
Analysis of Mixed Concept Drift Detectors
in Deployed Machine Learning Models

Toma Zamfirescu

Supervisors: Jan Rellermeyer, Lorena Poenaru-Olaru

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 29, 2023

Name of the student: Toma Zamfirescu
Final project course: CSE3000 Research Project
Thesis committee: Jan Rellermeyer, Lorena Poenaru-Olaru, Jesse Krijthe

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Label-independent concept drift detectors rep-
resent an emerging topic in machine learning re-
search, especially in models deployed in a pro-
duction environment where obtaining labels can
become increasingly difficult and costly. Con-
cept drift refers to unforeseeable changes in the
distribution of data streams, which directly im-
pact the performance of a model trained on his-
torical data. This paper initially focuses on two
mixed label-independent drift detectors, SQSI
and UDetect, which are implemented and evalu-
ated on a specific setup using synthetic and real-
world data sets. Next, multiple label-dependent
drift detectors are evaluated on real-world data
sets, and the results are compared to those of
the label-independent detectors. This paper
presents a framework for comparing multiple
concept drift detectors on different data sets and
configurations, checking whether they can be re-
liably used in a production environment.

1 Introduction
Machine learning is taking over the technology world,
allowing us to get valuable insights, mathematically predict
outcomes, and classify data. In practice, machine learning
models are trained on some data and then deployed in a
production environment. A model initially trained on some
data may no longer reflect reality after some time - the
distribution of the real-world data changes continuously,
so the model’s accuracy decreases. The recent COVID-19
pandemic influenced many aspects of human behavior, so
models that, for instance, predicted the number of hospital
admissions, the number of clients in a restaurant, or sales of
drug stores cannot rely on pre-COVID-19 data - this is an
extreme example of concept drift [8]. Because of this, there
needs to be a way to spot those changes or inconsistencies,
and based on those, the model should be retrained to produce
accurate results at all times. To do this, we introduce the
notion of concept drift, which describes unforeseeable
changes in the underlying distribution of streaming data
over time [13]. To spot concept drift, we need to implement
some algorithms called concept drift detectors. A general
framework for drift detection, separated into four stages is
shown in Fig. 1 [13].

This paper emphasizes the analysis of label-independent
concept drift detectors, meaning that we assume we do
not have any labels other than those for the training data.
Labeling data can become increasingly difficult, costly,
or sometimes impossible in a production environment.
Despite this problem, there is little research done for label-
independent detectors, and code is rarely shared with the
scientific community [17]. Label-independent concept drift
detectors are commonly categorized as follows: based on
data distribution, error-rate drift, multiple hypotheses [13],

Figure 1: Framework for drift detection [13]

or mixed [12], which is a combination of the previous ones.
This paper will focus on the latter, the mixed concept drift
detectors.

The research questions that this paper will aim to an-
swer are the following:

• RQ1: How well do mixed concept drift detectors iden-
tify concept drift in the case of synthetic and real-world
data?

• RQ2: How do mixed concept drift detectors perform
compared to other label-dependent detectors?

The main focus is to implement two label-independent de-
tectors, evaluate them using some metrics on both synthetic
and real-world data, and compare the results with some
already-implemented label-dependent detectors available in
different Python libraries.

The main contributions of this paper are the following:
• Implementation of two label-independent concept drift

detectors, with the code publicly available on GitHub at
https://github.com/tzamfirescu/concept-drift-detection.

• Replication of the experiments of two label-independent
concept drift detectors, SQSI [15] and UDetect [4].

• Evaluation of label-independent and label-dependent
concept drift detectors on real-world data.

The paper is organized as follows: Section 2 presents the re-
lated work, the foundation of this research. Sections 3 and
4 define the methodology and results, respectively. Section
5 is the discussion, where some interesting insights are high-
lighted. Section 6 tackles responsible research, while Section
7 concludes the paper.

2 Related Work
Concept drift detection is a necessity in deployed machine
learning models, so extensive research was performed on this

https://github.com/tzamfirescu/concept-drift-detection

topic, especially as part of data stream monitoring [13]. There
are multiple categories of label-independent concept detec-
tors, as presented in [13]. Error-rate-based detectors repre-
sent the largest category, and they track the changes in the on-
line error rate of base classifiers. Then, depending on the sig-
nificance of the change, a drift alarm is signaled. The second
largest category is data distribution-based detection, where
algorithms use a distance metric to quantify the dissimilarity
between training and testing data. Multiple-hypothesis test al-
gorithms apply similar principles to the previous two and can
be divided into parallel and hierarchical multiple-hypothesis
tests. Mixed detectors exhibit hybrid characteristics of pre-
vious types. Concept drift can be categorized as abrupt (or
sudden, instantaneous) and gradual [20], the difference being
the time interval over which drift occurs. As shown in Fig. 2,
in the case of abrupt drift, the context (or concept) changes
suddenly, and the data becomes stationary right away. In
the case of gradual drift, it takes more time until the con-
text changes from A to B. This transition period is also called
drift width.

Figure 2: Difference between drift types [17]

The two concept drift detectors that are implemented and an-
alyzed next are called Data Stream Quantification by Score
Inspection (SQSI) [15], and the second Unsupervised Change
Detection for Activity Recognition (U-Detect) [4]. SQSI is a
mixed detector because the algorithm presented in the paper
performs a two-step test, checking if the distribution of the
classifier errors has changed. If drift is detected using the first
statistical test, the classifier is retrained, and the same statis-
tical test is performed again. Similarly, UDetect is consid-
ered mixed because it defines a two-level distribution-based
framework [11], and it does not need training labels at all -
it only computes a summary value for the training features,
which is then compared to the summary values of each batch.
Other examples of mixed concept drift detectors are part of
the multiple-hypothesis detectors category. Linear Four Rate
drift detector (LFR) keeps track of changes in the true pos-
itive, true negative, false positive, and false negative rates
[21], performing parallel multiple hypothesis tests. Hierar-
chical Linear Four Rate (HLFR) is a hierarchical framework
with LFR as the detection layer, followed by the zero-one loss
over the train-test split as the validation layer [23].

