML tools [11]. However, these systems do
not automate feature augmentation since their input requires
a complete dataset.

2.2 Feature selection
Feature selection is aimed at selecting a subset of the avail-
able features in a given dataset, that entails the best possi-
ble model performance. It consists of 3 categories: filter,
wrapper and embedded [8] [6]. In filter feature selection, uni-
variate and multivariate evaluation metrics (Pearson correla-
tion, Spearman correlation, Gini index, mutual information)
are computed and the best k features are kept [1]. Wrap-
per methods, attempt to find the optimal subset of features
by iteratively selecting features and training the model to ob-
tain the best possible performance. The main downside of
this method is computational cost, since retraining is done
exhaustively [5]. Existing wrapper methods struggle in the
presence of a high-dimensional feature space due to a lack of

scalability [4]. Finally, embedded methods are feature selec-
tion methods built into the ML model. For example, decision
trees only select features for which the information gain after
a split is satisfactory, thus not all features in the input dataset
are guaranteed to be selected by the model.

2.3 Feature augmentation
In ”To join or not to join”, Kumar et al. (2016) present a set of
rules that can accurately predict a priori whether a join is safe
to omit [8]. These are validated by an empirical analysis using
real-world datasets. However, the candidate joins excluded
by their method do not necessarily leave the valuable joins.

ARDA attempts to do the discovery of top-n joins that im-
prove model performance [3]. This is done by sampling the
base table and iteratively joining different tables and ranking
the joins with a feature selection method that compares fea-
tures against random noise. The sampling of the base table
ensures that the tables join faster.

Liu et al. (2022) take a deep learning approach to data aug-
mentation with their AutoFeature approach [9]. It attempts to
explore features that are commonly selected and at the same
time exploit the ones that are rarely selected. It characterizes
features based on variance, Pearson correlation and Mutual
information, indicating the importance of a specific feature.

2.4 XGBoost preliminaries
XGBoost or extreme gradient boosting is a highly scal-
able decision tree ensemble learning algorithm. Ensemble
meaning that it combines many small decision trees called
weak learners to obtain its classification or regression model.
Boosting is a special kind of ensemble model that iteratively
builds decision trees that compensate for the residual error
of the previous decision tree. The resulting prediction of an
XGBoost model is the weighted sum of all weak learners’
predictions. Figure 2 gives an overview of how an XGBoost
model works on a high level.

Figure 2: Overview of an XGBoost model with M weak learners

3 AFAR: Automatic Feature Augmentation
Ranking

The steps taken to achieve the approach are explained in the
following section. First, a clear description of the problem
is provided. After this, the methodology used to attain the
approach is explained in detail, followed by an overview of
the procedure that the approach applies.

3.1 Problem overview
The problem that ought to be tackled in this paper is to find
a method to augment a base table in a data repository in an
efficient and effective manner. This data repository contains a
set of join paths which need to be ranked in decreasing order
based on the improvement in model performance. When aug-
menting the base table with new features, the accuracy of the
model is projected to increase. For an AML system, selecting
appropriate join paths is not a trivial problem. However, a
greedy approach to obtain a significantly better model perfor-
mance is to join all candidate tables with the base table. By
doing this, the model will make use of both informative and
uninformative features. The latter will consequently affect
the model’s ability to generalize and thus cause overfitting.

To summarize the problem goal: we want to derive a fea-
ture augmentation system that is able to achieve a model ac-
curacy similar to a greedy approach (selecting all join paths)
while significantly lowering the time to augment the dataset
and reducing the overfitting of the model. This is done by
ranking the join paths on their ability to improve the model
accuracy.

3.2 Methodology
In order to obtain a solution that is tailored to the XGBoost
decision tree model, a number of approaches can be taken.
The aim is to use methods that do not have much computa-
tional overhead and are effective in selecting useful features.
First, feature characteristics are examined in depth. After this,
we look into filter methods by examining the feature-target
correlation and feature-feature correlation. We do not look
into wrapper methods as these require retraining the model
and thus have high computational overhead [5].

Feature characteristics
We select features in candidate tables based on feature char-
acteristics that are commonly selected by the XGBoost al-
gorithm. The motivation for doing this stems from the fact
that it requires very little time to identify the features based
on heuristics. We narrow down the univariate analysis of the
features by analysing based on 4 measurements.

