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ABSTRACT

Crucial for the field of ultrafast electron microscopy is the creation of sub-picosecond, high brightness electron pulses. The use of a blanker
to chop the beam that originates from a high brightness Schottky source may provide an attractive alternative to direct pulsed laser illumina-
tion of the source. We have recently presented the concept of a laser-triggered ultrafast beam blanker and argued that generation of 100 fs
pulses could be possible [Weppelman et al., Ultramicroscopy 184, 8–17 (2017)]. However, a detailed analysis of the influence of a deflection
field changing sign on sub-picoseconds time scale on the quality of the resulting electron pulses has so far been lacking. Here, we present
such an analysis using time-dependent, three-dimensional numerical simulations to evaluate the time-evolution of deflection fields in and
around a micrometers-scale deflector connected to a photo-conductive switch. Further particle tracing through the time-dependent fields
allows us to evaluate beam quality parameters such as energy spread and temporal broadening. We show that with a shielded, “tunnel-type”
design of the beam blanker limiting the spatial extent of fringe fields outside the blanker, the blanker-induced energy spread can be limited
to 0.5 eV. Moreover, our results confirm that it could be possible to bring laser-triggered 100 fs focused electron pulses on the sample using a
miniaturized ultrafast beam blanker. This would enable us to resolve ultrafast dynamics using focused electron pulses in an SEM or STEM.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5089517

INTRODUCTION

Ultrafast Electron Microscopy (UEM) is an emerging field of
research where the aim is to image structural dynamics at ultrafast
time scales with high spatial resolution. Both imaging and diffraction
modes, as well as Electron Energy Loss Spectroscopy (EELS), can be
used in UEM to study ultrafast dynamics in materials.2–4 UEM sys-
tems have also enabled the study of quantum mechanical interactions
between photons and electrons.5 For all these applications, it is impor-
tant to generate high brightness electron pulses as the brightness
directly determines the amount of current that can be used to illumi-
nate the sample with a particular beam opening angle. High brightness
ultrafast electron pulses, with peak brightness comparable to Schottky
emitters, can be created using laser pulse illumination of a sharp metal
tip6 or alternatively by using a microwave cavity to chop a continuous
electron beam.7 The latter method has been implemented in a
Transmission Electron Microscope (TEM), and both numerical

calculations and experimental measurements have shown the conser-
vation of beam emittance.8,9 Both laser source illumination and inser-
tion of a microwave cavity may require extensive modification of the
electron microscope column.

We have recently presented an alternative concept for obtaining
short, focused electron pulses, which relied on the integration of an
electrostatic beam blanker with a photoconductive switch in a single
device made with MEMS technology.1,10 Such an ultrafast blanker
(UFB) could be inserted into the column of an existing electron micro-
scope, thus allowing us to rapidly alternate between static DC opera-
tion and time-resolved imaging using electron pulses. Based on back-
of-the-envelope calculations, simplified models, and reported experi-
mental performance of photoconductive Auston switches, we argued
that with a MEMS-sized UFB it should be possible to create electron
pulses of about 100 fs focused in a 10nm spot at an acceleration volt-
age of 30 kV. These pulses would then contain on average about 0.5
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electrons per pulse in order to maintain the beam quality between
blanker and sample. However, we also calculated that the time-
response of an UFB would be critically influenced by the capacitance
of the deflector electrode.1 This capacitance is difficult to estimate with
analytical equations and challenging to measure experimentally. Also,
it is difficult to incorporate the full response of a photoconductive
switch and, thus, the temporal dynamics of the blanking voltage in an
analytical model, while this may influence the achievable brightness
(or emittance) and the energy spread in the pulse. Both brightness and
energy spread are important to evaluate as brightness determines the
obtainable current, and the energy spread is important for the reason
that chromatic aberrations cause a decrease in spatial resolution and
limit the spectral resolution in EELS measurements. For UEM, energy
spread is also important as it causes a temporal broadening when the
pulse travels from blanker to the sample.

Fowler and Good have shown that in general creating electron
pulses by chopping a continuous beammay reduce the beam quality.11

Equations describing the energy spread induced by a blanker have
been derived by Thong for different blanker configurations, such as
conjugate blanking and sweeping a focused beam over a blanking
aperture.12 Thong concluded that, to first order, a conjugate blanker
does not introduce any additional energy spread. Oldfield analyzed the
beam quality for a combination of two cavities where the first is used
for chopping the beam and the second for correcting the induced
energy spread.13 Further analyses of conjugate beam blanking using
magnetic deflection fields inside a resonant radio frequency field (RF)
cavity have been performed by Lassise et al.8,14,15 They showed that
their RF blanker will introduce negligible energy spreads for 100 fs
electron pulses at 30 keV beam energies. This system has now been
incorporated in a TEM.9 A MEMS-sized electrostatic beam blanker
driven by sinusoidal RF fields has been analyzed by Cook. He found
that such a blanker introduced a negligible increase in emittance and
energy spread apart from a 1.7 eV constant energy gain for 400 fs elec-
tron pulses.16 Our MEMS-sized UFB controlled by a photoconductive
switch is significantly smaller and uses a broadband deflection field
with frequencies up to the terahertz range. Recently, experiments have
been performed demonstrating the possibility of terahertz fields to
control electron pulses and to measure terahertz fields by, respectively,
Kealhofer et al. and Ryabov et al.17,18 The potential emittance growth
and energy spread introduced by such deflection fields in a MEMS
device have so far not been addressed. In this manuscript, we present
time-dependent, three-dimensional numerical simulations to better
evaluate the time-dependent deflection fields inside the UFB and, thus,
the influence of the UFB on the quality of the electron pulses. In order
to perform such simulations, a model of the time-dependent

