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Abstract
Although causal evidence synthesis is critical for the policy sciences—whether it be analy-
sis for policy or analysis of policy—its repeatable, systematic, and transparent execution 
remains challenging due to the growing volume, variety, and velocity of policy-relevant 
evidence generation as well as the complex web of relationships within which policies 
are usually situated. To address these shortcomings, we develop a novel, semi-automated 
approach to synthesizing causal evidence from policy-relevant documents. Specifically, 
we propose the use of natural language processing (NLP) for the extraction of causal evi-
dence and subsequent homogenization of the text; causal mapping for the collation, visu-
alization, and summarization of complex interdependencies within the policy system; and 
graph analytics for further investigation of the structure and dynamics of the causal map. 
We illustrate this approach by applying it to a collection of 28 articles on the emissions 
trading scheme (ETS), a policy instrument of increasing importance for climate change 
mitigation. In all, we find 300 variables and 284 cause-effect pairs in our input dataset 
(consisting of 4524 sentences), which are reduced to 70 unique variables and 119 cause-
effect pairs after homogenization. We create a causal map depicting these relationships 
and analyze it to demonstrate the perspectives and policy-relevant insights that can be 
obtained. We compare these with select manually conducted, previous meta-reviews of the 
policy instrument, and find them to be not only broadly consistent but also complementary. 
We conclude that, despite remaining limitations, this approach can help synthesize causal 
evidence for policy analysis, policy making, and policy research.

Keywords Evidence-informed policy · Emissions trading schemes (ETS) · Causal 
mapping · Machine learning (ML) · Natural language processing (NLP) · Policy 
analysis
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Introduction

Transparent, timely, repeatable, and contextual synthesis of causal evidence is important 
for analyzing and informing every stage of the policy cycle. Policy research relies on effec-
tive summarization, synthesis, and mobilization of knowledge for or in the policy process. 
Studies that aim to facilitate evidence-based or evidence-informed policy-making, policy 
evaluation, and policy learning require at least some degree of evidence synthesis (Sander-
son, 2002). Relatedly, studies conducting ex-ante policy assessment benefit from a careful 
aggregation of existing research to map a complex system (Freebairn et al., 2016). Even 
reviews of policy research – such as the Policy Studies Yearbook or Theories of the Policy 
Process – involve critical appraisal of evidence (Norman, 2023; Weible & Sabatier, 2018). 
Methods for evidence synthesis have, therefore, received much attention from policy mak-
ers, analysts, and researchers alike.

However, several characteristics of the policy sciences make evidence synthesis chal-
lenging. First, the exponential growth in policy-relevant research increases resource and 
time requirements even as time-critical policy advice is more in demand (Bornmann & 
Mutz, 2015; Larsen & Von Ins, 2010; Nunez-Mir et al., 2016). Second, evidence is scattered 
across different policy areas, in academic and grey literature, wherein different terminolo-
gies are used to refer to similar phenomena (Goyal & Howlett, 2018; Saetren, 2005). Third, 
policies have (un)intended consequences on a variety of dimensions – such as program-
matic, process, and political (Marsh & McConnell, 2010; Wakabayashi & Kimura, 2018) – 
all of which should be considered in evidence synthesis. Fourth, the process is complicated 
further due to different levels of policy analysis, spanning from cross-sectional, micro-level 
studies of individual policies to time-series, macro-level research on entire policy areas 
(Esty & Porter, 2005; Jiali, 1995; Thow et al., 2010; Warner & van Buuren, 2011).

The field of evidence synthesis has witnessed rapid development and now consists of sev-
eral methods that facilitate systematic source identification, repeatable evidence appraisal, 
and transparent reporting. On the one hand, methods such as thematic synthesis (Thomas 
& Harden, 2008), framework synthesis (Carroll et al., 2011), scoping reviews (Peters et al., 
2020), meta-narrative reviews (Wong et al., 2013a), and meta-ethnography (France et al., 
2019) enable broad syntheses and critical appraisals of research, but do not seek to inform 
policy-making per se. On the other hand, methods such as systematic reviews (Pearson et 
al., 2015; Petticrew & Roberts, 2008), meta-analyses (Barza et al., 2009), and umbrella 
reviews (Fusar-Poli & Radua, 2018) help synthesize evidence on interventions in a critical, 
repeatable, and transparent manner. They can, however, be difficult to execute, limited in 
their ability to acknowledge diversity in evidence, simplistic in their treatment of complex-
ity, and time-consuming (Haddaway et al., 2017). Although living systematic reviews (Mil-
lard et al., 2019) and rapid reviews permit execution in a time-sensitive situation (O’Leary 
et al., 2017), they do not address the other shortcomings.

A more configurative approach is necessary to capture the underlying system complexity 
(Anderson et al., 2013). Realist syntheses, which focus on mechanisms of how interventions 
work (Macura et al., 2019; Wong et al., 2013b), address complexity better (Greenhalgh et 
al., 2011). These can shed light on the underlying reasons behind success and facilitate 
theory-building or theory-testing. As they can also require significant resources, rapid real-
ist reviews have been proposed (Saul et al., 2013). Meanwhile, meta-aggregation collates 
‘lines of action’ in available evidence that can inform decision-making in an auditable, 
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reliable, and transparent manner (Hannes & Lockwood, 2011). However, these methods, 
too, provide limited support in addressing diverse conceptual lenses of analyses in policy-
relevant evidence.

This study presents a semi-automated approach to extract, aggregate, map, and analyze 
causal evidence from policy-relevant literature. To address the challenges outlined above, 
we combine natural language processing (NLP), causal mapping, and graph analytics. 
NLP refers to computational techniques for analyzing and representing natural language 
text (Liddy, 2001), and is increasingly used in the policy sciences (El-Taliawi et al., 2021; 
Goyal & Howlett, 2019, 2021). Meanwhile, causal mapping facilitates the organization and 
representation of causal evidence regarding interdependencies among parts of a system 
(Barbrook-Johnson & Penn, 2022), but has witnessed limited use in policy analysis. Finally, 
graph analytics – a field that is still underutilized for policy research – can help with sys-
tematic investigation of a causal map (Nguyen et al., 2013), a type of graph. While we use 
specific alternatives within each field for illustration, our approach itself is agnostic to the 
specific techniques chosen within NLP, causal mapping, and graph analytics.

This article is structured as follows. In Sect. “The potential of semi-automated causal 
evidence synthesis”, we present an approach for semi-automated evidence synthesis. Sub-
sequently, we illustrate the approach by synthesizing evidence on the emissions trading 
scheme (ETS) to create a causal map (Sect. “Synthesizing policy-relevant evidence: An 
illustration using the emissions trading scheme (ETS)”). In Sect. “Synthesizing policy-rele-
vant evidence: An illustration using the emissions trading scheme (ETS)”, we describe and 
analyze the causal map to demonstrate its suitability for generating policy-relevant insights. 
Thereafter, we discuss the implications of this research (Sect. “Discussion”) and conclude 
the article (Sect. “Conclusion”).