3 Methodology
The main goal of this paper is to show the accuracy of label-
independent detectors and compare them to other more reli-
able label-dependent ones already available in Python. To do
this, we need to define the specific data setup in 3.1, some data

sets suited for that in 3.2, the label-independent detectors 3.3,
the supervised detectors we will run our experiments with in
3.4, and the evaluation metrics used for all experiments in 3.5.

3.1 Data Setup
For all the experiments conducted as part of this research pa-
per, we process each data set as a data stream, separating
training data from testing data. The testing data is then di-
vided into equal-sized batches. The algorithms will check in
which testing batch we have concept drift, considering only
the training data as a reference. This data setup was proposed
and reviewed by [17] and is summarized in Fig. 3.

Figure 3: Data Setup [17]

3.2 Data Sets
Within this paper, we use both synthetic and real-world data,
with the scope of observing the performance of the detectors
in as many setups as possible. All data is assumed to come in
a data-streaming manner, meaning that samples are ordered
by time.

Synthetic Data Sets
The synthetic data sets are generated by two data generators
available in the MOA framework, SEA, and Agrawal [17].
Therefore, we have three types of data sets: SEA, AGRAW1,
and AGRAW2. SEA contains three numerical features,
ranging from 0 to 10, while the AGRAW data sets contain six
numerical and three categorical features, with each sample
representing the data of a person requesting a loan. The
difference between the two data sets generated by Agrawal
[1] represents the subsets of features where data is shifted.
Since concept drift can be either abrupt or gradual, for each
of the three types, we have six data sets - one with abrupt
drift and five others with gradual drift, where the concept
drift occurs over 500, 1000, 5000, 10000, and 20000 samples
(drift width). In other words, the data distribution gradually
drifts over several samples until it becomes stationary again.

Each synthetic data set has 100k samples. For training,
we use 30k samples, and the 70k remaining ones are divided
into seven equal batches of 10k. For all these data sets, the
drift was set to start at sample 55000 in the data generation
process. Considering this, the goal is for our detectors to
signal all batches from 3 to 7 as drifted.

Real-World Data Sets
For our experiments, we used four real-world data sets -
ELECT2, Airlines, Weather and spam [7], [5]. Each has a
different number of samples, so the data setup differs.

ELECT2 predicts whether electricity prices go up or
down and has 45 312 samples, with 15 104 used for training
and 30 208 for testing, which are divided into batches of 365
samples. Weather predicts whether it is raining or not and
has 18 159 samples, with 6 053 as training data and the rest
as testing data. The evaluation will be done with batches of
30 samples (monthly prediction) and 365 samples (yearly
prediction). Airlines predicts if a flight is delayed or not
and has 539 383 samples, with 179 794 training samples and
the rest as testing. Here, the data is divided into batches of
17 000, representing the number of flights per day. Finally,
spam predicts whether an email is spam or not and contains
4 405 samples, with 1 468 as training and the last 2 937 as
testing. The testing data is divided into batches of 20, 50,
and 100.

3.3 Label-Independent Concept Drift Detectors
First Label-Independent Detector - SQSI
Data Stream Quantification by Score Inspection, also called
SQSI [15], is a complex algorithm that, besides detecting the
moment where concept drift occurs, also retrains the model
to keep it up-to-date. The main focus of this algorithm is not
concept drift but quantification, which is the task of comput-
ing the distribution of a data stream. This detector can be
categorized as mixed because it is data distribution-based but
does not directly compare the distribution of the labels but the
distribution of cross-validation accuracies. The pseudo-code
of this algorithm, excluding the retraining part, which we do
not need, is shown in Fig. 4.

Figure 4: SQSI algorithm [15]

The algorithm first trains a classifier based on the training
data, using SVM or Random Forest. SVM would take signif-
icantly more time on each data set, so all experiments were
conducted using only Random Forest. Then, based on the
trained classifier, k-fold cross-validation is performed on the
training data, where the probability of each class occurring is
computed for each event. For the cross-validation, leave-one-
out is recommended in [15], but k = 20 was used because
of time constraints. The distribution of scores generated by
the cross-validation should be compared with similar scores
computed on the testing data. For each testing batch, we cal-
culate the distribution similarly - for each event, we want the
probability of each class occurring. We do this by using the

same classifier we initially trained. As soon as we have the
two scores, we need to apply a statistical test to check if they
are from the same data distribution. To do that, we use the
Kolmogorov-Smirnov test, with a significance of 0.001. If
the p-value of the test we applied is lower than 0.001, we
found concept drift.

Second Label-Independent Detector - UDetect
UDetect is an unsupervised concept drift detector pro-
posed by [4]. The algorithm is structured as a two-level
architectural framework that includes an offline and online
component and assumes no presence of ground truth - it
does not need the labels of the samples. Similarly to SQSI,
UDetect also performs the retraining of the model after drift
is found, which we will not include in the implementation.