conductivity of an Auston switch is required, which is also discussed
below. This model can then be used to calculate the response of the
photoconductive switch under illumination of a laser pulse and, in
combination with Maxwell’s equations, be used to numerically evalu-
ate the time-dependent deflection fields in and around the UFB.

SIMULATION SETUP, MODEL, AND APPROXIMATIONS

First, we briefly review the UFB concept, which has been
described in full detail elsewhere.10 The beam blanker consist of two
plates, one grounded and the other connected to a photoconductive
switch as indicated in Fig. 1, called the deflector plate. The other elec-
trode of the photoconductive switch is connected to an electrical cir-
cuit delivering a voltage, called the feed plate. The beam blanker is
integrated with a photoswitch in a single micrometers scaled device.
The photoconductive switch is activated by a femtosecond laser pulse
that creates free carriers in the semiconductor material, resulting in a
current due to the bias field over the switch. This current is used to
(de)charge the deflector plate of the beam blanker; hence, in a short
time scale the deflection field in the blanker will be inverted. A DC
electron beam propagating between the blanker plates will sweep over
an aperture and an ultrafast electron pulse is created below this blank-
ing aperture. Numerical simulations are conducted using Comsol
Multiphysics modeling software.

Figure 2 shows how the UFB design was implemented in Comsol
Multiphysics, where we used a half symmetry to reduce the calculation
time and memory space required.

The simulation of the UFB and photoconductive switch consists
of three steps. First, we calculate the electrostatic potential in the whole
domain. A Poisson solver is used to calculate the electrostatic potential,
and the photoconductive switch is assumed to be a perfect electrical
insulator. The voltage of the feed plate and the deflector plate is�10V
andþ10V, respectively. A relative permittivity of 12.25 is assumed for
GaAs and a permittivity of 2.25 is used for the SiO2 layer that separates
the ground plate and deflector/feed plates.

The calculated surface charge density on the deflector plate is
used to determine the capacitance of the deflector plate. We found
that a 15lm long deflector plate results in a desired capacitance of
6.6 fF: a factor of 2 higher than expected according to our previous
back-of-the-envelope calculation shown in Weppelman et al.,1 which
assumed a parallel plate capacitor. We attribute this to the fact that the
high permittivity GaAs supporting the capacitor is not included in the
parallel plate capacitor model. Also, parasitic capacitances and the
complicated geometry around the deflector were not taken into
account in the simplified model.

FIG. 1. Sketch of UFB with a photoswitch located between the feed and deflector plate of the blanker. The electron beam propagates between the ground plate and deflector
plate perpendicular to this plane as indicated. A glass layer indicated in light blue separates the ground plate from the feed plate. (b) Side view of (a) with the ground plate
removed and typical dimensions indicated.
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The calculated potential is then used as an initial condition in the
second step for the full (time-dependent) transient Maxwell solver.
Hereto, a time-dependent conductivity is required for the photocon-
ductive switch. In the section on “Model for the time-dependent,” we
explain the calculation of the conductivity of the photoconductive
switch. Then, the last step is to trace electrons through the time-
dependent electromagnetic fields.

MODEL FOR THE TIME-DEPENDENT CONDUCTIVITY
OF THE PHOTOCONDUCTIVE SWITCH

The laser illumination creates free carriers (electrons and holes)
in the photoconductive switch which are subsequently accelerated due
to the electric field applied over the switch. In the model, we only con-
sider free electrons, which have a dominant contribution to conductiv-
ity. The reason is that the effective mass of electrons is an order of
magnitude lower than of holes in GaAs.19 The relation between the
conductivity, electric field, and current density is linear,

j ¼ rE: (1)

The current density is equal to

j ¼ nðtÞehvðtÞi; (2)

where n(t) is the density of free carriers as function of time, generated
by the laser pulse and hvi is the average drift velocity of free electrons.

The average drift velocity is described in each mesh point by the
following equation based on a Drude-Lorentz model:

dhvi
dt
¼ �hvi

ss
þ e
m� jE tð ÞjsignðEy tð ÞÞ � hviGðx; tÞ

nðx; tÞ ; (3)

where E(t) is the local electric field and Ey is the field in y-direction as
defined in Fig. 2, n(x, t) is the density of free carriers as function of
time and space, G(x, t) is the time derivative of n(x, t), i.e., the genera-
tion rate of new free electrons. The scattering time, ss, is estimated to
be 30 fs and the effective mass, m�, is equal to 0.067 times the rest
mass of an electron.20 Drude-Lorentz models are often successfully
used in the literature to describe the dynamics of charges in Auston

switches, for example, by Jepsen et al.,20 Piao et al.,21 and Duvillaret
et al.22

