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11
COMPUTER SIMULATIONS

Juan M. Durán

1.  Introduction

Computer simulations are found in a myriad of scientific fields and practices. In some cases, 
they constitute whole lines of research (e.g., climate modeling and molecular simulations 
in chemistry (Goldman 2014). The debate over their philosophical merits involves a wide 
range of topics, including, but not restricted to, their function as experiments (e.g., Beisbart 
2017; Boge 2019; El Skaf and Imbert 2013); their value as sources of scientific evidence 
(e.g., Morgan 2004; Parker 2020); their role as measuring devices (e.g., Morrison 2009; 
Tal 2011); their place in the scientific methodological map (e.g., Rohrlich 1990); and their 
scientific and philosophical novelty (e.g., Humphreys 2009; Frigg and Reiss 2009).

A key issue common to many of these debates is how philosophers have conceived—and 
even defined—computer simulations and the models they implement. This chapter pre‑
sents and discusses three chief views found in the literature. The first one takes computer 
simulations to implement mathematical models simpliciter. A second one takes computer 
simulations to be a richer and more complex unit of analysis than mathematical models, 
yet still related to mathematics. A third viewpoint is sketched, where computer simulations 
depart even further from implementing mathematical models, gaining the status of mod‑
eling in its own right. To simplify the analysis, the focus will primarily be on equation‑based 
simulations and their application to medicine and the natural sciences. Since significant 
philosophical issues also emerge in relation to diverse fields such as biology, sociology, and 
psychology, and in relation to a variety of other kinds of computer simulations such as 
cellular automata, agent‑based simulations, and Monte Carlo simulations, let us first look 
briefly at these. The chapter ends with a discussion on epistemic opacity, arguably a chief 
philosophical issue pertaining to all computer simulations.

2.  Kinds of computer simulations

Cellular automata are the first of our examples of computer simulations. They were 
devised in the 1940s by Stanislaw Ulam and John von Neumann while Ulam was studying 
the growth of crystals using a simple lattice network as a model and von Neumann was 
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working on the problem of self‑replicating systems. It is said that Ulam suggested to von 
Neumann that the latter use the same kind of lattice network to create a two‑dimensional, 
self‑replicator algorithm.

Cellular automata are simple forms of computer simulations. Their simplicity inheres in 
both their programming and underlying conceptualization. A standard cellular automaton 
is an abstract mathematical system in which space and time are considered to be discrete; 
it consists of a regular grid of cells, each of which can be in any state at a given time. Typi‑
cally, all the cells are governed by the same rule, which describes how the state of a cell at 
a given time is determined by the states of itself and its neighbors at the preceding moment. 
Wolfram defines cellular automata as:

[…] mathematical models for complex natural systems containing large numbers of 
simple identical components with local interactions. They consist of a lattice of sites, 
each with a finite set of possible values. The value of the sites evolves synchronously 
in discrete time steps according to identical rules. The value of a particular site is 
determined by the previous values of a neighborhood of sites around it.

(Wolfram 1984, 1)

Although a rather general characterization of this class of simulation, the definition already 
provides the first ideas as to their domain of applicability. Cellular automata have been 
successfully used for modeling many areas in social dynamics (e.g., Thomas Schelling’s 
social segregation model), biology (e.g., patterns of some seashells), and chemical types 
(e.g., the Belousov–Zhabotinsky reaction). But perhaps the most canonical example is Con‑
way’s Game of Life. This simulation is remarkable because it constitutes a key example of 
self‑organization dynamics and the emergence of patterns seen in some real‑world systems. 
In this simulation, a cell can survive only if there are either two or three other living cells 
in its immediate neighborhood. Without these companions, the rule indicates that the cell 
dies either from overcrowding if it has too many living neighbors or from loneliness if it 
has too few.

Cellular automata embody a unique set of methodological and epistemological virtues. 
To name a few, they deal better with errors because they render exact results of the model 
they implement. Since there is rarely any attempt to approximate the detailed setup of the 
target system, any disagreement between the model and the empirical data can be ascribed 
directly to the model that realized the set of rules. Another epistemologically interesting 
characteristic of cellular automata pointed out by Fox‑Keller is that they lack theoreti‑
cal underpinning in the familiar sense of the term: “what is to be simulated is neither a 
well‑established set of differential equations […] nor the fundamental physical constituents 
(or particles) of the system […] but rather the phenomenon itself” (Fox‑Keller 2003, 208). 
Consequently, approximations, idealizations, abstractions, and the like are concepts that 
worry the practitioner of cellular automata very little.