The potential of semi-automated causal evidence synthesis

Causal evidence synthesis is a multi-step process. The first step is the collation of docu-
ments that contain evidence pertaining to a research area, topic, question, or hypothesis. 
Existing machine learning techniques such as classification and clustering can help in this 
step (van de Schoot et al., 2021). We, however, focus on the remainder of the process.

Typically, the second step is the extraction and appraisal of evidence. While some proto-
cols appraise causality based on research design – e.g., including only randomized control 
trials or meta-analyses of these (Burns et al., 2011) – such approaches exclude relevant 
evidence created through various qualitative, quantitative, and mixed-methods designs. An 
alternate approach is to extract causal claims from the relevant documents. Such claims 
might be present in the form of explicit causality (e.g. using causative adjectives, adverbs, 
or verbs), implicit causality (based on background knowledge and the line of reasoning), 
inter-sentence causality (cause and the effect are spread across multiple sentences), and 
embedded causality (a variable is included as a composite effect of one cause and the cause 
of another effect) (Yang et al., 2021). Due to the complexity of natural language and the 
growing volume of policy-relevant evidence, this is challenging even for a subject matter 
expert. While NLP is unlikely to substitute human intelligence, advances in the field can 
assist in reducing and redirecting human effort.
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The approaches to causality detection can be broadly classified into (top-down) co-
occurrence-based methods and (bottom-up) causal relation extraction methods. Co-occur-
rence-based methods reduce a large volume of text into core concepts and then identify 
connections among these concepts (Han et al., 2019; Kim et al., 2016; Son et al., 2020). 
Causal relation extraction methods identify the connections within the text and then aggre-
gate them (Asghar, 2016; Bach & Badaskar, 2007; Khoo & Na, 2006). The latter is generally 
more appropriate for evidence synthesis as its bottom-up nature covers even infrequently 
occurring variables and retains the stated relationships among them (Barik et al., 2016). 
Causal relation extraction techniques can, in turn, be classified into knowledge-based, statis-
tical machine learning, and deep learning techniques (Yang et al., 2021). Knowledge-based 
techniques rely on semantic and syntactic text characteristics, codified as patterns or rules, 
against which an algorithm can classify input text (e.g. a causative verb-noun pair) (Bui et 
al., 2010). These techniques perform well on simple text with explicit causality, but poorly 
on text with implicit causality (Beamer et al., 2008; Girju et al., 2009; Yang et al., 2021). 
Statistical machine learning identifies distinguishing characteristics based on annotated 
‘training’ data using techniques such as Bayesian inference or decision trees. Statistical 
machine learning can handle implicit causality well, but it suffers from low portability, i.e., 
poor performance when the ‘test’ data is dissimilar from the training data (Asghar, 2016; 
Pakray & Gelbukh, 2014; Zhao et al., 2016). Finally, deep learning techniques utilize neural 
network architectures for causal relationship extraction; these perform well even on com-
plex text (Yang et al., 2021). In addition, they can leverage ‘transfer learning’ to enhance 
portability of the algorithm to a new context (Beltagy et al., 2019; Devlin et al., 2018; 
Kyriakakis et al., 2019).

The next step is to make the evidence comparable through some form of homogenization 
or normalization. For example, in the case of a meta-analysis, a regression coefficient might 
be converted into a partial correlation coefficient to make the input comparable (Hansen et 
al., 2022). Whereas less relevant for qualitative evidence, a challenge for policy-relevant 
analysis is that the source material can span several (inter)disciplinary fields, with different 
vocabularies to refer to the same or similar phenomena (Goyal & Howlett, 2018; Saetren, 
2005). For example, the use of ‘governance arrangement’ in governance studies and ‘insti-
tution’ in research on institutionalism might be synonymous with the use of ‘policy instru-
ment’ in policy studies. While not a substitute for expert assessment, NLP techniques for 
measuring lexical or semantic similarity can be useful here. Lexical similarity relates to the 
similarity of a word set and is often measured using a dictionary-based approach (Cruanes 
et al., 2012). This approach is easy to implement but does not consider the context in which 
a term is used. In contrast, semantic similarity relates to the similarity in meaning between 
terms and is measured such that the distance between terms (or other units, such as sen-
tences, paragraphs, documents) represents the likeness of their meaning (Liu et al., 2007). 
For complex text, semantic similarity is likely to be a more robust metric (Inan, 2020).

Thereafter, the evidence needs to be aggregated. For quantitative evidence synthesis, a 
weighted mean effect size for the cause-effect relationship might be computed (Hansen et 
al., 2022). However, as policies often have consequences across many dimensions – pro-
gram, process, and politics (McConnell, 2010) – that vary over time (Compton & ’t Hart, 
2019; Goyal, 2021), it is essential to consider multiple effects for any cause. Further, rel-
evant evidence might be available from diverse contexts varying in levels, geographies, 
scales, and time periods, making it important to highlight the relevant effects of contextual 
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variables and internal mechanisms on the causal chain. In addition, the research designs of 
the sources could range from argumentative work to small-n case studies; medium or large-
n observational, quasi-experimental, and experimental research; simulation modelling; and 
co-design or participatory knowledge. All of this lends itself to a more qualitative synthesis, 
for which in-depth information is usually summarized as conceptual diagrams, tables, or a 
narrative. Collating and visually presenting evidence as done in systems science can add 
value here.

System mapping facilitates collation of existing evidence to answer a specific question, 
identify knowledge clusters, or articulate a knowledge gap (James et al., 2016). Similarly, 
systematic evidence mapping helps summarize, query, and visualize evidence, for example, 
using a database and/or a graphical representation (Peters et al., 2021; Wolffe et al., 2019). 
Causal mapping is likely to be especially useful for causal evidence synthesis. It integrates 
causal chain analysis with the mapping of complex interrelationships, thereby facilitating 
collation of existing evidence or expert knowledge about (dynamic) causal interdependen-
cies between parts of a system (Ackermann & Alexander, 2016). This allows to answer 
specific questions about effects of interest, identify knowledge clusters, or articulate a 
knowledge gap (James et al., 2016). Causal mapping is well-suited for combining analyses 
with different scopes and expanding the representation when new information is introduced 
(Eden et al., 1992).