Free electrons will be displaced over a typical distance of 100nm
in a time scale of 1 ps, based on a maximum drift velocity of 1 � 105

m/s which we also used in our previous work.1 Spatial diffusion can be
neglected in Eq. (3) because the displacement is smaller than both the
mesh size and electromagnetic wavelengths. In the numerical calcula-
tion, screening of the electric field in the photoconductive switch due
to charge separation and coulomb interactions between the holes and
electrons is neglected. According to the literature, this is a reasonable
assumption as long as the carrier density is below 1018 cm�3.20,21

The density of free carriers, n(x, t), follows the time integral of
the laser pulse, G(x, t), which has a Gaussian temporal envelope and is
equal to

n x; tð Þ ¼
1
2
nt 1þ erf t=1:67sð Þð Þgðx; y; zÞ; (4)

where nt is the total density of generated free carriers, g(x, y, z) is the
spatial variation of the laser intensity, and s the FWHM of the laser
pulse. Recombination of electron-hole pairs is not taken into account
because the recombination time is on the order of 10 to 15 ps, much
longer than the time scales relevant in the simulation.

The z-dependence of the function g(x, y, z) in Eq. (4) takes into
account that deeper into the GaAs less charges are generated due to
the absorption of light in GaAs, as described by the Lambert–Beer
model

IðzÞ ¼ I0 exp �4pkz=kð Þ � I0 exp �z=kð Þ; (5)

where k is the imaginary part of the index of refraction, in case of
GaAs equal to 0.089 at 800nm.23 Underneath the electrodes, the laser
intensity is lower, and we use a rough approximation by simply
assuming a homogenous laser intensity illuminating the photoconduc-
tive switch and linear decreasing field under the metal, as depicted in
Fig. 3. To verify the linear model, we compared it with the laser inten-
sity calculated with Lumerical, a commercial finite difference time
domain (FDTD) solver of Maxwell’s equations. In this simulation, a
plane wave is injected just above the ground plate propagating toward
the GaAs layer. The contact layers are modeled as molybdenum plates

FIG. 2. UFB simulation geometry. (a) A half pillbox is used, the fields are symmetrical at the flat (left) side, and the electrons will elastically reflect from the symmetry boundary.
All blue plates are electrically grounded perfect metals and, hence, are reflecting boundaries for the time-dependent simulation. The white arrow shows the propagation direc-
tion of the electron beam along the x-direction. (b) Zoom in at the position of the photo switch and blanker [indicated with a black square in (a)]. The deflector plate is indicated
with a red line and the feed plate with a blue line. The electron beam is deflected due to the voltage difference between the deflector plate and ground. In light blue, the glass
layer is indicated which separates the ground plates and the electrodes, and an opening in the ground plate is present such that the laser pulse can illuminate the photocon-
ductive switch.
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with a thickness of 30 nm, and the optical constants are taken from
Ordal et al.24 As depicted in Fig. 3(b), the FDTD calculation con-
firms that the linear model of the laser intensity will give conserva-
tive estimations of the photoconductivity around the contact
electrodes. Note that a very basic design for the electrodes is
assumed for the calculation. More advanced electrodes with signif-
icant improvements in terms of photocurrent have been demon-
strated in the literature; see, for example, the review paper of
Lepehov et al. and references therin.25

The conductivity can be calculated by solving the ordinary differ-
ential Eq. (3),

r ¼ jhvijne=jEj: (6)

Note that the conductivity is dependent on the field and, in turn, the
field is dependent on the conductivity. Therefore, the conductivity and
Maxwell’s equations are solved in an iterative loop, which does
increase the CPU resources required for the simulation.

The calculation time can be reduced by assuming that the electric
field over the switch is only slowly varying in time compared to the

time it takes for the electrons to accelerate to the drift velocity. In that
case, the conductivity of the photoconductive switch can be modeled
as the convolution of the laser pulse and the velocity response of the
carriers based on a Drude-Lorentz model assuming a constant electric
field

rðtÞ ¼ enðtÞvðtÞ
E

¼ e
E

ð1

�1

Gðt � t0Þvðt0Þdt0

¼ e2

m�

ð1

�1

1� e�
t0
ss

� �
Gðt � t0Þdt0: (7)

The model of the time-dependent conductivity of the Auston switch,
Eq. (7), is used to calculate the time-dependent electric field in the
blanker, as shown in Fig. 4(b). The electric field between the two
deflector plates inverts on a time scale of about 500 fs. As shown in
Fig. 4, a time delay of about 200–400 fs is present between the conduc-
tivity built-up and the moment when the deflection field starts to

FIG. 3. In our computational model, we use (a) an exponential decay of the intensity of the laser in the z-direction according to Lambert-Beer, and (b) a linear variation of the
laser intensity in the y-direction. (c) FDTD calculation (blue line) of the laser intensity as function of z position in the GaAs at the center of the photoconductive switch. The
glass-GaAs interface is located at z¼ 0. The red line is the laser intensity used in the calculation in Comsol. (d) FDTD calculation of the laser intensity as function of x at a
depth of 10 nm below the glass-GaAs interface. The red line is the laser intensity assumed in the Comsol calculation. A broadband p-polarized plane wave located above the
ground plate is injected in the FDTD simulation, and the resulting laser intensity is integrated over a range from 750 to 850 nm.

