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Abstract

Nowadays, video surveillance and motion detection system are widely used in various envi-
ronments. With the relatively low-price cameras and highly automated monitoring system,
video and image analysis on road, highway and skies becomes realistic. The key process in
the analysis is to separate the useful information such as moving foreground objects from
the original video sequence where Robust Principal Component Analysis (RPCA) plays an
important role in extracting the foreground objects. RPCA have been widely used in data
analysis and dimension reduction with applications in image recovery, information clustering
and computer vision. But one drawback of RPCA lies in the fact that it does not guarantee
the nonnegativity of pixels. It is important to have nonnegative foreground object since neg-
ative pixels that are not in the range between 0 and 255 are meaningless and the foreground
objects are thus not visible. State-of-the-art methods do not consider the nonnegativity of
the foreground object in their algorithms.
This thesis focuses on the problem of extracting foreground moving object from background
scenes and guarantee the nonnegativity of foreground object. This thesis proposes a method
that combines RPCA and Nonnegative Matrix Factorization (NMF). It ensures the pix-
els that constitute the foreground object is nonnegative by using the basic model of RPCA
and nonnegative components that NMF provides. The efficacy of the proposed algorithms is
tested on publicly available dataset. Experiment shows in detail how the proposed algorithms
achieve in recovering the foreground object with high true positive rate. Together with RPCA
algorithm, the performance of recovery is compared and their advantages and disadvantages
are discussed.
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Chapter 1

Introduction

In a set of image sequence or video sequence, there are different types of information con-
tained in each frame. Some information can be static such as buildings, mountains and roads.
While other information is dynamic such as cars on the road, pedestrians and birds flying in
the sky. Besides static and moving objects, there are also some unwanted information like
occlusion, weather condition, illumination, etc. When analyzing an image or video sequence,
only part of the information is needed. Thus it is important to separate those objects from
the original image or video frame. The separation process can be helpful in applications like
video surveillance system and motion capture. These applications will use the result of image
or video decomposition to analyze the overall environment or the motion of specific object
in the image sequence. For example, in [1] the motion and speed of vehicles on highway
are monitored by extracting these vehicles from video frames to avoid collision and accidents
on highways. In [4] and [5], moving objects are separated from the original video frames
to analyse the motion of these objects and identify the behaviour of individuals in various
environments. Similarly, the moving objects in the sky are detected in [6] to guarantee the
aviation safety.

Figure 1-1: Vehicle extraction on highways [1]
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2 Introduction

And in these applications, a common algorithm Robust Principal Component Analysis (RPCA)
is adopted to extract the foreground object from background environment. RPCA decom-
poses the original image into two parts. One only contains background scenes and the other
only contains foreground objects. But RPCA does not restrict the pixels that constitute the
foreground object in the range of 0 to 255. One problem it induces is that those negative
pixels are meaningless and cannot be shown in images. It means those foreground objects in
[4], [5] and [6] are not visible in images. The decomposition result of RPCA is thus futile. One
feasible solution is to turn all the negative pixels to zero or small positive values. Then the
pixels are within the pixel range again. But the result can lose information of the foreground
objects since zero or small value pixels are dark-colored.
To deal with the negative pixels that RPCA brings in a better way, this thesis proposes a
new algorithm that is able to extract the foreground object in a set of image sequence in a
nonnegative way. On the basis of RPCA, it takes the negative pixels into account and force
them to be nonnegative with the help of Nonnegative Matrix Factorization (NMF). The main
contribution of the new algorithm is that it turns the negative pixels into positive and the
information contained in these pixels are visible again. These two algorithms RPCA and
NMF together with their applications in background and foreground image decomposition
will be introduced respectively in the next section.

1-1 Introduction to RPCA

The name of RPCA originates from the name PCA. Principal Component Analysis (PCA) was
invented in 1901 by Karl Pearson [7] and is used to transform high-dimensional data to lower
dimensions using a new coordinate system. In the new coordinate system, the first coordinate
which is called the first principal component has the highest variance of the data projection,
which means the data varies from each other to the greatest extent in this coordinate. The
second coordinate has the second highest variance and so on. PCA is widely used as a tool
in exploratory data analysis and for making predictive models [8].
Based on the idea of PCA that reduces the dimensionality of the data matrix, Robust Principal
Component Analysis (RPCA) was proposed. It was first proposed in paper [9]. It is a
modification of the original PCA problem which aims to recover the low-rank component L ∈
Rm×n from corrupted observation data matrix D ∈ Rm×n. Here m and n are the dimension
of the data matrix. The basic idea in this paper is to decompose the data matrix into two
components: low-rank component L ∈ Rm×n and sparse component S ∈ Rm×n. Then it forms
the optimization problem by using Principal Component Pursuit (PCP). This optimization
problem can then be solved by algorithms such as Augmented Lagrange Multiplier Method
(ALM) and Alternating Direction Method (ADM). The decomposition problem is concluded
in Eq. (1-1),

D = L+ S. (1-1)

In some cases, L needs to be recovered from the corrupted data observation matrix D, such
as the denoising of images where a clear image will be recovered from speckled data matrix.
Sparse component in this case represents image noises. In other cases like the application
that is introduced at the beginning of this chapter, the focus is on S. In this case sparse
component represents the foreground object which needs to be separated from original image.
These two components are both of importance depending on the need of actual application.

Chenyang Ling Master of Science Thesis



1-2 Applications of RPCA 3

In the next section the general applications of PRCA will be introduced. The application of
background and foreground separation will be mentioned in detail.

1-2 Applications of RPCA

In this section, more applications of foreground and background decomposition will be intro-
duced. Besides, general applications of RPCA will be briefly introduced to show RPCA is
also applicable in other fields.

1-2-1 Background and foreground decomposition applications of RPCA

In this subsection the application of background and foreground decomposition will be ex-
plained in detail since in chapter 3 the proposed algorithm will be tested on this application.
Similar to the example at the beginning of this chapter, the low-rank component represents
the background environment and sparse component is the foreground object.

• Video surveillance: This application is widely used in different situations. It can
facilitate automated surveillance system to detect the cars on road and ensure the
traffic safety. When it comes to the environment of sea, it can detect the vessels on the
sea surface. In [3] a new model of RPCA is proposed to extract the foreground moving
objects on the sea. It first finds the region of interest in the image then separate it
from the background. Figure 1-3 shows the diagram of how the algorithm separates
the foreground image. The application in [3] is thus helpful in maritime surveillance
system.

• Animal detection: The aim is to detect and observe animal activities in certain
area. In [10] the application tries to detect birds in order to protect the aviation safety.
Besides, this application can also be used to study the migration of birds and identify
bird species.

• Medical analysis: The application in [11] gives the idea to extract the blood vessels
from OCT images. The low-rank component represents the static tissues of human skin
and the sparse component represents the blood vessels. By finding and analyzing a
specific blood vessel, one common skin cancer can be diagnosed.

1-2-2 General applications of RPCA

Besides the background and foreground decomposition applications, RPCA is also applicable
in other fields. For example, the algorithm in [12] tries to restore a video sequence from
degraded one. This application is useful in restoring archived films or video that has random-
valued noise. The algorithm in [2] tries to recover Optical Coherence Tomography (OCT)
image which is high resolution medical image for diagnosis of disease as shown in Figure 1-2.
The matrix S is in this case the speckles in the image. The application in [13] uses sparse
term to classify and identify face images because sparse term captures the most discriminating
feature among face images. And in [13] the algorithm models the leading vocal as sparse
component of RPCA and separates it from background music.
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4 Introduction

Figure 1-2: OCT image with speckle (left) and without speckle (right) [2]

1-3 Existence of negative pixels

From the applications above, RPCA is useful both for foreground extraction and image pro-
cessing in other fields. However, as mentioned before, RPCA does not restrict the pixel values
to be nonnegative. For example, in Figure 1-3, the foreground object boat is clearly separated
from background environment. It is visible in image form because the pixels that constitute
the foreground object are in the range of 0 to 255 since pixel is stored as an 8-bit integer
that has this specific range. 0 is taken as black and 255 is taken as white [14]. However, the
decomposition process cannot guarantee all the pixels are in this specific range. Suppose the
foreground object is composed of negative pixels, it is thus not visible in image form though
it is separated successfully as sparse component.

Figure 1-3: Diagram of foreground object separation [3]

Then an experiment with the help Inexact ALM (IALM) algorithm which is a common al-
gorithm of RPCA will be given to further demonstrate the effect of negative pixels in this
section. IALM is a common algorithm to solve RPCA problem. The dataset is chosen from
CIFAR-100 dataset [15]. It consists of 32×32 tiny colour images in 100 classes with 600 images
in each class where 50000 are training images and the rest test images. The classes include
animals, people, household furniture, vehicles, etc. Before implementing algorithm,the test
images were taken out and preprocessed to matrix form since they were stored as long vec-
tors. And the RGB images were changed to grayscale images using the command rgb2gray.
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1-4 Introduction to NMF 5

With the help of IALM those images were successfully decomposed into low-rank and sparse
components. However, it was found that 535 out of 10000 images have negative low-rank and
sparse components which demonstrates that negative pixels exist even though these images
were decomposed successfully. For instance, one image from the dataset is taken out to show
the effect of negative pixels. Since negative pixels are meaningless, they are first replaced by
zeros instead. And if all the negative pixels in S are set to zero, the result will lose much
information of the foreground object as shown in Figure 1-4.

Figure 1-4: Sunflower (left) and its sparse component (right)

The sparse component becomes invisible due to the negative pixels that RPCA brings. Based
on the experiment above it verifies the existence of negative pixels in RPCA algorithm. And
these negative pixels can be a problem since they cannot be visible in images. Thus some
important features of foreground objects will be lost. To deal with these negative pixels, in the
next section one approach will be introduced to decompose the image data in a nonnegative
way.