The offline component is separated into multiple layers
and involves the training data. In the windowing and
segmentation sub-layer, data is partitioned into fixed-size
data chunks. Each chunk is then summarized into a single
parameter, called summary value, representing the mean
distance from each point to the centroid. In the change
parameter computation layer, the algorithm calculates the
Shewhart individual control chart parameters [22]. The
change parameters are the lower control limit (LCLT) and
the upper control limit (UCLT) for the individual window
summary values.

LCLT = T −A2 ∗R (1)

UCLT = T +A2 ∗R (2)

where T is the mean of the window summaries, R is the
mean range of the subgroups, and A2 is a constant specific
for X̃-Chart [22].

Finally, in the model generation sub-layer, a classifier
prototype is built to recognize the current activity pattern in
the system. In the online component of the algorithm, the
algorithm signals when a significant change has occurred
in the new classified instances by determining if the data
classified to a class is widely divergent from the change
parameters calculated in the offline component. If the null
hypothesis is rejected, we have found the concept drift. The
pseudo-code of this algorithm, excluding the part that deals
with retraining the algorithm, is shown in Fig. 5.

Figure 5: UDetect Algorithm [4]

UDetect was implemented and evaluated on a completely dif-
ferent setup than ours - the detector with the same constants
as defined in [4] never detects drift for the synthetic data sets
we defined in 3.2. In the same paper, the subgroup size of the
training data is 3, which does not return accurate results for
big data, proven by no detection over all the synthetic data
sets. Also, the constants used for the X̃-Chart in UDetect are
not clearly explained, so finding suitable constants based on
different subgroup sizes was difficult. The subgroup size was
increased to 25, and the constant A2 for the control charts was
taken from [18]. Besides this, R in a control chart typically
represents the range of a window summary, so the difference
between the largest and smallest elements [18]. On the other
hand, UDetect takes a different approach, with R being the
difference between consecutive window summaries, which is
different than other definitions of X̃-Charts [18].

3.4 Label-Dependent Concept Drift Detectors
Since the data sets provide labels for the testing data, we
can compute the drifted batches using label-dependent
(supervised) concept drift detectors and compare the results
to the reference drifted batches we defined in Section 4.2.

The concept drift detectors used for the evaluation of
real-world data are error rate-based drift (ERB) detectors
and are implemented in the river Python library. We will
apply the most popular ERB detector DDM (Drift Detection
Method) [10], which uses statistical tests to signal drift, along
with its improved version EDDM (Early Drift Detection
Method) [2], which additionally checks the distance between
error rates when signaling drift. ADWIN (Adaptive Window-
ing) [6] uses a window-based method to store the samples
based on time, and when the mean of the stored values
decreases, drift is detected. Finally, we will use the drift
detection method based on Hoeffding’s inequality, using an
A-test (HDDM A) and W-test (HDDM W), respectively [9].
These label-dependent detectors will be evaluated using the
same setup mentioned in 3.1 and using the same evaluation
metrics.

3.5 Evaluation Metrics
To evaluate the concept drift detectors, we need different
metrics for the synthetic and real-world data sets. In the case
of synthetic data sets, the assumption is that as soon as drift
occurs, all subsequent batches are also drifted. In this case,
we only need to check if the detector finds the first drifted
batch at the right time. In the case of real-world data sets,
we cannot hold this assumption since drift may happen at
any batch in the testing set. Because of that, we define two
metrics for each type of data set, proposed by [17] - false
positive rate (FPRS) and latency (L) for the synthetic data
sets, and false positive rate (FPRR) and drift detection rate
(DDR) for the real-world data sets.

FALSE POSITIVE RATE for the synthetic data sets (FPRS)
shows the ratio of non-drifted batches detected as having
drift. If no batch that does not contain drift is signaled as
drift, then FPRS = 0, but if all batches that do not contain
drift are signaled, then FPRS = 1. Otherwise, the formula

for FPRS is the following:

FPRS =
|F |
|BB |

(3)

where |F | is the number of batches detected as having drift
earlier than supposed, and |BB | is the number of batches
before the drift.

LATENCY L ranges between 0 and 1 and shows how
late the detector managed to detect drift. If drift is detected
earlier or at the right time, latency is 0, but if it is detected
later, the formula for L is the following:

L =
k − j

|BA|
; bj , bkϵB (4)

where bj is the batch corresponding to the beginning of
concept drift, bk is the batch detected as drift, and |BA| is the
number of batches after the drift.

FALSE POSITIVE RATE for the real-world data sets
(FPRR) is similar to FPRS , but the rate is computed over
all batches, not only by considering batches before the actual
drift. The formula for FPRR is the following:

FPRR =
|F |
|BN |

(5)

where |F | is the number of non-drifted batches that were
detected as drifted, and |BN | is the number of non-drifted
batches.

DRIFT DETECTION RATE (DDR) is the ratio between
the number of batches that were correctly signaled as drift
and the total number of batches with drift. The formula for
DDR is the following:

DDR =
|C|
|BD|

(6)

where |C| is the number of drifted batches that were correctly
detected as drifted, and |BD| is the number drifted batches.

3.6 Implementation
The synthetic and real-world data sets, implementation
of the two detectors, and the code for finding the ref-
erence drift for real-world data are publicly available at
https://github.com/tzamfirescu/concept-drift-detection. The
code was written in Python on the Jupyter Notebook de-
velopment environment, using pandas and numpy for data
modeling, and Scikit-learn for most of the machine learning
algorithms [16].

