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Abstract: In this paper, four composite coatings of nano-SnS/polyvinylbutyral (PVB), nano-MoS2/PVB,
nano-SnS-Zn/PVB, and nano-MoS2-Zn/PVB were prepared, and their anti-corrosion mechanism was
analyzed by experimental and theoretical calculations. The results of the electrochemical experiments
show that the effect of nano-MoS2 on the corrosion protection performance of PVB coating is better
than that of nano-SnS in 3% NaCl solution, and that the addition of Zn further enhances this effect,
which is consistent with the results of weight loss measurements. Furthermore, the observation of the
corrosion matrix by the field emission scanning electron microscope (FESEM) further confirmed the
above conclusion. At last, the molecular dynamics (MD) simulation were carried out to investigate the
anti-corrosion mechanism of the nanofillers/PVB composites for the copper surface. The results show
that both nano-SnS and nano-MoS2 are adsorbed strongly on the copper surface, and the binding
energy of nano-MoS2 is larger than that of nano-SnS.

Keywords: anti-corrosion; tin sulfide (SnS); molybdenum disulfide (MoS2); electrochemical test;
composite coating

1. Introduction

Copper has good thermal and electrical properties, and is a commonly used material in marine
engineering. It is often used in many parts such as hulls, pipes, electronic devices, etc. [1–3]. However,
the corrosive nature of seawater and gas above the ocean severely limits the service life of copper [4,5]
and brings additional costs. Therefore, it is very meaningful to find a good way to delay the corrosion
of copper. The protection of copper can be carried out in various ways such as inhibitor [6,7], film [8],
coating [9,10]. The method of applying a composite coating to a metal substrate is convenient in
application and low in cost, and is suitable for mass production in the industry. Thus many researchers
have added various nanoparticles as fillers in polyvinylbutyral (PVB) as a physical barrier to enhance
the barrier effect of the coating on water, oxygen, and other corrosive media [10].

Conventional graphene materials have been used as fillers in anti-corrosion coatings due
to their high surface-to-volum ratio and excellent physical properties. However, they have a
‘corrosion-promoting activity’ when the coating is broken because of good electrical conductivity [9,11],
which promotes the corrosion of the metal substrate. As a semiconductor material, tin sulfide (SnS)
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has good chemical stability and will not cause harm to human health and environment [12]. It is
widely used in optoelectronics and sensors [13–16]. However, there are currently few reports on
anti-corrosion applications for SnS. SnS has a very large resistivity and therefore may exhibit better
corrosion resistance compared to graphene. MoS2 is a transition metal disulfide with a variety of
excellent physical properties. It has a layered structure and can be used to construct a variety of one-,
two-, and three-dimensional materials [17–23], which has broad application prospects. In addition,
MoS2 has good hydrophobicity [24,25], which has been used by researchers to make composite coatings
or to modify existing graphene products [17,26]. Therefore, we consider adding nano-MoS2 as a filler
to the coating to verify its protection against metallic copper. Moreover, nano-Zn, as an active metal,
can be used as a cathodic protection in the coating to improve the protective ability of the coating. At
present, many researchers have used Zn or zinc ions as additives to modify coatings [27,28] to enhance
the protection of metals.

Our current work aims to study and compare the corrosion protection performance of nano-SnS
and nano-MoS2 on polyvinylbutyral (PVB) coatings and zinc-rich PVB coatings. Weight loss,
potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) were used to
evaluate the anti-corrosion performance of nano-SnS/PVB, nano-MoS2/PVB, nano-SnS-Zn/PVB and
nano-MoS2-Zn/PVB coatings at first. In addition, field emission scanning electron microscope (FESEM)
was used to characterize the morphology of the copper after corrosion to verify the test results.
Furthermore, molecular dynamics (MD) simulations were used to study the adsorption properties of
nano-SnS/PVB and nano-MoS2/PVB on copper surfaces.

2. Experimental

2.1. Material and Sample Preparation

Some of the key materials used in this experiment are shown in Table 1, in which the average
particle size of the nanoparticles is 50 nm.

Table 1. Materials used for preparing composite coatings.