As a causal map is a type of directed knowledge graph, it can be investigated using 
graph analytics. Here, by graph analytics we refer to techniques in causal chain analysis, 
graph theory, and network analysis. Illustratively, topographic analysis creates insight based 
on the structural layout of the causal map. An assessment of the strength of the linkages, 
for example, indicates the number of studies providing evidence on specific cause-effect 
relationships (Montibeller & Belton, 2006). This can shed light not only on interventions 
that are supported by much evidence, but also on parts of the system that may warrant fur-
ther investigation. Similarly, effect trees–a collection of downstream variables affected by 
a given factor, and cause trees–a collection of upstream variables that influence a factor–
can help analyze the cause and consequences, respectively, of an intervention (Eden et al., 
1992). Centrality analysis can provide insight into the likely importance of a variable–either 
perceived or real–based on whether, for example, it has several linkages to other variables 
(i.e., high degree centrality) or lies on the shortest path between several other variables (i.e., 
high betweenness centrality). Some of the other possibilities for investigating a causal map 
are causal inference analysis and causal loop analysis. Causal inference refers to the process 
of determining the causal impact of one factor on another (Axelrod, 1976), either the partial 
effect (the causal impact of one variable on another along a specific path), or the total effect 
(the overall impact of one variable on another taking all paths into consideration). Causal 
loop analysis involves the identification and description of feedback mechanisms within 
a causal map, i.e., positive or negative feedback within (a part of) the system, resulting in 
reinforcing or balancing behavior, respectively. Apart from aiding causal evidence synthe-
sis, causal maps can also inform subsequent policy analysis, for example, in the form of 
Bayesian belief analysis or simulation modelling (Pullin et al., 2016).

An overview of the semi-automated approach is shown in Fig. 1. Beginning with a 
selection of relevant text, causal relations are extracted, similar factors are grouped, and an 
aggregate causal map is built. The map is then analyzed to derive policy-relevant insights. 
It is important to note that a variety of different NLP algorithms can be used to achieve 
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the desired outputs of each step, and our approach itself is algorithm-agnostic. Algorithm 
selection should carefully consider the relevant metrics for a given case to ensure sufficient 
performance. In this way the approach can be rooted in and benefit from ongoing advance-
ments in NLP.

Synthesizing policy-relevant evidence: an illustration using the 
emissions trading scheme (ETS)

We illustrate the process of synthesizing policy-relevant evidence and creating a causal map 
through the semi-automated approach by using the case of the ETS.

Emissions trading schemes

ETS are policy instruments that aim to impose a cost on the emission of greenhouse gases 
(GHGs). This policy instrument involves setting a ‘cap’ on certain types of emissions; regu-
lating bodies then divide the total allowable emission quantity into tradeable ‘allowances’ 
that are auctioned or allocated to the entities covered by the system. Polluters can buy and 
sell allowances but must surrender a quantity equivalent to their respective emissions at the 
end of pre-defined periods. Entities for whom abatement is relatively cheap have a finan-
cial incentive to reduce emissions, and entities for whom abatement is relatively expensive 
have the option to purchase allowances to satisfy their obligation. In this way, ETS provide 
a mechanism to reduce emissions, to specified levels, whilst encouraging the most cost-
efficient abatement (ICAP, 2022a).

Evidence-synthesis from ETS policy analysis literature is encumbered by many of 
the limitations discussed earlier. First, there is an enormous literature base. For example, 
Google Scholar returns over 23,100 results for a search of “ETS” and “policy analysis”. 
Even though a majority of these are likely to be excluded from a synthesis relying on empir-
ical evidence, the resulting dataset could potentially consist of 50–100 sources. Second, 
the terminology employed for discussing ETS performance varies across these studies. 
ETS policy studies often only examine a single performance dimension despite compelling 
analysis from programmatic, process, and political perspectives. And, finally, analysis is 
conducted at various levels of scope from case studies to reviews seeking to summarize the 
wholesale abatement impact of carbon pricing. Therefore, this instrument is an appropriate 
choice for demonstrating our approach.

While several possibilities exist for compiling relevant source material, for this illustra-
tion we identified meta-reviews of ETS and selected constituent articles. This allowed us to 
compare the insights created by our approach against those in the meta-reviews. From the 
14 meta-reviews on ETS identified in our search, we selected two: Green (2021), due to its 
explicit ex-post and quantitative direction encompassing studies from all major ETS juris-
dictions, and Schmalensee and Stavins (2017) due to its specific discussion on political con-

Fig. 1 Input-output diagram of the four-step process for causal evidence synthesis
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siderations and system design factors, which reflect more process and political perspectives. 
Collating the papers within both reviews and removing those deemed irrelevant yielded a 
final total of 28 source papers (see Appendix: Table A1).

Extracting cause-effect relationships

The first stage of our approach involves examining each sentence of the source material to 
determine whether it exhibits causality, and–if so–extracting the causal factor(s), the effect 
factor(s), and the direction of the causal relation(s). Take, for example, the causal sentence 
“The higher emissions allowance price caused a decrease in coal power generation”. Here, 
‘emissions allowance price’ is the cause factor, ‘coal power generation’ is the effect factor, 
the direction of the relationship is negative (i.e., an increase in the former results in a reduc-
tion in the latter). To semi-automate this process, we employed the ‘Self-attentive BiLSTM-
CRF wIth Transferred Embeddings’ or SCITE algorithm, developed by Li et al. (2021). This 
algorithm was chosen, amongst various alternatives, based on three criteria. Firstly, it uses a 
deep learning, relation-extraction approach which we prefer to knowledge-based or statisti-
cal approaches for complex, inconsistent data, in-line with recommendations from Yang et 
al. (2021). Secondly, it is an open-source project, ensuring transparency and accessibility. 
Finally, it performed highly against relevant performance benchmarks for recall and preci-
sion. Recall, i.e., the percentage of true-positive to true-positive and false-negative outputs, 
is an important metric because it indicates the percentage of causal relations that were cor-
rectly identified. A higher recall value results in more causal relations being included in 
the model. Precision indicates the percentage of true-positives to true-positives and false-
positives and, hence, the percentage of causality-extraction outputs that are indeed causal. 
Higher precision reduces the number of incorrect outputs carried forward to later stages. 
While we use SCITE for the cause-effect extraction stage of our approach, other suitable 
algorithms exist and will continue to emerge (see e.g., Akkasi & Moens, 2021; Ancin-Mur-
guzur & Hausner, 2021; Liu et al., 2024).

To derive causal relations using SCITE, the 28 documents were processed in three stages. 
First, we selected only the abstract, results, discussion, and conclusion sections of the arti-
cles. The literature review and methods were excluded because these often-returned irrel-
evant methodological links, and relations suggested in other literature instead of findings of 
that article. Next, the text was automatically segmented into sentences, cleaned (removing 
non-alphanumeric characters, separation of punctuation etc.) and further segmented into 
words. Subsequently, ‘layered embeddings’ – necessary for the algorithm to learn a rep-
resentation of the input data (Levy & Goldberg, 2014) – were generated for each sentence 
(Akbik et al., 2018). The sentences and corresponding embeddings were processed through 
a pre-trained SCITE model resulting in a list of sentences deemed causal, and their sug-
gested cause-effect relationships. An example causal relation returned by SCITE is shown 
in Fig. 2.

