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Abstract
In this work, we focus on safe policy improve-
ment in multi-agent domains where current state-
of-the-art methods cannot be effectively applied
because of large state and action spaces. We
consider recent results using Monte Carlo Tree
Search for Safe Policy Improvement with Base-
line Bootstrapping and propose a novel algorithm
that scales this approach to multi-agent domains,
exploiting the factorization of the transition model
and value function. Given a centralized behavior
policy and a dataset of trajectories, our algorithm
generates an improved policy by selecting joint
actions using a novel extension of Max-Plus (or
Variable Elimination) that constrains local actions
to guarantee safety criteria. An empirical evalu-
ation on multi-agent SysAdmin and multi-UAV
Delivery shows that the approach scales to very
large domains where state-of-the-art methods can-
not work.

1. Introduction
Multi-Agent Reinforcement Learning (MARL) (Zhang
et al., 2021; Chalkiadakis & Boutilier, 2003) has recently
gained strong interest from the AI community due to the
theoretical and application challenges it faces. Real-world
applications of MARL are manifold. Some examples are
fleets of mobile robots collecting and delivering goods in
warehouses, or teams of drones used for environmental mon-
itoring (Albrecht et al., 2023; Zuccotto et al., 2024). Signif-
icant progress has been made in virtual scenarios, such as
competitive real-time strategy games (Vinyals et al., 2019),
where agents can explore without safety concerns. How-
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ever, in many real-world applications, collecting experience
can be impractical due to the safety issues inherent in the
learning process (Mazzi et al., 2023). A core foothold to-
wards the deployment of both RL and MARL applications
in real-world domains is the ability to reliably make good
decisions with minimum interactions with the environment
(Dulac-Arnold et al., 2021).

Offline RL takes a step in this direction by proposing algo-
rithms capable of learning policies from batches of histor-
ical data collected by behavior policies (e.g., sub-optimal
expert-designed policies) (Levine et al., 2020), but it faces
reliability challenges due to distribution shifts (i.e., a policy
different from the behavior policy induces a new distribution
over the trajectories) which can result in high variability in
the performance. In this context, Safe Policy Improvement
(SPI) aims at improving the behavioral policy by exploiting
information based on historical data and ensuring that the
new policy outperforms the behavior policy (Laroche et al.,
2019) with probabilistic guarantees.

Although some progress has been made in offline multi-
agent settings (Ma & Wu, 2023), to the best of our knowl-
edge, multi-agent methods do not have the reliability guaran-
tees of SPI algorithms. Multi-agent problems are challeng-
ing due to the combinatorial number of joint actions, which
grows exponentially with the number of agents, as they need
to coordinate to achieve optimal behavior (Oliehoek & Am-
ato, 2016). Furthermore, reliability becomes an issue in the
offline multi-agent setting due to data availability, resulting
from limited exploration of the behavior policy in large-
scale problems. A fully observable multi-agent problem
can be treated as a single-agent problem with a centralized
controller responsible for coordinating the agents. How-
ever, this approach is severely limited due to the large joint
action space, which makes policy optimization intractable.
To tackle these problems, in this work we propose a fac-
torized SPI approach for large-scale multi-agent problems,
enhancing both sample efficiency and scalability.

Previous work has demonstrated that by exploiting the
independencies between state variables represented by a
factorized transition model, an offline RL algorithm may
need orders of magnitude fewer samples to compute an
improved policy (Simão & Spaan, 2019). Additionally, a

1



Scalable Safe Policy Improvement for Factored Multi-Agent MDPs

recent work (Castellini et al., 2023) proposes the application
of Monte Carlo Tree Search (MCTS) to Safe Policy Im-
provement with Baseline Bootstrapping (SPIBB) (Laroche
et al., 2019), a state-of-the-art SPI method, showing asymp-
totic convergence as the number of simulations increases.
MCTS-SPIBB (Castellini et al., 2023) enhances the time
efficiency and scalability of SPIBB in single-agent scenarios
with large state spaces but it struggles in multi-agent settings
because the size of the joint action space becomes too large.
The three main contributions of this work, summarized in
the following, aim to overcome these limitations of MCTS-
SPIBB and to propose a novel approach to perform SPI in
multi-agent scenarios.

Our first contribution (regarding the scalability of multi-
agent SPI) concerns the proposal of a scalable Factored-
Value MCTS-based multi-agent SPI algorithm (FV-MCTS-
SPIBB). It exploits the factorization of the value function
and employs two novel action selection strategies, Con-
strained Max-Plus and Constrained Var-El. These strategies
differ from the standard Max-Plus (Wainwright et al., 2004)
and Var-El (Guestrin et al., 2003) that have already been
employed for policy optimization (FV-MCTS) (Choudhury
et al., 2021; Amato & Oliehoek, 2015) but never for SPI.
The local computations, message-passing for Constrained
Max-Plus and maximization for Constrained Var-El are care-
fully crafted to ensure that the SPIBB safety constraints on
joint actions are always satisfied. The proposed method
differs significantly from MCTS-SPIBB (Castellini et al.,
2023), which is a single-agent method relying on a standard
computation of the value function, that cannot, for this rea-
son, reliable scale to multi-agent scenarios with large joint
action spaces. Our method, instead, tractably selects coop-
erative actions by decomposing the global payoff function
into a sum of local terms. Using the constrained action-
selection strategies, FV-MCTS-SPIBB can select optimal
joint actions without evaluating the entire (huge) joint action
space.

Our second contribution (regarding multi-agent SPI sample
efficiency) is an efficient local state-action counting based
on the factorization of the transition model. This method
computes state-action counts considering local actions in-
stead of joint actions, thus extending the strategy proposed
in (Simão & Spaan, 2019). In this way, the proposed ap-
proach obtains larger counts (exploiting the prior knowledge
in the factorization of the transition model) which are then
exploited by FV-MCTS-SPIBB to generate better policies.
FV-MCTS-SPIBB can improve the baseline policy only in
non-bootstrapped state-action pairs, namely, pairs having
counts larger than a threshold.

Our third contribution is a theoretical analysis combined
with an empirical evaluation of the proposed method. The
theoretical analysis shows that our algorithm, under the

assumptions of the factorization of the transition model
and the value function, asymptotically converges to SPIBB
(Laroche et al., 2019). This ensures both the optimality and
safety of our approach. The empirical evaluation shows that
our method can significantly improve the behavior policy
in large-scale multi-agent domains for which no state-of-
the-art SPI algorithms can compute improved policies with
safety guarantees. We consider two large multi-agent do-
mains, multi-agent SysAdmin (Guestrin et al., 2003) and
multi-UAV Delivery (Choudhury et al., 2021). These envi-
ronments have state space sizes up to 1041 and action space
sizes up to 1016, which are orders of magnitude larger than
those used in the SPI literature1.

2. Related Work
The main research fields related to our work are SPI and
multi-agent planning/RL.

Safe Policy Improvement. Safe policy improvement is a
sub-field of offline reinforcement learning that aims to im-
prove a given policy π0 while guaranteeing specific perfor-
mance bounds compared to π0 (Levine et al., 2020). Scholl
et al. (2022) introduce a taxonomy of safe policy improve-
ment methods, categorizing them based on how they utilize
uncertainty in state-action pairs. A category of interest
concerns constrained learnable policies, and in this context
Delage & Mannor (2010) introduce a percentile criterion
for SPI. Petrik et al. (2016) bound this criterion from below
within the set of admissible policies. The percentile crite-
rion from Delage & Mannor (2010) is also reformulated by
Laroche et al. (2019) to allow deviations from the behavior
policy in state-action pairs with sufficiently low uncertainty.
This is achieved by bootstrapping the behavior policy in
state-action pairs with high uncertainty. The approach has
been specialized to factored domains, maintaining policy it-
eration as a policy optimization technique (Simão & Spaan,
2019). The algorithm proposed by Laroche et al. (2019)
was also re-implemented using MCTS to improve scalabil-
ity (Castellini et al., 2023). However, despite various exten-
sions and alternative strategies, none of these approaches
has been applied to large multi-agent systems, as we do in
this paper because they cannot be used effectively with large
action spaces.

Multi-agent Planning and RL. In the context of multi-
agent planning and RL (Oliehoek & Amato, 2016; Kochen-
derfer et al., 2022; Albrecht et al., 2023), there exist offline
and online methods. Offline methods involve computing
policies for the entire state space (Oliehoek & Amato, 2016)
with time and space complexity usually dependent on the

1Notice that the environments are much more complex than
those used in the SPI literature. For instance, Scholl et al. (2022)
and Laroche et al. (2019) use MDPs with 25 states and fewer than
10 actions.
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size of the state and action spaces, therefore they are not suit-
able for large multi-agent scenarios. Online methods, such
as MCTS-based methods (Browne et al., 2012), can scale be-
cause they only deal with states accessible from the current
state, but they still encounter challenges when dealing with
large action spaces, in particular in multi-agent domains
(Zerbel & Yliniemi, 2019). Amato & Oliehoek (2015) use
coordination graph and factorized global payoff function
to define interactions among agents in partially observable
environments and compute optimal centralized policies with
Var-El (Guestrin et al., 2003) under specific assumptions.
Choudhury et al. (2021) use MCTS with Max-Plus (Pearl,
1988) to generate optimal policies in multi-agent settings
and extends the approach presented by Amato & Oliehoek
(2015) to a scalable anytime method. However, none of
these methods is designed for SPI. Instead, the approach
proposed in this paper specifically addresses multi-agent
SPI.

3. Background
This section describes state-of-the-art mathematical frame-
works and algorithms used in the rest of the paper. Due to
space limitations, we only define the main notation here.
Markov Decision Processes, Multi-Agent Markov Decision
Processes and MCTS are described in Section A of the
supplementary material.