Having said that, cellular automata have been criticized on several grounds. One of 
these criticisms touches on the metaphysical assumptions behind this class of simulation. 
It is not clear, for instance, that the natural world is characterized by discrete rather than 
continuous phenomena, as assumed by the cellular automata. Much contemporary work 
in science and engineering work assumes that phenomena are, in fact, continuous. On less 
speculative grounds, it is a fact that cellular automata lack presence in many scientific and 
engineering fields. The reasons for this might be partially cultural. The physical sciences 
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are still the accepted viewpoint for describing the natural world, which largely takes form 
in the language of partial differential equations (PDEs) and ordinary differential equations 
(ODEs).

Advocates of cellular automata have made efforts to demonstrate their relevance. It has 
been argued that cellular automata are more adaptable and structurally similar to empirical 
phenomena than are PDEs or ODEs. Lesne (2007) points out that discrete and continuous 
behaviors coexist in many natural phenomena (with their proportions depending on the 
scale of observation) and suggests that this is an indicator not only of the metaphysical 
basis of natural phenomena, but also of the need to deploy cellular automata to under‑
stand them. In a similar vein, Gérard Vichniac believes that cellular automata not only seek 
numerical agreement with a physical system, but also attempt to match the simulated sys‑
tem’s own structure, its topology, its symmetries, and its “deep” properties (Vichniac 1984, 
113). Despite these and many other authors’ efforts to show that the world might be more 
adequately described by cellular automata, the majority of scientific and engineering disci‑
plines have not made a significant shift in that direction as of yet. Most of the work done 
in these disciplines is predominantly based on agent‑based and equation‑based simulations. 
As mentioned before, in the natural sciences and engineering, most physical and chemical 
theories used in astrophysics, geology, climate change, and the like implement PDEs and 
ODEs, the primary forms of equation‑based simulations. Social and economic systems, on 
the other hand, are better described and understood by means of agent‑based simulations.

While there is no general agreement on what precisely an “agent” is, the term typically 
refers to self‑contained programs that control their own actions based on perceptions of 
their overall operating environment: agent‑based simulations “intelligently” interact with 
their peers as well as their environment.

A key characteristic of these simulations is that they can show how the total behavior of 
a system emerges from the collective interaction of their parts. Deconstructing these simu‑
lations into their constituent elements would remove the added value provided in the first 
place by the computation of the agents. It is a fundamental characteristic of these simula‑
tions, then, that the interplay of the various agents and their environment generates unique 
behavior in the entire system.

Good examples of agent‑based simulations come from the social and behavioral sci‑
ences, where they are heavily represented. Perhaps the most well‑known example of an 
agent‑based simulation is Schelling’s Model of Social Segregation.1 A very simple descrip‑
tion of Schelling’s model consists of two groups of agents living in a 2‑D,2 n by m matrix 
“checkerboard” where agents are placed randomly. Each individual agent has a 3 by 3 
neighborhood, which is evaluated by a utility function that indicates the migration criteria. 
That is, the set of rules that indicates how to relocate—if possible—in case of discontent 
by an agent.

Schelling’s model is a canonical example, but other, more complex agent‑based simula‑
tions can also be found in the literature. It is now standard for researchers to model a range 
of different attributes, preferences, and overall behavior in agents. Gilbert and Troitzsch list 
the attributes that are typically modeled by agent‑based simulations, including knowledge 
and beliefs of the agents, inferences from beliefs, goals, overall planning, and language 
(Gilbert and Troitzsch 2005).3

Monte Carlo methods are the second of our examples of computer simulations. Their 
basic operation is to use stochastic techniques to compute the properties of a model. A key 
feature of these methods is that they use random sampling for target systems that could 
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in principle be deterministic. Monte Carlo is a very powerful technique that is typically 
applied to systems with many coupled degrees of freedom, such as fluids, gases, crystal‑
lizable polymers, and strongly coupled solids, among others. Within the philosophical 
literature, there has been some debate over its status as a method for discovery and ex‑
perimentation. Grüne‑Yanoff and Weirich, for instance, indicate that “the Monte Carlo 
approach does not have a mimetic purpose: It imitates the deterministic system not in order 
to serve as a surrogate that is investigated in its stead but only in order to offer an alterna‑
tive computation of the deterministic system’s properties. In other words, the probabilistic 
analogy does not serve as a representation of the deterministic system” (Grüne‑Yanoff and 
Weirich 2010, 30). To these authors, then, Monte Carlo experiments are merely methods 
of calculation and not simulations in a proper sense, for the latter are “used to learn some‑
thing about the world, and they are used as stand‑ins or surrogates for whatever is of inter‑
est for the simulationist” (Grüne‑Yanoff and Weirich 2010, 30). Beisbart and Norton seem 
to agree with this idea when they claim that “Monte Carlo simulations are like experiments 
that discover novel results. We will argue, however, that these sorts of similarities are su‑
perficial. They do not and cannot make them function like real experiments epistemically” 
(Beisbart and Norton 2012, 404).

In what follows, the focus is on the use of computers to find solutions to a set of equa‑
tions. Equation‑based simulations are most commonly used in scientific domains in which 
the governing theories and models are based on differential equations.