1-4 Introduction to NMF

NMF became widely known in the paper of Lee and Seung [16]. Similar to RPCA, it is also
an approach that approximate high-dimensional data by factorizing the data matrix into a
product of two matrices as in Eq. (1-2)

D = UV, (1-2)

where U ∈ Rm×k and V ∈ Rk×n. Matrix U is basis matrix and matrix V is encoding
matrix. The encoding matrix V contains the coefficients that can approximate each column
of D by using basis matrix. Different from RPCA, U and V which are decomposed from D
are both nonnegative. The nonnegative constraint leads to a parts-based representation of
the original data [17]. It means each column of the original data matrix is represented by
a linear combination of basis matrix and the constraint only allows additive combinations.
NMF is widely used in computer vision, document clustering and statistical classification.
According to [18], there are different types of NMF algorithms besides the standard NMF.
For example, Constrained NMF (CNMF) imposes additional constraints such as sparsity and
orthogonality on the decomposed data matrix. Structured NMF (SNMF) directly modifies
the regular factorization formula such as adding a weight matrix. In the next section the
general applications of NMF will be introduced.
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6 Introduction

1-5 Applications of NMF

Due to the advantages of parts-based representation of the images, NMF is widely used in
image classification and recognition. In [19], NMF extracts the feature vectors in a set of
face images and it maximizes the between-class difference by adding additional constraint on
standard NMF. NMF is also used to recover the measurements in reflectance spectroscopy in
[20]. The spectral data provides information about light that has been reflected or scattered
from a solid, liquid or gas, which can be used to identify the chemical composition of a material
by examining the spectrum of the radiation from the material elements. The spectral data
can also be used to identify space objects as [21] suggests. The information in the spectrum
contains space objects like satellites, rocket bodies, debris and asteroids that are obtained
from astronomical spectrometer. These objects are composed of different material thus the
spectrum data of them differ from each other. NMF can also extract and cluster useful
information from messages and mails like the application in [17]. The algorithm in [17] tries
to find the main topics together with its corresponding key words that describe those topics.
These key words are selected because they have the largest magnitude for each corresponding
feature vector, which means they can best represent those selected topics.

1-6 Objective and structure of the thesis

As introduced in section 1-4, NMF can not only represent the original high-dimensional data
matrix but adds the nonnegative constraint to the decomposed data as well. It provides an
approach to force the negative image pixels to be nonnegative. Then it is necessary to ex-
amine the feasibility of incorporating the nonnegative feature of NMF into the structure of
RPCA. The objective of the thesis is to find a feasible algorithm that combines RPCA and
NMF with its application in background and foreground image decomposition.
In chapter 1 the applications of RPCA and NMF have already been introduced. In chapter
2, the standard algorithms of RPCA and NMF will be explained first. Based on that the
proposed algorithms will be introduced in detail. The main difference of the proposed algo-
rithm with RPCA lies in the fact that it forces the negative pixels in sparse component to be
nonnegative with the help of NMF. It will mainly explain the update rules and operators that
are used to solve the optimal solution. In chapter 3, the experiment of proposed algorithms
together with RPCA algorithm will be made to decompose the chosen image dataset. It will
evaluate the quality of the decomposed images and then compare the two algorithms with
RPCA algorithm in a quantitative way. Finally in chapter 4 the advantages and disadvantages
of the proposed algorithm will be analysed over various aspects and possible improvements
of the algorithm will be raised.
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Chapter 2

Algorithm

In this chapter, basic models of RPCA and NMF will first be introduced. On the basis of
these two models, two newly proposed models will then be explained in detail which includes
their model, cost function and update rules. State-of-the-art algorithms that have been used
in foreground extraction will be briefly introduced in section 2-5. In the last section of this
chapter RPCA and NMF algorithms that are adopted in literature will be briefly introduced
and compared.

2-1 RPCA model

Assume D ∈ Rm×n is the observed data matrix. L ∈ Rm×n is the low-rank matrix and
S ∈ Rm×n is the sparse matrix. The basic RPCA model can be expressed as:

D = L+ S. (2-1)

Following the definition of L and S, there are two things in Eq. (2-1) that need to be optimized:
the rank of the L and the sparsity of S. The aim is to find L that gives the lowest rank and
S that is sparse. The optimization problem can be expressed as

min
L,S

rank(L) + λ‖S‖0, (2-2)

where ‖ · ‖0 represents l0-norm that is the number of nonzero elements in the matrix. The
scalar λ, which is a nonnegative real number, is a constant that acts as a trade-off between
low-rank and sparse component.
However, Eq. (2-2) is highly non-convex and non-smooth which means it is difficult to solve.
In [9] the model uses a convex relaxation of the original optimization problem. This tractable
optimization problem replaces the rank of L with nuclear norm which is the sum of singular
values of a matrix. The convex relaxation also replaces l0-norm with l1-norm which is the
maximum absolute column sum of a matrix. The convex optimization problem becomes:

minL,S ‖L‖∗ + λ‖S‖1,
s.t. D = L+ S.

(2-3)

Master of Science Thesis Chenyang Ling



8 Algorithm

According to Karush–Kuhn–Tucker (KKT) conditions [22], the equality constraint of the opti-
mization problem can be incorporated into the problem with the help of Lagrange multiplier.
The cost function of the optimization problem can then be written as:

L(L, S, Y ) = ‖L‖∗ + λ‖S‖1 + 〈Y,D − L− S〉+ µ

2 ‖D − L− S‖
2
F . (2-4)

Y ∈ Rm×n is the Lagrange multiplier and 〈·〉 represents matrix inner product that can also be
written in the trace form of matrix product as tr(Y (D − L− S)T ). The last term calculates
the error between recovered L and S with the data matrix D. The scalar µ, which is a
nonnegative real number, is a constant that balances the error term.
The cost function can also be written with the error term only as:

L(L, S, Y ) = ‖L‖∗ + λ‖S‖1 + µ

2 ‖D − L− S‖
2
F , (2-5)

which is enough to incorporate the equality constraint into the cost function. However, to
minimize the cost function, the scalar µ needs to be set extremely large in order to give
small error between D and L + S. And with the help of Lagrange multiplier Y which will
be updated in each iteration, it is not necessary to set µ as large as possible to minimize the
error. And by using Y , the optimization problem will converge to the optimal faster because
Y is improved at every iteration.

2-2 NMF model

Assume D ∈ Rm×n is the data matrix. NMF approximates D matrix by using a product of
two nonnegative matrices U ∈ Rm×k and V ∈ Rk×n as D ≈ UV . Each column of U is called
basis vector while each column of V is called encoding vector corresponding with each column
of D. The product of U and V can be regarded as a compressed expression of the original
data matrix D. Each column of D is approximated by a linear combination of U weighted by
each column of V [23]. Scalar k is the rank of matrices U and V . In [16] the rank is chosen
to be k < mn

m+n . The rank choice is made based on the quality of approximation. If it is too
small the approximation will lose important features in D. If it is too large the dimension
reduction is not achieved. The optimization problem is to minimize the difference between
the recovered matrices and the original data matrix with the nonnegative constraint. It is
defined as:

L(U, V ) = ‖D − UV ‖2F ,
s.t. U ≥ 0, V ≥ 0, (2-6)

where ‖·‖F is the Frobenius norm which is defined as ‖D‖F =
√

m∑
i

n∑
j
|dij |2 =

√
min(m,n)∑
i=1

σ2
i (D)

[24]. The scalar σi represents the i-th singular value of matrix D. The nonnegative constraint
on U and V means every element in matrix U and V are nonnegative.

2-2-1 Validation test on NMF

A validation test was made on standard NMF algorithm to verify if these two components
U and V are all nonnegative. The same dataset CIFAR-100 is used as in section 1-3. The
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2-3 Proposed model 1 9

grayscale image is still in the form of 32×32 square matrix. The stopping criteria is defined as
the relative improvement of two successive iterations as ‖D̂(k+1)−D̂(k)‖2

F

‖D̂(k+1)‖2
F

≤ ε where ε is a small
value such as 10−6 and k is the iteration number. The maximum iteration number for one
image was chosen to be 20000 after several trials. The nonnegativity of the two components
U and V were checked for every image in the 10000 test images. It turned out that there
were no negative entries in these two components U and V for every image in this test.

2-3 Proposed model 1

2-3-1 Main optimization problem

In chapter 1 it is known that the pixel in the recovered result from RPCA can be negative,
which exists both in low-rank and sparse component. One possible solution is to force the
pixel to be nonnegative by adding the nonnegative constraint using the model of NMF. In
section 2-2-1 the test verifies the nonnegativity of the decomposed components. Suppose
there are negative pixels in sparse component, it is feasible to decompose sparse component
as

S = USVS ,
s.t. US ≥ 0, VS ≥ 0. (2-7)

By adding these two constraints, the optimization problem becomes

‖L‖∗ + λ ‖S‖1 ,
s.t. D = L+ S,
S = USVS ,

US ≥ 0, VS ≥ 0.

(2-8)

where D ∈ Rm×n, L ∈ Rm×n and S ∈ Rm×n. US ∈ Rm×k and VS ∈ Rk×n are the nonnegative
decomposition of sparse component. By using Lagrange multiplier and error function as in
RPCA model, the corresponding cost function is defined as in Eq. (2-9),

L(L, S, US , VS) = ‖L‖∗ + λ ‖S‖1 + 〈YD, D − L− S〉+ µ
2 ‖D − L− S‖

2
F

+ 〈YS , S − USVS〉+ µ
2 ‖S − USVS‖

2
F + µ

2 ‖US − C1‖2F + µ
2 ‖VS − C2‖2F .