3.1. Factored Multi-Agent Markov Decision Processes

A Factored Multi-Agent Markov Decision Process (FM-
MDP) (Guestrin et al., 2003; Strehl et al., 2007) is a tu-
ple M = ⟨S, α, {Ai}i∈α, T,R, γ⟩, where S represents
the set of all states; α denotes a finite set of n agents;
A = ×iAi represents a finite set of joint actions, with
each Ai indicating the set of actions available to agent i;
T : S × A1 × · · · × An → P(S) is a stochastic transition
function that takes a joint state s̄ ∈ S and a joint action
ā ∈ A as input and returns a probability distribution over
the next states; R : S × A → R̄ ∈ [−Rmin, Rmax]

2 is a
bounded stochastic reward function and γ ∈ [0, 1] is the
discount factor. To evaluate the overall performance of a
policy π within the FMMDP M , we compute its expected
return in the initial state s̄0 as ρ(π,M) = V π

M (s̄0), where
V π
M (s̄) represents the state value of s̄. Qπ

M (s̄, ā) is the value
of action ā in state s̄. Additionally, Vmax represents the
known upper bound of the absolute value of the return, with
the inequality Vmax ≤ Rmax/1−γ providing a specific con-
straint on this upper bound. In FMMDP the state space is
factored as S = S1×· · ·×SK , such that s̄[Sk] ∈ Dom(Sk)

2According to the definition of MMDP (Boutilier, 1996), the
reward function can be defined globally or individually for each
agent. We use the second possibility. Consequently, the update of
Q-values is performed based on a vector of rewards.

indicates the value assigned to factor Sk in the joint state
s̄. The outcome of each factor Sk is independent of the
remaining, so the probabilistic transition function can be
written as T (s̄′ | s̄, ā) =

∏K
k=1 Pk(s̄

′[Sk] | s̄, ā), where
Pk is the conditional probability distribution of the state
variable Sk. A factored representation reduces sample com-
plexity and generalizes better from deterministic behavior
policies (Simão & Spaan, 2019). Given a set of dependency
identifiers J to indicate common dependencies between
different state-action pairs, we can define the dependency
functions Dk : S ×A→ J . Using this function, the prob-
abilistic transition function can be compactly represented
by T (s̄′ | s̄, ā) =

∏K
k=1 Pk(s̄

′[Sk] | Dk(s̄, ā)). Intuitively,
given a factor Sk and two state-action pairs s̄, ā and s̄′, ā′,
if Dk(s̄, ā) = Dk(s̄

′, ā′) then Pk(· | s̄, ā) = Pk(· | s̄′, ā′).

Coordination graphs and value function factorization.
Coordination graphs (CGs) (Guestrin et al., 2001; 2003) are
a standard tool for representing agent coordination mech-
anisms. A CG is a graph G = ⟨V, E⟩ with a node i ∈ V
for each agent and an edge (i, j) ∈ E for each pair of
agents i and j with interdependent payoff. The global pay-
off can be factorized considering the coordination graph as
Q(ā) =

∑
i∈V Qi(ai) +

∑
(i,j)∈E Qij(ai, aj) (Choudhury

et al., 2021). Here, Qij represents a local payoff function
for agents i and j connected by an edge (i, j), while Qi

denotes the individual utility function for each agent (refer
to Section B of the supplementary material for a detailed
description).

3.2. FV-MCTS with Max-Plus and Var-El

To make MCTS scale to large (multi-agent) domains with
an exponential number of actions, Choudhury et al. (2021)
propose Factored-Value Monte Carlo Tree Search with Max-
Plus (FV-MCTS-Max-Plus). This approach uses a factored
representation of the payoff function induced by a coordi-
nation graph and introduces Max-Plus for action selection
(see Algorithm 4 and 5 in the supplementary material). The
joint action is computed through message passing for a
maximum number of rounds, where iteratively each agent
i sends a message to its neighbors j ∈ Γ(i). At the end of
the message passing phase, each agent i selects its optimal
action by selecting the action ai that maximizes the func-
tion {Qi(ai) +

∑
j∈Γ(i) µji(ai)}. Max-Plus’s complexity

scales linearly with the number of edges of the CG (Pearl,
1988). An alternative version of the algorithm using Vari-
able Elimination instead of Max-Plus (Amato & Oliehoek,
2015) is FV-MCTS-Var-El (see Section C in the supplemen-
tary material). Var-El guarantees convergence to optimal
action selection for any type of CG but requires significantly
more computation than Max-Plus. Max-Plus guarantees
convergence only in acyclic graphs but empirically provides
very good results also on cyclic structures (Choudhury et al.,
2021).
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3.3. Safe Policy Improvement

The SPIBB (Laroche et al., 2019) algorithm aims to compute
a new policy πI that outperforms the behavior policy π0 with
high probability. Specifically, the improvement is performed
considering the following criterion

max
πI∈Π

ρ(πI ,M
D) s.t. ρ(πI ,M) ≥ ρ(π0,M)− ζ,∀M ∈ Ξ,

namely, SPI ensures that πI , learned on the Maximum Like-
lihood Estimation (MLE) MDP MD, outperforms π0 with
no more than a specified performance loss ζ and a confi-
dence level of δ ∈ [0, 1] in the set of admissible MDPs Ξ.
In practice, the behavior policy π0 is executed in the true en-
vironment M∗, where a dataset is collected and then used to
compute the estimated MDP MD. Two disjoint sets of state-
action pairs are also computed: the bootstrapped set, which
contains pairs that have not been observed enough times
in the dataset, and its complement, the non-bootstrapped
set. These sets are then used by SPIBB in a modified pol-
icy iteration (Sutton & Barto, 2018) procedure to compute
an optimal policy that follows the behavior policy π0 in
the bootstrapped state-action pairs while improving π0 in
the non-bootstrapped pairs. Further details on SPIBB are
provided in Section D of the supplementary material.

In the factored SPIBB setting (Simão & Spaan, 2019) global
state-action counts (considering joint states) are replaced
by more efficient local counts (considering factored states),
and the set of bootstrapped state-action pairs is defined as:

Bm =
{
(s̄, ā) ∈ S×A | ∃Sk : nD(Dk(s̄, ā)) < mk

}
(1)

with nD : J → N counting how many times a component
has been observed in dataset D and mk is the count thresh-
old for factor Sk. Factored SPIBB shows that any optimal
policy from the set of constrained policies:

Π0=
{
π | π(s̄, ā) = π0(s̄, ā), (s̄, ā) ∈ Bm

}
(2)

ensures SPI guarantees. Defining B(s) = {a | (s, a) ∈
Bm} as the set of bootstrapped actions for each state s, an
optimal policy π⋆ from Π0 assigns the same probabilities to
bootstrapped actions as the behavior policy, i.e., π⋆(s̄, ā) =
π0(s̄, ā) for all ā ∈ B(s̄), and the remaining probability p =
1−

∑
a∈B(s̄) π0(s, a) to the best non-bootstrapped action,

i.e., action ā⋆ with the highest Q-value s.t. ā⋆ ̸∈ B(s̄).

4. Method
We first provide an overview of our method for multi-agent
SPI, named Factored-Value MCTS-SPIBB (FV-MCTS-
SPIBB), and then describe the algorithm in detail. The
safe policy improvement algorithm FV-MCTS-SPIBB pro-
posed introduces two original elements. First, an efficient
technique for computing state-action counts that splits the

1 3 2

1 3 1 3 3 1

1 3 2
1 2 3

1 2 3 1 2 3

Figure 1. Action selection strategy (Algorithm 2). A synthetic
example with three agents (circles), each one with three local
actions. In this case, an agent corresponds to a factor. In red
“bootstrapped” local actions (i.e., nD(Dk(s̄, ā)) < mk), in green
“non-bootstrapped” local actions. On top: a “bootstrapped” local
action makes the joint action a1 bootstrapped, so it is returned as
it is; at the bottom, only “non-bootstrapped” local actions have
been selected so a2 is also non-bootstrapped: the agents com-
municate via message-passing to compute and return the best
non-bootstrapped joint action.

full dataset D into datasets, according to the factorization
of the transition model and it computes local state-action
counts for each factor (see Section 4.1). Second, a scalable
technique for safely computing the improved policy based
on the joint use of FV-MCTS and Constrained Max-Plus (or
Constrained Var-El) to SPI (see Section 4.2).

4.1. Efficient local state-action counting

Let the FMMDP M∗ = ⟨S, α, {Ai}i∈α, T
∗, R, γ⟩ be the

true environment, and D a dataset collected using the be-
havior policy π0 in M∗. Each sample stored in D is a
quadruple (s̄, ā, s̄′, r̄). The dataset is used to compute the
MLE FMMDP MD = ⟨S, α, {Ai}i∈α, T

D, R, γ⟩, where
TD is factorized according to dependency functions Dk.
From D, we compute the component counters, nD(j) =∑

s̄,ā,s̄′∈D
∑

k 1(Dk(s̄, ā) = j), and the realization coun-
ters, nD(s

′
k, j) =

∑
s̄,ā,s̄′∈D 1(Dk(s̄, ā) = j and s′[Sk] =

s̄′k), where j ∈ J and s′k ∈ Dom(Sk). Based on these
counters, we can estimate each transition component of
TD as defined in Section A of the supplementary material,
namely, P̂k

(
s′[Sk] | j

)
=

nD(s′k,j)
nD(j) .