3.  Equation‑based computer simulations

Suppose we are interested in a simulation of a satellite orbiting around a planet under 
tidal stress such that it stretches along the direction of the radius vector. Suppose further 
that this model represents the orbit as non‑circular with variable stress, making the sat‑
ellite expand and contract periodically along the radius vector. Since the satellite is not 
perfectly elastic, the mechanical energy is converted into heat and radiated away. Despite 
this, the system as a whole is capable of conserving angular momentum (see, for details, 
Woolfson and Pert 1999, 18–19). In this context, we have equations of total energy (e.g., 
Eq. (1) below), angular momentum, and others. We also have other relevant components 
of the system and their interactions represented in the model. The planet has mass M; the 
satellite mass m (<< M); the orbit is of semi‑major axis a; and the gravitational constant is 
represented by G; and so forth. The masses are represented by connected springs, each of 
unstressed length l, and the same spring constant, k. Thus, a spring constantly stretched 
to a length l’ will exert an inward force (e.g., Eq. (2)—see also Woolfson and Pert 1999, 
19, fig. 1.8).

= −E
GMm

a2
� (1)

( )= ′ +F k i l � (2)

For simplicity, the above set of equations will be referred to as a mathematical model4 
that describes the behavior of and interaction between any planet and any satellite under 
the specified conditions. Now, to have a simulation, this mathematical model needs to be 
implemented in the form of an algorithmic structure. That is, the sets of variables, proce‑
dures, data, functions, and other structures that are tractable in a digital computer (e.g., 
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algorithms (3) and (4) partially implementing the mathematical equations). Let us call this 
algorithmic structure a simulation model.

TOTM = CM(1) + CM(2) + CH(3) + CM(4);

EN = −G * TOTM + 0.5 * V2� (3)

R = SQRT(POS(1)**2 + POS(2)**2 + POS(3)**2)� (4)

The above algorithms suggest that mathematical equations can be implemented as a simula‑
tion model rather straightforwardly. These algorithms effectively do so. Algorithm (3) par‑
tially implements equation (1) simpliciter, and algorithm (4) does something similar with 
equation (2). Naturally, the simulation model will require some discretizations for tracta‑
bility reasons (i.e., continuous equations cannot be implemented on physical computers), 
aggregation of procedures for the treatment of errors, and a handful of ad hoc modifica‑
tions for smooth numerical integration (e.g., computers cannot represent infinite orbiting).

A critical issue that divides philosophers is how to interpret the simulation model that 
is at the basis of computer simulations, as well as the computer simulations themselves. To 
some, computer simulations are numerical methods for finding sets of solutions to math‑
ematical models. To some others, computer simulations are more than numerical meth‑
ods destined to have merely instrumental value. Instead, they are part of—or stand for—a 
novel and more comprehensive form of scientific methodology. Thus understood, simula‑
tion models are conceived as a new type of model, related to but not entirely obtained from 
mathematical models and modeling. Key observations favoring this latter view are that 
any given simulation model will, in fact, involve several layers of models, each potentially 
requiring differing modeling practices; it will represent structures that are not necessarily 
present in mathematical models nor secured by mathematical modeling; and it will not 
necessarily derive from a chain of inferences and varying adjustments and aggregations that 
started with one or more mathematical models. This second view revolves around the idea 
that a proper methodology of simulations requires a distinctive ontology leading to specific 
epistemic and methodological issues.

The remainder of this chapter discusses some of these interpretations and their resulting 
characterization of simulation models and computer simulations.

3.1  Simulations for analytically intractable mathematics

Let us start with an often‑quoted working definition of computer simulation:

A computer simulation is any computer‑implemented method for exploring the prop‑
erties of mathematical models where analytic methods are unavailable.

(Humphreys 1990, 501)

According to this working definition, computer simulations are instrumental in finding the 
set of solutions to an analytically intractable mathematical model. Understood as numerical 
methods, they explore the mathematical properties of the simulation models. Hartmann pre‑
sents a similar definition. According to him, (a) a simulation is the result of solving the equa‑
tions of a dynamic model, and (b) a computer simulation is the result of having a simulation 
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run on a physical computer. Taken together, (a) and (b) entail that a computer simulation 
results when a dynamic mathematical model is solved by a physical computer (Hartmann 
1996). Let us note that Hartmann is also claiming that the physical dimension of the com‑
puter plays a relevant role in imitating the dynamics of a real‑world system. Interestingly, 
some philosophers have developed this idea (e.g., Parker 2009, and Boge 2020), arguing 
for meaningful morphisms between the (physical) computer processes and the target sys‑
tem.5 Others, opposing this claim (e.g., Beisbart 2014; Durán 2018), argue that the multi‑
realizability of physical processes means that the resulting analogy is thin and contrived.