(2-9)

Matrices C1 ∈ Rm×k and C2 ∈ Rk×n are both zero matrix since all the elements in matrices
US and VS are greater than zero in the inequality constraint. The last two error functions
are penalty functions that incorporate the constraint of US and VS into the cost function.
To simplify the cost function and update rules, the same µ is used as regularization term
for both equality and inequality constraint. The reason for using the same µ is that µ is
not updated throughout the whole process. And with the update of Lagrange multipliers the
error between D and L+S will gradually be minimized thus it is not necessary to set different
µ for every error term.
Next the problem is to find the optimal solution L∗, S∗, U∗S and V ∗S . It is feasible to divide
the main optimization problem into four sub-problems with respect to these four components
respectively. The sub-problem to solve low-rank component is

LL = ‖L‖∗ + 〈YD, D − L− S〉+ µ

2 ‖D − L− S‖
2
F . (2-10)
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10 Algorithm

The sub-problem to solve sparse component is

LS = λ ‖S‖1 + 〈YD, D − L− S〉+ µ

2 ‖D − L− S‖
2
F + 〈YS , S − USVS〉+ µ

2 ‖S − USVS‖
2
F .

(2-11)
The sub-problem to solve US term is

LUS = 〈YS , S − USVS〉+ µ

2 ‖S − USVS‖
2
F + µ

2 ‖US − C1‖2F . (2-12)

The sub-problem to solve VS term is

LVS = 〈YS , S − USVS〉+ µ

2 ‖S − USVS‖
2
F + µ

2 ‖VS − C2‖2F . (2-13)

2-3-2 Sub-problem of L

To solve the optimal of L, it is first separated from other terms in Eq. (2-10) as

LL = µ−1 ‖L‖∗ + 1
2
∥∥L− (D − S + µ−1YD)

∥∥2
F

= µ−1 ‖L‖∗ + 1
2‖L‖

2
F −

〈
L,D − S + µ−1YD

〉
+ 1

2
∥∥D − S + µ−1YD

∥∥2
F .

(2-14)

According to [25], the inner product of two matrices is upper bounded by the product of
their singular values, which means the cost function has its minimum when the inner product
reaches the upper bound. Then Eq. (2-14) can be expressed in singular value form as

LL = µ−1
min(m,n)∑
i=1

σi(L) + 1
2

min(m,n)∑
i=1

σi(L)2 −
min(m,n)∑
i=1

σi(L)σi(P ) + 1
2

min(m,n)∑
i=1

σi(P )2,

(2-15)
where σ(L) is the singular value of L and σ(P ) is the singular value of D−S+µ−1YD. Scalars
m and n are the matrix dimension.
The optimal solution of singular value of L can be obtained by differentiating Eq. (2-15) with
respect to the singular value of L and setting it equal to zero,

∂LL
∂σi(L) =

min(m,n)∑
i=1

µ−1 +
min(m,n)∑
i=1

σi(L)−
min(m,n)∑
i=1

σi(P ) = 0,

σi(L) = σi(P )− µ−1.

(2-16)

It is found that only when σi(L) = σi(P )−µ−1, the optimal solution of L can be obtained. In
[9] this calculation process is achieved with the help of singular value thresholding operator
D that is defined as

(U,Σ, V ) = svd(D − S + µ−1YD),
Sτ (Σ) = sgn(Σ)max(|Σ| − τ, 0),

L∗ = Dτ (D − S + µ−1YD) = USτ (Σ)V T .
(2-17)

The operator D first decomposes D−S+µ−1YD to find its singular values by using Singular
Value Decomposition (SVD) and adds the threshold to every singular value of D−S+µ−1YD
where τ = µ−1 in Eq. (2-17). After obtaining the singular values of L, they are multiplied by
the left and right singular vectors again to get the optimal solution L∗. The max-operator
here compares every diagonal element of the singular value matrix with zero and replace all
the negative values with zero. Those negative values represent that the singular values are
below the threshold.

Chenyang Ling Master of Science Thesis



2-3 Proposed model 1 11

2-3-3 Sub-problem of S

Similar to sub-problem of L, the term S is firstly separated from other terms in Eq. (2-11),

LS = λµ−1 ‖S‖1 + 1
2
∥∥S − (D − L+ µ−1YD)

∥∥2
F + 1

2
∥∥S − (USVS − µ−1YS)

∥∥2
F . (2-18)

Then the optimal solution of S can be obtained by differentiating Eq. (2-18) with respect to
S and setting it equal to zero,

∂LS
∂S = λµ−1 ∂‖S‖1

∂S + (S − (D − L+ µ−1YD) + (S − (USVS − µ−1YS)) = 0,
S = 1

2(D − L+ µ−1YD + USVS − µ−1YS − λµ−1 ∂‖S‖1
∂S ).

(2-19)

Since it is assumed that S is nonnegative, ‖S‖1 can be simplified as S itself. The derivative
of S with respect to S itself is 1. Eq. (2-19) is then simplified as

S = 1
2(D − L+ µ−1YD + USVS − µ−1YS − λµ−1)

= 1
2(D − L+ µ−1YD + USVS − µ−1YS)− λ

2µ
(2-20)

With the help of shrinkage operator again the optimal solution S∗ can be represented as

S∗ = S λ
2µ

1
2(D − L+ µ−1YD + USVS − µ−1YS), (2-21)

where the threshold is λ
2µ in this case.

2-3-4 Sub-problems of US and VS

For the optimal solution of US and VS , it is feasible to simply take the derivative of the
sub-problems with respect to US and VS and set them equal to zero since there is no l1-norm
or nuclear norm in their cost function. The optimum U∗S is,

LUS = µ
2
∥∥S + µ−1YS − USVS

∥∥2
F + µ

2 ‖US − C1‖2F ,
∂LUS
∂US

= µ(S + µ−1YS − USVS)(−VS) + µUS − µC1
= −µSVS − YSVS + µUSV

2
S + µUS − µC1 = 0,

U∗S = (µSVST + YSVS
T + µC1)(µ(I + VSVS

T ))−1.

(2-22)

By using the same strategy, the optimal solution of V ∗S can be obtained as V ∗S = (µ(I +
US

TUS))−1(µUSTS + US
TYS + µC2).

2-3-5 Update rules

The optimal solutions for the low-rank component, sparse component, US term and VS term
are

L∗ = D 1
µ

(D − S + µ−1YD),
S∗ = S λ

2µ
(1

2(D − L+ µ−1YD + USVS − µ−1YS)),
U∗S = max((µSVST + YSVS

T + µC1)(µ(I + VSVS
T ))−1, 0),

V ∗S = max((µ(I + US
TUS))−1(µUSTS + US

TYS + µC2), 0).

(2-23)
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12 Algorithm

All of these components are updated in each iteration with the calculated optimal solutions.
After all the components are updated, the Lagrange multipliers are then updated as well,

YD = YD + µ(D − L− S),
YS = YS + µ(S − USVS). (2-24)

At this point, the update of the first iteration ends. The updated values will be kept as the
initial values of the next iteration. The whole process continues until the stopping criterion is
fulfilled. Stopping criterion is defined as the relative error between the recovered data matrix
and the original data matrix as

errorD = ‖D−L−S‖F
‖D‖F ≤ ρ,

errorS = ‖S−USVS‖F
‖S‖F ≤ ρ,

(2-25)

where ρ is a relatively small value such as 10−6.
The whole algorithm is generalized in algorithm 1.

Algorithm 1 Nonnegative Sparse Component Robust PCA
Input: D ∈ Rm×n, λ > 0, µ > 0, L0 ∈ Rm×n, S0 ∈ Rm×n, k > 0.
Output: L∗, S∗, U∗S , V ∗S .

1: while not converged do
2: L = D 1

µ
(D − Sk + µ−1YD);

3: S = S λ
2µ

(1
2(D − Lk+1 + µ−1YD + USVS − µ−1YS));

4: US = max((µSVST + YSVS
T + µC1)(µ(I + VSVS

T ))−1, 0);
5: VS = max((µ(I + US

TUS))−1(µUSTS + US
TYS + µC2), 0);

6: YD = YD + µ(D − L− S);
7: YS = YS + µ(S − USVS);
8: end while

Similarly if the goal is to set the low-rank component to be nonnegative, the optimization
problem becomes

‖L‖∗ + λ ‖S‖1 ,
s.t. D = L+ S,
L = ULVL,

UL ≥ 0, VL ≥ 0.

(2-26)

By incorporating the constraints into the model, the corresponding cost function is defined
as

L(L, S, UL, VL) = ‖L‖∗ + λ ‖S‖1 + 〈YD, D − L− S〉+ µ
2 ‖D − L− S‖

2
F

+ 〈YL, L− ULVL〉+ µ
2 ‖L− ULVL‖

2
F + µ

2 ‖UL − C1‖2F + µ
2 ‖VL − C2‖2F .

(2-27)

The update rules is obtained by grouping all the terms that have L and S separately like the
strategy in section 2-3-1 as

LL = ‖L‖∗+ 〈YD, D − L− S〉+
µ

2 ‖D−L−S‖
2
F + 〈YL, L− ULVL〉+

µ

2 ‖L− ULVL‖
2
F , (2-28)
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2-4 Proposed model 2 13

LS = λ‖S‖1 + 〈YD, D − L− S〉+ µ

2 ‖D − L− S‖
2
F , (2-29)

LUL = 〈YL, L− ULVL〉+ µ

2 ‖L− ULVL‖
2
F + µ

2 ‖UL − C1‖2F , (2-30)

LVL = 〈YL, L− ULVL〉+ µ

2 ‖L− ULVL‖
2
F + µ

2 ‖VL − C2‖2F . (2-31)

Then use the same method to solve the sub-problems of L, S, UL and VL to find their optimal
solutions. The update rules for the low-rank component to be nonngative can be expressed
as,

L∗ = D 1
2µ

(D − S + µ−1YD + ULVL − µ−1YL),
S∗ = Sλ

µ
(D + µ−1YD − L),

U∗L = max((µSVST + YSVS
T + µC1)(µ(I + VSVS

T ))−1, 0),
V ∗L = max((µ(I + UL

TUL))−1(µULTL+ UL
TYL + µC2), 0).