We extend the approach proposed in (Simão & Spaan, 2019)
by considering local actions ai involved in the component
Dk rather than using joint actions ā. This results in larger
counts compared to standard counts using joint actions
(see (Simão & Spaan, 2019)) with a related reduction of
the set of bootstrapped joint state-action pairs. The efficient
state-action counting exploits the factorization of the transi-
tion model and state-action counting at the agent level. This
is fundamental for the algorithm because flat approaches
with state-action counting at the joint state and joint action
levels obtain very low counts, i.e., a very small number of
state-action pairs would be put in the non-bootstrapped set
using such a counting method. An in-depth explanation
of the local state-action counting strategy with a dedicated
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Algorithm 1 Factored-Value MCTS-SPIBB
Require: state s̄; behavior policy π0; MLE transition

model TD, simulation depth; exploration constant c;
coordination graph G = ⟨V, E⟩;

1: Ni(s̄, ai) = Qi(s̄, ai) = 0 ∀i ∈ V,∀ai ∈ Ai

2: Nij(s̄, ai, aj) = Qij(s̄, ai, aj) = 0 ∀(i, j) ∈ E , ai ∈
Ai, aj ∈ Aj

3: function FV-MCTS-SPIBB(s̄, depth)
4: while time limit not reached do
5: SIMULATE(s̄, depth)
6: ā⋆ = ACTION-SELECTION(0) ▷ Algorithm 2
7: return ā⋆ ▷ Best joint action

8: function SIMULATE(s̄, depth)
9: if depth = 0 then

10: return 0̄
11: ā = ACTION-SELECTION(c) ▷ Algorithm 2
12: s̄′, r̄ ∼ TD(s̄, ā), R(s̄, ā)
13: r̄′ = r̄ + γ· SIMULATE(s̄′, depth - 1)
14: UPDATE-STATS(s̄, ā, r̄′)

experiment on sample efficiency and more details about the
dependency function Dk can be found in Sections I and K
of the supplementary material.

4.2. Scalable multi-agent SPI: FV-MCTS-SPIBB

The proposed algorithm FV-MCTS-SPIBB (Algorithm 1)
performs the SPI of a multi-agent behavior policy π0 by sim-
ulating from the current state to generate the MC tree which
estimates action values. What characterizes FV-MCTS-
SPIBB (see blue lines in the algorithms) is i) the action
selection strategy (lines 6, 11), which implements the multi-
agent SPI approach, ii) the state transition (line 12), which
utilizes the MLE transition model TD. Simulations are ex-
ecuted recursively by the SIMULATE function. The ROLL-
OUT (not shown for space limits) is performed in function
SIMULATE and it chooses actions according to Algorithm 2.
Node counts and Q-value statistics are updated in the func-
tion UPDATE-STATS as in (Choudhury et al., 2021) (see
Section E of the supplementary material).

The new action selection strategy (Algorithm 2), which
represents the main methodological contributions of this
work, is efficiently performed using π0 in bootstrapped
state-action pairs and Constrained Max-Plus or Constrained
Var-El in non-bootstrapped pairs. Instead of always using
coordination through message passing (as in FV-MCTS-
Max-Plus, Section 3.2), the proposed strategy first selects a
joint action ā for the current joint state s̄ using the behavior
policy π0 (line 2). Then, if (s̄, ā) is bootstrapped, the joint
action is returned (lines 3 and 4). Otherwise, i.e., when the

Algorithm 2 Action Selection
Require: State s̄; behavior policy π0; non-bootstrapped

action optimization type Opt
1: function ACTION-SELECTION(c)
2: ā ∼ π0(s̄, ·)
3: if (s̄, ā) ∈ Bm then
4: return ā
5: else
6: if Opt=Max-Plus then
7: ā = MAX-PLUS(c) ▷ Algorithm 3
8: else
9: ā = VAR-EL(c) ▷ Algorithm 8

10: return ā

Algorithm 3 Constrained Max-Plus
Require: Coordination Graph G=⟨V, E⟩; state node statis-

tics N,Ni, Nij , Qi, Qij ; max iterations M ; node ex-
ploration constant c

1: function MAX-PLUS(c)
2: B̄Ai

m (s̄) = {a ∈ Ai | nD(Dk(s̄, ā)) ≥ mk,
∀k, ∀ā ∈ A[Ai = a]}, ∀i

3: µij(aj) = 0 for (i, j) ∈ E , ai ∈ B̄Ai
m (s̄),

aj ∈ B̄
Aj
m (s̄)

4: for t = 1 to M do
5: for every agent i do
6: for all neighbors j ∈ Γ(i) do
7:

µij(aj) = max
ai∈B̄Ai

m (s̄)
{Qi(ai) +

Qij(ai, aj) +∑
ℓ∈Γ(i)\{j} µℓi(ai)}

8: µij(aj) -= 1

|B̄
Aj
m (s̄)|

∑
aj∈B̄

Aj
m (s̄)

µij(aj)

9: Send message µij(aj) to agent j
10: if µij(aj) close to previous msg. then
11: break
12: for every agent i do
13: qi(ai) = Qi(s̄, ai) +

∑
j∈Γ(i) µji(ai)

14: if c ̸= 0 then
15: for all neighbors j ∈ Γ(i) do
16: qi(ai) += c

√
log(N+1)
Ni(s̄,ai)

17: āi = argmax
ai∈B̄Ai

m
qi(ai)

18: return ā ▷ Constrained selection ā ∈ B̄m

pair is non-bootstrapped (lines 7 and 9), a round of con-
strained message passing (see Algorithms 3 for Max-Plus
and Algorithm 8 for Var-El) is carried out by the agents to
pick the best joint action a⋆ ̸∈ Bm. This ensures that, as the
number of simulations grows, our method picks actions as
the Π0-optimal policy, as discussed in Section 3.3. Figure 1
provides a graphical representation of the two cases. As
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shown in that picture, message passing is specialized to the
SPI case, namely, it is used to compute Q-values only of
non-bootstrapped joint actions, and when used, it considers
for each agent only the non-bootstrapped local actions of
each agent. This mechanism is non-trivial and strategies
different from the proposed one cannot guarantee the safe
improvement. The proposed method deeply differs from
standard MCTS-SPIBB (Castellini et al., 2023), which in
turn relies on a standard computation of the value function,
inapplicable to multi-agent scenarios with large joint action
spaces, since it requires evaluating every single joint action.
Furthermore, our algorithm never computes the complete set
of non-bootstrapped joint actions (the computation would
be intractable in large environments). In line 3 of Algo-
rithm 2, the algorithm checks if a joint state-action pair is
bootstrapped by evaluating if in the joint action, there exists
a local bootstrapped action. If such a local bootstrapped
action does not exist, then the joint action is considered
non-bootstrapped. In the rest of the algorithm, we refer only
to the set of non-bootstrapped local actions.

The constrained Max-Plus strategy (Algorithm 3) is a
constrained version of Max-Plus with UCB-inspired ex-
ploration (Choudhury et al., 2021). This method is specif-
ically designed to address the SPI problem, hence it is
completely original. First, for each agent i ∈ α, it de-
fines the set of non-bootstrapped actions B̄Ai

m (s̄) for the
current joint state s̄ (line 2). This set contains all those
local actions a for agent i such that all joint actions ā,
whose i-th action Ai equal a (which is a set denoted as
A[Ai = a] = {ā ∈ A | ā[Ai] = a}), satisfy the in-
equality nD(Dk(s̄, ā)) ≥ mk. Hence, if each agent picks
actions from this set the resulting joint action will be non-
bootstrapped. The algorithm, then, initializes messages
µij only for local actions ai and aj belonging to B̄Ai

m (s̄)
(line 3). It performs message-passing until convergence
(lines 4-11) by maximizing only on local non-bootstrapped
actions (line 7). After normalizing the messages for each re-
ceiving agent j ∈ α (line 8), the Constrained Max-Plus com-
putes the local Q-values qi(ai) for each agent i ∈ α, taking
into account contributions from other agents (line 13). Then,
it incorporates a UCB-inspired exploration term (line 16),
selects the best local non-bootstrapped action ai for each
agent, and forms the joint action ā (line 17), which is then
returned. In Section E of the supplementary material, we
also present a Constrained version of Var-El.

5. Theoretical Analysis
This analysis shows that FV-MCTS-SPIBB converges to
SPIBB (Laroche et al., 2019) under the following assump-
tions: 1) the number of simulations performed by MCTS
tends to infinity; 2) convergence of Max-Plus (or Var-El)3;
3) UCB can be factorized according to Amato & Oliehoek

(2015); Choudhury et al. (2021). Under these assumptions,
FV-MCTS-SPIBB asymptotically converges to a policy that
is Π0-optimal in the MLE MDP MD and provides a pol-
icy which is a safe improvement of the behavior policy,
Theorem 1 and Theorem 2 of (Laroche et al., 2019). The
convergence builds upon the following results: i) conver-
gence of MCTS-SPIBB (Castellini et al., 2023) to SPIBB,
as the number of simulations grows; ii) convergence of Max-
Plus to optimal action selection for acyclic CG (Wainwright
et al., 2004) or convergence of Var-El to optimal action se-
lection with any CG (Guestrin et al., 2003); iii) optimality
of FV-MCTS using Max-Plus (Choudhury et al., 2021) or
Var-El (Amato & Oliehoek, 2015) as action selection strate-
gies. The optimality in the last point assumes that the UCB
exploration strategy can be decomposed into components,
which seems natural and has empirical confirmations but it
is still an open problem, as explained by Amato & Oliehoek
(2015); Choudhury et al. (2021)4.

Theorem 5.1 (Safe Policy Improvement for FMMDPs). Let
Π0 be the set of policies under the constraint (2), meaning,
to follow π0 in every bootstrapped state-action pair (s, a) ∈
Bm. Let UCB be component-wise in FV-MCTS-SPIBB, such
that at each level of the MCTS the action selection con-
verges to the optimum policy in Π0. Then, under a suitable
factorization of the Q-value function, the returned policy
π⊙ ∈ argmaxπ∈Πb

ρ(π,MD) is at least a ζ-approximate
safe policy improvement over π0 with high probability 1− δ,
with ζ = 4ϵVmax

1−γ − V (π⊙,MD) + V (π0,M
D).