The characteristics of features can be defined by the fol-
lowing 4 descriptive properties:

• frequency distribution of values

• mean: central tendency of values

• variance: dispersion of values

• categorical vs. numerical

To gather insights into the commonly selected features, we
look at 10 datasets 1 containing a mix of categorical and nu-
merical features. We identify the top features in the resulting
XGBoost decision tree model and look for common charac-
teristics of these features. After training the XGBoost model
on the raw data, a majority of categorical features can be seen
at the top of the decision tree. For 10 datasets, the top fea-
ture was a categorical feature 77% of the time and for the top

1https://github.com/oliverneut/CSE3000 AFAR/tree/main/
datasets

5 features, the average was 75%. This heuristic of including
more categorical data can be included in the approach using
an intuitive formula.

The XGBoost algorithm natively does not support cate-
gorical data for binary classification [2]. To use categorical
features, the data needs to be encoded. One-hot encoding
and label encoding are examples of doing this. If a color
feature contains string values: “green”, “red”, “blue”, One-
hot encoding creates 3 new features color green, color red,
color blue that consists of binary values indicating whether
the category is present. For categorical data with many val-
ues like country, this causes a considerable increase in the
number of features, which is undesirable. Label encoding is
done by converting the different categories of a feature into
numerical values. For XGBoost, splitting feature subsets to
decrease the residual values is done solely with inequalities
of numerical values.

Since categorical data contains a small amount of uniquely
encoded values. We can represent the usefulness of a feature
by scoring on 1

n with n = #unique values. That means
that a binary feature will have the best score, 0.5 and for the
limn→∞

1
n = 0, the score approaches 0.

Note that we disregard the use of identifiers and or any
other unique values in our approach because these do not have
informative properties and only tend to overfit the model.

Filter feature selection
Filter feature selection is a type of feature selection that is
model agnostic, meaning its outcome is independent of the
machine learning model [10]. It scores features by perform-
ing statistical tests which calculate the correlation between a
feature and its target. Filter methods include the following:
mutual information, ANOVA, Pearson correlation, Spearman
correlation, Gini index, ReliefF (and more) [7].

In order to perform feature selection between attributes of
the base table and the candidate table, we need to join the
candidate table with the base table. Since this is rather ineffi-
cient, we attempt to limit this O(n ∗m) task by making use
of sample joins. There are two types of sample joins: uni-
form and stratified sampling. In uniform sampling, a random
sample of a specified size is taken from the base table. While
this is a viable method, it can misrepresent the distribution
of the target variable. That is exactly what stratified sampling
solves. It ensures an equal ratio of values in the target column
of the base table and in the sample table.

We aim at finding features with high filter selection scores,
as these will have a positive impact on the classification accu-
racy. However, this does not guarantee that this information
is not already provided by the features of the base table. We
can counter this problem by examining the correlation values
between features from the candidate table and the base table.
This ensures that the model performance will be improved
by the subject feature. In summary, we follow the heuristics
below:

• Use stratified sampling in order to join a smaller portion
of the data to perform filter methods:

– to select features with high correlation with target
features.

https://github.com/oliverneut/CSE3000_AFAR/tree/main/datasets
https://github.com/oliverneut/CSE3000_AFAR/tree/main/datasets

– to select features with low correlation with base ta-
ble features.

• Select candidate tables that have a high average feature
score for 1

n with n = #unique values

3.3 AFAR overview
The overview of the approach AFAR is formally described in
this subsection.

Formal description
The join path rank algorithm has as input a base table TB

with a target feature Ft and a set T of n candidate tables
TC1, TC2, . . . TCn along with the set K of n KFK join tu-
ples (pk1, fk1), (pk2, fk2)...(pkn, fkn). We ought to rank
the join paths based on how well they will improve the model
performance in terms of accuracy in decreasing order.

The algorithm only ranks the usefulness of the candidate
table and not the possible tables between it and the base table.
When the ranking proposes table 6 in figure 1, it will join
table 6 but train the model only on the columns table 6 adds
to the base table. By doing this, we evaluate the improvement
of the candidate table on the model performance in isolation
and we can validate the effectiveness of our approach better.