(2-32)

The whole algorithm is generalized in algorithm L1.

Algorithm L1 Nonnegative Low-rank Component Robust PCA
Input: D ∈ Rm×n, λ > 0, µ > 0, L0 ∈ Rm×n, S0 ∈ Rm×n, k > 0.
Output: L∗, S∗, U∗L, V ∗L .

1: while not converged do
2: L = D 1

2µ
(D − S + µ−1YD + ULVL − µ−1YL);

3: S = Sλ
µ

(D + µ−1YD − L);
4: UL = max((µSVST + YSVS

T + µC1)(µ(I + VSVS
T ))−1, 0);

5: VL = max((µ(I + UL
TUL))−1(µULTL+ UL

TYL + µC2), 0);
6: YD = YD + µ(D − L− S);
7: YL = YL + µ(L− ULVL);
8: end while

In algorithm 1 and L1, the input parameters need to be chosen beforehand. As suggested in
[9], [26] and [27], the value of λ is generally chosen to be 1√

max(m,n)
and µ is mn

4‖D‖1
. As revealed

in [9], it is not very clear why the choice of λ is correct no matter what the initialization of
L and S are. But the recovery error errorD and errorS keep decreasing in the experiment
process, which means the error between the recovered data and original data minimizes if the
parameters are chosen this way. It gives a hint to choose the initial parameters around the
given values.

2-4 Proposed model 2

2-4-1 Main optimization problem

In proposed model 1, the nonnegativity of S is achieved by decomposing S into US and
VS following the update rules of NMF. Matrices US and VS are nonnegative which also
represents the nonnegativity of S due to the constraint S = USVS . But this constraint is still
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14 Algorithm

an approximation of S. Rather than incorporating the constraint S = USVS as in algorithm
1, it is more direct to replace all S with USVS in RPCA model. The motivation is to further
simplify the cost function and update rules. By substituting all the S in the original model,
the new model becomes

‖L‖∗ + λ ‖USVS‖1 ,
s.t. D = L+ USVS ,
US ≥ 0, VS ≥ 0,

(2-33)

where D ∈ Rm×n and L ∈ Rm×n. US ∈ Rm×k and VS ∈ Rk×n are the nonnegative decompo-
sition of sparse component. Its cost function is obtained by also using Lagrange multiplier as
in 2-3-1. The corresponding cost function is defined as in Eq. (2-34),

L(L,US , VS) = ‖L‖∗ + λ ‖USVS‖1 + 〈YD, D − L− USVS〉+ µ
2 ‖D − L− USVS‖

2
F

+µ
2 ‖US − C1‖2F + µ

2 ‖VS − C2‖2F .
(2-34)

Next the problem is to find the optimal solution L∗, U∗S and V ∗S . The main optimization prob-
lem is divided into three sub-problems with respect to these three components respectively.
The sub-problem to solve low-rank component is

LL = ‖L‖∗ + 〈YD, D − L− USVS〉+ µ

2 ‖D − L− USVS‖
2
F . (2-35)

The sub-problem to solve US term is

LUS = λ ‖USVS‖1 + 〈YD, D − L− USVS〉+ µ

2 ‖D − L− USVS‖
2
F + µ

2 ‖US − C1‖2F . (2-36)

The sub-problem to solve VS term is

LVS = λ ‖USVS‖1 + 〈YD, D − L− USVS〉+ µ

2 ‖D − L− USVS‖
2
F + µ

2 ‖VS − C2‖2F . (2-37)

2-4-2 Update rules

Since the cost function for L is the same as in Eq. (2-10). The optimum L∗ is obtained
when σi(L) = σi(D + µ−1YD − USVS) − µ−1. Here σi(L) is the singular value of L while
σi(D + µ−1YD − USVS) is the singular value of D + µ−1YD − USVS . The optimum L∗ is:

(U,Σ, V ) = svd(D + µ−1YD − USVS),
Sτ (Σ) = sgn(Σ)max(|Σ| − τ, 0),

L∗ = Dτ (D + µ−1YD − USVS) = USτ (Σ)V T .
(2-38)

For the updates of US and VS , by taking the derivative of their corresponding cost function
and setting it equal to zero, the optimum U∗S and V ∗S can be obtained,

U∗S = max((DVST + µ−1YDVS
T − LV T

S + C1 − sign(USVS)V T
S λµ

−1)(I + VSVS
T )−1, 0),

V ∗S = max((I + US
TUS)−1(USTD + µ−1US

TYD − UTS L+ C2 − UTS sign(USVS)λµ−1), 0).
(2-39)

The whole algorithm is summarized in algorithm 2.
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2-5 Connection with other algorithms for background and foreground decomposition 15

Algorithm 2 Nonnegative Sparse Component Robust PCA 2
Input: D ∈ Rm×n, λ > 0, µ > 0, L0 ∈ Rm×n, US0 ∈ Rm×k, VS0 ∈ Rk×n, k > 0.
Output: L∗, S∗.

1: while not converged do
2: L = D 1

µ
(D − Sk + µ−1YD);

3: US = max((DVST + µ−1YDVS
T −LV T

S +C1 − sign(USVS)V T
S λµ

−1)(I + VSVS
T )−1, 0);

4: VS = max((I +US
TUS)−1(USTD+µ−1US

TYD −UTS L+C2−UTS sign(USVS)λµ−1), 0);
5: YD = YD + µ(D − L− S);
6: S = USVS ;
7: end while

2-5 Connection with other algorithms for background and fore-
ground decomposition

In this section the connection of the proposed algorithm with other state-of-the-art algorithms
used in background and foreground image decomposition will be discussed, such as the algo-
rithms used in the applications in chapter 1. This section will mainly discuss their similarities
or differences in terms of aspects like update rules and complexity.

• Augmented Lagrange Multiplier Method (ALM): The application in [6] uses
Inexact ALM (IALM) to solve its optimization problem. IALM is originally from algo-
rithm Exact ALM (EALM). For EALM and IALM, they both use Lagrange multiplier
to incorporate the equality constraint into its cost function as

L(L, S, Y ) = ‖L‖∗ + λ‖S‖1 + 〈Y,D − L− S〉+ µ

2 ‖D − L− S‖
2
F . (2-40)

The difference between these two algorithms is that the update number of L and S is
different. They both will solve the optimal solution in the update rules. For EALM, the
update continues until exact optimal solution of L and S is obtained in the sub-problem.
For IALM, L and S only update once in the sub-problem but it is sufficient for L and
S to converge to the optimal solution of the main RPCA optimization problem. Due to
different number of updates, the complexity to solve the the optimization per iteration
is different as well. For EALM the computation load in each iteration is dominated by
SVD which has complexity O(mn min(m,n)) [26]. While for IALM since there is only
one update for the sub-problem of L and S in each iteration, the use of SVD is then less
than that of EALM. The complexity of it is O(rmn) where r is the rank of L. For the
proposed algorithm, there is only one update for L and S in each iteration like IALM
algorithm. The complexity per iteration is the same as that of IALM.

• Alternating Direction Method (ADM): In the application of [3], the optimization
problem is formed with the help of Lagrange multiplier in ALM. But the update process
uses ADM for the update of L and S respectively. In [26] ADM is described as an
improvement of the classical ALM. The difference between ADM and ALM lies in the
fact that L and S are updated simultaneously in ALM while serially in ADM. In RPCA
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problem, the algorithm will first minimize the cost function with respect to L. With this
newly updated L the algorithm minimizes the cost function with respect to S. When
the optimal solutions of L and S are obtained, the algorithm then updates Lagrange
multiplier. In the proposed algorithm, this update scheme is also adopted.

• Fast PCP (FPCP): The algorithm in [28] estimates the rank of L in a different way
than in ALM. In the update of L the algorithm will gradually increase the rank of L
by evaluating the contribution of each singular value. If the contribution of specific
singular value is within certain threshold then the rank will stop increasing. And FPCP
is found to be faster than IALM in terms of computational performance in [28]. In the
proposed algorithm, the rank of L is automatically generated by the algorithm. Only
when L is further decomposed into UL and VL the rank of L can be chosen beforehand.

• Total Variation Regularized RPCA (TVRPCA): In the applcation of [29] the
update strategy is the same as the proposed algorithm which combines ALM and ADM
scheme to update L and S. But TVRPCA is also used under dynamic background
condition where part of the background can be erroneously detected as foreground
object. Thus TVRPCA introduces a total variation term which compares the pixel
with its neighboring pixels because the foreground object is spatially continuous in the
image, which means the intensity of pixels in the moving object area is continuous.
TVRPCA successfully separated the moving object and dynamic background in its
model. And the algorithm gives the same complexity as original RPCA in the update
process [29]. TVRPCA gives a hint of how to deal with dynamic background to further
improve the proposed algorithm.

• Accelerated Proximal Gradient (APG): The update rules of APG is different from
ALM and ADM. In [30] it formulates the optimization problem as

L(L, S, Y ) = ‖L‖∗ + λ‖S‖1 + 1
µ
‖D − L− S‖2F , (2-41)

where there is only error term in the cost function. The update scheme does not use
Lagrange multiplier. Instead, it uses the gradient of the error term to update L and S
in each iteration. But the convergence rate of APG algorithm is generally slower than
ALM. By varying the choice of µ in each iteration, the convergence speed can be greatly
improved.