Let us consider FV-MCTS-SPIBB with Max-Plus (the anal-
ysis for the Var-El version is similar). Pearl (1988) and
Wainwright et al. (2004) prove that Max-Plus converges to
optimality with acyclic coordination graphs. In our case,
the optimal selection of non-bootstrapped joint actions is
guaranteed by two elements: first, we constrain each agent
to send only messages related to its non-bootstrapped lo-
cal actions (Algorithm 3, lines 7-9); second, the space of
non-bootstrapped joint actions contains only actions ā that
are composed exclusively of non-bootstrapped local actions
(see Figure 1 and the description of Algorithm 2 for details).

3Max-Plus guarantees convergence to optimality with acyclic
CG. Empirically it provides approximately optimal results even on
cyclic structures. Var-El ensures convergence for any type of CG,
but the complexity of the algorithm is exponential in the treewidth,
a parameter related to the non-acyclicity of the graph. Finding the
treewidth of a graph is a difficult problem (NP), and it can be easily
estimated with Depth-First Search (DFS). Therefore, it is possible
to decide whether to use Max-Plus or Var-El by evaluating the
treewidth of the graph.

4Empirical support for this decomposability is shown in all our
empirical tests involving FV-MCTS-SPIBB-Max-Plus/Var-El (e.g.,
Fig. 2, 3, and 7), in which observed performance improvement and
safety require the convergence of MCTS-based Q-value estimation.
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This guarantees that the joint action ā selected by Con-
strained Max-Plus (Algorithm 3) is indeed optimal in the
space of non-bootstrapped joint actions. However, Q-values
computed by Max-Plus in MCTS are estimates drawn from
statistics Qi and Qij (updated at each simulation according
to the procedure in Algorithm 7 of the supplementary ma-
terial) and these estimates are based on UCB exploration.
The convergence of these estimates to real Q-values is guar-
anteed only under the assumption of component-wise UCB
(Choudhury et al., 2021). As explained by Choudhury et al.
(2021); Amato & Oliehoek (2015) this is still an open prob-
lem but empirical evidence indicates the effectiveness of this
strategy. A similar analysis can be performed for FV-MCTS-
SPIBB with Var-El, referring to the convergence results in
Guestrin et al. (2003) (see Section E in the supplementary
material). In this case, no restriction on acyclic graphs is
imposed. Given the convergence of the action selection
strategy, the possibility of introducing MCTS in SPIBB is
theoretically proved in Castellini et al. (2023). The effective-
ness of Max-Plus and Var-El in improving MCTS scalability
within multi-agent contexts is described by Choudhury et al.
(2021) and Amato & Oliehoek (2015), respectively.

Efficient local state-action counting. The proposed effi-
cient counting method reduces the number of samples neces-
sary to improve the behavior policy in multi-agent factored
domains compared to the original SPIBB algorithm. The the-
oretical analysis from Simão & Spaan (2019) for Factored
SPIBB (F-SPIBB) on the single agent can be specialized
to multi-agent settings, where actions belong to the space
A = ×iAi. Such specialization, referred to as MF-SPIBB
hereafter, remains dependent on policy iteration. Consid-
ering the set of policies Π0 as defined in our Equation (2)
(which, in turn, refers to our definition of bootstrapped joint
state-action pairs), the improved policy returned by MF-
SPIBB is guaranteed to be at least a ζ-approximate safe
policy improvement over the behavior policy π0 with a high
probability of 1− δ (Theorem 1) (Simão & Spaan, 2019).

However, scaling to large domains remains challenging due
to the inherent algorithmic complexity of policy iteration.
To solve these problems, FV-MCTS-SPIBB combines the
efficient counting of MF-SPIBB, with the scalable multi-
agent SPI which uses constrained Max-Plus (or Var-El).
This integration improves sample efficiency in data utiliza-
tion and scalability compared to policy iteration-based al-
gorithms. Extending the Equation (8) of Proposition 1 of
(Simão & Spaan, 2019) we show that the number of sam-
ples necessary to improve the behavior policy in multi-agent
factored settings is reduced compared to SPIBB algorithm
(Laroche et al., 2019). See SectionS E and I in the supple-
mentary material for a detailed analysis of the number of
samples and sample efficiency. Section G provides details
about the relationship between the quality of the MDP and
safety/convergence.

6. Experimental evaluation
We present the domains and the experimental setting for
evaluating the scalability and safety of FV-MCTS-SPIBB.

6.1. Domains

Multi-agent SysAdmin is a standard MMDP benchmark
(Guestrin et al., 2003). In a network of interconnected
machines, each agent controls a single machine described by
two variables. Initially, all machines are turned on. Agents
can, at each time step, activate their machines, or take no
action. The actions may result in status changes, and agents
are rewarded for machines reaching the (good, success) state.
A ring and a star network are considered (see Figure 5.a, b
in Section F of the supplementary material).

Multi-UAV Delivery was proposed in (Choudhury et al.,
2021). Drones start from random cells and aim to reach
target regions. Each drone can take 10 actions, including
movement, staying in place, and boarding in its assigned tar-
get region. Successful boarding rewards drones with +1000,
and they receive intermediate rewards based on proximity.
Drones incur penalties for movement away from targets, and
penalties for collisions with other drones or simultaneous
boarding in the same region.

We note that the environments are much more complex than
those used in the SPI literature. For instance, (Scholl et al.,
2022) and (Laroche et al., 2019) use MDPs with 25 states
and fewer than 10 actions. In contrast, our settings span a
wide range, reaching approximately 1030 to 1041 states, and
109 to 1016 actions at the higher end of the spectrum. Refer
to Section F for a detailed description of the domains.

6.2. Algorithms

We compare our method with all the main state-of-
the-art SPI algorithms, namely, SPIBB and Lower-
SPIBB (Laroche et al., 2019); DUIPI (Schneegass et al.,
2008); Adv-Approx-Soft-SPIBB and Lower-Approx-Soft-
SPIBB (Scholl et al., 2022); Approx-Soft-SPIBB (Nadjahi
et al., 2019) (all based on Policy Iteration); and MCTS-
SPIBB (Castellini et al., 2023). We also use the FV-MCTS-
Max-Plus (Choudhury et al., 2021) and FV-MCTS-Var-El
(Amato & Oliehoek, 2015) algorithms with MLE transition
model as unsafe baselines (i.e., the policy they produce can
deteriorate if the MLE model is based on small datasets).
We highlight in advance that no other SPI algorithm in the
literature, besides MCTS-SPIBB, can scale to more than 3
agents in the two domains considered in this analysis: there-
fore they do not show in the figures. For more details see
Section J in the supplementary material.5

5Code available at https://github.com/Isla-lab/fv-mcts-spibb
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a)

b)

c)

a)

Figure 2. Multi-agent SysAdmin with ring topology: performance.
a) Scalability of FV-MCTS-SPIBB (Max-Plus and Var-El): per-
formance as the number of agents increases. b, c) Safety of FV-
MCTS-SPIBB-Max-Plus (ρ̄(π,M∗) and CVaR) as the number of
trajectories increases. Results obtained using Var-El instead of
Max-Plus in the Supplementary Material.

6.3. Results

The scalability and safety results of FV-MCTS-SPIBB are
shown in the following, considering the standard measure
average return ρ̄(π,M∗). In SysAdmin it is computed av-
eraging the returns of 100 runs of 20 steps each, while in
Multi-UAV Delivery it is computed averaging the returns of
50 runs of 50 steps each. A Hyperparameter tuning on the
sensitivity of MCTS parameters and additional results are
available in Sections H and L of the supplementary material.

6.3.1. MULTI-AGENT SYSADMIN WITH RING TOPOLOGY

Scalability. Among the SPI methods tested on this domain,
only MCTS-SPIBB and our approach worked (i.e., SPIBB
and other SPI methods cannot scale to such a large action
space). Figure 2.a shows box-plots of the average return
ρ̄(π,M∗) (y-axis) as the number of agents varies from 4
to 32. For FV-MCTS-SPIBB-Max-Plus and FV-MCTS-
SPIBB-Var-El, we use the following parameters: 100 simu-
lations, an exploration constant empirically found to be best
at c = n. (with n number of agents), MCTS tree depth of

20-steps, γ = 0.9, and 8 iterations of message passing in
Max-Plus. With MCTS-SPIBB we used similar parameters
but 1000 simulations since it does not exploit the model
factorization and it requires more simulations.

With 4 agents all methods improved upon the behavior pol-
icy π0 (orange box). FV-MCTS-SPIBB-Var-El (green box)
slightly outperforms FV-MCTS-SPIBB-Max-Plus (red box)
and both approaches outperform MCTS-SPIBB (blue box).
With 8 agents FV-MCTS-SPIBB-Max-Plus and FV-MCTS-
SPIBB-Var-El provide a (similar) significant improvement
upon the behavior policy, but the gap between these meth-
ods and MCTS-SPIBB increases (i.e., FV-MCTS-SPIBB
methods have performance around 22.0 and MCTS-SPIBB
around 13.0, while the behavior policy reaches about 12.0).
With 16 agents, FV-MCTS-SPIBB-Var-El cannot compute
actions in a reasonable time, due to the exponential complex-
ity of Var-El, namely, it is exponential on the induced width
of the CG that depends on the elimination order (Dechter,
1999). MCTS-SPIBB achieved some improvements upon
the baseline but performed less than FV-MCTS-SPIBB-
Max-Plus. With 24 and 32 agents, only FV-MCTS-SPIBB-
Max-Plus can generate a performance improvement com-
pared to the behavior policy since MCTS-SPIBB breaks
because of the too large number of actions available.