These definitions come with varying methodological and epistemological assumptions. 
For starters, the adjustments required for implementing the mathematical model onto the 
computer must be minimal. That is, the discretizations and ad hoc modeling must go only 
as far as is required for the tractability of the mathematical model. By themselves, simu‑
lations do not possess—nor should they possess—any representational value other than 
that inherited from the mathematical models they deploy. No aggregates to the simulation 
model could suggest a deviation from the implemented mathematical models.

Humphreys’ and Hartmann’s definitions loom large in the philosophical and techni‑
cal literature. Parker, for instance, adopts Hartmann’s definition in her analysis of the ex‑
perimental value of simulations. In her 2009 paper, she makes explicit reference to it by 
characterizing a computer simulation as a time‑ordered sequence of states that represents 
another time‑ordered sequence of states. In her latest publication, however, she seems to 
have distanced herself from this commitment. She states that “a computer simulation model 
is a computer program that is designed to iteratively solve a set of dynamical modeling 
equations, either exactly or approximately, following a particular algorithm” (Parker 2020, 
sec. 2). Moreover, Parker also calls attention to the plurality of models in simulation prac‑
tice and their role in computer simulations in climate models (see the next section). It would 
require some argumentative acrobatics to make a convincing case that climate simulations 
hold nontrivial morphisms at the physical level.

Guala has also made explicit reference to Hartmann’s definition in discussing the time 
evolution of systems, the use of simulations to provide numerical solutions to sets of math‑
ematical equations, and in distinguishing between static and dynamic models (Guala 2002). 
Krohs (2008) adopts Humphreys’ and Hartmann’s definitions to account for the role and 
merits of computer simulations in scientific explanation (Durán 2017). Frigg and Reiss 
largely base their disapproval of the philosophical novelty of computer simulations on a 
narrow sense of simulations, assuming that they are, ultimately, about mathematical mod‑
els (Frigg and Reiss 2009, 596).

Recently, Boge has claimed that a simulation model “will usually (if not always) be 
based on some previously existing numerical, i.e., discrete mathematical model of a system 
of interest (the ‘target system’), which in many cases is an approximation to another model 
based on continuous mathematics, and hence not suited for a translation into algorithms” 
(Boge 2019, 3). Boge goes on to discuss simulations in terms of mathematical language and 
derivations, as well as the physical characteristics of the target system mimicked by, and 
emerging from, the execution of such simulations.

3.2  Simulations as a “new type” of mathematical model

The alternative viewpoint takes that simulation models are related to, but not entirely 
obtained from, mathematical models and modeling. Weisberg, in his analysis of the anatomy 
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of models, considers simulation models as “a subset of mathematical models” (Weisberg 
2013, 30) but holds that they constitute an especially important subset. Morrison has also 
urged that more philosophical attention must be given to computer simulations, in light of 
their being a special kind of experimental practice related to modeling (Morrison 2015).6 
In his recent book, Lenhard explicitly refers to simulations as a “new type” of mathemati‑
cal model. There are two sides to this interpretation. Whereas simulation models must be 
“counted into the established classical and modern class of mathematical modeling,” one 
must also take stock on how they “contribute to a novel explorative and iterative mode 
of modeling characterized by the ways in which simulation models are constructed and 
fitted” (Lenhard 2019, 7). Lenhard cements this view by saying: “[o]ne direction seems 
self‑evident: the (further) development of computers is based primarily on mathematical 
models. However, the other direction is at least just as important: the computer as an 
instrument channels mathematical modeling” (Lenhard 2019, 8). Simulations are a “new 
type” of model primarily because of the plasticity of their modeling, which “draws on the 
effects that arise from the ways in which the (artificial) parameters are set. The more flexible 
a model is, the more significant is the phase of modeling during which the parameters are 
adjusted.”7 (Lenhard 2019, 11).

What does the methodology of simulations as a “new type” of mathematical model 
look like? Winsberg provides an answer to this question. This author advances a hierarchy 
of models that begins, at the top, with a given theory (i.e., general physical and modeling 
assumptions) and terminates, after a series of specifications, alterations, and inferences at 
each level of modeling with a model of the phenomena, which represents the outcome of the 
simulation research in question (Winsberg 1999, 277). In Winsberg’s view, this inferential 
hierarchy suggests a distinct epistemology—and, it could be added, a distinct methodology— 
for simulations whose chief features are being downwards, autonomous,8 and motley 
(Winsberg 2001, S447). It follows that “simulations often do not bear a simple, straightfor‑
ward relation to the theories from which they stem” (Winsberg 1999, 276).