2-6 Algorithm comparison

In this section, the algorithms of RPCA and NMF that have been used in the applications
mentioned in chapter 1 will be listed and their complexity to solve the optimization problem
per iteration, advantages and disadvantages will be shown in Table 2-1. For RPCA algorithms,
Inexact ALM has the lowest complexity per iteration because it requires less number of SVD.
ALM has Q-linear convergence speed and it minimizes L and S simultaneously while ADM
minimizes them serially. For NMF algorithms, Projected Gradient has the highest complexity
per iteration since it will check if there is sufficient decrease for cost function. And the step
size can be changed in order to converge to optimal solution faster. Constrained NMF adds
penalty terms in the cost function in order to enforce certain properties such as smoothness
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2-6 Algorithm comparison 17

and sparsity. For example, Fisher NMF will be used in recognition and it adds the additional
term in the cost function to maximize the between-class difference and minimize with-in class
difference.

Table 2-1: RPCA and NMF algorithms

Algorithm Complexity per iteration Advantages and disadvantages
RPCA algorithm

ADM [26] O(mn min(m,n))
It minimizes L and S serially.

The computational cost
is less than ALM.

ALM [2] O(mn min(m,n))

It has Q-liner convergence speed
compared to sub-linear speed
of APG. It minimizes L and S

simultaneously.

Inexact ALM [31] O(rmn)

It requires less number
of partial SVD.

It is generally faster than APG
and the recovery precision

is higher than APG.

APG [12] O(mn min(m,n))
with full SVD

It is applicable to
large-scale data but the

convergence rate
is slower than that of ALM.

NMF algorithm

Standard NMF [16] O(rmn)
It is the standard update scheme.
The rank of the recovered matrix

is set in advance.

Gradient Descent
with

Constrained Least Squares
[17]

O(rmn)
It enforces smoothness

and sparsity on basis matrix U
with the use of penalty terms.

Constrained NMF [21] O(rmn)

It enforces smoothness
on basis matrix U

and other constraints can also be
added with the use of

penalty terms.

Fisher NMF [19] O(rmn)

It maximizes the
between-class scatter
and minimize the
within-class scatter

of encoding matrix V.
It increases the recognition rate.

Continued on next page
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Table 2-1 – continued from previous page
Algorithm Complexity per iteration Advantages and disadvantages

Projected Gradient [32]

O(trmn)
t is the average number
of sufficient decrease

condition for cost function
checked per iteration

The step size can be chosen
and changed during iteration.

It can lead to faster convergence
if step size is chosen correctly.
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Chapter 3

Experiment

3-1 Dataset

In this chapter, one application is developed based on the proposed algorithm in chapter
2. The algorithm will be used to decompose the data image and extract the foreground or
background components. The dataset is chosen from UCSD Background Subtraction Dataset
[33]. It consists of 18 video sequences with each frame of the sequence in JPEG format. The
video sequence includes grayscale image sequence of natural scenery where there is moving
object in the foreground. It also has the ground truth images that correspond to each frame of
the sequence. In ground truth data 255 indicates foreground and 0 indicates background. The
ground truth data is seen as a comparison with the sparse component which is decomposed
using the proposed algorithm.
In order to simplify the dataset, each image frame is stored as a column vector in a large data
matrix with dimension equals [ length of one image frame × number of frames ]. Such as the
bottle video sequence, it has 31 frames where the length of each frame equals 68096 so the
dimension of data matrix is D ∈ R68096×31. The foreground object of this video sequence is
a drifting bottle on the sea surface. To separate the foreground, the proposed algorithm is
firstly used to the data matrix D. Background and foreground matrices of all the frames can
be obtained. Then background and foreground component of each frame can be taken out
separately. By reshaping each frame into the dimension of original image matrix R224×304,
the foreground and background components can be visible in images.

3-2 Evaluation criterion

In this section the performance measures for comparing the result of different algorithms will
be introduced, including the definitions and formulas of each performance measure.
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3-2-1 Mean Squared Error (MSE) and Peak Signal-to-noise Ratio (PSNR)

The difference between recovered foreground matrix S with the ground truth data S0 is
defined as MSE,

MSE = 1
mn

m∑
i=1

n∑
j=1

[S(i, j)− S0(i, j)]2 = 1
mn
‖S − S0‖2F , (3-1)

which is the sum of all squared pixel value difference [34]. Based on MSE, which calculates the
power of noises that affect the recovery fidelity, PSNR calculates the ratio between maximum
possible power of signal and the power of noise,

PSNR = 10 log10(MAX2

MSE ), (3-2)

where MAX is the maximum pixel value of a 8-bit image which is 255.

3-2-2 F-measure

As suggested and adopted in [29], [35] and [36], F-measure is used to evaluate the foreground
extraction result of algorithms such as TVRPCA, DECOLOR and GRASTA in these papers.
F-measure is a combination of two evaluation methods of test accuracy, precision p and recall
r [37]. The result of assigned classification is known as true and false. True means correct
classification while false means incorrect. In the experiment, the decomposition result is first
transformed into a matrix with 255 and 0 only. All the positive-value pixels are turned into
255 and the transformed matrix is then compared with ground truth data which only contains
255 and 0 as well. If the pixels at the same position in these two matrices have the same value,
the classification result is true. Positive or negative means assignment to positive or negative
category [38]. In the ground truth data matrix, pixel with value of 255 is positive while pixel
with value of 0 is negative. Therefore there are in total four states of the classification result,
True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). Only
TP and TF are correct classification result. FP incorrectly identifies negative result and FN
incorrectly rejects positive result. Precision p is defined as TP

TP+FP which is the ratio of correct
positive results to all positive results no matter true or false. Recall r is defined as TP

TP+FN
which is the correct positive results over all the results that should have been identified as
positive. Based on these two evaluation methods, F-measure then combines them as:

F-measure = 2 p · r
p + r . (3-3)

It is actually harmonic mean between precision and recall. It averages both of them to
evaluate the classification result. Additional weight can also be put on p and r to emphasize
the importance of either p or r.

3-2-3 ROC curve

Receiver Operating Characteristic (ROC) curve depicts the relation between True Positive
Rate (TPR) and False Positive Rate (FPR) at different thresholds. True Positive Rate is
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TP
TP+FN which is recall defined in F-measure and False Positive Rate is FP

FP+TN . In the
experiment, all the classification results are rescaled into the range of 0 to 1. Each time
it chose one result as threshold. The result above this threshold is positive which in the
experiment is classified as foreground pixel. It calculates TPR and FPR for every threshold
and every result will be a dot on the curve. At last all the dots are connected to obtain ROC
curve. The point (0,1) on the top left corner represents error free case where it gives perfect
classification while the diagonal line from bottom left to top right represents random guess
case. Area Under Curve (AUC) is the probability that the classifier will rank a randomly
chosen positive sample higher than a randomly chosen negative sample [38].

3-3 Parameter selection

In algorithm 1, D is the data matrix which is given and reshaped. The results of L and S from
IALM algorithm can be chosen as the initial values L0 and S0 for algorithm 1. The choice of
λ and µ first follows the recommendation in paper [9], [26] and [27]. But when implementing
the algorithm, the result of S is not as expected where it is not fully nonnegative or extremely
sparse that does not show the foreground object. The reason why S is not fully nonnegative
lies in the choice of initial parameters especially λ and number of iterations. Since in the
update rules of algorithm 1, λ acts as a threshold λ

2µ to only keep the values above this
threshold in S. If the threshold is too small it cannot fully eliminate negative elements in
S when reaching the maximum number of iterations that has been set beforehand. More
iterations and time will be needed to remove those negative elements. And if λ is chosen
too large then every element in S cannot exceed the threshold and become zero. That is the
reason why S is extremely sparse. Thus appropriate λ should provide the balance between
achieving nonnegativity within given iteration and suitable sparsity to display the foreground
object.
Then a test is made in order to choose λ for proposed algorithm 1 that gives both nonnegative
and sparse S within maximum number of iterations. Considering the iteration time, the test
used 10 frames of bottle video sequence which is in the dimension of R68096×10. The test
chose λ in the range of λ0 to 4λ0 where λ0 is the initial valued defined as 1√

max(m,n)
. And

the maximum iteration is 10000 after several trials. The sparsity and number of negative
elements of matrix S are shown in Figure 3-1 and Figure 3-2.
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Figure 3-1: Sparsity of S as λ changes Figure 3-2: Number of negative elements
in S as λ changes

Sparsity is calculated as one minus the ratio between number of nonnegative elements and
number of all the elements in S by using nnz command, which calculates the number of
nonzero elements in a matrix. As λ increases sparsity of S increases as well and it becomes
almost completely zero matrix if λ is chosen too large as explained before. And for the number
of negative elements in S, if λ is chosen too small such as smaller than 2λ0, negative elements
cannot be fully eliminated within 10000 iterations. But if λ is for example 3λ0, those negative
elements can be fully eliminated with around 6000 iterations which is much faster.
Figure 3-3 shows the number of negative elements in S with the change of λ in a more compact
way by changing y axis to logarithmic scale. The break between two consecutive points is
when the number of negative elements is zero since logarithmic scale only shows positive
numbers.