Safety. To empirically test whether the improvement gener-
ated by FV-MCTS-SPIBB-Max-Plus and FV-MCTS-SPIBB-
Var-El is safe we evaluate the performance of these ap-
proaches on a domain with 8 machines (i.e., agents) using
datasets of various sizes |D| = [5, 1000, 10000, 50000]. For
each dataset size, we perform 100 runs of 20 steps, then we
compute the average return ρ̄(π,M∗) (where the average
is performed across the 100 runs) and the 15% Conditional
Value-at-risk (15%-CVaR), which is the mean performance
over the 15% worst runs. Parameters are the same used
in scalability tests. We explore the MLE transition model
impact without safety considerations, examining FV-MCTS-
Max-Plus and FV-MCTS-Var-El.

In Figures 2.b and 2.c, we observe that FV-MCTS-Max-
Plus with the MLE model is not safe, as expected. When the
number of trajectories in D is reduced to 5, the performance
(i.e., both ρ̄(π,M∗) and 15%-CVaR, see the blue lines) be-
comes lower than that of the behavior policy (yellow lines).
In comparison, the performance of FV-MCTS-SPIBB-Max-
Plus (red lines) is always higher than the π0. In particular,
FV-MCTS-SPIBB-Max-Plus has ρ̄(π,M∗) = 13.1 while
FV-MCTS-Max-Plus ρ̄(π,M∗) = 10.9, namely, ≈ 16%
less because the accuracy of the transition model TD with
|D| is very small. With |D| = 50000, both methods im-
prove their average performance to around 22.0. Similar
results are observed also using Var-El for action selection
instead of Max-plus (see Figures 9.a,b in the Supplementary
Material).
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b)

c)

a)

Figure 3. Multi-UAV Delivery: performance. a) Scalability of FV-
MCTS-SPIBB-Max-Plus: performance as the number of agents
increases. b, c) Safety of FV-MCTS-SPIBB-Max-Plus as the
number of trajectories increases.

6.3.2. MULTI-AGENT SYSADMIN WITH STAR TOPOLOGY

Similar tests performed on multi-agent SysAdmin with star
topology (see Figure 5.b) confirmed the results obtained
with the ring topology. In Figure 10 of the supplementary
material we show, for instance, the charts about the safety
of FV-MCTS-SPIBB-Max-Plus and FV-MCTS-Max-Plus
with MLE transition model on a domain with 16 machines.

6.3.3. MULTI-UAV DELIVERY

This domain is particularly challenging because it has a dy-
namic coordination graph that can generate multiple cycles
as agents move (Figure 5.c).

Scalability. In this domain, we can only assess the scala-
bility of FV-MCTS-SPIBB-Max-Plus, since it is the only
SPI method capable of handling such large domain sizes.
We evaluate it with 8 and 16 agents. For FV-MCTS-SPIBB-
Max-Plus we use 1000 simulations, exploration constant
c = n (i.e., number of agents), tree depth of 20 steps,
γ = 1.0, and 8 iterations of message passing in Max-Plus.
Figure 3.a shows that with 8 agents FV-MCTS-SPIBB-Max-
Plus achieves a significant average improvement from 457.7
to 655.6. This performance advantage persists as the do-
main size increases to 16 agents, with an improvement from
454.2 to 748.1.

Safety. The safety of the improvement generated by FV-

MCTS-SPIBB-Max-Plus is shown in a domain with 8 agents
(Figures 3.b and 3.c). Again, FV-MCTS-Max-Plus with the
MLE transition model (blue line), is used to show that with
small datasets the inaccuracies of the MLE model lead to
unsafe policies if SPI strategies are not used. We use dataset
sizes D = [50, 5000, 10000, 20000], 100 simulations, an
exploration constant c = n + 2, a tree depth of 10 steps,
γ = 1.0, and 8 iterations of message passing. Figures 3.b
show that with a small number of trajectories (d = 50), FV-
MCTS-Max-Plus performs lower than π0 (i.e., 372.1) while
FV-MCTS-SPIBB-Max-Plus exhibits performance similar
to π0 (i.e., 412.1). With d = 5000, the average performance
and 15%-CVaR of FV-MCTS-Max-Plus remains below π0

(see Figure 3.c for the 15%-CVaR), whereas FV-MCTS-
SPIBB-Max-Plus performs better than π0. As the number
of trajectories increases, the average performance of both
methods tends to be the same value.

7. Conclusion
We introduced a first multi-agent SPI algorithm based on
two main methodological contributions, an efficient method
(based on transition model factorization) for counting state-
action pairs in the available dataset, and an efficient online
strategy (based on value function factorization and MCTS)
for safely computing the improved policy. After formally
defining the algorithm, we provide a theoretical analysis that
identifies the conditions for which convergence and safety
can be guaranteed. Moreover, we provide an empirical eval-
uation considering two large-scale multi-agent benchmark
domains for which no state-of-the-art SPI algorithm can
work. Future work could extend the proposed methodology
to a competitive or mixed scenario and on its application in
settings where data are collected sequentially.
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Supplementary Material
A. Additional Background
MDP. A Markov Decision Process (MDP) (Puterman, 2014) is formally represented as a tuple M = ⟨S,A, T,R, γ⟩. In this
representation, S is a finite set of states; A is a finite set of actions; T : S ×A→ P(S) is a stochastic transition function,
where P(X) represents the set of probability distributions over a finite set X; R : S ×A→ [−Rmax, Rmax] is a bounded
stochastic reward function and γ ∈ [0, 1] is the discount factor. To evaluate the overall performance of a policy π within the
MDP M , we compute its expected return in the initial state s0 as ρ(π,M) = V π

M (s0), where V π
M (s) represents the state

value of s and Qπ
M (s, a) the action value of (s, a). Additionally, Vmax represents the known upper bound of the absolute

value of the return, with the inequality Vmax ≤ Rmax/1−γ providing a specific constraint on this upper bound.

MMDP. In Multi-agent MDPs (MMDPs) (Boutilier, 1996) multiple agents cooperate to achieve a common goal. Formally,
an MMDP is represented as a tuple M = ⟨S, α, {Ai}i∈α, T,R, γ⟩, where S represents the set of all states; α denotes a
finite set of n agents; A = ×iAi represents a finite set of joint actions, with each Ai indicating the set of actions available to
agent i (this set grows exponentially with the number of agents); T : S ×A1 × · · · ×An → P(S) is a stochastic transition
function that takes a state s ∈ S and a joint action ā ∈ A as input and returns a probability distribution over the next states;
R and γ have the same meaning they have in MDPs.

FMMDP. In Factored MMDP (FMMDP) (Guestrin et al., 2003; Strehl et al., 2007) the state space is factored as S =
S1 × · · · × SK , such that s̄[Sk] ∈ Dom(Sk) indicates the value assigned to factor Sk in the joint state s̄. The outcome of
each factor Sk is independent of the remaining, so the probabilistic transition function can be written as T (s̄′ | s̄, ā) =∏K

k=1 Pk(s̄
′[Sk] | s̄, ā)), where Pk is the conditional probability distribution of the factor Sk. Furthermore, given a set

of dependency identifiers J to indicate common dependencies between different state-action pairs, we can define the
dependency functions Dk : S × A → J . Using this function, the probabilistic transition function can be compactly
represented by T (s̄′ | s̄, ā) =

∏K
k=1 Pk(s̄

′[Sk] | Dk(s̄, ā)). Intuitively, given a state-variable Sk and two state-action pairs
s̄, ā and s̄′, ā′, if Dk(s̄, ā) = Dk(s̄

′, ā′) then Pk(· | s̄, ā) = Pk(· | s̄′, ā′).

Monte Carlo Tree Search. Monte Carlo Tree Search (MCTS) is a technique used by agents to make decisions based on
their current state (Browne et al., 2012). It creates a tree structure rooted in the current state to estimate the Q-values, which
help the agent choose the best action after running a certain number of simulations. During each simulation, MCTS uses a
strategy called Upper Confidence Bound applied to Trees (UCT) (Kocsis & Szepesvári, 2006) to decide on actions. UCT
balances exploration and exploitation within the tree by updating two statistics for each node (state): the average discounted
return achieved by selecting a specific action and the number of times that action has been chosen from that node. UCT
extends the UCB1 strategy (Auer et al., 2002) to sequential decision-making, ensuring a trade-off between exploring new
actions and exploiting known ones. It selects the action with the best upper confidence bound, which is calculated based on
the average return and a constant parameter. After completing all the simulations, the action with the highest average return
at the root node is executed in the real environment.

B. Details about coordination graphs
A CG is a graph G = ⟨V, E⟩ that has a node i ∈ V for each agent and an edge (i, j) ∈ E for each pair of agents (i.e., nodes)
i and j with interdependent payoffs (Guestrin et al., 2001; Choudhury et al., 2021). The coordination graph induces a
factorization of the global payoff function

Q(ā) =
∑
i∈V

Qi(ai) +
∑

(i,j)∈E

Qij(ai, aj). (3)

Here, each agent has an individual payoff function Qi (highlighted in blue in Figure 4) and a local payoff function Qij

(highlighted in red) that represents the interaction between agents i and j.

In this work, we present two domains with different types of CGs, including cyclic, acyclic, static, and dynamic graphs.
Specifically, we evaluate the methods on a multi-agent SysAdmin with a ring network, as shown in Figure 1.a (in the paper).
In this case, the CG is static because it does not change when agents transition states, and it is also cyclic. Additionally, we
evaluate the methods in a multi-agent SysAdmin scenario with a star network, where the CG is always static but acyclic.
The second domain is multi-UAV Delivery, as depicted in Figure 1.c (in the paper). In this case, it can be both acyclic and
cyclic, which means that the graph can change with every state transition. In the multi-UAV Delivery domain, agents start
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Figure 4. Example of coordination graph and factored payoff function on multi-agent SysAdmin with ring topology (left) and multi-UAV
Delivery (right).

from random positions and are randomly assigned to target regions. To coordinate agents assigned to the same target (as
shown in Figure 4, where nodes representing agents have the same target color), a CG is used to connect these agents with
an edge. At each step, agents move and change their state, dynamically altering the CG by creating new connections. As
seen in Figure 4, agents a1 and a4, assigned to different targets, are connected in the same CG because one of the objectives
is to avoid agent collisions, requiring them to coordinate.