Fig. 2 An illustrative output of 
the SCITE algorithm
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In all, our data consisted of 4542 sentences that were cleaned and provided as input to 
SCITE. Of these, 317 were deemed as causal by the algorithm. The raw output, however, 
did not indicate the direction of causality (i.e., positive or negative) and included a high 
level of inaccuracy. This necessitated a manual review of each SCITE output to determine 
the true causal relations, causal pairs, and direction. This stage was also necessary to remove 
irrelevant causal sentences. Ultimately, 154 sentences were verified as causal and relevant. 
These sentences contained 284 causal pairs. Our validation of this step revealed that the 
pre-trained model of SCITE achieved approximately 84% precision and 38% recall for our 
data. Despite the current manual review stages required, the use of the algorithm reduced 
the time taken to extract causal relations from each paper from 3 h to approximately 20 min.

Clustering causal links

Next, we concatenated the individual causal pairs, their contributing sentence(s), cause-
effect factors, and relationship direction. To ensure backward traceability, we provided a 
unique cause-effect id (in the form [article number]-[sentence number][causal pair letter]) 
to each causal pair, which highlights the prevalence of similar causal pairs. For example, 
when talking about the use of coal power, one causal pair may include the factor ‘coal power 
generation’ whereas another ‘coal utilization’. Including both factors would quickly cloud 
the causal map with repetitive links. To address this issue, semantic clustering can help in 
grouping factors that have the same meaning. This would reduce the number of (duplicated) 
factors and increase the (legitimate) interconnections, resulting in a more cohesive causal 
map.

Often this task is achieved in a two-stage process whereby ‘embeddings’ (a way of repre-
senting a word and/or sentence as a high-dimensional vector) are generated for each phrase 
and subsequently clustered using a suitable algorithm (Jacksi & Salih, 2020). By grouping 
phrase embeddings, this approach intends to capture some semantic connection between the 
phrases. More recently, large language models (LLMs) have demonstrated their capability 
for capturing semantic meaning (Hansen & Hebart, 2022; Le Mens et al., 2023) which could 
also prove effective for semantic clustering. Although we employed the above-mentioned 
embedding and clustering method for this project due to the lack of case studies that evalu-
ate generative LLMs at the time of writing, future applications would do well to consider 
emerging methods for this task. We chose SBERT as the embedding algorithm due to its 
accessible open-source format and state-of-the-art performance against semantic similarity 
benchmarks at the time (Reimers & Gurevych, 2019).

These embeddings were then grouped using a clustering algorithm. Again, various algo-
rithms could be used (e.g., k-means or agglomerative hierarchical clustering), each with its 
relative strengths (Rokach & Maimon, 2005). In this case, DBSCAN (Ester et al., 1996) 
was chosen due to its ability to handle uneven cluster sizes and outliers (Rokach & Maimon, 
2005). We expect these in the data because many synonymous terms may exist for a certain 
factor (e.g., ‘emissions’, ‘GHG emissions’, and ‘carbon emissions’) requiring large clusters, 
whilst many unique terms may also be present which should remain un-clustered. DBSCAN 
was applied using a cosine distance metric (given its ability to handle high-dimensional vec-
tors, such as embeddings) and a minimum cluster size of 2 (given that at least two semanti-
cally similar factors could warrant clustering). One overarching factor term is then manually 
chosen for each cluster and used to overwrite the factors present in that cluster where they 
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occur in causal pairs (see Table 1). Note that the use of SBERT and DBSCAN algorithms 
here demonstrate the clustering stage of our approach, they are proposed as appropriate but 
not necessarily optimal algorithms for this task.

Applying the above approach, the initial collation of causal pairs resulted in the iden-
tification of 300 cause-effect factors in our dataset. Next, the cosine distance parameter of 
DBSCAN was iteratively tuned to achieve qualitatively determined ‘reasonable’ clusters, 
i.e. where phrases of the same semantic meaning (in the context of ETS) were grouped and 
those sufficiently unique phrases remained un-clustered. Using a final distance value of 0.3, 
230 of the cause/effect factors were grouped into 49 clusters and the remaining 70 factors 
were deemed unique. From the clustered factors, we could prune duplicate cause-effect 
pairs leading to 119 unique cause-effect pairs.

Building an aggregated causal map

The next step is to generate the aggregate causal map. Using the clustered cause-effect pairs, 
individual factors can be added to the map as nodes and their causal links included as the 
edges between them. The causal map grows in complexity as more factors appear and con-
nections between structures emerge.

While based on the causal links identified in earlier stages, this map generation stage 
inevitably involves coder interpretation. Despite clustering factors, additional grouping may 
be warranted. Implicit structures are also likely to become more evident, the inclusion of 
which can allow for richer synthesis. For example, many relations discussed the impact of 
the free allocation of emission allowances and subsequent sales on the profits of power-gen-
erating firms. Initially, this behavior is captured by various links to and from ‘firm profits’. 
The same behavior may instead be captured by a stock-flow structure, whereby revenues are 
aggregated as inflow to profit and costs as outflow, better reflecting the underlying dynam-
ics. Figure 3 demonstrates how including the implicit stock-flow structure allows clearer 
demarcation of factors influencing revenues, costs, and profits.

Another issue that can arise in this process is that of ‘intermediate variables’, whereby 
one causal chain depicts a connection from A → C and another from A → B → C. In such 
cases, it is often unclear whether the link A → C implies the existence of intermediate factor 

Corpus-ID Raw cause 
effect pairs

Clustered cause effect pairs

2–028 A [european level 
commitments, +, 20-
20-2010 targets]

[European level commitments, 
+, 2020 EU CLIMATE EN-
ERGY PACKAGE]

2-028B [20-20-2010 targets, 
+, renewable energy 
directive]

[2020 EU CLIMATE ENERGY 
PACKAGE, +, RENEWABLE 
ENERGY DIRECTIVE]

2–028 C [20-20-2010 targets, 
+, energy efficiency 
directive]

[2020 EU CLIMATE EN-
ERGY PACKAGE, +, energy 
efficiency directive]

2–029 [renewable energy di-
rective, +, renewable 
energy utilisation]

[RENEWABLE ENERGY DI-
RECTIVE, +, RENEWABLE 
ENERGY UTILISATION]

2–031 A [carbon price, +, 
fuel-switching]

[EMISSIONS AL-
LOWANCE PRICE, +, 
FUEL-SWITCHING]

Table 1 An illustration of clus-
tered causal pairs. The factors 
that have been clustered are 
shown in capital case
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B, it is unaware of factor B, it considers B irrelevant, or it suggests that A → B → C may 
only represent one of multiple paths to C, thereby partially contributing to the causal impact 
of A on C. Addressing this issue requires interpretation. In situations where an intermediate 
variable is suggested but not explicitly mentioned by a causal link, the analyst can refer to 
the contributing text segment to gain more context. In other cases, support cannot be found 
for an intermediate link, and an additional path is added to the causal map alongside the 
intermediate path, i.e., including A → B → C alongside A → C.