Figure 3-3: Number of negative elements in S as λ changes in log scale

In the test above the initial values L0 and S0 does not have much change because λ remains
the same for IALM algorithm. Then the same change for λ is also applied to IALM to obtain
different initial values L0 and S0. The result shows that the negative elements are fully
eliminated in less iterations as shown in Figure 3-4.
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Figure 3-4: Number of negative elements in S as λ changes test 2

The negative elements in S are fully removed with around 5000 iterations when λ is 2λ0.
Based on the test to choose the most proper λ considering the number of iterations to clear
the negative elements and the sparsity of in S, the range between 2λ0 to 3λ0 provides the
expected result. Thus in the experiment λ is firstly chosen to be 2λ0 and it also uses 2λ0 to
obtain the initial values L0 and S0 from IALM algorithm. And λ can be adjusted around
this range to get more satisfying result. The same test is then also made to find the most
suitable λ range for proposed algorithm 2. It finds out that the most suitable λ lies in the
range between λ0 and 2λ0. In the experiment, there is no need to keep the same λ for every
algorithm since the most suitable λ range is different for every algorithm.

3-4 Algorithm result comparison

The two newly proposed algorithms in chapter 2 will be compared together with RPCA
algorithm in the experiment. Three video sequences bottle, surfers and boats were selected
from the dataset. They are all photos taken on the sea surface where the moving foreground
object is bottle, surfer and boat respectively. The size of bottle video sequence is 224×304×31.
The size of surfers video sequence is 224 × 344 × 41 and the size of boats video sequence is
224 × 344 × 31. From each video sequence one frame is taken out and shown in Figure 3-5.
The number of frames used in the experiment were chosen after using different number of
frames and comparing the total iteration time. The time for running 10 frames was around
12 minutes. The result for a single frame does not change much except the total running time
increases to a large extent with the increase of frame number. Considering the total iteration
time, only the first 10 frames from each dataset were used in the experiment.
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Figure 3-5: Video frames from three videos sequences

Firstly, the recovered S of these three video sequences will be shown directly to compare
their algorithm performance in a qualitative way. Then MSE, PSNR, F-measure and ROC of
proposed algorithms together with RPCA will give a quantitative analysis of the result.

3-4-1 Qualitative analysis

• Bottle sequence: Figure 3-6 shows the recovered moving bottle with ground truth
data. Compared to the other two video sequence, bottle video sequence is comparatively
easier to recover since the moving object is obvious in the frame and it is the only
object that needs to be extracted in the frame. One difficulty in this scene is that
the background is moving water surface which can cause false detection. The false
detection of moving background is more obvious in Figure 3-7 if the positive pixels
are all set to 255 even though some pixel values are extremely small values. Red area
is False Positive. Green area is True Positive while blue is False Negative. Proposed
algorithm 1 and especially proposed algorithm 2 not only detects the moving object but
treat some background pixels as foreground as well. Some small positive values are kept
instead of being treated as zero. It will be further explained in quantitative analysis.
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Figure 3-6: Sparse component of proposed algorithm 1 (upper left), proposed algorithm 2 (upper
right), RPCA (bottom left) and ground truth data (bottom right)

Figure 3-7: Color maps of proposed algorithm 1 (middle), proposed algorithm 2 (bottom left)
and RPCA (bottom right)

• Surfers sequence: As shown in Figure 3-8, surfers video sequence is more difficult to
recover since the water surface keeps waving with the moving object. All the algorithms
have false detection that treat some of background scene as foreground object. The false
detection is more obvious in Figure 3-9. Especially for algorithm 2, even though the
green area is comparatively large but the color map also has many false positive pixels.
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Figure 3-8: Sparse component of proposed algorithm 1 (upper left), proposed algorithm 2 (upper
right), RPCA (bottom left) and ground truth data (bottom right)

Figure 3-9: Color maps of proposed algorithm 1 (middle), proposed algorithm 2 (bottom left)
and RPCA (bottom right)

• Boats sequence: Figure 3-10 shows the same difficulty as surfers sequence. It also
treats some of the background scene as foreground.
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Figure 3-10: Sparse component of proposed algorithm 1 (upper left), proposed algorithm 2
(upper right), RPCA (bottom left) and ground truth data (bottom right)

Figure 3-11: Color maps of proposed algorithm 1 (middle), proposed algorithm 2 (bottom left)
and RPCA (bottom right)

3-4-2 Quantitative analysis

Besides the qualitative analysis of whether the result shows the foreground object clearly or
not, performance measures give a comprehensive evaluation of the results as well. Figure 3-
12, 3-13 and 3-14 show the ROC curve for the three video sequences. Green curve represents
RPCA. Blue curve is proposed algorithm 1 and red curve is Proposed algorithm 2. As
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introduced before, horizontal axis x of ROC is False Positive Rate while vertical axis y is
True Positive Rate. Higher TPR will move the curve up along y axis and thus give larger
AUC.

Figure 3-12: Single frame (left) and multiple frames (right) ROC curve of bottle sequence

Figure 3-13: Single frame (left) and multiple frames (right) ROC curve of surfers sequence

Figure 3-14: Single frame (left) and multiple frames (right) ROC curve of boats sequence
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AUC Algorithm 1 Algorithm 2 RPCA
Single frame Multiple frames Single frame Multiple frames Single frame Multiple frames

Bottle 0.7893 0.5393 0.7809 0.6372 0.7640 0.6143
Surfers 0.6673 0.5240 0.7821 0.5205 0.5335 0.4600
Boats 0.5004 0.5137 0.9174 0.6264 0.1638 0.3367

Table 3-1: AUC of single frame and multiple frames

Table 3-1 shows AUC for the three videos sequences. In general algorithm 1 and 2 work better
than RPCA both for single frame and multiple frames. Algorithm 2 works significantly well
for boats sequence with 0.9174 true positive rate for single frame while the other two algo-
rithms have a relatively low true positive rate. Algorithm 2 distinguishes the foreground pixel
correctly even when background has constant changes. When it comes to the performance
for single and multiple frames, the three algorithms work better for single frame because for
multiple frames both the foreground and background scene move which makes it difficult to
sort out the moving object. Thus it decreases the true positive rate.
But when comparing the classification precision and F-measure score in Table 3-2 and Ta-
ble 3-3, algorithm 2 does not show any superiority than the other two algorithms. Instead
algorithm 1 and RPCA has higher precision and F-measure score. The reason lies in the
calculation difference between ROC and precision. For ROC, it uses every pixel value as the
classification threshold. Some pixel values are positive but are not classified as foreground
because it is below the current classification threshold. But for precision, all the positive
values are set to 255 even when it is extremely small. Under this condition, the small pixel
values are all classified as foreground pixels which decrease the precision to a large extent. It
does not mean algorithm 2 performs even worse than the other two algorithms since it has
higher recall than the other two algorithms. Higher recall means it has less false negative
elements. Algorithm 2 classifies the pixels that should have been classified as positive more
accurately than the other two algorithms. Besides, in Table 3-4 and Table 3-5, algorithm 2
has lower MSE than the other two algorithms and its PSNR is higher than the other two. It
only shows that algorithm 2 does not abandon some background pixels even when it is small
pixel value. This is due to the fact that algorithm 2 does not approximate foreground pixel
like algorithm 1 does. Algorithm 1 has higher precision and F-measure score than algorithm
2 because it approximates those small pixel values as zero while in algorithm 2 those small
pixel values are retained.

Single frame Algorithm 1 Algorithm 2 RPCA
p r F-measure p r F-measure p r F-measure

Bottle 0.8444 0.5703 0.6808 0.0410 0.7474 0.0778 0.5438 0.7079 0.6151
Surfers 0.0951 0.3730 0.1515 0.0130 0.9589 0.0256 0.0573 0.7978 0.1070
Boats 0.0105 0.0389 0.0165 0.0118 0.9899 0.0234 0.0854 0.7714 0.1537
Average 0.3167 0.3274 0.2829 0.0219 0.8987 0.0423 0.2288 0.7590 0.2919

Table 3-2: Precision, Recall and F-measure of single frame performance
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Multiple frames Algorithm 1 Algorithm 2 RPCA
p r F-measure p r F-measure p r F-measure

Bottle 0.7782 0.0793 0.1439 0.0300 0.6710 0.0574 0.3696 0.5586 0.4448
Surfers 0.1164 0.0556 0.0753 0.0182 0.3887 0.0347 0.0841 0.7801 0.1518
Boats 0.0429 0.0359 0.0391 0.0108 0.6876 0.0212 0.0864 0.7606 0.1552
Average 0.3152 0.0569 0.0861 0.0196 0.5824 0.0378 0.1800 0.6998 0.2506

Table 3-3: Precision, Recall and F-measure of multiple frames performance

Single frame Algorithm 1 Algorithm 2 RPCA
MSE PSNR MSE PSNR MSE PSNR

Bottle 1.7879× 103 15.6073 1.5486× 103 16.2315 1.7572× 103 15.6826
Surfers 756.6485 19.3419 779.9296 19.2102 910.0455 18.5402
Boats 697.0696 19.6980 671.4456 19.8607 887.1388 18.6509
Average 1080.5393 18.2157 999.9917 18.4341 1184.7948 17.6246

Table 3-4: MSE and PSNR of single frame performance

Multiple frames Algorithm 1 Algorithm 2 RPCA
MSE PSNR MSE PSNR MSE PSNR

Bottle 1.8371× 103 15.4895 1.7684× 103 15.6551 1.8098× 103 15.5545
Surfers 1.1802× 103 17.4112 1.1768× 103 17.4240 1.3290× 103 16.8956
Boats 692.4874 19.7267 685.1051 19.7732 812.9658 19.0301
Average 1236.5958 17.5425 1210.1017 17.6174 1317.2558 17.1601

Table 3-5: MSE and PSNR of multiple frames performance
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Chapter 4

Conclusion

In this chapter the thesis work will be first summarized. The advantages and disadvantages
of the proposed algorithms will be discussed. Based on the analysis, possible improvements
and expectations of the algorithms will be mentioned.