C. Details about Factored-Value MCTS with Max-Plus and Variable Elimination
Algorithm 4 represents both FV-MCTS-Max-Plus and FV-MCTS-Var-El. The first algorithm, proposed in (Choudhury
et al., 2021), uses Max-plus with UCB-inspired exploration (see Algorithm 5) to select the best joint action, while the
second algorithm, inspired by (Amato & Oliehoek, 2015), uses Variable Elimination with UCB-inspired exploration (see
Algorithm 6) to select the best joint action. Since the two algorithms have several common elements, they have been merged
into a unique algorithm. FV-MCTS-Max-Plus requires input parameter action-selection=Max-Plus while FV-MCTS-Var-El
requires action-selection=Var-El. The algorithm initializes statistics (simulation counters N and estimated Q-values Q) for
all nodes and edges in the coordination graph for the given state s̄. The main function, FV-MCTS, runs multiple simulations
starting from state s̄. After completing these simulations, it calculates and returns a joint action ā⋆. Simulations are executed
recursively by the SIMULATE function, similar to standard MCTS. Statistics are updated in the usual way by the function
UPDATE-STATS, with the addition of considering edge statistics Nij and Qij , as they are necessary for computing optimal
actions. The ROLLOUT (not in the pseudo-code) is performed in function SIMULATE for states out of the MC tree it chooses
actions according to uniformly random distribution.

FV-MCTS with Variable Elimination (FV-MCTS-Var-El). As previously defined, the global payoff can be factorized
as Q(ā) =

∑
i∈V Qi(ai) +

∑
(i,j)∈E Qij(ai, aj) (Choudhury et al., 2021). Alternatively, it can be factorized as, Q(ā) =
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Algorithm 4 Factored-Value MCTS with Max-Plus and Variable Elimination (Amato & Oliehoek, 2015; Choudhury et al.,
2021)
Require: state s̄; MLE transition model TD; depth; exploration constant c; action-selection

1: Ni(s̄, ai) = Qi(s̄, ai) = 0 ∀i ∈ V,∀ai ∈ Ai ▷ Initialize node statistics
2: Nij(s̄, ai, aj) = Qij(s̄, ai, aj) = 0 ∀(i, j) ∈ E , ai ∈ Ai, aj ∈ Aj ▷ Initialize edge statistics
3: function FV-MCTS(s̄, depth)
4: while time limit not reached do
5: SIMULATE(s̄, depth)
6: if action-selection = Max-Plus then
7: ā⋆ = MAX-PLUS(0) ▷ No exploration here
8: else
9: ā⋆ = VAR-EL(0) ▷ No exploration here

10: return ā⋆ ▷ Best joint action
11:
12: function SIMULATE(s̄, depth)
13: if depth = 0 then
14: return 0̄
15: if action-selection = Max-Plus then
16: ā = MAX-PLUS(c)
17: else
18: ā = VAR-EL(c)
19: s̄′, r̄ ∼ T (s̄, ā)D, R(r̄, ā)
20: r̄′ = r̄ + γ· SIMULATE(s̄′, depth - 1)
21: UPDATE-STATS(s̄, ā, r̄′)
22:
23: function UPDATE-STATS(s̄, ā, r̄)
24: for every agent i do
25: Ni(s̄, ai) += 1

26: Qi(s̄, ai) += ri−Qi(s̄,ai)
Ni(s̄,ai)

27: for every edge (i, j) ∈ G(s̄) do
28: Nij(s̄, ai, aj) += 1
29: re = ri + rj

30: Qij(s̄, ai, aj) += re−Qij(s̄,ai,aj)
Nij(s̄,ai,aj)

∑
i Qi(ai) (Amato & Oliehoek, 2015). We can exactly compute the best joint action argmaxā Q(ā) using Var-El (Guestrin

et al., 2003). Var-El eliminates variables while maximizing over them, collecting local payoffs dependent on those variables.
After eliminations, it finds the optimal joint action by propagating agent actions in reverse, maximizing conditional functions.
The algorithm has exponential complexity in the induced width of the CG, which depends on the elimination order (Dechter,
1999). In the context of online planning, Var-El is integrated into MCTS (Amato & Oliehoek, 2015). It maintains local
statistics for each component, such as the local mean payoff Qi(s̄, ai) and the number of times component i selects action
ai, N(s̄, ai). Local mean payoffs are updated incrementally as follows, Qi(s̄, ai) = Qi(s̄, ai)+ (ri−Qi(s̄,ai))/N(s̄,ai), where
ri is the reward. In constructing the Monte Carlo tree, joint actions are chosen using a version of UCB, ensuring exploration.

D. Safe Policy Improvement with Baseline Bootstrapping (SPIBB)
The Safe Policy Improvement with Baseline Bootstrapping (Laroche et al., 2019) algorithm reformulates the percentile
criterion (Delage & Mannor, 2010; Petrik et al., 2016) to make the search for an efficient and provably safe policy tractable.
The SPIBB algorithm searches for an efficient and provably safe policy tractable by considering the objective

max
π∈Π

ρ(π,MD) s.t. ρ(π,M) ≥ ρ(π0,M)− ζ,∀M ∈ Ξ, (4)
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Algorithm 5 Max-Plus with UCB-inspired exploration (Choudhury et al., 2021)
Require: Coordination Graph G(s̄) = ⟨V, E⟩; state node statistics N,Ni, Nij , Qi, Qij ; max iterations M ; node exploration

constant c
1: function MAX-PLUS(c)
2: µij(aj) = µji = 0 for (i, j) ∈ E , ai ∈ Ai, aj ∈ Aj

3: for t = 1 to M do
4: for every agent i do
5: for all neighbors j ∈ Γ(i) do

6: Compute µij(aj) = maxai

{
Qi(s̄, ai) +Qij(s̄, ai, aj) +

∑
ℓ∈Γ(i)\{j}

µℓi(ai)

}
▷ Γ(i) is the set of

neighbors of i
7: µij(aj) -= 1

|Aj |
∑

aj∈Aj

µij(aj) ▷ Message normalization

8: Send message µij(aj) to agent j
9: if µij(aj) close to previous message then

10: break
11: for every agent i do
12: qi(ai) = Qi(s̄, ai) +

∑
j∈Γ(i)

µji(ai)

13: if c ̸= 0 then
14: for all neighbors j ∈ Γ(i) do
15: qi(ai) += c

√
log(N+1)
Ni(s̄,ai)

16: a′i = argmaxai
qi(ai)

return a′

Algorithm 6 Variable Elimination with UCB-inspired exploration (Amato & Oliehoek, 2015)
Require: Coordination Graph G(s̄) = ⟨V, E⟩; variable order O; state node statistics N,Ni, Nij , Qi, Qij ; node exploration

constant c
1: function VAR-EL(c)
2: F ← ∅
3: for each edge (i, j) ∈ E do
4: Add to F the function Qij(s̄, ai, aj)

5: for variable name v ∈ O do
6: fi ← ∅
7: for function f ∈ F do
8: if f involves variable v then
9: Add to fi the function f and remove it from F

10: if c ̸= 0 then
11: ϕv ← maxav

(∑
f∈fi

f + c
√

log(N+1)
Ni(s̄,av)

)
12: else
13: ϕv ← maxav

∑
f∈fi

f

14: Add ϕv to F
15: Let fmax be the single function remaining in F
16: Solve fmax and let ā = argmax fmax

return a′

where Ξ is the set of admissible MDPs: Ξ(MD, e) = {M = ⟨S,A, T,R, γ⟩ | ∀(s, a) ∈ S×A, ∥T (·|s, a)−TD(·|s, a)∥1 ≤
e(s, a)}, and e : S ×A→ R is an arbitrary function representing the uncertainty over the estimated transition model TD,
defined in such a way that Ξ(MD, e) includes the true MDP with high probability. Then, a policy is considered safe if,
given a confidence level δ and an approximation parameter ζ, with a high probability of 1 − δ, the improved policy is
ζ-approximately as good as the behavior policy π0 for all M ∈ Ξ(MD, e). SPIBB distinguishes two distinct sub-sets, the
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Algorithm 7 Factored-Value MCTS-SPIBB
Require: state s̄; behavior policy π0; bootstrapped joint state-action set Bm; non-bootstrapped joint state-action set B̄m;

MLE transition model TD, simulation depth; exploration constant c; coordination graph G = ⟨V, E⟩; non-bootstrapped
action optimization type Opt

1: Ni(s̄, ai) = Qi(s̄, ai) = 0 ∀i ∈ V,∀ai ∈ Ai

2: Nij(s̄, ai, aj) = Qij(s̄, ai, aj) = 0 ∀(i, j) ∈ E , ai ∈ Ai, aj ∈ Aj

3: function FV-MCTS-SPIBB(s̄, depth)
4: while time limit not reached do
5: SIMULATE(s̄, depth)
6: ā⋆ = ACTION-SELECTION(0) ▷ Algorithm 2
7: return ā⋆ ▷ Best joint action

8: function SIMULATE(s̄, depth)
9: if depth = 0 then

10: return 0̄
11: ā = ACTION-SELECTION(c) ▷ Algorithm 2
12: s̄′, r̄ ∼ TD(s̄, ā), R(s̄, ā)
13: r̄′ = r̄ + γ· SIMULATE(s̄′, depth - 1)
14: UPDATE-STATS(s̄, ā, r̄′)

15: function UPDATE-STATS(s̄, ā, r̄)
16: for every agent i do
17: Ni(s̄, ai) += 1

18: Qi(s̄, ai) += ri−Qi(s̄,ai)
Ni(s̄,ai)

19: for every edge (i, j) ∈ G(s̄) do
20: Nij(s̄, ai, aj) += 1
21: re = ri + rj

22: Qij(s̄, ai, aj) += re−Qij(s̄,ai,aj)
Nij(s̄,ai,aj)

bootstrapped subset B = {(s, a) ∈ S ×A | nD(s, a) < N∧}, containing state-action pairs observed fewer than N∧ times
in D, and the non-bootstrapped set, its complement. In this context, nD(s, a) represents the state-action counter. Policies
improved using SPIBB are essentially optimal policies that satisfy the SPIBB constraint. Namely, they are constrained to
belong to the space of policies Π0= {π ∈ Π : π(s, a) = π0(s, a) : ∀(s, a) ∈ B} . This way, policy optimization is conducted,
using policy iteration, in the MLE MDP MD over the constrained policy space Π0: argmaxπ∈Π0

ρ(π,MD).