Algorithm 1 Join path rank
Input:
KFK join tuples K = {(pk1, fk1), (pk2, fk2)...(pkn, fkn)},
base table TB , candidate tables TC = {TC1, TC1...TCn}with
n ≥ 1, target F
Output: ranked list of join paths Q
paths← {}
for TCi in TC do

paths← paths ∪ left samplejoin(TB , TCi,K)

Q← rank(paths) ▷ Rank 1 or Rank 2

return sort descending(Q)

Algorithm 2 Rank 1
Input: base table TB , target F , paths, candidate tables T =
{TC1, TC1...TCn} with n ≥ 1
Output: ranked list of join paths P ′

Q← {}
for augmented table Ci in paths do

ct ← pearson corr(TCi, F)
for feature fi in TCi do

cf ← max(pearson corr(TB , fi))
ct[i]← ct[i] ∗ (1− cf)

Q[i]← max(ct)

return Q

Join path rank (alg. 1), shows the pseudocode for ranking
the join paths. For each join path, it performs a left stratified
sample join since we want to preserve all the values in the
base table. After all the candidate joins have been joined to
the base table, we end up with n unique augmented tables

Algorithm 3 Rank 2
Input: base table TB , target F , paths, candidate tables T =
{TC1, TC1...TCn} with n ≥ 1
Output: ranked list of join paths P ′

Q← {}
for augmented table Ci in paths do

ct1 ← pearson corr(TCi, F)
ct2 ← information gain(TCi, F)
ct3 ← gini index(TCi, F)
ct4 ← mean(1

#unique values(TCi)
)

for feature fi in TCi do
cf ← max(pearson corr(TB , fi))
ct1[i]← ct1[i] ∗ (1− cf)

Q[i]← [ct1, ct2, ct3, ct4]

Q normalized = normalize columns(Q)
Q sum = sum columns(Q normalized)
return Q sum

C1, C2, ..., Cn. For each Ci we can now compute a score
which will rank the candidate table for its effectiveness. Two
rank functions are proposed, Rank 1 uses Pearson correlation
and Rank 2 extends this with more filter methods to score its
candidate tables.

Rank 1 (alg. 2) iterates over each augmented table Ci. It
then computes for each feature fi of Ci (except the identi-
fiers) that is an element of the candidate table TCi, the Pear-
son correlation score for feature fi and target Ft and stores
it in target correlation list ct. Then, the Pearson correlation
scores for fi and the features from TB are computed. The
max feature-feature correlation is stored in feature correlation
cf . Then ct[i] is multiplied by the highest non-correlation cf ,
by storing ct[i] = ct[i]∗(1−cf). A high score for ct∗(1−cf)
means a high feature-target correlation and a high feature-
feature non-correlation. This score is stored in Q.

Rank 2 extends Rank 1 with more filter methods and the
feature characteristic formula. It iterates over each aug-
mented table Ci. In addition to the Pearson correlation, it
computes the information gain, Gini index and the mean of
the unique values score of the candidate table TCi. These
scores are stored in Q[i] after which they are normalized, so
the scores are treated equally. Then these scores are summed
and Q sum is returned.

4 Experiments evaluation
This section covers the experiments done on the approach
proposed in the previous section. Additionally the experi-
ments validate the following:

• AFAR achieves a similar or slightly worse model accu-
racy by joining the top candidate table compared to join-
ing all tables.

• AFAR achieves a smaller model depth by joining the top
candidate table compared to joining all tables.

• AFAR has a significantly faster runtime by joining the
top candidate table compared to joining all tables.

• AFAR is robust against other classifiers: Support Vec-
tor Machines, Random Forests and CART decision tree
algorithm.

4.1 Datasets
For the experiments, we consider 4 datasets which are suited
for binary classification: ‘kidney-disease’, ‘football’, ‘steel-
plate-fault’ and ‘titanic’. Each of these has a base table and
a number of candidate tables which can be joined by pri-
mary key-foreign key join relationships. The datasets and
code for the evaluation are publicly available in the Github
repository2.

4.2 Metrics
To optimally assess our approach, a set of metrics is needed.
The goal of this research is to augment data effectively and
efficiently. To assess the effectiveness we rely on the accuracy
of the model.

accuracy =
TP + TN

TP + TN + FP + FN

To further assess the effectiveness of the model, we need to
look at the ability of the model to generalize. For this, we rely
on the depth of the tree. Since decision tree algorithms like
XGBoost that overfit, tend to have great depth, this metric is
a good indicator of overfitting.