Material Manufacturer Label

Polyvinylbutyral MACKLIN P815775
Tin sulfide 6Carbon Tech. Shenzhen SC-CRYSTAL-SNS

Molybdenum disulfide HANLANE MoS2-50
Zinc HANLANE Zn-50

Nano-SnS (0.1 g) was sonicated in 10 mL of methanol for more than 5 h to form a suspension.
Then, 1.0 g of PVB powder was added to the suspension, and the mixture was thoroughly stirred
for more than 36 h on a magnetic stirrer to prepare a uniform paint, and the resultant material was
allowed to stand for use. The molecular structure of PVB is shown in Figure 1. Nano-MoS2/PVB,
nano-SnS-Zn/PVB, and nano-MoS2-Zn/PVB coatings were prepared in the same manner, wherein the
amount of Zn added was 0.05 g. The copper piece with a thickness of 0.05 mm was cut to a size of
1.0 cm × 1.0 cm, and it was carefully polished with 400, 800, and 2,000 mesh emerald paper. After the
sanding was completed, the copper sheets were ultrasonically cleaned with ultrapure water for more
than 5 min, then degreased with acetone and air dried naturally in a fume hood. The copper sheet was
dipped into the prepared paint for 40 s and then taken out at a rate of about 0.5 mm s−1. The samples
were air dried naturally in a fume hood for 24 h. The thickness of the prepared coatings was essentially
the same and they were controlled at 19.3 ± 1.2 µm, which was measured with a portable coating
thickness gauge (EC-770, YOWEXA, Shenzhen, China). Some of the copper sheets were sealed with
705 silicone rubber on the back, leaving 1.0 cm2 of working surface for electrochemical experiments,
while the rest retained double working faces for weight loss measurements. A NaCl solution having a
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concentration of 3.0% was prepared for electrochemical experiments and weight loss measurements.
All experiments were performed at room temperature (about 293 K).
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2.2. Weight Loss Measurements

Weight loss measurements were carried out in glass dishes at 293 K. Samples, without and with
different coatings, prepared in triplicate were each immersed in a 3.0% NaCl solution. The samples
were continuously immersed for 35 days, then soaked in methanol to dissolve the surface coating and
thoroughly rinsed in 0.1 M HCl, water, and acetone in order to remove corrosion products and other
impurities. The copper sheets were weighed with an analytical balance after drying. The average
corrosion rate was finally calculated by the immersion time and the weight loss of each sample.

2.3. Electrochemical Experiments

The electrochemical experiments in this paper are performed using a conventional three-electrode
system. The copper piece to be tested was the working electrode, the saturated calomel electrode (SCE)
was used as the reference electrode, and the platinum mesh electrode (2.0 cm × 2.0 cm) was used as
the counter electrode. The CHI660C electrochemical workstation was used for the electrochemical
measurements. Prior to each test, the working electrode was immersed in an etching medium for
about 30 min at an open circuit potential (OCP) until the OCP value reached an almost constant
state. EIS measurements were made under open circuit potential with a sweep frequency range of
10 mHz–100 kHz and an amplitude of 5 mV AC sinusoidal disturbance. The EIS data were analyzed
and fitted by Zsimpwin 3.60 software. Furthermore, a polarization experiment was performed at a
potential range of ±250 mV relative to the OCP at a scan rate of 2 mV s−1. Each sample was tested
more than 4 times to ensure the reproducibility of the experiments.

2.4. Scanning Electron Microscope (SEM) Observations

Scanning electron microscopy (SEM, JSM6490LV, JEOL, Tokyo, Japan) was used to observe and
analyze the copper matrix without and with different coatings at 293 K. Prior to observation, all samples
were immersed in a 3.0% NaCl solution at 293 K for 10 days, and then the surface coated samples were
immersed in anhydrous methanol to remove the surface coating.

2.5. Theoretical Study

In order to further discuss the interaction between the PVB/nanosheets composites and copper
surface, molecular dynamics (MD) simulation were carried out to model the adsorption structure
of SnS-PVB and MoS2-PVB system on copper (111) surface. MD simulations were performed using
commercially available software, Material Studio 8.0, purchased from Accelrys Inc (San Diego, CA,
USA). The structure of PVB chain and molecules of SnS or MoS2 nanosheet were generated and
optimized through the Forcite module. The PVB model was prepared with the dimensions of
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28 × 30 × 126 Å, with an initial density of 1.05 g cc−1, which agrees well with experimental data of
1.07 g cc−1 [29]. The energy minimized structures of PVB (2 chains) and nanosheets were used for the
construction of different amorphous cells. The optimization procedure follows convergence criteria:
2.0 × 10−5 kcal mol−1 for energy, 0.001 kcal mol−1 Å−1 for force, and 1.0 × 10−5 for displacement. After
the geometry optimization, molecular dynamic calculation with constant number of particles, volume
and temperature (NVT) and Universal force field (UFF) [30] was performed at time step of 1.0 fs up to
total 3.0 ns, among which Andersen algorithm themostat with 1.0 Collision ratio was used to maintain
the temperature of the system at around 298 K. The interaction energy EInteraction, post to equilibration
is then calculated using Equation (1):