Some experiments were also run on the TU Delft’s
DAS-6 (The Distributed ASCI Supercomputer 6) cluster
[3], where GPU nodes could be used in parallel for faster
computation. A guide on how to connect to DAS-6, run a
Jupyter Notebook (or Lab) on multiples nodes, and access
the notebook from your machine can be found on GitHub.
The problem is that the Python libraries initially used to

https://github.com/tzamfirescu/concept-drift-detection
https://github.com/tzamfirescu/concept-drift-detection

implement the algorithms cannot use GPU resources. The
cuml and cupy libraries can replace pandas, numpy, and
Scikit-learn so that the code works on a single GPU node.
Using multiple GPU nodes in parallel meant adapting the
whole code using different RAPIDS [19] libraries, which was
not feasible given the short time of the research.

4 Results
This section outlines the accuracy of all detectors on both syn-
thetic and real-world data sets and also presents a framework
for computing the reference drifted batches in the real-world
data sets. To observe their general behavior and ensure that
the two concept drift detectors SQSI and UDetect work, they
were initially implemented and tested on synthetic data in 4.1.
In 4.2 we run the detectors on real-world data, and finally
evaluate the label-dependent concept drift detectors in 4.3. In
Tables 1, 2, 3, and 4, in case no concept drift was detected for
a specific configuration, we mark it as ND (Not Detected).

4.1 Synthetic Data Sets
Since we deal with both categorical and numerical features,
what first needs to be done in the data modeling phase is
to apply encoders to categorical data; both algorithms only
work on numerical features, so not using an encoder would
mean leaving some features out, which of course lowers
the accuracy of the model. One-hot, ordinal, and target
encoders are used for the categorical features, but also no
encoder by removing all categorical features. Also, features
are both scaled using the min-max scaler and not scaled.
The following experiments show whether the detectors work,
their accuracy, and whether they are data set, encoder, or
scaler dependent.

When experimenting with the SQSI detector during the
implementation process, the inconsistency in results was
obvious: there were often different results with the same
configuration. The randomness of the cross-validation most
likely causes this, so to solve this and have reliable results,
the algorithm was run 50 times on each data set. The false
positive rate (FPRS) and latency (L) for each data set is the
average of those metrics over all the runs. Both detectors
were run with all the encoders mentioned earlier, and with
data both scaled and not scaled. Over 1200 runs, SQSI had
FPRS = 0.102 and L = 0.02, as shown in Table 1. UDetect
had an average FPRS = 0 and L = 0.15 over 29 different
configurations; it detected drift slightly later than supposed
but never earlier. Considering this, results prove that SQSI
and UDetect manage to accurately detect the first drifted
batch in the synthetic data sets, given the low number of
testing batches - only seven.

Abrupt Drift
Results in Table 1 show that SQSI performed very well on
data sets with abrupt drift, with average latency close to 0
and a false positive rate of 0.13. For the SEA data set, which
only contains numerical features, both metrics were 0, mean-
ing that drift was always detected at the right batch. After
observing the AGRAW data sets results, we note that SQSI
is encoder-dependent; the best results are obtained using the

ordinal encoder, and the worst using the one-hot encoder. Re-
moving categorical features had better results than one-hot
and target encoders. On average, scaling the data lowered the
run time and FPRS , but not by big margins.

SQSI UDetect

Data Set Features
Encoder

Min-Max
Scaler

FPR Latency FPR Latency

AGRAW1

None
No 0.18 0 ND
Yes 0.14 0 0 0

OneHot
No 0.61 0 ND
Yes 0.52 0 0 0

Ordinal
No 0.16 0 ND
Yes 0.21 0 0 0

Target
No 0.23 0 ND
Yes 0.25 0 0 0

AGRAW2

None
No 0.04 0.005 0 0.2
Yes 0 0 0 0

OneHot
No 0.04 0 0 0.2
Yes 0.09 0 0 0.2

Ordinal
No 0.01 0 0 0.2
Yes 0 0 0 0.2

Target
No 0.005 0.03 0 0.2
Yes 0.01 0 0 0.4

SEA None
No 0 0 0 0.2
Yes 0 0 0 0.2

Table 1: Results of SQSI and UDetect on synthetic data sets with
abrupt drift

On average for the abrupt data sets, UDetect had FPRS = 0
and L = 0.2. Results in Table 1 prove that this detector is
not necessarily encoder dependent, but performs differently
depending if the features are scaled or not. For AGRAW1,
UDetect never detected drift unless features were scaled, so
even though not scaling the features of AGRAW2 and SEA
did not influence the outcome, AGRAW1 proves that UDe-
tect is scaler-dependent. The detector managed to signal the
right batch for AGRAW1, but would mostly signal one or two
batches later for the other data sets.

Gradual Drift
For data sets with gradual drift, SQSI was only evaluated
using the ordinal encoder, the one that performed best for
abrupt drift, and again, features were both scaled and not
scaled. For the SEA data sets, SQSI performed perfectly,
with a false positive rate and latency of both 0. In the case
of both AGRAW1 and AGRAW2, the latency increases as
the width of the drift increases - when the width of the drift
is 10k or 20k samples, SQSI detects one batch later than
supposed. In the case of AGRAW1, the overall FPRS is 0.2
and L is 0, while for AGRAW2 FPRS is 0 and L is 0.1. The
results for both SQSI and UDetect are highlighted in Table.
2.