FIG. 4. (a) Conductivity of the photocon-
ductive switch vs time calculated using
Eq. (7) assuming a 25 fs Gaussian short
laser pulse. The conductivity is used to
calculate (b) the deflection field in the
blanker as a function of time. In the area
between the red lines, the electron beam
can partially pass the blanking aperture
that accepts a half opening angle of 0.4
mrad.
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change. This is caused by propagation delays over the 15lm long
deflector plate.

The assumption of a relatively slowly varying electric field over
the switch is valid for low laser powers because both models give a
comparable result, as shown in Fig. 5. The time-dependent deflection
field is shifted by about 100 fs for the full Drude-Lorentz model; how-
ever, this can be compensated by adjusting the path length of the laser
pulse which is used to illuminate the photoconductive switch.

All electrodes are assumed to be perfect electrical conductors
with zero thickness. Absorption and dispersion in the semiconductor
are assumed to be negligible because the length of the deflector plate is
small. The permittivity of GaAs varies only slightly from DC to tera-
hertz frequencies, up to the point where the frequency approaches a
phonon resonance, located around 8THz.19

Around the phonon resonance, the real and imaginary parts of
the permittivity vary significantly. To check the contribution of these
frequencies to the deflection field, we filtered the data with a
Butterworth first order low pass filter, shown in Fig. 6. We observe no
change in the amount of time required to invert the deflection field in
the deflector and, thus, conclude that it is reasonable to neglect the
absorption due to the phonon resonance.

PARTICLE TRACING OF THE ELECTRON BEAM AND
BEAM QUALITY

In the section on “Model for the time-dependent conductivity of
the photoconductive switch,” we calculated the time-dependent electro-
magnetic fields; in this section, we use this field to trace electrons through
the blanker. This enables us to calculate the electron pulse length as well
as potential blurring and energy spread increase in the beam.

The particle tracing module of COMSOL is used to calculate the
trajectory of the electrons using Newton’s second law. The Lorentz
force acting on the electrons is calculated from the time-dependent
magnetic and electric fields. Interaction between the particles and
fields induced by the moving electrons is neglected.

The FW50 spot size of a 4 nA electron beam will be 50 nm in the
UFB for a realistic half opening angle of 0.4 mrad at 30 keV, and a

16nA will have a FW50 spot size of 100 nm. A reduced brightness of 5
� 107 A/(m2Vsr2) is assumed, typical for a Schottky electron source,
and an acceleration voltage of 28.5 kV. A Schottky source can have,
and a cold field emitter does have, higher values for the reduced
brightness as shown by van Veen et al.26–28 In the simulation, we want
to include a broader part of the beam than only FW50, so we take a
200 nm focused electron beam spot in between the blanker plates
with a half opening angle of 0.4 mrad. Every 10 fs, a bunch of 51
electrons is injected in the simulation to determine the amount blur
induced by the deflector. In practice, a focused ultrafast electron
pulse cannot have more than on average 0.5 electrons per pulse;
otherwise, statistical electron interactions will reduce the brightness
and increase the energy spread. The result of the particle tracing
calculations is shown in Fig. 7.

The loss of brightness or blurring of the beam is analyzed by trac-
ing the electron trajectories in a linear fashion back from the final posi-
tion in the simulation to the beam blanker. We performed this
analysis for two situations, one where the deflection field goes from
positive to negative and the inverted case, see Fig. 8. The mesh size for
this simulation is equal to “Simulation 1,” defined in the supplemen-
tary material information A. In all cases, a focus is created at the beam
blanker with a beam displacement less than a couple of nanometers.
This clearly shows that the increase in emittance can be neglected. We
expect such a result for the reason that the residence time of electrons
in the deflector is short, so the beam displacement is very small.

For each electron, the amount of deflection depends on the
arrival time of the electron in the deflector with respect to the time-
dependent electric field, the residence time of the electron in the
deflector, and the rate of change of the field in the deflector. The net
effect is that electrons in the front of the electron pulse have a different
deflection angle when exciting the deflector than electrons in the back
of the pulse. The net effect is a blur as the pulse seems to originate
from different points in the conjugate image plan in the deflector. This
blur is analytically estimated by calculating the equation of motion of
an electron through the deflector and by considering the exponentially

FIG. 5. Deflection field vs time for the mesh and conductivity model as used in Fig.
4 (yellow line). A coarser mesh using the same conductivity model gives essentially
the same time-dependence for the deflection field (red line). With the same coarse
mesh and the Drude-Lorentz as described by Eq. (3), also a similar time-
dependence is obtained (blue line).

FIG. 6. Deflection field as function of time. The blue curve is the original data and
the red curve is the filtered data. The field is filtered with a first order Butterworth fil-
ter with a cut-off frequency of 7 THz to evaluate the influence of GaAs permittivity
changes around the phonon resonance.
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time varying field in the deflector as a simple linear ramp in field. The
position and deflection of an electron in the back and front of a pulse
is used to trace back where they appear to come from. This results in
the following analytical equation, derived with the aid of Maple:

y ¼ qEL3se

24/
ffiffiffiffiffiffi
2q/
m

q
s2f

; (8)

where se is the electron pulse length, sf is the time constant of the
exponentially rising field in the deflector, E is the maximum electric

field, / is the beam acceleration voltage, and L is the length over which
the electron travels through the deflector. For the MEMS UFB, the
blur will be equal to 0.3 nm, which will be a sub-angstrom contribution
to the probe size in the sample plane and can be neglected.