What should be apparent is that model generation is an iterative process. As the map 
evolves, implicit structures emerge and intermediate variables appear, frequent reorgani-
zation is warranted. There is no objectively complete causal map; rather, the causal map 
should be refined until all causal links have been incorporated, and the overall structure can 
be used to garner relevant insights. The link to the contributing text segments is also neces-
sary to provide additional context when examining the causal map. By labelling the arrows 
and providing a reference table of supporting causal IDs, the analyst can (help the readers) 
examine each causal link in more detail, if desired.

Our iterative process produced the final causal map shown in Fig. 4.

The synthesized evidence: probing the causal map on the emissions 
trading scheme

In this section, we briefly describe the causal map and demonstrate how it can be further 
analyzed to create policy-relevant insight.

Fig. 3 An example illustrating the inclusion of implicit structures in the causal diagram
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Description of the aggregated ETS causal map

Before analyzing the causal map (Fig. 4), it is worth describing some core structural 
elements.

To begin with, the relation between ETS and GHG emissions. We observe that weight 
of the link is high and the relationship negative (‘-’), indicating that several studies provide 
evidence that ETS is associated with a reduction in GHG emissions. We also observe two 
mediators that link from ETS to GHG emissions. First, ETS contributes to a reduction in 
‘emissions from energy generation’, resulting in a reduction in GHG emissions. Second, 
ETS increases ‘electricity imports’, which also result in a reduction in GHG emissions 
within a particular jurisdiction. However, the causal map presents the complexity of the 
system and highlights that different factors could determine the overall influence of the ETS 
on GHG emissions. Some of the key factors include emissions allowance price, emissions 
leakage, and free allocation of allowances.

Emissions allowance price inducing GHG emission reductions

This structure concerns the variables linking ‘emissions allowance price’ and ‘GHG emis-
sions’. There is a clear influence of allowance price on emissions via fuel switching, elabo-
rated by the coal-to-gas price ratio factor. This is consistent with the idea that allowance 
price will impact the cost of coal more than that of gas (as coal is more carbon-intensive), 
thereby inducing fuel switching. The link from allowance price to emissions via ‘cost pass-

Fig. 4 An aggregated causal map showing the relationships influencing the ETS. A ‘stock’ variable is 
represented as a rectangular node while a ‘flow’ variable is represented as a text label. The thickness of 
the edge connecting two nodes indicates the number of publications providing evidence regarding the 
relationship. Nodes in angle brackets”<>” indicate factors that are already captured elsewhere in the map 
and mentioned again for ease of visualisation
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through’/‘energy production cost’, ‘energy sale price’, and ‘energy demand’ captures the 
idea that price increases are passed on to consumers, who then reduce their energy demand. 
Additionally, there is a path through emissions reduction investment, as higher allowance 
prices encourage polluters to enact measures to reduce emissions. Through the sign of link-
age, the map also conveys the expected impact that changes in any of these factors would 
have. For example, a lower allowance price would: (i) reduce the coal-to-gas price ratio and 
curtail fuel switching; (ii) limit the energy sale price (due to lower production cost), thereby 
having lesser influence on energy demand reduction; and (iii) lessen the emissions reduction 
investment.

Emissions leakage diminishing ETS efficacy

This structure concerns ‘emissions leakage’ and the different ways in which leakage impacts 
the system. One can observe the direct positive link from ‘ETS’ regulation to ‘emissions 
leakage’ to ‘GHG emissions’, reflecting the idea that ETS regulation incentivizes polluting 
activity to relocate outside regulated jurisdictions, thereby avoiding ETS-induced emissions 
reductions. Examining the structural location of emissions leakage also reveals its negative 
role in important causal chains. For example, consider again the path from ‘allowance price’ 
through ‘cost pass-through’/‘energy production cost’, ‘energy demand’ to ‘GHG emis-
sions’.’ This causal chain captures the idea that a higher allowance price reduces emissions. 
However, as both cost pass-through and energy production cost have a positive relationship 
with emissions leakage (which in turn has a negative relationship with GHG emissions), the 
effect of allowance price on emissions is mitigated, to some extent, by emissions leakage.

Free allocation of allowances leading to windfall profits

This concerns the ‘firm profit’ stock-flow structure and its connections with ‘free allocation 
of allowances’. This reflects the behavior, observed particularly in the earlier phases of the 
EU ETS, whereby firms profited from the sale of freely distributed emissions allowances. 
The basic mechanism is clearly present with a path from ‘free allocation’ to ‘sale of allow-
ances’, ‘firm revenues’ and, thereby, ‘firm profit’. Several factors elaborate the causes of 
free allocation, including relocation risks, competitiveness concerns, and political demand 
for new entrant provisions. Additionally, the impacts of the firm ‘windfall profits’ can be 
seen, i.e., the reduction in competitiveness concerns, and an increasing regulatory threat 
concerning these profits.

Analysis of the aggregated ETS causal map

An analysis of the causal map can be conducted using techniques such as topographic anal-
ysis, causal inference analysis, and causal loop analysis. Here, we illustrate the type of 
insights such analyses could generate.

Topographic analysis

The most supported connections on the map are not surprising (Table 2). Links #034 (‘ETS’ 
and ‘GHG emissions’), #058 (‘energy demand’ and ‘energy generation emissions’) and 
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#059 (‘energy generation emissions’ and ‘GHG emissions’) are each supported by nine 
articles and relate to obvious links between central factors in the system. This high degree of 
shared knowledge implies that these connections are relevant in explaining the ETS system. 
Conversely, #071 (‘emissions allowance price’ and ‘emissions reduction investment’) and 
#061 (‘emissions reduction investment’ and ‘GHG emissions’) have only two articles sup-
porting them, despite their centrality to the system. The apparent lack of knowledge regard-
ing these relationships suggests that further research would be warranted.

Consider the effect tree of ETS system linkage shown in Fig. 5. If an analyst were explor-
ing the impact of linkage between ETS systems, the effect tree would highlight that linkage 
is expected to reduce compliance costs and lessen price volatility because of increased mar-
ket thickness. However, amongst the numerous other effects are also capital flows between 
systems and associated negative public perception. The analyst could use this knowledge to 
recommend measures to mitigate the negative downstream effects, sever the negative effect 
branches, or introduce reinforcing branches that promote the desired behavior.