• Conclusion: The main concern of this thesis is to deal with the negative pixels in
the result of background and foreground decomposition since negative pixels are not
visible in images and the foreground object that is composed of negative pixels can
thus be not visible in images. Then improvement is made on the basis of Robust Prin-
cipal Component Analysis (RPCA), which is the main algorithm in the application
of foreground extraction. With the help of another nonnegative decomposition algo-
rithm Nonnegative Matrix Factorization (NMF), this thesis proposes two algorithms
that decompose the sparse component with nonnegative constraint. Test shows that
given enough iterations, proposed algorithms can fully eliminate the negative elements
in sparse component. These two algorithms are further tested to extract the foreground
object from chosen dataset. Both qualitative and quantitative comparisons like preci-
sion, F-measure and ROC are made between these two algorithms and RPCA algorithm.
The comparison shows the proposed algorithms have higher true positive rate in terms
of recovering the video frames in the dataset.

• Comparison: Clearly the advantanges of RPCA lies in its fast iteration compared to
the other two algorithms. RPCA takes 104, 236 and 256 iterations to run the three
video sequences respectively. On the basis of RPCA algorithm, proposed algorithm 1
and 2 add additional nonnegative constraint to the optimization problem. Because of
this constraint, it further complicates the update rules where there are gradients US
and VS that need to be computed in every iteration. Even when the change of US and
VS are relatively small between two successive iterations, the whole iteration will keep
going once the nonnegative constraint is not fulfilled. Thus it leads to iterations that
reach to 5000 for proposed algorithm 1 and 2.
But the proposed algorithms improve the quality of extracted foreground object at the
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cost of more iterations. Proposed algorithms first fulfills the nonnegative constraint
that RPCA cannot achieve. Foreground pixels are all nonnegative as verified in the
experiment of parameter selection with the help of nonnegative constraint that NMF
provides. Second, according to the analysis the true positive rate of proposed algorithm
1 and 2 is higher than that of PRCA. Algorithm 1 and RPCA perform better than
algorithm 2 in terms of precision and F-measure score especially for multiple frames. The
recall of algorithm 2 outperforms the other two algorithms which means it has less false
negative pixels. And the relative error with ground truth data of proposed algorithm 1
and 2 is smaller than that of RPCA. The result shows the proposed algorithms recover
the data with smaller error and algorithm 2 does not lose foreground information as
much as RPCA does.

• Possible improvements: In terms of the algorithm itself, the update rules have some
gradient-related updates. The gradient update of matrices can complicate the whole
update rules. Except for the update of L, the algorithm uses gradient of the corre-
sponding cost function to update S, US and VS . There can be better ways to solve the
optimization problem than taking the derivatives of these gradients. Besides, the whole
iteration keeps running even when the relative error between the recovered matrices
and original data is relatively small because nonnegativity constraint is not fulfilled.
Improvement can also be made to incorporate the nonnegative constraint in the cost
function in a better way.
And because of the nonnegative constraint is not fulfilled, the running time of the
proposed algorithm for 10 frames in the dataset is approximately 12 minutes. The com-
putation of gradient and the fulfillment of nonnegative constraint consume much time
in the whole algorithm. To figure out how to reduce the total time consumption is also
another improvement of the proposed algorithm.
As analysed in the experiment, the precision of proposed algorithm 2 needs to be fur-
ther improved. The foreground object is extracted with high true positive rate but it
also involves small pixel values. There can be a better way to deal with those small
background pixel values such as turn them all into zero and thus increase the precision.
In the thesis only the extracted sparse component is compared and the quality of it is
analyzed. The next possible step can focus on low-rank component since it is sometimes
dynamic and difficult to extract. As nonnegative low-rank component RPCA suggests,
experiments can be further made in background extraction.

• Future work: This thesis combines the basic models of RPCA and NMF. The proposed
algorithm uses the model of RPCA and nonnegative features of NMF, which shows the
possibility of combing these two basic algorithms. In addition to the proposed algorithm,
there can be more possibilities using other existing models of RPCA and NMF such as
the models used in the applications in chapter 1 and also examine their feasibility in
terms of giving nonnegative pixels. There also exist other algorithms that guarantee
the nonnegativity of the decomposed products beside NMF, which can be seen as a
substitute of NMF algorithm.
Beside discovering the feasibility of other algorithms, the proposed algorithm can also
be used in other fields. For example, the sparse component sometimes needs to be
removed from original data. The proposed algorithm can not only extract but discard
the sparse information as well. And the result of the proposed algorithm, which is
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the foreground object, can be collected for further use such as object identification and
classification. Object identification can then be used in various environment like road,
water surface and sky. Applications such as automated driving system can use the
result of the algorithm to avoid collision with other moving objects. Other possible
post-processing can also be made on the result of the proposed algorithm.
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Appendix A

Matlab codes of proposed algorithms

A-1 Main files

A-1-1 Demo

1 clc
2 clear
3
4 % load image
5 myFolder = ’/Users/lingchenyang/Documents/MATLAB/Thesis/NRPCA/bottle’ ;
6 myFile = fullfile ( myFolder , ’*.jpg’ ) ;
7 myImage = dir ( myFile ) ;
8 files = {myImage . name } ;
9 files = natsortfiles ( files ) ;

10 for k = 1 : numel ( files )
11 Im{k} = imread ( fullfile ( myFolder , files{k}) ) ;
12 data ( : , k ) = double ( reshape (Im{k } , [ ] , 1 ) ) ;
13 end
14
15 % load ground truth data
16 load bottle_GT . mat %or boats_GT , surfers_GT
17
18 %% Proposed algorithm 1 & 2
19 D = data ( : , 1 : 1 0 ) ;
20 %D = reshape(D,[32 32 3]);
21 %D = rgb2gray(D);
22 %D = double(D);
23
24 % size of the image
25 n_1 = size (D , 1 ) ;
26 n_2 = size (D , 2 ) ;
27
28 % parameter definition
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29 %i = 1;
30 %for coefficient_lambda = 1:0.1:4
31 coefficient_lambda = 2 ;
32 opts . lambda = 1/sqrt ( max (n_1 , n_2 ) ) ∗coefficient_lambda ;
33 opts . mu = n_1∗n_2 /(4∗ norm (D , 1 ) ) ;
34 opts . rho_D = 1e−6;
35 opts . rho_S = 1e−6;
36 opts . rho = 1e−6;
37 opts . max_iter = 10000 ;
38 [ L0 , S0 , sparsity_S0 , iter0 ] = basic_RPCA (D , opts ) ;
39 opts . L0 = L0 ;
40 opts . S0 = S0 ;
41 coefficient_lambda = 2 . 5 ;
42 opts . lambda = 1/sqrt ( max (n_1 , n_2 ) ) ∗coefficient_lambda ;
43 tic
44 [ L , S , U_S , V_S , count_L , count_S , rank_L , sparsity_S , error_D , error_S , size_k ,

iter ] = NSRPCA (D , opts ) ;
45 coefficient_lambda = 1 ;
46 opts . lambda = 1/sqrt ( max (n_1 , n_2 ) ) ∗coefficient_lambda ;
47 [ L1 , S1 , count_L1 , count_S1 , count_U_S1 , count_V_S1 , rank_L1 , sparsity_S1 ,

error_D1 , size_k1 , iter1 ] = NSRPCA_no_S (D , opts ) ;
48 toc
49
50 %negative_num_S(i) = numel(find(S<0));
51 %sparsity_S(i) = sparsity_S(size_k);
52 %iter_S(i) = iter;
53 %i = i+1;
54 %end
55
56 %%
57 % Display of L, S, D and GT data
58 k = 1 ;
59 figure (1 )
60 imshow ( reshape (L ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
61 title (’Low-rank component’ ,’Color’ ,’k’ ,’FontName’ ,’Times New Roman’ ,’

FontSize’ , 12)
62
63 %%
64 figure (2 )
65 imshow ( reshape (S ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
66 title (’Sparse component’ ,’Color’ ,’k’ ,’FontName’ ,’Times New Roman’ ,’

FontSize’ , 12)
67
68 %%
69 figure (3 )
70 imshow ( reshape (D ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
71 title (’Original image’ ,’Color’ ,’k’ ,’FontName’ ,’Times New Roman’ ,’FontSize

’ , 12)
72
73 %%
74 figure (4 )
75 %imshow(GT(:,:,k))
76 imshow (GT ( : , : , k ) .∗ double (Im{k}) , [ ] )
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77 title (’Ground truth’ ,’Color’ ,’k’ ,’FontName’ ,’Times New Roman’ ,’FontSize’
, 12)

78
79 %%
80 figure (5 )
81 imshow ( reshape (S0 ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
82 title (’S0’ ,’Color’ ,’k’ ,’FontName’ ,’Times New Roman’ ,’FontSize’ , 12)
83
84 %%
85 % Display L, S, D and GT data
86 k = 1 ;
87 figure (6 )
88 subplot ( 2 , 2 , 1 ) ;
89 imshow ( reshape (L ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
90 title (’Low-rank component of proposed algorithm 1’ ,’FontName’ ,’Times New

Roman’ ,’Color’ ,’k’ ,’FontSize’ , 12) ;
91
92 subplot ( 2 , 2 , 2 ) ;
93 imshow ( reshape (S ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
94 title (’Sparse component of proposed algorithm 1’ ,’FontName’ ,’Times New

Roman’ ,’Color’ ,’k’ ,’FontSize’ , 12) ;
95
96 subplot ( 2 , 2 , 3 ) ;
97 imshow ( reshape (D ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
98 title (’Original image’ ,’FontName’ ,’Times New Roman’ ,’Color’ ,’k’ ,’FontSize