The results in Table 2 show that UDetect is not as sen-
sitive to gradual drift - false positive rate is 0 and latency is
quite stable, between 0 and 0.2 over most widths, and only
increasing to 0.4 for AGRAW2 when the width is 20000. In
the case of SEA, the width of the drift did not influence at all
the results, the detector signaling the drift one batch later in
all runs. Unlike SQSI, which would either predict perfectly

SQSI UDetect

Data Set Features
Encoder

Width of Drift Min-Max
Scaler

FPR Latency FPR Latency

AGRAW1 Ordinal

500
No 0.24 0 ND
Yes 0.14 0 0 0.2

1000
No 0.21 0 ND
Yes 0.22 0 0 0.2

5000
No 0.24 0 ND
Yes 0.36 0 0 0

10000
No 0.14 0 0 0.8
Yes 0.17 0 0 0.2

20000
No 0.16 0.04 ND
Yes 0.19 0.04 0 0.2

AGRAW2 Ordinal

500
No 0 0.01 ND
Yes 0.04 0.005 0 0.2

1000
No 0.05 0.005 0 0.2
Yes 0.04 0 0 0

5000
No 0.04 0 ND
Yes 0.03 0.05 0 0

10000
No 0.03 0.215 ND
Yes 0.02 0.22 0 0.2

20000
No 0 0.24 0 0.2
Yes 0 0.225 0 0.4

SEA None

500
No 0 0 0 0.2
Yes 0 0 0 0.2

1000
No 0 0 0 0.2
Yes 0 0 0 0.2

5000
No 0 0 0 0.2
Yes 0 0 0 0.2

10000
No 0 0 0 0.2
Yes 0 0 0 0.2

20000
No 0 0 0 0.2
Yes 0 0 0 0.2

Table 2: Results of SQSI and UDetect on synthetic data sets with
gradual drift

or slightly earlier than supposed, UDetect tends to predict
one batch later. Similarly to the data sets with abrupt drift,
not scaling the features produced worse results for AGRAW1
and AGRAW2 - seven configurations resulted in ND (Not
Detected) in this case.

4.2 Real-World Data Sets
Finding the Reference Drifted Batches
Regarding the real-world data sets, the assumption is that we
do not know where drift is beforehand, so in order to perform
the evaluation of our detectors we need to find a way to find
the batches with drift in order to use them as a benchmark
for our experiments.

To do this, we first chose the best classifier for each
data set and performed cross-validation on the training
data. We used two approaches for splitting the data for the
cross-validation: time-based splitting (TB) and a variation
of random-splitting, which we can call sequential-based
splitting (SB) [14]. The time-based splitting method con-
siders split ratios ranging from 50%/50% to 90%/10% [14],
while the sequential splitting randomly chooses a testing
set the same size as the testing batch and the rest of the
samples as training. The mean and standard deviation were
calculated based on the results of 20 splits. After that, the
goal is to compute the accuracy of the classifier on each of
the testing batches - this time, we do need to use the labels
in the training set. If the accuracy of a batch is lower than
the mean accuracy of the training data minus one standard
deviation, then we assume that the batch has drifted. The

batches signaled as drifted will be used as references when
evaluating our detectors. The code for finding the reference
drift batches for the spam data set is publicly available at
https://github.com/tzamfirescu/concept-drift-detection.

The spam data set is one of the most difficult to clas-
sify because of the huge number of features - more than
10k, so few classifiers returned good results, with the best
being Random Forest. The two splitting methods performed
differently on each data set: in the case of spam, the
time-based splitting signaled drift in almost all batches,
while the sequential method signaled only batches with
significant drift, as shown in Fig. 6, where green bars
represent non-drifted batches and red bars the batches with
drift. In this case, if we chose the time-based splitting
method as our reference, detectors that detect all batches as
drifted but may not be accurate would get almost perfect
accuracy. Since the two methods produce different results,
our reference drifted batches in the following experiments
are computed using both the sequential and time-based
splitting methods. Furthermore, in the case of Airlines,
which contains categorical features, these experiments will
include results computed using different encoders, namely
ordinal, one-hot, and target. To compute the reference
batches for the different real-world data sets, we will choose
the classifier with the best accuracy for each - for Airlines
and ELECT2, it is K-Nearest Neighbors, for Weather, it is
Support Vector Machines, and for spam Random Forest.

(a) Time-based split method (b) Sequential-based split method

Figure 6: Drifted batches in the spam data set, using the two split
methods

Performance of Detectors on Real-World Data
After computing the reference drifted batches, we can
evaluate our detectors using the metrics defined earlier, false
positive rate FPRR and drift detection rate DDR. The
results are shown in Table 3. The two detectors, SQSI [15]
and UDetect [4], managed to find the right batches at most
times, as shown by DDR being close to 1, but they also had
a very high FPRR - they detected drift in batches that are
not supposed to be drifted. Some experiments signaled all
batches as drifted (FPRR = 1 and DDR = 1), with Airlines
being the only data set for which no drift was detected when
using the target encoder on the categorical features. Weather
is the only data set for which both detectors detected concept
drift and also found non-drifted batches.

Even though both detectors performed well on the syn-
thetic data, they performed poorly on real-world data, with

https://github.com/tzamfirescu/concept-drift-detection

SQSI Udetect

Dataset Classifier Encoder Size Batch Split Method FPR DDR FPR DDR

spam Random Forest No

20
TB 0.35 0.22 1 1

SB 0.41 0.14 1 1

50
TB 0.75 0.59 1 1

SB 0.63 0.58 1 1

100
TB 0.66 0.84 1 1

SB 0.66 0.9 1 1

weather SVM No

30
TB 0.34 0.54 0.93 0.97

SB 0.34 0.53 0.94 0.94

365
TB 1 1 0.8 0.78

SB 1 1 1 0.77

ELECT2 KNN No 365
TB 1 1 0.85 0.85

SB 1 1 0.92 0.81

Airlines KNN

OneHot

17000 SB

1 1 0.33 0.05

Ordinal 1 1 0.5 0

Target 1 1 ND

OneHot

17000 TB

1 1 0.5 0

Ordinal 1 1 0.5 0

Target 1 1 0.5 0

Acronyms: SB - sequential-based split, TB - time-based split

Table 3: Results of different label-dependent concept drift detectors,
applied on real-world data sets

an average false positive rate of 0.81 and a drift detection
rate of 0.72. The main reason for this would be the way
the reference drift is computed - it is difficult to find a
generalized way of defining what is drift? which works for
all types of data sets, concept drift detectors, batch sizes,
etc. It is important to note that both detectors focus on
retraining the classifier as soon as drift is detected, which is
not done in this study. The fact that most of the batches in
our experiments signal drift is expected since each batch is
compared to the training data, without considering previous
batches in the testing data.