Table 3 Shows relevant network metrics derived from the causal map. The high in-
degree (14) of GHG emissions reflects this factor’s position at the end of many causal paths. 
Conversely, ETS with the highest out-degree (14) is a source of causal paths. Allowance 

Table 2 Causal relations with most unique supporting articles
Relation-ID Causal relation Number of unique supporting articles Supporting 

corpus-IDs
034 ETS → GHG emis-

sions (-)
9 1–068, 2-167, 3–064 A, 4–047 A, 9-101, 11-019B, 

13–034, 18 − 003, 19 − 006, 19–076
058 Energy demand → 

Energy generation emis-
sions (+)

9 1–035, 2–005 A, 2–023, 2-129, 3–050, 3-064B, 3–078 A, 
4-047B, 5–067, 5-026B, 5–079, 12-085B, 17–083 A, 17-
083B, 19-008B, 19–064 C, 19-064D, 19-078B, 22–056 C

059 Energy generation emis-
sions → GHG emissions 
(+)

9 1–018, 1–035, 2–005 A, 2–023, 2–067 A, 2-129, 3–050, 
3-064B, 3–078 A, 4-047B, 5-026B, 12-085B, 5–079, 
17–083 A, 17-083B, 19-008B, 19–064 C, 19-064D, 19-
078B, 22–056 C

124 Sale of allowances → 
Firm revenues (+)

6 1–029, 8-069B, 8-075B, 8–080, 8–076 A, 9-271, 13-
336D, 20–044 C, 20–052, 20–251 A, 20-251B, 20–212 A, 
20-212B, 20–256, 28 − 004

134 Energy production costs 
→ Energy sale price (+)

6 9-059B, 13–339 A, 20–074, 21–043, 22–056 A, 24–067 C

Fig. 5 Effect-tree, the collection of downstream variables affected by a given factor, for ‘Linkage between 
trading systems’
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demand, emissions allowance price, cost pass-through and firm profits have the highest 
betweenness, reflecting their position as key levers within the system. Demand for allow-
ances has much higher betweenness than in- or out-degree; hence, while it is included in 
many causal paths that determine system behavior, its influence is limited to its impact 
on emissions allowance price and firm profits. Eccentricity reflects which factors are the 
farthest away from others, potentially making their causal influence on outcomes harder to 
trace. High eccentricity scores for Law-XI-829, european-level commitments and renew-
able energy directive, for example, indicate that it may be difficult to attribute changes in 
system outcomes to these, given the many intermediary mechanisms on the path to certain 
outcomes. Yet, this shows how different policy instruments interact with the ETS and poten-
tially influence its effectiveness.

Depending on the questions of interest, other network analysis metrics and methods 
could be used.

Causal inference analysis

Consider the path from ‘emissions allowance price’ to ‘coal-to-gas price ratio’, ‘fuel switch-
ing (coal to gas)’, and ‘GHG emissions’. The partial effect is negative, consistent with the 
idea that a greater allowance price will lead to a price disparity between coal and gas fuel 
sources which in turn leads to fuel switching from coal to gas, thereby reducing emissions. 
Article 2 supported the link between price ratio and fuel switching but did not include the 
connection between price-ratio and emissions allowance price. Article 16 did mention this 
relation but the link between price ration and fuel-switching was omitted. It is only by com-
bining the causality of these two articles that the entire causal chain from allowance price 
to emissions becomes apparent. If a policy maker sought to encourage fuel-switching, an 
understanding of the aggregated path shows that increasing the allowance price would likely 
contribute to this end.

Looking instead at the total effect, there is an obvious path from ‘cost pass-through’ to 
‘GHG emissions’ via ‘energy sale price’, ‘energy demand’, and ‘energy generation emis-
sions’ to ‘GHG emissions’, which has a negative partial effect indicating that greater cost 
pass-through would lead to emissions reductions. This is consistent with the idea that pass-
ing the cost on to consumers would reduce consumption and associated emissions. Such 
an effect is well-studied and understood, with aspects of this path covered by 15 articles. 
However, taking instead the path from ‘cost pass-through’ to ‘emissions leakage’ to ‘GHG 

Table 3 Network metrics of the causal maps, showing nodes with highest in-degree, out-degree, betweenness 
centrality, closeness centrality, and eccentricity
In-degree Out-degree Betweenness Eccentricity
GHG emissions 14 ETS 14 Allowance 

demand
0.069 Law XI-329 9

Cost
pass-through

9 Emissions allow-
ance price

7 Emissions allow-
ance price

0.068 European level 
commitments

8

Emissions leakage 8 Firm profits 6 Cost 
pass-through

0.056 Generation capacity 8

Emissions allowance 
price

6 Cost
pass-through

5 Firm profits 0.051 Renewable energy 
directive

8

Firm profits 6 Access to exter-
nal credits

5 GHG emissions 0.050 Expectation of 
carbon price

8
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emissions’ instead yields a positive partial effect, consistent with the idea that greater pass-
through costs contribute to greater leakage and associated net emissions. The relationship 
between pass-through and leakage is suggested only in Article 27. In this case, the total 
effect between these two factors is, thus, undetermined. If targeting emissions reductions, 
a policy maker might examine the degree of cost pass-through. By only considering the 
energy sale price pathway, they might conclude that encouraging cost pass-through would 
be fruitful. Examining the total effect of cost pass-through on emissions would, instead, 
reveal that emissions leakage can mitigate the reduction effect somewhat.

Causal loop analysis

Consider the balancing loop between emissions allowance price and GHG emissions 
(Fig. 6). As a reduction in GHG emissions lessens allowance demand, there is a potential 
dampening effect on the emissions allowance price if allowance supply is not cut back to 
keep pace with these reductions. This would, in turn, impact subsequent GHG emissions. 
That is, if future allowance supply caps are not set sufficiently low, then successful abate-
ment efforts may reduce the allowance price and induce a balancing effect on GHG emis-
sions. Indeed, a similar issue was experienced in the first phase of the EU ETS, whereby an 
allowance oversupply contributed to an allowance price collapse (Schmalensee & Stavins, 
2017). An investigation of this causal loop indicates that, alongside stringent allowance 
caps, a price collar could work to mitigate this issue.

This brief illustration shows that our approach results in different types of policy-relevant 
insights. First, the causal map provides an overview of the system and the different factors 
that influence policy effectiveness within it. Second, the topographic analysis establishes 
which factors and relationships appear to be influential and whether the existing evidence 
or research is aligned with their centrality to the system. Third, the causal inference analysis 
and the causal loop analysis point to ‘feedback’ or non-linearity, and help identify key path-
ways that result in balancing or reinforcing dynamics within the system. Fourth, the analysis 
highlights the interaction among policy instruments, with other governance arrangements 
on energy efficiency and renewable energy also influencing the effectiveness of the ETS to 
a greater or lesser extent.