Humphreys also offers an elaborated, multi‑level methodology and epistemology for 
simulation models. He presents it in the following way: “System S provides a core simu‑
lation of an object or process B just in case S is a concrete computational device that 
produces, via a temporal process, solutions to a computational model [...] that correctly 
represents B, either dynamically or statically. If in addition the computational model used 
by S correctly represents the structure of the real system R, then S provides a core simula‑
tion of system R with respect to B” (Humphreys 2004, 110, emphasis added). The compu‑
tational model comprises six different elements, each performing a specific function. These 
are the computational template, the construction assumptions of that model, the correction 
set, an interpretation, an initial justification, and the output representation (see Humphreys 
2004, 102). The first element of this sextuple, i.e., the computational template, is the heart 
of the computational model and can essentially be understood as a set of computationally 
tractable equations (61).

Taking stock of these interpretations, simulation models are still obtained from math‑
ematical models in varying degrees and fashions. With Winsberg, this comes through the 
hierarchical‑inferential process that ultimately results in a model of the phenomena. For 
Humphreys, the unit of analysis for computational science is the computational template. 
Following his example, a simulation utilizing Newton’s Second Law consists of a theoreti‑
cal template that “describes a very general constraint on the relationship between any force, 
mass, and acceleration, but to use it in any given case, we need to specify a particular force 
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function, such as a gravitational force, an electrostatic force, a magnetic force, or some 
other variety of force” (Humphreys 2004, 60). A computational template emerges when 
“the resulting, more specific, equation form is computationally tractable” (60). Finally, 
Lenhard intends to balance the transformations of mathematical models introduced by the 
computer with the role of simulations as instruments that channel mathematical modeling.

One must then ask, to what extent are these interpretations aligned or misaligned with 
the notion of simulations as a way of approaching analytically intractable mathematics? 
While there is some evident overlap, there are also a handful of reasons to separate these 
two notions. For starters, simulation models are conceived as a richer structure than math‑
ematical models by philosophers arguing for the novelty of simulation modeling (e.g., they 
use external databases, involve multiple layers of models). This also means that the goal of 
simulations has substantially shifted from finding solutions to a set of equations represent‑
ing a complex target system. Finally, scientific research involving computer simulations 
does not necessarily reflect the same epistemic and methodological principles, social organi‑
zation, and research questions as those involving mathematical models.

Climate simulations have made visible the rich and complex structure of simulations, 
primarily through the implementation of a plurality of models. In fact, many philosophers 
agree that model pluralism is an inherent and inevitable feature of simulation models. As 
Lenhard and Winsberg (2010, 261) put it, “pluralism is not a temporary failure that even‑
tually will be overcome, but will remain for principled reasons of simulation modeling 
methodology.” Parker has argued that “complex climate models generally are physically 
incompatible with one another—they represent the physical processes acting in the cli‑
mate system in mutually incompatible ways and produce different simulations of climate” 
(Parker 2006, 350). Durán (2020) has reflected on the plurality of models in regard to 
the architecture of simulation models. There, simulation models recast a host of models 
pertaining to different kinds of representational values, methodological principles, and 
epistemic goals. The resulting architecture includes kernel simulations, understood as the 
implementation of each individual model in the formalism of a programming language, and 
integration modules—modules “which play two fundamental roles, namely, they integrate 
external databases, protocols, libraries and the like with [each kernel simulation], and en‑
sure the synchronization and compatibility among [the kernel simulations]” (Durán 2020, 
307). Computer simulations are therefore conceived as non‑hierarchical, non‑inferential, 
and non‑homogeneous units of analysis.

3.3  Can simulations be autonomous from mathematical models?

The view that simulations are a “new type” of mathematical models tends to obscure the 
tension between acknowledging that simulation models both provide an unprecedented 
form of modeling and a forceful attempt to stay rooted in mathematical modeling. For 
instance, Winsberg introduced the idea of ad hoc modeling, understood as “relatively sim‑
ple mathematical relationships designed to approximately capture some physical effect in 
nature. When ‘coupled’ to the more theoretical equations of a simulation, they allow the 
simulation to produce outputs that are more realistic than they could have been with‑
out some consideration of that physical effect” (Winsberg 1999, 282). Another distinctive 
methodological practice in simulation is “kludging,” roughly understood as adding bits of 
code to simulation that are not principled in their design and whose purpose is to optimize 
the performance and improve the simulation in a “quick and dirty” way (Lenhard 2019). 
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But kludging is not the only distinctive methodological trick implemented in simulations. 
Fuzzy modularity (i.e., the piecemeal adjustment of models for their use in multiple simula‑
tions) and generative entrenchment (i.e., the multiple sources on which the model depends 
because they played a role in generating it) also cement claims about confirmatory holism 
and explain the failure of analytic understanding in climate models, for instance (Lenhard 
and Winsberg 2010, 256–257). Yet another interesting example is the so‑called Arakawa 
operator, also discussed by Lenhard and Winsberg, which can be used to overcome the 
nonlinear instability of the mathematics in meteorological models. In this respect, Lenhard 
says: “[i]n my opinion, this was a decisive point: the discreteness of the model required 
artificial and also nonrepresentative elements in the simulation model whose dynamic ef‑
fects could be determined only in a (computer) experiment” (Lenhard 2019, 36). Finally, 
parametrizations further engross the list as they are “pragmatic decisions that balance fidel‑
ity to what we know about the target system with the need for effective implementation” 
(Lenhard and Winsberg 2010, 256).