E. FV-MCTS-SPIBB
Algorithm 7 provides a detailed description of the proposed FV-MCTS-SPIBB algorithm. We mark in blue the lines that
differ from the standard algorithms. The algorithm initializes statistics (simulation counters N and estimated Q-values Q)
for all nodes and edges in the coordination graph for the given state s̄. The main function, FV-MCTS-SPIBB, runs multiple
simulations starting from state s̄ (line 5). After completing these simulations, it calculates and returns a joint action ā⋆

(lines 6 and 7). Simulations are executed recursively by the SIMULATE function (line 8-14), similar to standard MCTS.
The structure of the algorithm is similar to that of (Choudhury et al., 2021). The main differences, highlighted in blue,
are the action selection strategy (line 11), which implements the SPI approach, and the state transition (line 12), which
utilizes the MLE transition model TD rather than the true model. Statistics are updated in the usual way (line 14) by the
function UPDATE-STATS (lines 15-22), with the addition of considering edge statistics Nij and Qij , as they are necessary
for computing optimal non-bootstrapped actions. The ROLLOUT (not in the pseudo-code for the space limits) is performed
in function SIMULATE for states out of the MC tree: it chooses actions according to Algorithm 2 but using a uniformly
random distribution for non-bootstrapped actions.

FV-MCTS-SPIBB with Constrained Variable Elimination. Algorithm 8 is a constrained version of Variable Elimination
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Algorithm 8 Constrained Variable Elimination
Require: Coordination Graph G=⟨V, E⟩; variable order O; state node statistics N,Ni, Nij , Qi, Qij ; node exploration

constant c

1: function VAR-EL(c)
2: B̄Ai

m (s̄) = {a ∈ Ai | nD(Dk(s̄, ā)) ≥ mk,
∀k, ∀ā ∈ A[Ai = a]}, ∀i

3: F ← ∅
4: for each edge (i, j) ∈ E do
5: Add to F the function Qij(s̄, ai, aj)

6: for variable name v ∈ O do
7: fi ← ∅
8: for function f ∈ F do
9: if f involves variable v then

10: Add to fi the function f and
remove it from F

11: if c ̸= 0 then
12: ϕv ← maxav∈B̄Av

m

(∑
f∈fi

f + c
√

log(N+1)
Ni(s̄,av)

)
13: else
14: ϕv ← maxav∈B̄Av

m

∑
f∈fi

f

15: Add ϕv to F
16: Let fmax be the single function remaining in F
17: Solve fmax and let ā = argmax fmax
18: return ā ▷ Constrained selection ā ∈ B̄m

with UCB-inspired exploration (see Algorithm 6). The algorithm starts by computing the set of non-bootstrapped actions
B̄Ai
m (s̄) for each agent i ∈ α (line 2). Next, it generates a set F that contains Q-functions Qij(s̄, ai, aj) for each edge (i, j)

in the coordination graph G (lines 4-5). The algorithm then proceeds in a given order, denoted by O. It removes functions
from F that involve a particular agent v and replaces them with a factor ϕv that considers the Q-functions of all edges
connected to agent v (lines 6-15). In this process, when calculating the new agent Q-values ϕv, it maximizes over local
non-bootstrapped actions in B̄Av

m (s̄) instead of considering all possible actions, as is done in standard Variable Elimination.
Additionally, the algorithm introduces a UCB-inspired exploration term to ϕv when the exploration constant c is non-null
when the algorithm is used in MCTS simulations (line 12).

Additional theoretical analysis on Var-El. In (Guestrin et al., 2003) it is proven that Variable Elimination converges
to optimality when applied to coordination graphs of any type (although it has higher complexity than Max-Plus). In
our case, the constraints we introduced to consider only non-bootstrapped local actions, and the way we define the set of
non-bootstrapped joint actions, guarantee that the joint action selected through Variable Elimination is indeed optimal in
the space of non-bootstrapped joint actions. However, it is important to recognize that in this case, the algorithm relies on
Q-value statistics, which needs an exploration mechanism. The UCB-inspired exploration we introduced in Algorithm 8
is, in turn, inspired by that used in (Amato & Oliehoek, 2015), and, although its validity has been show empirically, no
theoretical proof is available yet, similarly as for Max-Plus with UCB-inspired exploration.

Additional theoretical analysis on efficient local state-action counting. The minimum number of samples needed for
each component (see Equation (1)), to identify non-bootstrapped state-action pairs that lead to safety improvement, is
mk = 2K2

/ϵ2 · log (|Q|2|Dom(Sk)|
/δ). Extending the Equation (8) of Proposition 1 of (Simão & Spaan, 2019), we get that K is

the number of factors, Q is the set of all transition components, and ϵ is an error term used to define the distance between
the true and the MLE transition model such that P(∥T ∗(·|s̄, ā) − TD(·|s̄, ā)∥1 ≥ ϵ) ≤ δ ∀(s̄, ā) /∈ B̄m. This equation
shows that given a specific error ϵ, the number of samples necessary to improve the behavior policy in multi-agent factored
domains is reduced compared to SPIBB algorithm (Laroche et al., 2019), due to the term |A||S| being replaced by |Q|,
and the term |S| being replaced by Dom(Sk). We notice that, even with the improved sample efficiency, MF-SPIBB still
cannot scale to large domains due to the intrinsic algorithm complexity of policy iteration. The proposed FV-MCTS-SPIBB
algorithm solves this problem by integrating the efficient counting of MF-SPIBB (which improves sample-efficiency in the
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Figure 5. Domains. a,b) Multi-agent SysAdmin with ring/star topology (static and cyclic/acyclic coordination graph); c) multi-UAV
Delivery (dynamic and cyclic coordination graph).

usage of dataset D) with MCTS with Max-Plus/Var-El (which improves algorithm efficiency and scalability compared to
policy iteration based algorithms).

F. Domains
Multi-agent SysAdmin is a standard MMDP benchmark (Guestrin et al., 2003). In a network of interconnected machines,
each agent controls a single machine described by two variables: status (good, faulty, or dead) and load (idle, loaded, or
success). Initially, all machines are good and idle. Agents can, at each time step, activate their machines, or take no action.
The actions may result in status changes, and agents are rewarded for machines reaching the (good, success) state. The state
and action spaces grow exponentially with the number of agents n, with state space size |S| = 9n and action space size
A = 2n. Two network topologies are considered: a ring network (Figure 5.a) and a star network (Figure 5.b).

Multi-UAV Delivery was proposed in (Choudhury et al., 2021). Drones start from random cells and aim to reach circular
target regions (T1-T4 in Figure 5.c). Each drone can take 10 actions, including movement, staying in place, and boarding in
its assigned target region. Successful boarding rewards drones with +1000, and they receive intermediate rewards based
on proximity. Drones incur penalties for movement away from targets, and penalties for collisions with other drones or
simultaneous boarding in the same region. We note that the environments are much more complex than those used in the
SPI literature. For instance, (Scholl et al., 2022) and (Laroche et al., 2019) use MDPs with 25 states and fewer than 10
actions. In contrast, our settings span a wide range, reaching approximately 1030 to 1041 states, and 109 to 1016 actions at
the higher end of the spectrum.

G. Details about the relationship between quality of the MDP and safety/convergence
The quality of MDP estimation is inherently evaluated by the algorithm. This quality depends on how many times the
state-action pairs (i.e., a sub-part of the transition model) have been observed in the dataset of trajectories. If a state-action
pair has not been observed enough times, then it is a bootstrapped pair (see line 3 of Algorithm 2), and the action is returned
with the probability of the behavior policy, hence the performance cannot be less than that of the behavior policy. In this
case, the policy is a safe improvement since it has the same performance as the behavior policy. If, instead, the state-action
pair has been observed enough times in the set of trajectories, then it is a non-bootstrapped pair, hence it is selected only if it
is optimal, namely, if the state-action Q-value is the maximum for that state. The optimality is computed by Constrained
Max-Plus or Constrained Var-El considering only the safe transitions of the state-action pair, namely the transitions that have
been observed enough time, for which the uncertainty is low. In this way, the probability of making an error in selecting the
optimal action is small, and the optimal action can only improve the performance compared to the behavior policy, namely,
the policy is again a safe improvement since it has a small probability of having lower performance than the behavior policy.

18



Scalable Safe Policy Improvement for Factored Multi-Agent MDPs

a) b)

c)

Figure 6. Multi-agent SysAdmin with ring topology: ablation study on the sensitivity of MCTS parameters, namely: a) on the UCT
exploration constant; b) on tree depth of MCTS; c) on the number of simulations.

Some background on these concepts is provided in (Laroche et al., 2019). For the same reason, the quality of the transition
model (or parts of it) does not even affect the convergence of the MCTS, since in case of low quality of the transition model
MCTS converges to the baseline policy (without reaching any improvement), but it still converges.

H. Hyperparameters tuning - Sensitivity to MCTS parameters
We provide the results of the experiments executed to identify the best parameters for our FV-MCTS-SPIBB. In particular,
we evaluated different values of the UCT exploration constant, the tree depth, and the number of simulations, on the
multi-agent SysAdmin with 8 agents.