EInteraction = ETotal − (E Cu +Ecomposite
)
, (1)

where ETotal is the combined energy of the Cu surface and the PVB-nanosheets system, ECu is the energy
of the solo Cu surface, and Ecomposite is the energy of the PVB-nanosheets system taken independently.
Based on Equation (1), it can be stated that the more negative the value, the better is the adhesion the
composites coating applied on the surface.

3. Results and Discussion

3.1. Weight Loss Measurements

The corrosion resistance of various coatings to copper was investigated by weight loss
measurements after immersion in a 3.0% NaCl solution at 293 K for 35 days. The corrosion rates (ω,
mg m−2 h−1) and protective efficiency (ηw) of these coatings were calculated as follows, and the results
are shown in Table 2,

ω =
m0 −m

Aτ
, (2)

ηw% =
ω0 −ω
ω0

· 100, (3)

where A is the total surface area of the sample; m0, and m are the weights of the sample before and
after immersion in the corrosive solution, respectively; τ is the soaking time; and ω0 and ω are the
corrosion rates of the copper samples containing and containing the coating, respectively.

Table 2. Corrosion rate and protection efficiency of copper sheets without and with different coatings
in 3.0% NaCl solution at 293 K.

Coating ω (mg m−2 h−1) ηw (%)

Blank 59.52 -
PVB 41.67 30

nano-SnS 23.81 60
nano-SnS-Zn/PVB 15.48 74
nano-MoS2/PVB 20.24 66

nano-MoS2-Zn/PVB 14.29 76

As shown in Table 2, the corrosion rate of the coated copper sheet sample was smaller than that of
the uncoated copper sheet sample. Compared to pure PVB coatings, copper samples with nanofiller
coatings have a lower corrosion rate and higher protection efficiency. Furthermore, the addition of
Zn can improve the protection efficiency of the coating by more than 10%. It is worth noting that for
the nano-MoS2-Zn/PVB coating, the ηw value is as high as 76%, which is 46% higher than the pure
PVB coating.
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3.2. Polarization Curve

The Tafel polarization curves of copper electrodes coated with different coatings measured in
3% NaCl solution are shown in Figure 2. We obtained the main electrochemical parameters by
extrapolation, including corrosion potential (Ecorr), corrosion current density (icorr), anode and cathode
Tafel slope (βa, βc), and protection efficiency (ηP). Their values were listed in Table 3. The value of the
protection efficiency η is calculated as follows,

ηP(%) =
icorr,o − icorr,k

icorr,0
· 100, (4)

where icorr,o (A cm−2) is the corrosion current density of the uncoated copper sample, icorr,k (A cm−2) is
the corrosion current density of the sample containing the different composite coating.

Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 13 

 

3.2. Polarization Curve 

The Tafel polarization curves of copper electrodes coated with different coatings measured in 
3% NaCl solution are shown in Figure 2. We obtained the main electrochemical parameters by 
extrapolation, including corrosion potential (Ecorr), corrosion current density (icorr), anode and cathode 
Tafel slope (βa, βc), and protection efficiency (ηP). Their values were listed in Table 3. The value of the 
protection efficiency η is calculated as follows, 

ηP(%)=
icorr,o − icorr,k

icorr,0
⋅ 100, (4)

where icorr,o (A cm−2) is the corrosion current density of the uncoated copper sample, icorr,k (A cm−2) 
is the corrosion current density of the sample containing the different composite coating. 

Figure 2 shows that the current densities of the samples with coatings are significantly lower 
than that of the uncoated copper. More importantly, the coating with the nanofiller exhibited a 
significantly lower current density than the pure PVB coating. This indicates that after the surface of 
the copper sheet is coated, its corrosion strength and corrosion rate, in 3% NaCl becomes lower. 