What does this alleged distinctive form of modeling mean for the representational merits 
of simulations? In principle, not much. Ad hoc modeling takes it that “more” modeling is 
added to the simulation for reasons of tractability, but there is no claim of added represen‑
tational value. Kludging, fuzzy modularity, Arakawa‑like operators, and parametrization 
are genuine simulation‑inspired practices, but they are also “nonrepresentative” of the tar‑
get system (Lenhard 2019, 36). Again, they are solely dedicated to making the simulation 
model tractable.

Interestingly, it is increasingly the case that mathematical and logical formalism is omit‑
ted in favor of readymade algorithmic structures. Researchers prefer to dispense with the 
trouble of first developing a mathematical model and then figuring out how to implement 
it as (part of) a simulation model by representing target systems directly into their codes. 
For instance, DeAngelis and Grimm (2014) and Peck (2012) show how a (total or partial) 
representation by the simulation model might take place directly at the level of algorithmic 
structures and without the mediation of any formal mathematical modeling. The represen‑
tation is built from hypothesized relational structures abstracted from the target system and 
directly coded as the simulation model.

One could object at this point that readymade algorithmic structures are conducive to 
other forms of modeling. That the practice of dispensing with the writing of mathematical 
equations before coding the algorithm does not necessarily imply that there is no math‑
ematical model underpinning the algorithm.9 But the critical point here is that, on occa‑
sion, researchers encode forms of behavior of the target system that do not correlate with 
mathematical modeling. To put this idea somewhat differently: if we want to recreate the 
algorithm as a mathematical model, we would face the problem that specific structures and 
patterns of behavior relevant to the representation of the target system and encoded in the 
algorithm do not correspond to mathematical machinery. Durán (2020) explores this idea, 
arguing that programming languages allow researchers to encode into their simulation‑
specific structures and patterns of behavior of the target system. The key intuition here is 
that a given simulation might represent two non‑trivially different target systems depending 
on the chosen programming language, code execution, and the like. Constraints on behav‑
ior and behavioral decisions are, on many occasions, conditional on circumstances. For 
example, if‑then statements and other forms of programming conditionals might constrain 
the behavior of the simulation and, as such, configure non‑trivially different target systems. 
Durán (2022) illustrates this with a simulation of spatiotemporal patterns of respiratory 
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anthrax infection in a population (see Cooper et al. 2004). In this simulation, the network 
of nodes and subnodes can be directly coded into the simulation through nested condition‑
als (i.e., no mathematical formalism is required). As such, and depending on the condi‑
tional executed, the simulation would represent different valid paths in the proliferation 
and spread of the infection, distinctive states of the infection at any given time, and the like.

Can it be assumed that programming languages and code execution constitute legit‑
imate forms of representation that are not necessarily reliant on mathematical models? 
Some researchers seem to think so (Aronis et al. 2020). Simulation models also seem to 
allow this kind of philosophical speculation. Clearly, more research is needed in this direc‑
tion. It remains an open question, whether kludging, Arakawa‑like operators, and other 
computational‑inspired practices have representational value or are solely instrumental to 
the tractability of the simulation model.

4.  A new scientific methodology

Where can computer simulations be located in the methodological map? Famously, Rohr‑
lich placed them somewhere intermediate between theoretical physical science and its 
empirical methods of experimentation and observation (Rohrlich 1990, 507). This view 
strikes now as too narrow, even for equation‑based simulations. The prevailing view is 
that computer‑based methodologies rather extend the class of tractable mathematics and 
representation and thereby broaden the ranges of modeling (Morgan 2003), observations 
(Beisbart 2017), predictions (Parker 2014), measurements (Morrison 2009; Tal 2011), and 
explanation of phenomena (Durán 2017), among several other scientific endeavors. That 
is to say, computer simulation is not just an intermediate between two familiar ends, but 
rather a scientific methodology in its own right. Furthermore, there are good reasons to 
believe that computer simulations raise new epistemological issues, arguably without a 
precedent in the philosophy of science. This point has forcefully been made by Humphreys 
and constitutes a central element of his understanding of computer‑based methodologies. 
To be precise, Humphreys distinguishes between anthropocentric epistemologies, which 
“involve representational intermediaries that are tailored to human cognitive capacities” 
(Humphreys 2009, 617), and non‑anthropocentric epistemologies, where “there now exist 
superior, non‑human, epistemic authorities” (Humphreys 2009, 617). Computer simula‑
tions belong to the latter class.