ENERGY GAIN INTRODUCED BY THE BLANKER

An electron approaching a static deflector will be accelerated and,
when leaving the deflector, going to infinity, it will be decelerated back
to its initial kinetic energy because the field is conservative. However,
as in the UFB the voltage at the deflector is modulated in time, an elec-
tron can acquire a net energy gain or loss. The net energy gain or loss

FIG. 7. (1)–(3) Distance to the electron
optical axis as function of position along
the optical axis for release times of (1)
820 fs, (2) 960 fs, and (3) 1090 fs. The
electrons are injected at x ¼ �100 lm
with a velocity of 1 � 108 m/s and are
converging to a 200 nm crossover
between the deflector plates located at
x¼ 0lm. The colors of the rays indicate
the different release times, in the right
panel, which shows the amount of elec-
trons transmitted through the blanker
aperture as function of release time. An
electron is transmitted through the aper-
ture when the exit angle is larger than the
half opening angle of the beam. In the
simulations, a bunch of electrons is
injected every 10 fs.

FIG. 8. Distance to the electron optical
axis as a function of position calculated by
geometrically tracing back the electron tra-
jectories. The top row shows the rays
when the field sweeps from positive to
negative and the bottom row shows the
rays when the field sweeps from negative
to positive. The left column shows the tra-
jectories just before the first electrons are
transmitted through the aperture and the
right column the trajectories just after the
last electrons transmitted through the
aperture. The blanker is located at
x¼ 0lm, the blur at all these positions is
less than 5 nm.
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in the deflector, DE, is deterministically dependent on the position and
injection time of the electron. The electron beam is monochromatic in
the numerical calculation; hence, in reality the results should be convo-
luted with the 0.6 eV FW50 energy spread of a Schottky source or the
0.3 eV of a cold field emitter.29

Figure 9(a) shows an “open” design of the UFB and Fig. 9(c) shows
the energy gain of an electron traveling through such an open blanker as
a function of both release time and position along the electron optical
axis. The energy gain in this case is several electron volts. This relatively
large energy gain is caused by the fringe fields around the deflector which
increase the effective length of the deflector. We suppress this effect with
a tunnel-type UFB where the deflector electrode is encapsulated with
ground plates to reduce the spatial extent of the fringe fields [Fig. 9(b)].
The effect on the energy gain in the tunnel-type UFB is shown in Fig.
9(d). The tunnel-type UFB also has a lower potential at the optical axis,
only 3.7V, which further helps to reduce the energy gain.

As shown in Fig. 9, the energy gain is in the range of several elec-
tron volts. Electrons with the same release time also have energy dis-
persion, depending on their trajectory through the beam blanker.
Trajectories closer to the deflector plate result in higher energy gain
because the potential difference between entrance and exit of the
deflector is higher. This effect can be minimized by reducing the
probe size in the blanker. It also shows the importance of the
(mechanical) stability of the UFB with respect to the electron optical
axis. If the UFB is vibrating with an amplitude of about 100nm, the
energy spread of the electron beam will be noticeably increased. The
same holds when the vibration amplitude of source multiplied with
the magnification is on the order of 100nm.

We note that electrons acquire on average 64 eV energy for the
open UFB design, with the sign depending on whether the voltage flips

from positive to negative or the inverse. Hence, due to chromatic aber-
rations of the lens, two spots will be visible in the image plane. For a
final lens with a Cc ¼ 10mm and a half opening angle of 5 mrad, the
two spots are separated by about 14 nm at 28.5 kV. An additional
blanker might be used to pick up only the even or odd pulses in order
to mitigate this effect. The effect could be further reduced by making a
new design in which both deflector plates would be excited by opposite
voltage pulses.

ESTIMATION ENERGY GAIN OF THE UFB

For a better understanding, we will discuss analytical models to
approximate the energy gain. This is useful because it allows us to
minimize the energy spread for a certain required peak current and
electron pulse length.

The deflection of the electron beam is quite small and the energy
gain is negligible compared to the total energy of the electron beam;
hence, we can assume a constant velocity and zero beam displacement.
For this reason, the energy gain can be estimated as follows:

DE t0ð Þ ¼ q
ðþ1

�1

Exðx; t0 þ x=vÞdx; (9)

where Ex(x, t) is the electric field component along the electron optical
axis as a function of time and position, v is the velocity, and t0 is the
release time of the electron in the simulation.