4.3 Label-Dependent Concept Drift Detectors
The label-dependent concept drift detectors were only evalu-
ated on real-world data based on the same reference drifted
batches we computed earlier. All detectors mentioned in sub-
section 3.4 are error-rate based, meaning that the input of the
detector relies on a classifier that should be trained on the
reference data - we used Random Forest for all experiments.
As soon as the model is trained, the detector needs to be up-
dated with values corresponding to the samples in the test-
ing set - 0 for a correct prediction and 1 for a wrong predic-
tion of the classifier. The detectors are constantly updated
with values over the whole testing set, meaning that previ-
ous testing batches will also be considered when checking if
a batch is drifted. In comparison, SQSI and UDetect con-
sider each testing batch independently and compare it to the
training data - for example, let’s consider a data set with re-
current drift, which starts at batch 3 and returns to normal
at batch 6. Label-independent detectors (SQSI and UDetect)
are expected to signal batches 3, 4, and 5 as drifted, while

label-dependent detectors signal only subsequent changes in
the distribution, meaning they will signal only batches 3 and
6 as drifted. The different way concept drift is computed in-
fluences the results - label-dependent drift detectors predict
fewer batches with drift, so both DDR and FPR are lower.
A better approach for evaluating the label-dependent detec-
tors would be to compute the reference drifted batches while
retraining the model on the testing data. Our setup, which
simulates a machine learning production environment, does
not do this.

EDDM DDM ADWIN HDDM A HDDM W

Dataset
Features

Encoder

Size

Batch

Split

Method
FPR DDR FPR DDR FPR DDR FPR DDR FPR DDR

spam No

20
TB 0 0.05 0 0.03 0 0.01 0 0.01 0 0.01

SB 0 0.07 0 0.03 0 0.01 0 0.01 0 0.02

50
TB 0 0.13 0 0.07

ND ND ND
SB 0 0.19 0.04 0.08

100
TB 0 0.5 0 0.1 0 0.03 0 0.04 0 0.04

SB 0.1 0.6 0.1 0.1 0 0.05 0 0.03 0 0.03

weather No

30
TB 0.11 0.07 0.006 0.008

ND ND
0.01 0.02

SB 0.06 0.1 0.007 0.007 0.007 0.02

365
TB 0.1 0.04

ND
0 0.04 0 0.04 0.1 0.26

SB 0.5 0.03 0 0.03 0 0.03 0 0.22

ELECT2 No 365
TB 0.92 0.97 0.85 0.64 0.57 0.55 0.85 0.85 0.86 0.77

SB 1 0.95 0.8 0.66 0.5 0.56 1 0.83 1 0.86

Airlines

OneHot

17000 SB

0 0.33 0.33 0.44 1 1 0.66 0.72 1 1

Ordinal 0.5 0 0.5 0.42 1 1 1 0.89 1 1

Target ND 0.15 1 0.05 1 0.1 0 0.75 1

Acronyms: SB - sequential-based split, TB - time-based split

Table 4: Results of different label-dependent concept drift detectors,
applied on real-world data sets

Despite the different ways the label-dependent detectors de-
fine drift, they signaled concept drift in most data sets using
our framework. ADWIN and HDDM did not detect drift in
spam and Weather for small batch sizes, while DDM failed
to detect for Weather when the batch size is 365. It is es-
sential to notice that the difference in results is significant,
based on which detector is used: for instance, in the case of
spam, EDDM had FPRR = 0.1 and DDR = 0.6, but all
other detectors had FPRR and DDR close to 0. On average,
the detectors tend to predict close to no drift in Weather and
spam but predict almost all batches as drifted in Airlines and
ELECT2. Similarly to the label-independent concept drift de-
tectors, results prove that label-dependent detectors are also
data set dependent.

5 Discussion
The two mixed concept drift detectors presented in [15]
and [4] were difficult to implement and adapt to our data
setup, mostly because a lot of important details were missing
- a lot of time was spent into finding the right parameters and
methods. This emphasizes again the importance of publicly
available code in this context, which would save researchers
time and resources and be able to focus on other aspects of
concept drift detection.

Both detectors performed very well on synthetic data,

with an average false positive rate of 0.051 and latency of
0.085. Based on the results, SQSI and UDetect are data
set dependent and the features rely on scalers and encoders.
These aspects were not mentioned in the papers, making the
replication of the algorithms more difficult. The scope of the
evaluation on synthetic data sets was to observe the behavior
of the detectors and check if the assessment is worth doing
on real-world data. The drawback of the synthetic data sets
is that drift starts at some point, and the assumption is that
all subsequent batches should be drifted. In other words, we
cannot determine if the detectors accurately signal recurrent
drift (when the distribution changes at some point and comes
back to normal at a later point), which frequently happens in
real-world data sets - we can only reliably signal when the
first drift occurs.