In this context, the claim arises that computer simulations are epistemically opaque in 
that “no human can examine and justify every computational step performed by the com‑
puter, because those steps are too numerous” (Parker 2014).10 What, more precisely, does 
epistemic opacity amount to? Humphreys discusses two related but distinct definitions. The 
first definition—sometimes referred to as general epistemic opacity (GEO) (Alvarado 2021; 
Beisbart 2021)—says that a given process is opaque to an agent to the extent that the said 
agent does not know (that is, cannot check, trace, or survey) all of the epistemically relevant 
elements of the process. Here, a process is broadly understood as the different methods, 
devices, systems, or instruments of interest. What constitutes an epistemically relevant ele‑
ment of the process will depend on the kind of process involved (Humphreys 2009, 618). 
For instance, a mathematical proof can be considered the process, and a given lemma is a 
relevant element in that process. The second definition specifies that a process is essentially 
epistemically opaque (EEO) to an agent if it is impossible, given the nature of the agent, 
to know all the epistemically relevant elements of the process. For instance, the weather 
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forecast for the next two years is impossible to predict by climatologists given their cogni‑
tive limitations to handle all the variables involved in such complex systems.

Philosophically speaking, there are a few distinctions of interest between GEO and EEO. 
For instance, the former is tailored to diverse contingencies, such as context, efforts, goals, 
and the current state of knowledge of the agent(s). In other words, GEO comes in degrees.11 
Consider Humphreys’ own example: “for a mathematical proof, one agent may consider 
a particular step in the proof to be an epistemically relevant part of the justification of the 
theorem, whereas to another, the step is sufficiently trivial to be eliminable” (Humphreys 
2009, 618). The first agent’s knowledge of the proof might change over time, say, in light 
of a new piece of information. This agent then decides to join the second agent in that that 
particular step in the mathematical proof is utterly irrelevant. Context, goals, efforts, and 
the current state of an agent’s (or agents’) knowledge vary over time, as does practice, and 
the agents themselves. In contrast, EEO takes it that it is the very nature of agents that pre‑
vents knowing all the relevant elements of the process: “[m]any, perhaps all, of the features 
that are special to simulations are a result of this inability of human cognitive abilities to 
know and understand the details of the computational process” (Humphreys 2009, 618–
619). In other words, a process is essentially epistemically opaque, not because the agent 
does not know a given relevant epistemic element in the process, but because the agent will 
never know, given their nature, any of the relevant epistemic elements in the process. EEO 
is not contingent upon the agent’s epistemic context, goals, or efforts, but rather it is an 
absolute matter about the nature of the agent.

Here we should note that both GEO and EEO are understood from the agent‑relative 
perspective. Whereas in GEO there might be a point in the future where a process ceases to 
be opaque (e.g., because the mathematician decides that the step is irrelevant for the proof), 
in EEO agents are by their constitutional nature unable to access the relevant elements 
of the process. This might either be because they are cognitively limited (e.g., a computer 
algorithm involves too many steps) or time‑restricted (e.g., the algorithm would take long 
to compute). Agent‑relative epistemic opacity is very much the way in which the literature 
has discussed this issue so far (Beisbart 2021; Durán and Formanek 2018), including the 
most recent and, sadly, last article on computer simulations by Humphreys (Humphreys, 
2022). Interestingly, in this article, Humphreys extends the interpretation of “agent” to 
also include computer algorithms, with the result that, if we ask questions about amelio‑
rating opacity, one could always think of a third‑party algorithm fulfilling this role. This 
idea is extensively exploited in the literature on transparency, especially in the context of 
machine learning. This said, while trading human agents for algorithms does have some 
appeal, it does not come cheap. A particularly pressing issue is the algorithmic regress that 
transparency presupposes. To illustrate this, consider an algorithm A that is epistemically 
opaque. Suppose we make use of A1, a third‑party algorithm that can, presumably, provide 
knowledge on the relevant elements e in A. Given that A1 is by definition also epistemically 
opaque, we are not yet in a position to claim knowledge of e. For this, we need to turn to a 
second algorithm, A2 for dealing with the opacity of A1. The regress continues until either 
we reach a simple algorithm An of which we know all the relevant elements or we abruptly 
decide to stop the regress.

In a later work, Alvarado challenges the agent‑based view on opacity on the basis that 
“there are instances of epistemic opacity that are either neutral to and/or independent from 
the limitations of agents. That is, they arise in virtue of factors that are not responsive to or 
are not related to agential resources” (Alvarado 2021, 9). Whereas Alvarado admits that this 
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description of agent neutrality remains close to agent‑based viewpoints (e.g., “as far as ac‑
counts of epistemic opacity go, agent‑neutral instances of opacity can still be formulated in re‑
lation to agential limitations” (10)), agent independency poses an interesting departure from 
both standard views. According to Alvarado, “an account of agent‑independent opacity must 
include both the fact that the opacity does not arise in virtue of anything related to an agent 
and the fact that it is not responsive to agential resources and/or efforts” (13). In other words, 
a process is EEO to an agent if it is impossible, given the nature of the process, to know all 
its epistemically relevant elements.12 Borrowing Alvarado’s example, we can say that a sto‑
chastic process is agent‑independent opaque in virtue of “the combination of its stochasticity 
(the randomness of paths chosen) and the vast overdetermination (the fact that many—too 
many—different paths lead to the same outcome) [which makes] inquiry into the actual paths 
taken (the relevant epistemic elements of the process) inaccessible” (Alvarado 2021, 14).