According to Table 3, the current density (icorr) of MoS2 is lower than that of SnS, and the icorr 
higher compared with the corresponding Zn-containing composite coatings of SnS and MoS2. This 
indicates that the corrosion protection ability of MoS2 is better than that of SnS, and the addition of 
Zn has a certain improvement effect on the protective ability of the coating. The ηP value of the 
sample with the composite coating increased by more than 40% compared to the sample with a pure 
PVB coating, and the efficiency value of the nano-MoS2-Zn/PVB coating was the largest, reaching 
72.9%. The experimental results show that the composite coating has a significant protective effect on 
the metal matrix, which is in line with the result of weight loss measurements. 

 
Figure 2. Tafel curve recorded for copper samples without and with different coatings in 3.0% NaCl 
solution at 293 K. 

  

Figure 2. Tafel curve recorded for copper samples without and with different coatings in 3.0% NaCl
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Table 3. Electrochemical parameters for copper sample without and with different coatings in 3.0%
NaCl solution at 293 K.

Coating Ecorr
(mV per SCE)

icorr
(µA cm−2)

βc
(mV dec−1)

βa
(mV dec−1)

Crate
(mpy) ηP (%)

Blank −245 2.185 60 55 1.00 -
PVB −147 1.839 179 75 0.85 15.8

nano-SnS/PVB −97 0.921 105 280 0.42 57.9
nano-SnS-Zn/PVB −107 0.757 99 317 0.35 65.4
nano-MoS2/PVB −98 0.710 102 297 0.33 67.5

nano-MoS2-Zn/PVB −62 0.591 84 190 0.27 72.9

Figure 2 shows that the current densities of the samples with coatings are significantly lower than
that of the uncoated copper. More importantly, the coating with the nanofiller exhibited a significantly
lower current density than the pure PVB coating. This indicates that after the surface of the copper
sheet is coated, its corrosion strength and corrosion rate, in 3% NaCl becomes lower.

According to Table 3, the current density (icorr) of MoS2 is lower than that of SnS, and the icorr

higher compared with the corresponding Zn-containing composite coatings of SnS and MoS2. This
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indicates that the corrosion protection ability of MoS2 is better than that of SnS, and the addition of Zn
has a certain improvement effect on the protective ability of the coating. The ηP value of the sample
with the composite coating increased by more than 40% compared to the sample with a pure PVB
coating, and the efficiency value of the nano-MoS2-Zn/PVB coating was the largest, reaching 72.9%.
The experimental results show that the composite coating has a significant protective effect on the
metal matrix, which is in line with the result of weight loss measurements.

3.3. Electrochemical Impedance Spectroscopy (EIS)

In order to study the corrosion mechanism of the metal and the improvement of the corrosion
resistance of the coating, we measured the electrochemical impedance spectroscopy of copper with
pure PVB coatings and different nanofiller composite coatings. The experiments were carried out in
3.0% NaCl solution. As shown in Figure 3a, the Nyquist plot of the PVB coated and uncoated copper
sheet show an incomplete semicircle in the high frequency region and an approximate straight line in
the subsequent low frequency range. In general, the high frequency region semicircle is related to the
charge transfer resistance (Rct) and the double layer capacitance (Cdl). The low frequency impedance
is the Warburg impedance (W), which means the diffusion of dissolved oxygen or soluble cuprous
chloride complexes during the corrosion process.
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Figure 3. (a) Nyquist plots for copper samples in 3.0% NaCl solution without and with different
coatings at 293 K and (b) equivalent circuit diagrams for fitting Electrochemical Impedance Spectroscopy
(EIS) data.

Figure 3a shows that after the addition of the nanofiller, the shape of the curve appears to be
approximately semicircular, and the Warburg impedance in the low frequency region disappears.
This indicates that the addition of nanofiller inhibits the diffusion of dissolved oxygen and cuprous
chloride complexes. At this time, the corrosion of copper depends on the charge transfer process. The
order of the diameter of the semicircle obtained by different coating samples is: nano-MoS2-Zn/PVB >

nano-MoS2/PVB > nano-SnS-Zn/PVB > nano-SnS/PVB, and the diameter of the semicircle of the sample
added with Zn is obviously increased. According to this result, it can be judged that the nano-MoS2

filler is better than the nano-SnS for the corrosion protection performance of the PVB coatings and the
addition of Zn particles further improves the corrosion resistance of the composite coatings.