To assess the efficiency of our approach, we compare the
time our approach takes from the ranking algorithm to joining
the best join path table.

4.3 Scenarios
The experiments consist of 4 different scenarios, which we
will compare on accuracy, depth and runtime accordingly.

1. Baseline:
The baseline scenario benchmarks the standard perfor-
mance of the base table without data augmentation or
feature selection.

2. Dummy:
The dummy scenario benchmarks the performance of
the base table with all candidate tables joined. We fur-
ther split the results of this scenario in:

• with filter feature selection after joining all candi-
date tables

• no feature selection
3. Approach AFAR:

The approach AFAR scenario benchmarks the perfor-
mance of the approach derived in section 3. The ap-
proach ranks the candidate tables and joins the best can-
didate table out of this ranking.

4. Robustness:
The robustness scenario benchmarks the performance of
the approach derived in section 3, by combining it with
different ML classifiers such as CART, random forest
and support vector machine.

2https://github.com/oliverneut/CSE3000 AFAR

4.4 Results
In this subsection, the experimental evaluation on the 4
datasets is showcased. By using the 4 different scenarios, the
approach is benchmarked in different contexts.

Configuration: AFAR is configured to join the paths to
perform the ranking on a 50% stratified sample of the base
table. Since the datasets do not contain a large number of
rows, using 10% or 5% of the data will decrease the filter
methods’ ability to rank the different paths. The configuration
further applies the Rank 1 algorithm to rank the candidate
tables. The experiments only measure the performance on
the columns of the candidate table and not the possible tables
between it and the base table. This shows the improvement
of the candidate table on the model performance in isolation
and the effectiveness of our approach can be validated better.

AFAR: baseline and dummy benchmarks

Figure 3: XGBoost model accuracy of 3 different scenarios for the
4 datasets

Figure 3 shows the accuracy of the model using the
AFAR Rank 1 approach benchmarked against the baseline
and dummy scenario. The AFAR approach is in all cases an
improvement to the baseline scenario, this is a trivial result.
The dummy scenario displays similar or better accuracies in
comparison to the AFAR approach. Since the dummy sce-
nario encompasses all possible features, it has a higher proba-
bility of selecting the best features available. Only in the foot-
ball dataset displays AFAR a significantly smaller improve-
ment in model accuracy compared to the dummy scenario.

To further analyze the approach, the max depth and runtime
metrics are benchmarked in the same 3 scenarios. Figure 4
shows the depth benchmarked against baseline and dummy.
The baseline scenario tends to overfit the steel plate fault
datasets due to the lack of useful features available. Overall,
AFAR entails a low maximum depth and thus does a good job
at reducing overfitting.

The runtime metrics in figure 5 showcase impactful im-
provements of the approach. AFAR runs much faster com-
pared to dummy since the XGBoost model has much fewer
features to select from. The runtime-accuracy tradeoff is very
visible in these plots because only a small addition in runtime
adds significant accuracy improvement. The stratified sample
joins also reduce the runtime of the path joining during the
approach by a factor of 2 in the current configuration.

https://github.com/oliverneut/CSE3000_AFAR

Figure 4: XGBoost model depth of 3 different scenarios for the 4
datasets

Figure 5: runtime of 3 different scenarios for the 4 datasets

Dummy: filter method benchmarks
To select the best filter feature selection method, the stan-
dard dummy is benchmarked against different feature selec-
tion methods. The 50% best scoring features of the entire
datasets are selected.

Figure 6 shows clearly that Pearson correlation, infor-
mation gain, Gini index and symmetrical uncertainty (SU)
are performing equally well in this scenario. In the titanic
dataset, they perform slightly better than the dummy ap-
proach, since that is the only dataset where the dummy ap-
proach does not achieve maximum accuracy. Spearman cor-
relation does not prove to be the best filter method in terms of
accuracy when considering the football dataset.

The max depth of tree comparison shown in figure 7, in-
dicates that Pearson correlation, information gain, Gini in-
dex and symmetrical uncertainty remain good filter methods.
The max depth is high for the Spearman correlation for the
football data, where this filter method also entailed a below-
average accuracy.