Exploration constant. We set the tree depth to 20, the number of simulations to 100, dataset size to 5000, and performed
5 experiments of 20 steps each, varying the exploration constant. Results are shown in Figure 6.a. The best exploration
constant is equal to the number of agents + 2, which is the value that we also used in the paper.

Tree depth. We fixed the exploration constant to 10, the number of simulations to 100, dataset size to 5000, and performed
5 experiments of 20 steps each, varying the tree depth. Results are shown in Figure 6.b. The best tree depth is 20, which is
the value that we also used in the paper.

Number of simulations. We fixed the exploration constant to 10, tree depth to 20, dataset size to 5000, and performed 5
experiments of 20 steps each, varying the number of simulations. Results are shown in Figure 6.c. Good performance is
achieved from 100 simulations, which is the value we also used in the paper. Increasing the number of simulations to 1000
obtains a limited performance increase but also an increase in time required to perform the experiments.

I. Details about efficient state-action counting
FV-MCTS-SPIBB exploits the information contained in the dataset of trajectories to improve memory efficiency and achieve
performance improvement in multi-agent scenarios. The algorithm extends (Simão & Spaan, 2019), where a method for
improving the efficiency of state-action counting is presented. That technique, however, works on single-agent scenarios,
hence it does not consider single-agent actions but only joint actions. Our efficient state-action counting achieves higher
counts by exploiting the factorization of the transition model (see Section 4.2) and considering state-action counting at
the agent level. This is fundamental for the algorithm because flat approaches with state-action counting at the joint state
and joint action levels obtain very low counts, i.e., no state-action pairs would be put in the non-bootstrapped set using
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Figure 7. Multi-agent SysAdmin with ring topology: a) comparison on sample efficiency of FV-MCTS-SPIBB-Max-Plus (our method,
red line), FV-MCTS-Max-Plus (Choudhury et al., 2021) (blue line) and MCTS-SPIBB (Castellini et al., 2023) (purple line) measured in
terms of performance ρ̄(π,M∗) as the number of trajectories increases.

such a counting method. An evaluation of the impact that sample efficiency has on performance can be seen in Section 6.
Figure 2 shows a comparison between FV-MCTS-SPIBB-Max-Plus (red boxplot), which exploits the factorization of the
transition model and the value function, and MCTS-SPIBB (blue boxplot), which does not exploit these factorizations. If
we focus, for instance, on the test with 8 agents, then we see that the performance of the improved policies generated by
FV-MCTS-SPIBB-Max-Plus is higher (mean: 22.3, std: 2.8) than that of the improved policies generated by MCTS-SPIBB
(mean: 13.4, std: 2.7), although we used only 100 simulations with FV-MCTS-SPIBB-Max-Plus and 1000 simulations with
MCTS-SPIBB. The motivation for this difference is the higher sample efficiency of FV-MCTS-SPIBB-Max-Plus, which
better exploits the information contained in the dataset of trajectories to achieve the performance improvement, as the dataset
used by the two methods is the same, and MCTS-SPIBB had enough simulation to converge.

To further evaluate the sample efficiency, we also conducted another experiment comparing the performance of FV-MCTS-
SPIBB-Max-Plus (our method), FV-MCTS-Max-Plus (Choudhury et al., 2021), MCTS-SPIBB (Castellini et al., 2023), and
the behavior policy on a multi-agent SysAdmin system varying the dataset size. Experimental setting: number of agents = 8;
number of simulations = 100; depth = 20; exploration constant = 10. Results are shown in Figure 7. The state-of-the-art
method MCTS-SPIBB ensures safety and has better performance than the behavior policy, but it has lower performance
than the proposed FV-MCTS-SPIBB-Max-Plus (mainly with few trajectories) since the latter has a higher sample efficiency.
It is known from the literature (Oliehoek & Amato, 2016; Choudhury et al., 2021) that flat MCTS-based approaches in
multi-agent scenarios require a larger number of simulations than factorized approaches.

J. Additional results on state-of-the-art baseline SPI methods
To provide a complete comparison between state-of-the-art SPI methods and the proposed FV-MCTS-SPIBB on multi-
agent domains, we show the results of our test on SysAdmin with 3 agents, which is the largest number of agents that
state-of-the-art methods can solve. We compare, in particular, SPIBB, MCTS-SPIBB, and FV-MCTS-SPIBB. We used the
SPIBB code from (Laroche et al., 2019)6, but it could not work even on small domains since it is based on matrix inversion.
Hence we re-implemented it using dynamic programming to enable its execution on larger domains. It stopped working on
instances of multi-agent SysAdmin with 4 agents. All other state-of-the-art algorithms mentioned in (Scholl et al., 2022)
are mostly variants of SPIBB, with fewer safety guarantees (all algorithms with Soft in the acronym), hence they have
scaling capabilities similar to SPIBB. Figure 8 shows that our FV-MCTS-SPIBB obtains similar performance to SPIBB
and MCTS-SPIBB. However, in the main paper, we show that it can scale to a much larger number of agents because it
exploits i) the factorization on the transition model to efficiently compute state-action counts; ii) the factorization of the
value function (induced by the coordination graph) to select optimal joint actions without evaluating all of them; iii) the
online MCTS strategy to compute the policy (i.e., action values) only for the states visited, instead of considering all possible
joint state-action pairs.

6https://github.com/RomainLaroche/
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Figure 8. Multi-agent SysAdmin with ring topology: additional results of baseline SPI methods on multi-agent SysAdmin with 3 agents.

K. Details about Dependency identifiers
The dependency identifiers are domain-specific because they encode relations among state-action pairs. If the distribution
over the future state s̄t+1 is identical conditioned on two different state-action pairs (s̄, ā) and (s̄′, ā′), then they must be
tagged with the same (arbitrary) identifier. For example, consider a simple two-machine domain (similar to Sysadmin) with
a joint action space of dimension 2 (where each single action can be 0 or 1, which mean respectively turn on the machine
and turn it off ). Here, the status (encoded, for simplicity, also with 0 and 1) of the first machine depends only on the first
action, and likewise, the status of the second machine depends only on the second one. So, s = 01 and a = 11 are one
possible state and one possible action, respectively, in this domain. To encode the independence of the first machine’s status
on the second action we use dependency identifiers: in particular, we will tag with the arbitrary identifier j (for the first
machine) both (s, a) = (01, 11) and (s′, a′) = (01, 10), that is, D1((01, 11)) = D1((01, 10)) = j because the distribution
over the first machine next statuses is the same whether the second action is 0 or 1 (again, it depends only on the first action).

L. Additional results on multi-agent SysAdmin with star and ring topology
In this section, we present some additional results. These are related to the FV-MCTS-SPIBB-Max-Plus method on the
multi-agent SysAdmin domain with star topology with 16 agents, as FV-MCTS-SPIBB-Var-El fails to scale up to this
dimension.

a) b)

Figure 9. Multi-agent SysAdmin with ring topology: performance. a, b) Safety of FV-MCTS-SPIBB-Var-El (ρ̄(π,M∗) and CVaR) as the
number of trajectories increases.

Multi-agent SysAdmin with ring topology (Var-El). For the multi-agent SysAdmin with ring topology, we consider the
case with 8 agents and analyze the safety of the FV-MCTS-SPIBB-Var-El algorithm in comparison to FV-MCTS-Var-El.
In this case, the coordination graph is cyclic (see Figure 5.a in the paper). The algorithm consistently ensures safe policy
improvement across all trajectory sizes, whereas the unsafe version FV-MCTS-Var-El can be seen going under the behavior
policy average performance with small dataset sizes (d = 5).
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a) b)

Figure 10. Multi-agent SysAdmin with star topology: performance. a, b) Safety of FV-MCTS-SPIBB-Max-Plus (ρ̄(π,M∗) and CVaR) as
the number of trajectories increases.

Multi-agent SysAdmin with star topology. For the multi-agent SysAdmin with a star topology, instead, we use 16 agents
to analyze the safety of the FV-MCTS-SPIBB-Max-Plus algorithm in comparison to FV-MCTS-Max-Plus. In this case, the
coordination graph is acyclic (see Figure 5.b in the paper), because only one machine (the central one) is linked to every
other machine, and there are no other links present. The algorithm consistently ensures safe policy improvement across all
trajectory sizes d ∈ [5, 100, 1000, 10000], for both the average performance ρ̄(π,M∗) (Figure 10.a) and the 15%-CVaR
(Figure 10.b). In contrast, FV-MCTS-Max-Plus fails to outperform the behavior policy π0 with the smallest dataset size.

Specifically, when d = 5, the average result for FV-MCTS-Max-Plus (19.2), over all 100 runs (Figure 10.a, blue line), is
approximately 10% lower than π0 (21.2), whereas FV-MCTS-SPIBB-Max-Plus (red line) still shows improvement (21.5),
demonstrating safety with small dataset sizes. When the amount of data is increased (d = 100), both algorithms show
improvement over the behavior policy, with FV-MCTS-SPIBB-Max-Plus outperforming its non-safe counterpart (23.0
vs. 21.7). The results become more comparable when the dataset size is increased to the maximum (d = 10000), where
FV-MCTS-Max-Plus outperforms FV-MCTS-SPIBB-Max-Plus (38.9 vs. 37.1), albeit with higher overall variance. Even
when considering the 15%-CVaR (Figure 10.b), the results with smaller datasets are worse for FV-MCTS-Max-Plus. While
it achieves a performance of almost 36 at d = 10000, it barely outperforms the behavior π0 at d = 100 (20.3 vs. 19.4), and
it degrades at d = 5, where it achieves a performance of 17.8 compared to the behavior’s performance of 19.4, resulting,
approximately, in a 9% loss. In all cases, FV-MCTS-SPIBB-Max-Plus achieves a performance at least as good as the
behavior policy, demonstrating safety.
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