The evaluation of detectors on real-world data is a
challenge using this setup because it is difficult to find an
algorithm that can be reliably used to answer the question
’what is drift?’. Our experiments required us to compute the
reference drifted batches for each real-world data set, so we
defined a framework for detecting drift based on the increase
in the error rate. The method behaved differently based on
multiple factors: aside from the data set types, batch sizes,
features encoders, or scalers, the results also relied on the
type of split used for the cross-validation, time-based or
sequential-based. Furthermore, each researcher evaluates
their detectors by defining specific metrics and drawing
multiple assumptions, which no general framework for
drift detection can cover. Based on the reference drifted
batches we defined in Section 4.2, the two label-independent
algorithms performed modestly on real-world data, with
a high average drift detection rate DDR of 0.72, but an
even higher FPRR of 0.81. One of the main causes for
inconsistent results is that in their original implementations,
both detectors retrain the model as soon as drift is detected,
which is not done in this study.

The evaluation of label-dependent concept drift de-
tectors requires a different data setup than the one in
Section 3. The five error-rate-based detectors DDM, EDDM,
ADWIN, HDDM A, HDDM W should be updated at every
data point in the testing data, meaning that drift solely
relies on the distribution of the testing set. In contrast, the
framework we defined for the label-independent detectors
calculates if a batch is drifted by only considering the training
data.

More computational power would improve the re-
sults of this study. The code in the GitHub repository only
allows CPU computation. What would help would be the
code to have support for parallelization on multiple GPU
nodes of the TU Delft’s DAS-6 cluster. It would allow SQSI
to be evaluated using support vector machines, improve the
accuracy of all classifiers by using more computationally
heavy setups and make it possible to increase the number
of experiments. Many experiments are impossible to run
accurately, and in a feasible time on a local machine, so more
computational power would improve the overall results.

6 Responsible Research
This section aims to address the ethical standards of this
project, focusing on the reproducibility of the methods and
results. This is especially important in a comparative study;
easier replication allows the researcher to evaluate multiple
detectors and produce more results.

During this study, we learned about the ineffective way
the scientific community deals with data - the implementa-
tions of algorithms and data sets are rarely available, making
the replication process in this field of research unnecessarily
long. Considering this, everything involving this study - the
data setup, implementation of the algorithms, the method
for finding the reference drifted batches, and a guide for
connecting to the DAS-6 GPU nodes using SLURM, are
all publicly available on GitHub. TU Delft platforms have
limited accessibility for external users, so GitHub was chosen
for sharing the code with the scientific community. Open
data access in scientific research would save valuable time
and allow researchers to focus on other new problems.

The methodology required for the experiments was clearly
described in Section 3, namely the data setup, data sets,
concept drift detectors, and evaluation methods. The paper
also presents the pseudo-code of the two label-independent
detectors with all the required formulas and parameters,
aiming to simplify the replication process. The results for
all experiments are available in Section 4 - even poor or
inconsistent results were published and analyzed. This study
aims to find a general evaluation framework for concept drift
detectors; the poor performance of some detectors does not
necessarily mean that they are unusable for drift detection but
rather that they are not suited for our evaluation framework.

7 Conclusion
This paper proposed a comparative study in which the
goal was to evaluate concept drift detectors in a setup
that simulates deployed machine learning models. Two
mixed label-independent concept drift detectors, SQSI and
UDetect, are implemented and evaluated with different
configurations on three synthetic and four real-world data
sets. Not having access to the implementation made the
replication process more demanding, emphasizing the
importance of publicly available code in machine learning
research. As soon as the two detectors are implemented, the
first part of RQ1 can be answered: in the case of synthetic
data, both algorithms can reliably detect the right drifted
batch, with FPRS and L lower than 0.2. To evaluate the
detectors on real-world data sets, we defined a framework for
finding the reference drifted batches using cross-validation
and two splitting methods. Based on the results, we can
conclude that neither the reference drift framework nor the
two detectors are reliable on real-world data sets under the
setup we defined in 3.1. To answer RQ2, label-dependent
detectors detect concept drift differently than our data
setup does - our setup compares each batch to the training
data, while label-dependent detectors are updated at each
testing data point. Because of this, this setup does not al-

https://github.com/tzamfirescu/concept-drift-detection

low for a direct comparison of the two types of drift detectors.

This study can improve its results by increasing the
computational power. In this case, speed was chosen over
accuracy, so adapting the code for parallelization on GPU
nodes would allow much more accurate results. Also,
the full implementation of the label-independent concept
drift detectors, including the retraining of the classifiers as
soon as drift is detected, would allow for more flexibility;
for instance, label-dependent detectors could be directly
compared to label-independent detectors. Future research
might involve finding a generalized way of computing the
reference concept drift that can be used to evaluate multiple
types of concept drift detectors.

Acknowledgements
This research paper was part of the CSE3000 Research
Project course in TU Delft’s BSc Computer Science and En-
gineering. The project proposes a comparison study that an-
alyzes the performances of different unsupervised concept
drift detectors in a setup suited for deployed machine learn-
ing models. The responsible professor is Jan Rellermeyer
(TU Delft, Leibniz University Hannover), and the supervisor
is Lorena Poenaru-Olaru (TU Delft). All meetings were
with our supervisor and the peer group containing three other
students - Jindřich Pohl, Konsta Kanniainen, and Baptiste
André.

References
[1] R. Agrawal, T. Imielinski, and A. Swami. Database

mining: a performance perspective. IEEE Transac-
tions on Knowledge and Data Engineering, 5(6):914–
925, 1993.