In order to quantitatively compare the corrosion inhibition properties of different coatings, we
further fit the EIS data using the equivalent circuit diagram shown in the inset of Figure 3b, and the
resulting electrochemical parameters are listed in Table 4, where Rs is the solution resistance, Rc is the
resistance of the coating on the copper working surface, Rct is the charge transfer resistance, and W is
the Warburg impedance. CPEc and CPEdl are constant phase angle elements representing the coating
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capacitance (Cc) and the double layer capacitance (Cdl), respectively. The impedance of these circuits
can be expressed as follows [31],

ZW= RS +
1

jwCPEc +
1

Rc
+ 1

jwCPEdl+
1

Rct+w

(5)

Z = RS +
1

jwCPEc +
1

Rc
+ 1

jwCPEdl+
1

Rct

(6)

Table 4. Electrochemical parameters of EIS in copper samples without and with different coatings in
3.0% NaCl solution at 293 K.

Coating Rs
(Ω cm2)

Rc
(kΩ cm2)

Rct
(kΩ cm2)

Cc
(µF cm−2)

Cdl
(µF cm−2)

W ηE (%)

Blank 7.94 0.04 0.32 13.08 128.30 0.002902 -
PVB 19.50 0.07 3.50 1.84 18.17 0.000620 90.86

nano-SnS/PVB 18.14 0.11 50.84 2.69 54.21 - 99.37
nano-SnS-Zn/PVB 22.54 0.30 74.36 2.49 69.49 - 99.57
nano-MoS2/PVB 20.07 0.26 97.84 3.07 60.39 - 99.67

nano-MoS2-Zn/PVB 25.09 0.30 126.20 1.92 43.34 - 99.75

The impedance of the CPE is defined as follows [31],

ZCPE =
w−n

Y
(

cos nπ
2 + j sin nπ

2

)n (7)

where Y is the modulus of the CPE, w is the angular frequency, j is the imaginary number, and n is the
deviation parameter. The η values of the copper electrode coatings in these 3% NaCl solutions are
calculated as follows,

ηE(%) =
Rct −Rct,0

Rct
· 100 (8)

where Rct and Rct,0 are the charge transfer resistances of copper samples with and without various
coatings in 3% NaCl solution, respectively.

As can be seen from Table 4, the Rc and Rct values of the nano-MoS2/PVB coated samples were
larger than those of nano-SnS/PVB, and these values improved in the samples to which Zn was added.
This again demonstrates that nano-MoS2 enhances the corrosion resistance of the coating better than
nano-SnS, and the addition of Zn further enhances the corrosion resistance of the coating. In addition,
all copper samples with coatings incorporating nanofillers had ηE values above 99%, which is a
significant increase compared to samples with pure PVB coatings. These demonstrate that the use
of nanoparticles as a filler can effectively enhance the corrosion resistance of polymer coatings. The
trend of these values is basically consistent with the weight loss measurements results. Several typical
corrosion resistant materials and their values of ηE obtained in a NaCl solution are listed in Table 5.
The higher ηE values further highlight the superior corrosion resistance of the composite coatings in
this study compared to these materials [6,32,33].
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Table 5. Anti-corrosion materials and their protection efficiency (ηE) by EIS test in 3.0–3.5%
NaCl solution.

Classification Samples ηE (%)

Silicon carbide composite POA–SiC/EP 87.54
Metal Organic Framework ATT/ZIF-8 97.3

Organic inhibitor polyaspartic acid 86.8

3.4. SEM Analyses

At 293 K, SEM high-resolution photographs of copper samples without and with different coatings
immersed in 3% NaCl solution for 10 days are shown in Figure 4. After the copper with pure PVB
coating (Figure 4b) was immersed in 3% NaCl solution, the substrate experienced severe corrosion
with many obvious large-area corrosion marks. Although the nano-SnS/PVB sample (Figure 4c) also
showed local corrosion, the degree of corrosion was lower than that of the pure PVB coating sample,
and large-area local corrosion disappeared after the addition of Zn (Figure 4d). In addition, the
nano-MoS2/PVB sample (Figure 4e) exhibited slight signs of corrosion, while the substrate surface of
the nano-MoS2-Zn/PVB sample (Figure 4f) was well protected.
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Figure 4. SEM images of (a) freshly polished copper specimen and the specimens immersed in
3% NaCl solution with (b) PVB, (c) nano-SnS/PVB, (d) nano-SnS-Zn/PVB, (e) nano-MoS2/PVB, and
(f) nano-MoS2-Zn/PVB coating for10 days at 293 K.