The runtime performance of filter methods is reduced in
most cases by at least a factor of 2 (fig. 8). This is primarily
due to the fact that the top 50% of the features are selected for
this experiment. Note that Pearson correlation, information
gain, Gini index and symmetrical uncertainty remain good
performing filter methods.

Figure 6: XGBoost model accuracy of the dummy scenario and 5
different filter methods for the 4 datasets

Figure 7: XGBoost model depth of the dummy scenario and 5 dif-
ferent filter methods for the 4 datasets

Robustness: algorithm & filter method comparison
Figure 9, shows the effects of running the AFAR Rank 1 ap-
proach in combination with different ML classifiers to test its
robustness. To validate the robustness of Rank 1 even fur-
ther, the Pearson correlation score is substituted by other fil-
ter methods. The accuracy results are measured for 4 dif-
ferent filter methods: Pearson correlation, information gain,
Gini index and symmetrical uncertainty (SU) which are se-
lected based on their positive results in the Dummy experi-
ment. The variance of the results for each dataset remains
low in all cases for the standard Rank 1 algorithm (alg. 2).
Other filter methods tell a different story, the random forest
and CART classifier have increased accuracy for Gini index
in the football dataset. Additionally, the random forest clas-
sifier benefits from information gain in the football dataset.

Overall, Pearson correlation and Information gain seem the
best performing on all 4 datasets for the 4 classifiers. In 3 out
of the 4 datasets, Pearson correlation and information gain,
are able to pick the best candidate table, while Gini index and
SU can only predict 2 correctly (fig. 10).

4.5 Approach tuning
To get the optimal approach we combine the best heuristics
from the previous experiments. We apply Rank 2 in our al-
gorithm, that ranks candidate tables based on Pearson cor-
relation, information gain, Gini index and the unique values
formula. Rank 2 results in an almost optimal ranking (fig.
10).

Figure 8: runtime of the dummy scenario and 5 different filter meth-
ods for the 4 datasets

Figure 9: Accuracy of AFAR Rank 1 approach in combination with
different ML classifiers and filter methods

The Rank 2 algorithm (alg. 3) has equivalent results be-
cause for the top candidate join, it selects the same top tables.
The consequences of joining more than 1 table are considered
for this algorithm (fig. 11). Overall the Rank 2 algorithm
shows positive performance measures in the first joins. The
accuracy grows slightly slower for the football dataset, this is
because the best candidate table (’strong team’) is only joined
when k=4. For an increasing number of joins, the accuracy
only improves slightly. While the runtime for increasing joins
grows exponentially.

5 Responsible Research
This section reflects on the ethical aspects and the repro-
ducibility of the research done in this paper. Since AML sys-
tems are increasingly being used, the research on improving
such systems has become of greater importance. It is, there-
fore, crucial to consider the consequences and implications of
the enhancement of these technologies.

5.1 Ethical implications
AML encompasses a wide range of topics and has a mul-
titude of ethical concerns associated with it that are worth
discussing. Since this research focuses on data augmenta-
tion and discovery, it’s important to note that these parts of
the AML pipeline also impact the outcome and could have
ethical consequences. The AFAR approach derived in this
paper lacks a moral compass to determine which features to
include and which to exclude. Consequently, biased machine-
learning models cannot be ruled out. Training data can con-

Figure 10: For each dataset, the top candidate table is compared to
the actual ranking of tables. 1: the approach chose the top table, 2:
the approach chose the 2nd best table etc.

Figure 11: The accuracy for the top k candidate tables joined for
AFAR Rank 2.

tain human biases that can propagate into the results of the
model decisions. In some cases, this drives a feedback loop
that perpetuates the bias of the model. It is therefore crucial
that the data is carefully analyzed and cleaned, before being
applied in real-world impactful situations.

Since AML is not error-proof, a user of AML should be
aware of the implications and make sure to not rely heavily on
the functionality AML provides. It is important to maintain
a good synergy between humans and the intelligent system.
At the end of the day, the human is responsible for the con-
sequences and should ultimately remain in control of moral
decisions.

Because of the rapid growth in ML and the impact it al-
ready has on society, it is possible that there are yet-to-be-
identified ethical implications.