[2] Manuel Baena-Garcı́a, José Campo-Ávila, Raúl
Fidalgo-Merino, Albert Bifet, Ricard Gavald, and
Rafael Morales-Bueno. Early drift detection method.
Fourth International Workshop on Knowledge Discov-
ery from Data Streams, 01 2006.

[3] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuw-
poort, John Romein, Frank Seinstra, Cees Snoek, and
Harry Wijshoff. A medium-scale distributed system for
computer science research: Infrastructure for the long
term. Computer, 49(5):54–63, 2016.

[4] Sulaimon Adebayo Bashir, Andrei Petrovski, and
Daniel Doolan. A framework for unsupervised change
detection in activity recognition. International Jour-
nal of Pervasive Computing and Communications,
13(2):157–175, 2017.

[5] Albert Bifet, Ricard Gavaldà, Geoff Holmes, and Bern-
hard Pfahringer. Machine Learning for Data Streams
with Practical Examples in MOA. MIT Press, 2018.
https://moa.cms.waikato.ac.nz/book/.

[6] Albert Bifet and Ricard Gavaldà. Learning from time-
changing data with adaptive windowing. Proceedings of
the 7th SIAM International Conference on Data Mining,
7, 04 2007.

[7] Gregory Ditzler and Robi Polikar. Incremental learn-
ing of concept drift from streaming imbalanced data.
IEEE Transactions on Knowledge and Data Engineer-
ing, 25(10):2283–2301, 2013.

[8] Christopher Duckworth, Francis P. Chmiel, Dan K.
Burns, Zlatko D. Zlatev, Neil M. White, Thomas W. V.
Daniels, Michael Kiuber, and Michael J. Boniface.
Emergency department admissions during covid-19: ex-
plainable machine learning to characterise data drift and
detect emergent health risks. medRxiv, 2021.

[9] Isvani Frı́as-Blanco, José del Campo-Ávila, Gonzalo
Ramos-Jiménez, Rafael Morales-Bueno, Agustı́n Ortiz-
Dı́az, and Yailé Caballero-Mota. Online and non-
parametric drift detection methods based on hoeffding’s
bounds. IEEE Transactions on Knowledge and Data
Engineering, 27(3):810–823, 2015.

[10] João Gama, Pedro Medas, Gladys Castillo, and Pedro
Rodrigues. Learning with drift detection. In Ana L. C.
Bazzan and Sofiane Labidi, editors, Advances in Artifi-
cial Intelligence – SBIA 2004, pages 286–295, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[11] Rosana Noronha Gemaque, Albert França Josuá Costa,
Rafael Giusti, and Eulanda Miranda dos Santos.
An overview of unsupervised drift detection meth-
ods. WIREs Data Mining and Knowledge Discovery,
10(6):e1381, 2020.

[12] Bartosz Krawczyk and Alberto Cano. Online ensemble
learning with abstaining classifiers for drifting and noisy
data streams. Applied Soft Computing, 68:677–692, 07
2018.

[13] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and
Guangquan Zhang. Learning under concept drift: A re-
view. IEEE Transactions on Knowledge and Data En-
gineering, 31(12):2346–2363, 2019.

[14] Yingzhe Lyu, Heng Li, Mohammed Sayagh, Zhen
Ming (Jack) Jiang, and Ahmed E. Hassan. An empir-
ical study of the impact of data splitting decisions on
the performance of aiops solutions. ACM Trans. Softw.
Eng. Methodol., 30(4), jul 2021.

[15] Andre G. Maletzke, Denis M. dos Reis, and Gus-
tavo E.A.P.A. Batista. Quantification in data streams:
Initial results. 2017 Brazilian Conference on Intelligent
Systems (BRACIS), 2017.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[17] Lorena Poenaru-Olaru, Luis Cruz, Arie van Deursen,
and Jan S. Rellermeyer. Are concept drift detectors re-
liable alarming systems? – a comparative study, 2022.

[18] Jambulingam Subramani and Saminathan Balamurali.
Control charts for variables with specified process capa-
bility indices. International Journal of Probability and
Statistics, 1(4): 101-110, 01 2012.

https://moa.cms.waikato.ac.nz/book/

[19] RAPIDS Development Team. RAPIDS: Collection of
Libraries for End to End GPU Data Science, 2018.

[20] Alexey Tsymbal. The problem of concept drift: defi-
nitions and related work. Technical Report TCD-CS-
2004-15, The University of Dublin, Trinity College, De-
partment of Computer Science, Dublin, Ireland, 2004.

[21] Heng Wang and Zubin Abraham. Concept drift detec-
tion for streaming data, 2015.

[22] D.J. Wheeler. Understanding Variation: The Key to
Managing Chaos. SPC Press, 1993.

[23] Shujian Yu, Zubin Abraham, Heng Wang, Mohak Shah,
Yantao Wei, and José C. Prı́ncipe. Concept drift detec-
tion and adaptation with hierarchical hypothesis testing,
2017.

	Introduction
	Related Work
	Methodology
	Data Setup
	Data Sets
	Synthetic Data Sets
	Real-World Data Sets

	Label-Independent Concept Drift Detectors
	First Label-Independent Detector - SQSI
	Second Label-Independent Detector - UDetect

	Label-Dependent Concept Drift Detectors
	Evaluation Metrics
	Implementation

	Results
	Synthetic Data Sets
	Abrupt Drift
	Gradual Drift

	Real-World Data Sets
	Finding the Reference Drifted Batches
	Performance of Detectors on Real-World Data

	Label-Dependent Concept Drift Detectors

	Discussion
	Responsible Research
	Conclusion