As a first estimation of the energy gain, quasi-static electric
fields are assumed. The term “quasi-static” implies a potential that
can be described as a product of a spatial function, /(x), and a
temporal one, f(t),

FIG. 9. (a) Schematic indication of an open type design of the UFB. (b) Same for a tunnel-type design where fringe fields outside the blanker are shielded by the encapsula-
tion. The red dashed line in the tunnel-type UFB indicates the contour of the deflector plate. (c) and (d) Energy gain of an electron as a function of release time in the simulation
for (c) open design and (d) tunnel-type design. The color indicates the z position of the electron in the crossover; negative z values are closer to the deflector plate. The z-
range of the electron trajectories varies from �100 nm to þ 100 nm from the optical axis; the total distance between the deflector plates is 1 lm. The voltage at the deflector
plate inverted from þ10 V to �10 V; hence, all electrons have some net energy gain. Electrons released between t¼ 310 fs and t¼ 570 fs are transmitted through the blanker
aperture if it is located on the electron optical axis and accepts a half opening angle of 0.4 mrad; this region is marked in blue in the graph.
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/ðx; tÞ ¼ /ðxÞf ðtÞ: (10)

The quasi-static approximation is checked using our simulation data
of the fields in combination with Eq. (9). For the spatial distribution
/(x), we use the initial potential, f(t) is approximated by using the nor-
malized deflection field in the center of the deflector. With this
method, the quasi-static energy gain as a function of arrival time is cal-
culated and compared with the energy gain calculated with Eq. (9) and
using the full time-dependent fields. This enables us to check whether
approximation of the fields as quasi-static is valid or not. The result is
shown in Fig. 10. For the tunnel UFB design, the quasi-static approach
provides an adequate approximation with a relative error smaller than
20%, while for the open UFB design, the deviation with the quasi-
static approach can be substantial, up to a few electronvolts. The
tunnel-type design limits the spatial extent of the fringe fields, so retar-
dation effects in the potential are suppressed.

The energy gain is a function of arrival time and we are interested
in an analytical expression for the energy gain. For the analytical
approximation of the energy gain, a description of the potential /(x)
and the time-dependent function f(t) is required. The potential along
the electron-optical axis is approximated with a square potential, see
Fig. 11.

The time-dependent function is described with a polynomial

f t þ sð Þ ¼ a1
x
v
þ s

� �
þ a2

x
v
þ s

� �2

þ a3
x
v
þ s

� �3

þ � � � ; (11)

where s is the arrival time of the electron in the deflector. Note that
f(t) is a dimensionless function, so the parameters a1, a2, etc., have
units of [s�1], [s�2], etc. Zeroth order terms are taken out of the poly-
nomial because they do not affect the final energy. We calculated the

energy gain for the different terms in the polynomial using Eq. (11)
(see supplementary material information B)

DE1 sð Þ ¼ V0a1
L
v
;

DE2 sð Þ ¼ 2V0a2
Ls
v
;

DE3 sð Þ ¼ V0a3
1
4
L3

v3
þ 3Ls2

v

� �
:

(12)

The first term describes the fact that all electrons either gain or lose a
constant amount of energy, depending on the sign of a1. The second
term describes that the blanker is either compressing or expanding the
electrons pulse, like a buncher. Whether the beam blanker expands or
compresses the pulse depends on the sign of a2. This effect is known
from the literature; Thong discussed that a parallel plate blanker acts as
a buncher and that the bunching effect can be reduced substantially by
using symmetrical fields12 as in that case the potential is zero along the
electron optical axis. Third order effects introduce a combination of a
constant energy difference and a quadratic energy change as a function
of the arrival time in the beam blanker.

All ultrafast beam blankers, to our knowledge, currently for use in
UEM use sinusoidal fields. Sinusoidal fields have the advantage that
they can easily be amplified with resonant structures, necessary to gen-
erate high slew rate deflection fields resulting in short electron pulses.
The UFB presented here is different because the deflection field has a
broad spectrum in the frequency domain. We generate high slew rate
deflection fields, by deflecting the beam with fields in the terahertz fre-
quency domain instead of at gigahertz frequencies. A fundamental dif-
ference between both approaches is that the second order term for the
energy gain is zero when sinusoidal fields are used, as shown in Table I.

FIG. 10. Energy gain as a function of
electron arrival time in the UFB for (left
panel) the open design and (right panel)
the tunnel-type design. Solid lines indicate
the total energy gain (black line), the
energy gain when entering the deflector
(blue line), and when leaving the deflector
(red line). The dashed lines are the calcu-
lated energy gains when the fields are
approximated as being quasi-static. (left)
Calculated energy gain for the open
design and (right) calculated energy gain
for the tunnel design.

FIG. 11. Potential, /, along the electron optical axis, x. The potential has a square
shape with an amplitude equal to V0; the deflector has a length equal to L.

TABLE I. Expressions for the expansion terms in the time-dependent part of the
blanking potential in quasi-static approximation for both sinusoidal and exponential
deflection fields.