Comparisons with the meta-reviews

Next, we examine whether the causal map captures the insights of the meta-reviews from 
which the source material was selected. Our approach performs well in the identification 
of granular features contributing to high-level behavior. Green (2021), for example, notes 

Fig. 6 A ‘balancing’ causal 
loop between allowance price 
and emissions: higher allow-
ance price reduces emissions, 
reducing allowance demand and 
thereby reducing allowance price
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the effect of the ETS on fuel switching as well as the (modest) contribution of fuel switch-
ing, energy efficiency, and reduced fuel consumption on GHG emissions, all of which are 
captured in the causal map and subsequent analysis. Further, Green discusses the mitigating 
role of consistently low carbon price on the impact of ETS on GHG emissions, along with 
the issues associated with offset credits. By tracing the effect of reducing allowance price, its 
negative impact on GHG emissions can clearly be seen. Looking at the ‘access to external 
offset credits’ factor, issues relating to market confidence and financial risks that can nega-
tively impact allowance price are observed. However, a key insight from Green was that 
the quantitative impact of emission trading is, so far, limited. This counterfactual finding 
(relating to the lack of relationship) is not picked up by causal-relation extraction and hence 
the results of our approach. Similarly, geography- or sector-specific insights are difficult 
to discern from the causal map (such as the efficacy of an ETS in the energy sector versus 
manufacturing or the discussion regarding specific geographies such as in Green, 2021).

In contrast, Schmalensee and Stavins (2017) discuss the performance of various ETS 
systems qualitatively. They explain the potentially large revenues that can be generated 
through allowance auctions, highlight the importance of free allowance allocations in 
gaining political support for ETS policy, and note that these allocations are motivated by 
concerns of adverse impact of ETS on competitiveness. With the causal analysis, all these 
factors are apparent. Schmalensee and Stavins (2017) further explain the importance of 
reducing price volatility to facilitate emission abatement, noting how financial conditions 
led to price instability. This, too, is interpretable from the causal map. First, the adverse 
impacts of the financial crisis can be seen through its reduction of allowance demand and 
the subsequent impact on allowance price. Through an examination of the various causal 
paths from allowance price to GHG emissions, it can be interpreted that fluctuating price 
would, in turn, contribute to variation in emission abatement. Similar to Green (2021), the 
insights from this review that are not apparent in our causal analysis relate to heterogeneities 
in performance of different ETS. For example, Schmalensee and Stavins (2017) note that 
carbon leakage is particularly concerning for subnational systems.

This comparison, firstly, provides confidence that our approach can faithfully derive 
many insights identified in a traditional literature review. In addition, it also highlights the 
strengths of our approach: a systems perspective, a focus on underlying mechanisms influ-
encing policy effectiveness, incorporation of policy ‘mixes’ described in the source mate-
rial, and a repeatable appraisal of the gaps in existing evidence. At the same time, in its 
present form, our approach does not detect the lack of a causal relationship nor lend itself 
to quantification of the magnitude of a causal relationship. Further, heterogeneities in the 
relationship—for example, based on geography, level of government, or sector—are also 
difficult to discern from a single causal map.

Discussion

We have presented a novel, semi-automated, NLP approach to extract causal statements 
from policy analysis literature, aggregate them into a causal map of policy behavior, and 
derive policy-relevant insights. The results show that the method was able to address four 
shortcomings of state-of-the-art approaches for evidence synthesis for evidence-informed 
policy making as illustrated for ETS.

1 3



Policy Sciences

Firstly, it provides a configurative approach to reviewing and synthesizing available 
documented causal evidence. This allows analysts to better capture complex mechanisms 
underlying observable policy effects and to understand their effectiveness within the policy 
system. Secondly, the semi-automated approach enables an analyst to do so with signifi-
cantly less effort than traditional review and evidence synthesis methods, at high levels of 
accuracy. Using NLP is relatively easy and less time-consuming than manual text review, 
reducing the time to derive causal relations by almost 90%, from ~ 3 h to ~ 20 min per 
article. As a result, a greater number of sources can be considered with the same resources, 
increasing the evidence base and reducing potential biases arising from a more limited data-
set. The high precision achieved by the relation extraction algorithm also suggests that a 
high-quality analysis can be obtained. Thirdly, the clustering algorithm helps with inte-
grating policy evidence that is scattered across policy issues or domains. The use of NLP 
reduced the time taken to cluster semantically similar concepts by approximately 50% (from 
2 h to 1 h for about 300 factors). Lastly, the proposed approach can harmonize disconnected 
information from various levels of scope, performance perspectives, and taxonomies while 
also incorporating upstream and downstream effects into one comprehensive causal model. 
In combination, this equips analysts and policy makers with a more systemic understanding 
of a policy domain beyond the direct cause-effect inferences that are typically obtained from 
traditional means of evidence synthesis.

As demonstrated for ETS policy, the derived causal map captures most of the insights 
obtained from manual evidence syntheses as presented in the review articles by Schmalensee 
and Stavins (2017) and Green (2021). The comparison has highlighted some strengths and 
weaknesses of this causal map. The strengths include that the generated causal map can 
faithfully represent the granular features contributing to ETS system behavior and that most 
policy behavior as highlighted in the reviews is captured. The map performs well in distill-
ing the factors and dynamics present in the disparate source material that are not easily 
obtained nor communicated otherwise. This can supplement traditional methods in pre-
senting an explicit, parsimonious, aggregated systems perspective. Quantified insights and 
insights by sector while not represented explicitly in this causal map, however, could be 
uncovered by referencing the contributing text segments.

Despite these promising results, several limitations remain that should be addressed in 
future work to ensure high quality analysis and to realize the potential of this approach for 
evidence-informed policy. A major limitation concerns the low recall (~ 38%) achieved by 
the causal extractions algorithm we used. A consequence is that relevant causal links con-
tributing to system behavior were probably missed. The low recall is likely explained by 
the data sources used (and the complexity of cause-effects therein, relative to the training 
data) rather than an inherent issue of the algorithm, which has achieved recall rates of up 
to 86% on benchmark data sets (Li et al., 2021). Addressing this shortcoming, however, is 
complicated by the sparsity of training data (Asghar, 2016). Here, the creation of benchmark 
datasets specific to public policy could be invaluable (see, for example, Sewerin et al., 2023 
for such an effort in the case of policy design). Further, the rapidly developing capabilities of 
deep learning techniques for causal relation extraction (Yang et al., 2021) could also provide 
avenues for improvement.

More broadly, the significance of algorithm selection and case-specific evaluation cannot 
be overstated when utilizing NLP. Researchers or practitioners who utilize it should care-
fully consider the relevant metrics for their application and test various algorithms against 
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these metrics to ensure sufficient performance for their specific case. Further, they should 
consider fine-tuning off-the-shelf algorithms with context or domain specific data, as errors 
resulting from their use could result in ineffective or even harmful policy implications. 
Here, too, the creation of models and tools that are specific to public policy (e.g., creating a 
‘PolicyBERT’) could be helpful (see, for example, Webersinke et al., 2021).