This more nuanced, process‑centered approach to EEO proposed by Alvarado is a wel‑
come addition to the literature, particularly because it offers a way to account for cases 
where opacity cannot be explained by the cognitive limitations of agents. However, more 
needs to be said. For instance, it remains unexplained on what grounds a process is to be 
considered inherently opaque. Without this, it is difficult to distinguish between processes 
that permanently remain opaque from those that might cease to be opaque at some point 
in the future. Furthermore, an argument must be provided such that it excludes non‑human 
agents (e.g., algorithms) from accessing inherently opaque processes. Indeed, Alvarado’s 
argument doesn’t seem to work if the agent is non-human. Let us recall that Humphreys 
accepts that algorithms can channel insight into the epistemically relevant elements of a 
process (Humphreys, 2004, p. 150).

Complementary to these debates are attempts to deal with opacity. Above, I mentioned 
transparency, nowadays gaining significant traction in philosophical debates over machine 
learning. The core idea of transparency is to make algorithms accessible by showing the 
inner workings and properties of the algorithm (e.g., Creel 2020). The opposing view is 
computational reliabilism, understood as a set of methods and practices that credit reliabil‑
ity to an algorithm under conditions of opacity (Durán and Formanek 2018; Humphreys 
2022; Durán, forthcoming). In other words, whereas transparency makes efforts to grant 
(human) access to algorithms, computational reliabilism accepts their opacity and focuses 
instead on the conditions for epistemically trusting them.

There is still plenty of room for further philosophical debate on epistemic opacity and 
the different specific conceptions of it that figure in debates over computer simulations. But 
perhaps the greatest contribution of these debates to our understanding of computer simu‑
lations (and machine learning) is to bring to the fore their merits as units of philosophical 
analysis in their own right.
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Notes

	 1	 Although nowadays Schelling’s model is implemented using computers, Schelling himself warned 
against their use for understanding the model. Instead, he used coins or other elements to show 
how segregation occurred. In this respect, Schelling says: “I cannot too strongly urge you to get 
the nickels and pennies and do it yourself. I can show you an outcome or two. A computer can 
do it for you a hundred times, testing variations in neighborhood demands, overall ratios, sizes of 
neighborhoods, and so forth. But there is nothing like tracing it through for yourself and seeing 
the thing work itself out. In an hour you can do it several times and experiment with different rules 
of behavior, sizes and shapes of boards, and … subgroups of dimes and pennies that make differ‑
ent demands on the color compositions of their neighborhoods” (Schelling 1971, 85). Schelling’s 
warning against the use of computers is an amusing anecdote that illustrates how scientists could 
sometimes fail in predicting the role of computers in their own respective fields.

	 2	 Schelling also introduced a 1‑D version, with a population of 70 agents, with the four nearest 
neighbors on either side, the preference consists of not being minority, and the migration rule is 
that whoever is discontented moves to the nearest point that meets her demands (Schelling 1971, 
149).

	 3	 For a more thorough review of kinds of computer simulations, see (Durán chap. 1).
	 4	 Here, a mathematical model is a generic term covering any scientific, non‑physical model, such 

as theoretical models, data models, phenomenological models, and the like (Frigg and Hartmann 
2020).

	 5	 Thanks to Florian Boge for pressing on this point.
	 6	 In her view, computer simulations are the “result of applying a particular kind of discretization to 

the theoretical/mathematical model […] There are several reasons for characterizing this type of 
investigation as an experiment, or more properly, a computer experiment” (Morrison 2015, 219). 
Thanks to Ramón Alvarado for this reminder.

	 7	 The flexibility of a model is measured as the capacity to implement “generic structures” and the 
associated possibility of reusing the model in different contexts.

	 8	 Autonomy is attributable to the scarcity of data rather than being a methodological principle of 
models and modeling.

	 9	 Thanks to Edoardo Datteri for pressing on this point.
	10	There is a burgeoning literature that discusses other forms of opacity, such as social opacity (Long‑

ino 1990), methodological opacity (Beisbart 2021), corporate opacity (Burrell 2016), and repre‑
sentational opacity (Humphreys 2022), just to mention a few.

	11	In Humphrey’s words, “[i]t is obviously possible to construct definitions of ‘partially epistemically 
opaque’ and ‘fully epistemically opaque’” (Humphreys 2009, n. 5).

	12	Alvarado provides his own working definition; see (Alvarado 2021, 13).
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