5.2 Reproducibility

The experiments in this research have been conducted with
reproducibility in mind. The results and the visualizations of
the experiments provided in this research are publicly avail-
able in the dedicated Github repository, along with the 4
datasets used in the experiments. To ensure consistent re-
sults, all the algorithms that are based on randomness, have
been given a specific random state that is similar all across
the code.

Figure 12: The runtime for the top k candidate tables joined for
AFAR Rank 2.

6 Conclusions and Future Work
Through the experimental evaluation of the AFAR approach
derived in this paper, it can be confirmed that efficient and ef-
fective automatic feature augmentation is possible. By mak-
ing use of low-cost feature selection algorithms and stratified
sample joins, the efficiency can be improved considerably
while effectively improving the model performance. Two dif-
ferent variations of ranking join paths have been proposed.
Rank 2 extends Rank 1 by utilizing additional filter methods
and a unique values formula to score candidate joins. These
have been shown to be robust against other classifiers.

The field of automatic feature discovery and augmentation
still has room for improvement in both effectiveness and ef-
ficiency. Although stratified sample joins can reduce the run-
time of joining by an arbitrary factor. For large data lakes
with many candidate joins and millions of data points, join-
ing remains an expensive task.

References
[1] Girish Chandrashekar and Ferat Sahin. A survey on fea-

ture selection methods. Computers & Electrical Engi-
neering, 40(1):16–28, 2014.

[2] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

[3] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen,
Raul Castro Fernandez, Tim Kraska, and David Karger.
Arda: automatic relational data augmentation for ma-
chine learning. arXiv preprint arXiv:2003.09758, 2020.

[4] Naoual El Aboudi and Laila Benhlima. Review on
wrapper feature selection approaches. In 2016 Inter-
national Conference on Engineering & MIS (ICEMIS),
pages 1–5. IEEE, 2016.

[5] Mark A Hall and Lloyd A Smith. Feature selection for
machine learning: comparing a correlation-based filter
approach to the wrapper. In FLAIRS conference, volume
1999, pages 235–239, 1999.

[6] George H John, Ron Kohavi, and Karl Pfleger. Irrele-
vant features and the subset selection problem. In Ma-

chine learning proceedings 1994, pages 121–129. Else-
vier, 1994.

[7] Alan Jović, Karla Brkić, and Nikola Bogunović. A re-
view of feature selection methods with applications. In
2015 38th international convention on information and
communication technology, electronics and microelec-
tronics (MIPRO), pages 1200–1205. Ieee, 2015.

[8] Anne Layne-Farrar and Josh Lerner. To join or not to
join: Examining patent pool participation and rent shar-
ing rules. International Journal of Industrial Organiza-
tion, 29(2):294–303, 2011.

[9] J L Liu, C C Chai, Y L Luo, J F Feng, L Yin, and
N Tang. Feature Augmentation with Reinforcement
Learnin. IEEE, 2021.

[10] Noelia Sánchez-Maroño, Amparo Alonso-Betanzos,
and Marı́a Tombilla-Sanromán. Filter methods for fea-
ture selection–a comparative study. In International
Conference on Intelligent Data Engineering and Auto-
mated Learning, pages 178–187. Springer, 2007.

[11] Zeyuan Shang, Emanuel Zgraggen, Benedetto Bu-
ratti, Ferdinand Kossmann, Philipp Eichmann, Yeounoh
Chung, Carsten Binnig, Eli Upfal, and Tim Kraska. De-
mocratizing data science through interactive curation of
ml pipelines. In Proceedings of the 2019 international
conference on management of data, pages 1171–1188,
2019.

[12] Chris Thornton, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. Auto-weka: Combined selection
and hyperparameter optimization of classification algo-
rithms. In Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 847–855, 2013.

	Introduction
	Related work
	AML
	Feature selection
	Feature augmentation
	XGBoost preliminaries

	AFAR: Automatic Feature Augmentation Ranking
	Problem overview
	Methodology
	Feature characteristics
	Filter feature selection

	AFAR overview
	Formal description

	Experiments evaluation
	Datasets
	Metrics
	Scenarios
	Results
	AFAR: baseline and dummy benchmarks
	Dummy: filter method benchmarks
	Robustness: algorithm & filter method comparison

	Approach tuning

	Responsible Research
	Ethical implications
	Reproducibility

	Conclusions and Future Work