First
order

Second
order

Third
order

Sinusoidal field:
VðtÞ ¼ V0 sin ð2pt=sf Þ

a1¼2p=sf a2¼0 a3¼8p3=6s3f

Exponential field:
VðtÞ ¼ V0ð1� 2 exp ð�t=sf ÞÞ

a1¼2=sf a2¼�1=s2f a3 ¼ 1=3s3f
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With the terms in Table I and using reduced brightness, Br, cur-
rent, and FW50 electron pulse length Dt, the expressions for the
energy gain can be rewritten with the aid of the Maple software, to
find (see supplementary material information B)

DE1 ¼ 4
ffiffiffi
2
p V0

ffiffi
I
p

E0Dtdpp
ffiffiffiffiffiffiffiffiffi
q=m

p ffiffiffiffiffi
Br
p ;

DE2 sð Þ ¼ �16
ffiffiffi
2
p IV0

ffiffiffiffi
/
p

pdpE0Dt
� �2 ffiffiffiffiffiffiffiffiffi

q=m
p

LBr

s;

(13)

where E0 is the initial strength of deflection field in the UFB, dp, is the
FW50 probe size, and I is the DC beam current in the UFB. The equa-
tions clearly show the importance of a small distance between the
deflector plates, d: The first order term increases linearly with d and
the second order quadratically. A high reduced brightness source is
also essential for the UFB; it allows more current in the pulse for a
given energy gain.

The approximations for the energy gain are compared with the
numerical simulation. The normalized deflection field is fitted to cal-
culate the a-coefficients in the polynomial (see the inset in Fig. 12),
which yields values of �4.47 � 1012 s�1, 5.34 � 1024 s�2 and �8.39
� 1035 s�3 for a1, a2, and a3, respectively. Subsequently Eq. (12) is
used to calculate the energy gain as function of arrival time in the
blanker. The result of this calculation is shown in Fig. 12.

With the simplified quasi-static model and a square-like poten-
tial, a reasonable estimation of the energy gain for a tunnel-type UFB
is obtained. Only the small oscillations in the energy gain as a function
of arrival time are not described with the approximations we use.
Using a similar approximation of the energy gain around the open-
type UFB will not work due to the significant effect of nonquasi-static
fields on the energy gain.

ESTIMATION ENERGY SPREAD

As a result of the time- and trajectory-dependent energy gain in
the blanker that we numerically calculated in the section on
“Estimation energy gain of the UFB,” the energy spread in the electron

beam will change. In the remainder of the section, we will refer to this
as the energy spread introduced by the UFB. A second, less important,
parameter is the first order constant energy gain, DE1, introduced by
the UFB because its value determines whether an additional blanker is
required to intercept the even or odd electron pulses. It is important to
know the range of beam currents and electron pulse lengths in which
the energy spread and constant energy gain are low.

In Fig. 13(a), the constant energy gain is plotted for a range of
pulse lengths and beam currents, as calculated using the simplified
quasi-static approximations. This clearly shows that for electron pulse
length longer than 400 fs and current below 5nA both even and odd
pulses from the blanker can be used as there is a 0.4 eV energy differ-
ence between the even and odd pulses.

The calculated energy spread is shown in Fig. 13(b) for the situa-
tion where the separation between the blanker plates is 1lm. The
energy spread introduced by the UFB is estimated by the squared
addition of the difference in off-axis energy gain over the FW50 spot
size, the difference in second order energy gain over the FW50 pulse
length, and the third order effect. The latter has a very small contribu-
tion, lower than 0.025 eV. The energy spread depends on the size of
the electron spot in the UFB, for which we took a value of 175nm.
The energy spread can be further reduced by increasing the probe size;
however, the larger the probe size, the more electrons hit the sides of
the UFB. The spot in the UFB is a magnified image of the virtual
source which has a certain shape, for example a Gaussian. A Gaussian
probe of 175nm FWHM will have a 10�4 fraction in the tails that
extend into the deflector plates. It is unknown how many of these elec-
trons scatter such that they end up in the sample chamber. However,
if only a small fraction of the scattered electrons ends up in the sample
chamber, the resulting background signal may still be significant and
visible in a pump-probe measurement as the duty cycle of the blanker
is only 10�5.

TEMPORAL DISTORTION OF THE ELECTRON PULSE
DUE TO ENERGY SPREAD AND MAGNETIC LENS

An electron pulse traveling through free space over a distance Ls
at an energy / will be delayed by time�Dt if it acquires an additional
energy dE. This Dt is described by

Dt ¼ Ls
1

v þ Dv
� 1

v

� �
¼ �Ls

Dv
v2 þ vDv

� �Ls
Dv
v2

¼ �Ls
dE

2
ffiffiffi
2e
m

q
/3=2

: (14)

The equation shows that there is an approximate linear relationship
between the energy loss and the broadening of the electron pulse. At a
beam energy of 30 keV, the dispersion is 160 fs/eVm; hence a 1 eV
energy difference over a drift space of 0.2 m will induce a pulse broad-
ening of 32 fs. This 0.2 m is a typical value for the distance between
the UFB and the sample. Thus, the beam blanker cannot generate elec-
tron pulses shorter than about 20 fs, provided that the source has an
energy spread of 0.6 eV. Note that the electron source is even further
away from the sample, so this effect will be stronger when the pulses
are created by direct laser irradiation of the source.

The final lens of the microscope will also induce a broadening of
the pulse as discussed by Weninger and Baum.30 They calculated the
temporal distortion for an electron pulse originating from a

FIG. 12. Energy gain as function of arrival time in the tunnel-like deflector calcu-
lated with Comsol (purple crosses).The blue line is the energy gain as a function of
time for a beam propagating along the electron optical axis calculated with Eq. (12).
(inset) Result of the polynomial fit to fit the deflection field in the deflector. The yel-
low and red lines describe the energy gain of the 100 nm off-axis beams.
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photocathode and focused by a magnetic lens. We calculated the tem-
poral distortion of an electron pulse originating from a crossover
located before the final magnetic lens as shown in Fig. 14, the temporal
distortion is small, less than 5 fs for typical opening angles.