Another potential limitation relates to the possible exclusion of important insights in the 
source material in the resulting causal map. Two underlying issues here pertain to the lack 
of consideration for counterfactuals and the current inability of the causal relation extraction 
algorithm to distinguish between hypothesized and empirically substantiated cause-effects. 
Recent developments using adversarial training for causality extraction models might be 
able to address this (Feder et al., 2021). Also, a related issue is the lack of a well-specified 
context within which the extracted cause-effect relations are deemed valid. It is possible to 
uncover additional contextual information by analyzing the underlying textual information 
present in the reference table before creating the causal map. However, this is inconve-
nient, especially when new information is collected iteratively. Again, developments in NLP 
might overcome these limitations soon: for example, newer word embedding techniques 
could facilitate mapping of contextual variables in a dataset (Pelevina et al., 2017; Selva 
Birunda & Kanniga Devi, 2021).

Yet another limitation relates to the scalability of this approach. Our illustrative example 
consists of only 28 source articles. A solution for large-scale evidence synthesis of hundreds 
or thousands of articles would require further development and automation of some of the 
stages of our approach. The relation derivation stage should already be suitable for this task 
provided that the precision and recall performance are deemed acceptable for the applica-
tion. The clustering stage, however, would need to reliably aggregate thousands of causal 
relations into a comprehensible number of causal linkages without abstracting away neces-
sary context in absence of manual intervention. Similarly, a manual approach would no lon-
ger be feasible for the causal-map generation. Here, advances in automating the workflow 
from causal relationship extraction via relations table building to creating a visual causal 
map (e.g. building on Ancin-Murguzur & Hausner, 2021) could reduce the need for iterative 
updating of the reference table and map and facilitate interactive exploration by analysts and 
policy makers. Additionally, experimentation with more effective means of communicating 
a systems perspective would be useful as causal maps can become difficult to comprehend 
when dealing with extremely large, complex systems.

Further to these important areas for improvement, future research may seek to use our 
approach to compare and contrast the causal maps that can be extracted from different 
sources and fields of evidence generation. This can help to expose conflicting information 
about causal paths from different sources of evidence. A directed network map representa-
tion allows to gauge contributions of various factors within and across causal chains, includ-
ing potential for weighting of links or factors e.g., by frequency of mentioning, source type, 
soundness of the empirical basis, or authoritativeness of the source. The directed map rep-
resentation, furthermore, provides additional analytic capacity. This includes topographic 
analyses using graph theory-based concepts to identify the most central factors as system 
levers or barriers to effective policy. Alternatively, causal reinforcing or balancing factors 
can be identified and explored, which is not commonly done in ETS policy analysis.

In a broad domain such as climate mitigation policy, it is challenging to keep an over-
view of the many policies and their effects, both individually and in concert. Here, a causal 
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map presentation allows to either zoom in to evaluate a specific policy, or to zoom out and 
identify feedback with other policies that enhance or limit policy effectiveness. It may also 
guide empirical validation of the key cause-effects identified. Beyond that, their expansion 
to system maps (i.e., that include possible policy actions, policy effects, and contextual vari-
ables that would influence the cause-effect pathway, see e.g., Enserink et al., 2022) would 
provide an ideal foundation for model-supported exploration of policy behavior and policy 
system change over time (e.g., using system dynamics or agent-based modelling). Alto-
gether, these would result in a more comprehensive and complexity-proof evidence-base for 
policy research, policy analysis, and policy making.

Conclusion

Evidence-based or evidence-informed policy relies on the ability to effectively summarize, 
synthesize, and mobilize knowledge for the policy process, yet characteristics of policy sci-
ences as a field make evidence synthesis challenging in practice. The exponential growth 
in policy research significantly increases the resources necessary for evidence synthesis, 
evidence is often scattered across different policy areas and employing distinct terminol-
ogy; policy impacts can be measured in a variety of dimensions, such as programmatic, 
process, and political, and at different levels from micro-level studies of individual policies 
to macro-level research on entire policy areas - all of which need to be taken into account 
when synthesizing evidence.

To address these shortcomings, this article has introduced a novel analysis method that 
can semi-automatically derive and aggregate causal relations from policy analysis literature 
into a causal map of policy effects. Applying this method to a collection of 28 ETS literature 
sources produced a causal map consisting of 159 unique causal links. Evaluation of this 
result has demonstrated that the approach allows analysts to better capture complex mecha-
nisms and interactions underlying observable policy effects with significantly less effort 
than traditional review and evidence synthesis methods. It also supports synthesis of policy 
evidence scattered across policy issues or areas and can harmonize disconnected informa-
tion from various levels of scope, performance perspectives, and taxonomies. Comparison 
of insights obtained from the causal map against those from a manual review of the same 
source material has demonstrated that most of the insights can be captured by this approach, 
whilst providing a more configurative perspective of the features contributing to policy 
behavior. Finally, in providing a causal map representation of a policy area, new tools for 
policy evaluation, such as topographic, causal inference, and causal loop analysis, become 
available to analysts. While promising in many respects, some notable limitations include 
the poor recall (~ 38%) achieved in this application of the method. This may contribute to 
structural gaps in the map and a lack of contextualization for cause-effect relations which 
can inhibit understanding of the nuance behind certain behavior.

Regardless of algorithmic performance or the quality of insights obtained for ETS, the 
method and implementation presented in this study only represents a first step in combining 
NLP, causal mapping, and graph analytics for policy-relevant evidence synthesis. The pro-
posed method, and future iterations, appears to contribute a promising new tool for policy 
analysts across domains, helping to provide a more comprehensive understanding of the 
factors and relations affecting policy and ultimately improving the evidence base on which 
to inform policy development.
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Appendix 1

Contributing 
review paper

Index Individual papers

(Green, 2021) 1 (B. Anderson & Di Maria, 2011)
2 (Gloaguen & Alberola, 2013)
3 (Arimura & Abe, 2021)
4 (Bayer & Aklin, 2020)
5 (Bel & Joseph, 2015)
6 (Cullenward, 2014)
7 (Wagner et al., 2014)
8 (Jaraite-Kažukauske & Di 

Maria, 2016)
9 (Egenhofer et al., 2011)
10 (Ellerman et al., 2016)
11 (Kotnik et al., 2014)
12 (Fell & Maniloff, 2018)
13 (Dechezleprêtre et al., 2018)
14 (Ellerman & Buchner, 2008)
15 (Martin & Saikawa, 2017)
16 (Ellerman & McGuinness, 2008)
17 (Murray & Maniloff, 2015)
18 (Petrick & Wagner, 2014)
19 (Wakabayashi & Kimura, 2018)

(Schmalensee & 
stavins, 2017)

20 (Sijm et al., 2011)
21 (Hibbard et al., 2015)
22 (Wing & Kolodziej, 2008)
23 (Ranson & Stavins, 2012)
24 (Ellerman & Buchner, 2007)
25 (Kruger et al., 2007)
26 (Convery & Redmond, 2007)
27 (Sartor et al., 2014)
28 (Löfgren et al., 2015)

Table A1 The source articles on 
the ETS used for the synthesis
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