The observation of these high-definition pictures proves that MoS2 can improve the anti-corrosion
performance of PVB more than SnS, and the addition of Zn further enhances this performance. The SEM
analysis further validated the results of electrochemical experiments and weight loss measurements.

3.5. Corrosion Mechanism Analysis

The corrosion process of Cu in NaCl solution has been described in numerous reports [34–37].
As we all know, in the corrosion process of copper with NaCl solution as the medium, the cathodic
reaction is represented by the reduction of oxygen [1,38],

O2+4e + 2H2O→ 4OH− (9)
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The anode undergoes the following series of complex reactions [39],

Cu→ Cu++e, (10)

Cu++Cl− → CuCl, (11)

CuCl + Cl− → CuCl−2 , (12)

CuCl−2 → Cu2++2Cl−+e (13)

The insulation of the composite coating inhibits the transfer of current, hinders the formation of a
closed loop between the substrate and the etching solution, and reduces the corrosion rate. Besides,
the nanoparticle filler acts as a physical barrier in the polymer, preventing the penetration of O2 and
H2O into the metal, and the diffusion of CuCl−2 into the 3% NaCl solution. Moreover, for the Zn-added
coating, since Zn has a lower electronegativity than Cu, Zn is first corroded in the system, which delays
the oxidation process of the anode Cu as shown in Equation (10). This further explains the test results
of the EIS. The analysis of corrosion and protection mechanisms is consistent with Han et al. [9,40].

3.6. Molecular Dynamics Simulation

As shown in Figures 5 and 6, after sufficient relaxation and of equilibrium the PVB-nanosheets
system, two types of composites slowly approached to Cu surface, indicating that the combined energy
of the Cu surface and the PVB-nanosheets system is large. The interaction energy EInteraction of pure PVB,
SnS/PVB, MoS2/PVB with Cu surface are listed in Table 6. All the energies obtained have been found to
be negative in sign, which means that all the formulated coatings show sufficient binding to the surface.
The EInteraction of MoS2/PVB composite (−1,838.253 kcal mol−1) is larger than that of SnS/PVB composites
(−1,074.433 kcal mol−1) and PVB coatings (−852.33 kcal mol−1), indicating that the anti-corrosion
behavior of MoS2/PVB composite coatings is better than that of SnS/PVB and pure PVB. The MD
simulation results are in good agreement with the results obtained from potentiodynamic polarization
measurements and EIS, which is further confirm that the excellent anti-corrosion performance of
MoS2/PVB is attributed to its high interfacial binding energy. In addition, the EInteraction is larger
than that of previous work, such as −500 kcal mol−1 of Polyvinyl acetate (PVAc)-Perfluorooctane
(PFO) systems and −27.3 kcal mol−1 graphene-based polymer coatings [41,42], which reveals the
MoS2/PVB and SnS/PVB composites coatings exhibit excellent corrosion protection performance than
many nanosheets-polymer composites.

Table 6. The simulated surface energy for different systems at 298 K.

System Interaction Energy (kcal mol−1)

Cu+PVB −852.33
Cu+MoS2/PVB −1838.253
Cu+SnS/PVB −1074.433
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run of 500 ps.



Nanomaterials 2019, 9, 956 11 of 13

4. Conclusions

The anti-corrosion performance of nano-SnS/PVB, nano-MoS2/PVB, nano-SnS-Zn/PVB, and
nano-MoS2-Zn/PVB was studied by experiments and theoretical calculations. All four coatings have
good corrosion protection performance and their protective efficiencies calculated from the weight loss
and polarization curves are consistent. Moreover, the Nyquist plot and fit to the EIS data indicate that
nano-MoS2/PVB has better anti-corrosion performance than nano-SnS/PVB. The addition of Zn further
enhances this performance. These can be further confirmed by FESEM observation. Compared to
graphene-based films or other composite coatings with nanomaterials as fillers, the composite coatings
prepared herein have higher ηP and Rct values [43,44], meaning that the coatings have better corrosion
resistance. At last, the results of the molecular dynamics (MD) simulation show that both nano-SnS
and nano-MoS2 are adsorbed strongly on the copper surface, and the binding energy of nano-MoS2 is
larger than that of nano-SnS. Furthermore, compared to some other studies, these composite coatings
have a larger interaction energy EInteraction with the copper surface. There are still many aspects of this
research that need to be explored and improved in future work, such as sample preparation methods
and coating modification.
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