The combination of the energy spread of the source, the energy
spread induced by the UFB, and the temporal distortion implies that
the electron pulse lengths will be increased by roughly 30 fs.

INFLUENCE OF EVEN VS ODD UFB VOLTAGE
SWITCHING

In our concept of an UFB, the deflector electrode inverts from
positive to negative voltage for even pulses and oppositely for uneven
laser pulses.1,10 For an even laser pulse, the electrons in the pulse will
encounter a net energy gain. However for uneven pulses, there will be

a net energy loss. For the even pulses, the deflector is at the anode side
of the switch and for the uneven pulses at the cathode side; hence, a
difference in the electron pulse length is expected. For electron pulses
of a few 100 fs and shorter, an additional deflector would be required
to intercept the odd pulses to reduce the effective energy spread and
obtain shorter electron pulses.

In all our simulations, we put the deflector plate at the anode side
of the photoconductive switch. We expect a significant difference in
performance whether the deflector is at the anode or cathode side of
the photoconductive switch. Higher amounts of terahertz radiation are
generated when the laser spot illuminates the switch at locations closer
to the anode side because the mobility at the anode is higher than at
the cathode.31–33 At the anode, electrons in the GaAs layer will be
taken up quickly due to their low effective mass, while this process will
be slower at the cathode. Hence, when the deflector plate is at the
anode, it will be quickly decharged because electrons are injected at a
high rate into the deflector plate.

CONCLUSIONS

A full time-dependent electromagnetic FEM simulation of a pho-
toconductive switch integrated with a MEMS-sized deflector is per-
formed in combination with particle tracing of an electron beam to
study the dynamics of the resulting pulsed electron beam. The numeri-
cal calculations show that it is possible to invert the deflection field on
a time scale of about 500 fs. This value is comparable with measured
THz pulse lengths created with LT-GaAs photoconductive switches
illuminated with femtosecond laser pulses.20,34

The particle tracing simulations show a negligible increase in
emittance, demonstrating that the brightness of the electron pulse will
remain high. Depending on the chosen opening angle of the electron
beam, electron pulse lengths shorter than 150 fs can be achieved.

The numerical calculations further show that, in case the fringe
fields extend far enough outside the UFB, the effective increase in
deflector length with retardation effects of the EM fields outside the
deflector has a significant effect on the energy gain of an electron after
propagating through the deflector. Analytical equations of the time-
dependent fields extending outside the deflector are hard to derive;
hence, numerical calculations are required to calculate the energy gain.

FIG. 13. (a) Constant energy gain as a function of current and FW50 pulse length at 28.5 keV beam energy. For low currents and long electron pulses, the energy gain is small
compared to the source energy spread and both even and odd electron pulses can be used. (b) Energy spread in the electron pulse as a function of current and pulse length.
In both figures, we assume a probe size of 175 nm in the UFB. The peak current is the current in the electron pulse which is equivalent to the average beam current between
the blanker plates. The Comsol energy spread calculation presented in Fig. 12 corresponds to a pulse length of 125 fs and a current of 16 nA.

FIG. 14. Temporal distortion of the electron pulse induced by the magnetic lens in a
typical SEM system. The position of the UFB is at x¼ 0, the beam energy is 30 keV,
and the crossover in the UFB is demagnified on the sample by means of a magnetic
lens, calculated with EOD. The most outer ray in the graph corresponds to a half
opening angle of 0.8 mrad, where 0.4 mrad is a typical working value. Thus, the tem-
poral distortion induced by the magnetic lens is typically less than 5 fs.
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In a tunnel-type design where the fringe fields are confined by shield-
ing the deflector electrode with conducting grounded plates, the
energy spread in the pulse will be limited to 0.5 eV. This is comparable
to or lower than the energy spread of a Schottky electron source. In
such a case, the induced energy gain can be quite accurately estimated,
provided that it is known how fast the deflection field inverts. The
encapsulation of the deflector electrode in the tunnel-type design
reduces the energy spread for two reasons. The first one is that it limits
the extent of the fringe field and, hence, the effective length of the
deflector. The second reason is that because of the more limited spatial
extent of the potential outside the deflector, retardation effects in the
potential can be neglected.

Finally, we argued that the further temporal distortion of the electron
pulse by the final (magnetic) lens in a SEM is less than 10 fs and that tem-
poral broadening of the electron pulse between the UFB and sample is
about 30 fs. Thus, we expect that electron pulses of about 100 fs are achiev-
able using a laser-triggered beam blanker in a SEM, with a negligible
increase in emittance and with only a marginal increase in energy spread.

SUPPLEMENTARY MATERIAL

See supplementary material for graphs with the sensitivity of the
numerical calculations to changes in mesh size. A detailed mathemati-
cal derivation is given for the first and second order energy gain intro-
duced; the beam deflector is also described. The supplementary
material also contains a MAPLE script to determine the amount of
beam blur introduced by the ultrafast beam blanker.
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