’ , 12) ;
99

100 subplot ( 2 , 2 , 4 ) ;
101 %imshow(GT(:,:,k),[]);
102 imshow (GT ( : , : , k ) .∗ double (Im{k}) , [ ] ) ;
103 title (’Ground Truth’ ,’FontName’ ,’Times New Roman’ ,’Color’ ,’k’ ,’FontSize’

, 12) ;
104
105 %%
106 % Display L1, S1, D and GT data
107 k = 1 ;
108 figure (7 )
109 subplot ( 2 , 2 , 1 ) ;
110 imshow ( reshape (L1 ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
111 title (’Low-rank component of proposed algorithm 2’ ,’FontName’ ,’Times New

Roman’ ,’Color’ ,’k’ ,’FontSize’ , 12) ;
112
113 subplot ( 2 , 2 , 2 ) ;
114 imshow ( reshape (S1 ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
115 title (’Sparse component of proposed algorithm 2’ ,’FontName’ ,’Times New

Roman’ ,’Color’ ,’k’ ,’FontSize’ , 12) ;
116
117 subplot ( 2 , 2 , 3 ) ;
118 imshow ( reshape (D ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
119 title (’Original image’ ,’FontName’ ,’Times New Roman’ ,’Color’ ,’k’ ,’FontSize

’ , 12) ;
120
121 subplot ( 2 , 2 , 4 ) ;
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122 %imshow(GT(:,:,k))
123 imshow (GT ( : , : , k ) .∗ double (Im{k}) , [ ] ) ;
124 title (’Ground Truth’ ,’FontName’ ,’Times New Roman’ ,’Color’ ,’k’ ,’FontSize’

, 12) ;
125
126 %%
127 % S component of proposed algorithm 1, algorithm 2, RPCA and GT data
128 k = 1 ;
129 figure (8 )
130 subplot ( 2 , 2 , 1 ) ;
131 imshow ( reshape (S ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
132 title (’Sparse component of proposed algorithm 1’ ,’FontName’ ,’Times New

Roman’ ,’Color’ ,’k’ ,’FontSize’ , 12) ;
133
134 subplot ( 2 , 2 , 2 )
135 imshow ( reshape (S1 ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
136 title (’Sparse component of proposed algorithm 2’ ,’Color’ ,’k’ ,’FontName’ ,’

Times New Roman’ ,’FontSize’ , 12)
137
138 subplot ( 2 , 2 , 3 ) ;
139 imshow ( reshape (S0 ( : , k ) , size (GT ( : , : , k ) ) ) , [ ] )
140 title (’Sparse component of RPCA’ ,’Color’ ,’k’ ,’FontName’ ,’Times New Roman’

,’FontSize’ , 12)
141
142 subplot ( 2 , 2 , 4 )
143 %imshow(GT(:,:,k),[]);
144 imshow (GT ( : , : , k ) .∗ double (Im{k}) , [ ] ) ;
145 title (’Ground Truth’ ,’FontName’ ,’Times New Roman’ ,’Color’ ,’k’ ,’FontSize’

, 12) ;
146
147 %% ROC curve of single and multiple frames of proposed algorithm 1 and 2
148
149 [ X_multi , Y_multi , AUC_multi ] = ROC_curve_multi (S , GT ) ;
150 [ X1_multi , Y1_multi , AUC1_multi ] = ROC_curve_multi (S1 , GT ) ;
151 [ X0_multi , Y0_multi , AUC0_multi ] = ROC_curve_multi (S0 , GT ) ;
152
153 [ X_single , Y_single , AUC_single ] = ROC_curve_single (S , GT , k ) ;
154 [ X1_single , Y1_single , AUC1_single ] = ROC_curve_single (S1 , GT , k ) ;
155 [ X0_single , Y0_single , AUC0_single ] = ROC_curve_single (S0 , GT , k ) ;
156
157 figure (9 )
158 plot ( X_multi , Y_multi , ’b’ )
159 hold on
160 plot ( X1_multi , Y1_multi , ’r’ )
161 plot ( X0_multi , Y0_multi , ’g’ )
162 hold off
163 xlabel (’False positive rate’ )
164 ylabel (’True positive rate’ )
165 title (’ROC of pixel classification (multiple frames)’ )
166 legend (’NSRPCA1’ ,’NSRPCA2’ ,’RPCA’ ,’Location’ ,’northwest’ )
167
168 figure (10)
169 plot ( X_single , Y_single , ’b’ )
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170 hold on
171 plot ( X1_single , Y1_single , ’r’ )
172 plot ( X0_single , Y0_single , ’g’ )
173 hold off
174 xlabel (’False positive rate’ )
175 ylabel (’True positive rate’ )
176 title (’ROC of pixel classification (single frame)’ )
177 legend (’NSRPCA1’ ,’NSRPCA2’ ,’RPCA’ ,’Location’ ,’northwest’ )
178
179 %% Direct colormap of True Positive , False Positive , False Negative

pixels
180 [ TP_S , FP_S , TN_S , FN_S , S_color ] = colormap (S , GT , k ) ; figure (11) ; imshow (

S_color ) ; title (’Color map of S by proposed algorithm 1’ ) ;
181 %%
182 [ TP_S1 , FP_S1 , TN_S1 , FN_S1 , S1_color ] = colormap (S1 , GT , k ) ; figure (12) ; imshow (

S1_color ) ; title (’Color map of S by proposed algorithm 2’ ) ;
183 %%
184 [ TP_S0 , FP_S0 , TN_S0 , FN_S0 , S0_color ] = colormap (S0 , GT , k ) ; figure (13) ; imshow (

S0_color ) ; title (’Color map of S by RPCA’ ) ;
185
186 %% Peak Signal -to-noise ratio of single and multiple frames
187 % GT_re = reshape(GT,[],size(GT,3));
188 % GT_re = D.*GT_re(:,1:10);
189 % GT_re = reshape(GT_re ,size(GT,1),size(GT,2) ,[]);
190
191 [ MSE_multi , ratio_multi ] = PSNR_multi (S , GT ) ;
192 [ MSE1_multi , ratio1_multi ] = PSNR_multi (S1 , GT ) ;
193 [ MSE0_multi , ratio0_multi ] = PSNR_multi (S0 , GT ) ;
194
195 [ MSE_single , ratio_single ] = PSNR_single (S , GT , k ) ;
196 [ MSE1_single , ratio1_single ] = PSNR_single (S1 , GT , k ) ;
197 [ MSE0_single , ratio0_single ] = PSNR_single (S0 , GT , k ) ;
198
199 %% F-measure of single and multiple frames
200 [ p_S_multi , r_S_multi , score_S_multi ] = F_measure_multi (S , GT ) ;
201 [ p_S_single , r_S_single , score_S_single ] = F_measure_single (S , GT , k ) ;
202
203 [ p_S1_multi , r_S1_multi , score_S1_multi ] = F_measure_multi (S1 , GT ) ;
204 [ p_S1_single , r_S1_single , score_S1_single ] = F_measure_single (S1 , GT , k ) ;
205
206 [ p_S0_multi , r_S0_multi , score_S0_multi ] = F_measure_multi (S0 , GT ) ;
207 [ p_S0_single , r_S0_single , score_S0_single ] = F_measure_single (S0 , GT , k ) ;
208
209 %% negatie number , sparsity and iteration number plot
210 % figure(14)
211 % plot(negative_num_S ,’-r’);
212 % %set(gca, ’YScale ’, ’log’);
213 % set(gca, ’YLim’, [-50 800]);
214 % xticks(1:5:31)
215 % xticklabels(1:0.5:4)
216 % xlabel(’\lambda/\lambda_0 ’);
217 % ylabel(’Number of negative elements in S1’);
218 %
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219 % figure(15)
220 % plot(1-sparsity_S ,’-.g’);
221 % xticks(1:5:31)
222 % xticklabels(1:0.5:4)
223 % xlabel(’\lambda/\lambda_0 ’);
224 % ylabel(’Sparsity of S1’);
225 %
226 % figure(16)
227 % plot(iter_S ,’-*b’);
228 % set(gca, ’YLim’, [-100 11000]);
229 % xticks(1:5:31)
230 % xticklabels(1:0.5:4)
231 % xlabel(’\lambda/\lambda_0 ’);
232 % ylabel(’Iteration number ’);
233
234 %% resize axis
235 % fig = openfig(’negative_num_lambda.fig’);
236 % set(gca, ’YLim’, [-50 1200]);
237
238 %% plot error_D ,error_S and rank_L with respect to rank change
239 % figure()
240 % plot(error_D ,’-r’);
241 % %axis([0 3000 0 0.001])
242 % axis([1 224 0 0.0001]);
243 % hold on
244 % plot(error_S ,’.b’);
245 % hold off
246 % legend(’error_D ’,’error_S ’);
247 %
248 % figure()
249 % plot(rank_L ,’-.g’);
250 % xlim([1 224]);
251 % xlabel(’Size of U_S and V_S’);
252 % ylabel(’Rank of L’);

A-1-2 Proposed algorithm 1

1 function [ L , S , U_S , V_S , count_L_final , count_S_final , rank_L , sparsity_S ,
error_D_final , error_S_final , k , iter ] = NSRPCA (D , opts )

2 % Proposed algorithm 1: Nonnegative Sparse Component RPCA 1
3 % cost function L(L,S,U_S,V_S) =
4 % ||L||_*+\lambda||S||_1+<Y_D,D-L-S>+\mu/2||D-L-S||_F^2+...
5 % <Y_S,S-U_S*V_S >+\mu/2||S-U_S*V_S||_F^2+...
6 % \mu/2||U_S-C_1||_F^2+\mu/2||V_S-C_2||_F^2
7 % constraints: D = L+S
8 % S = U_S*V_S
9 % U_S>=0, V_S >=0

10
11 % input: D is the image matrix
12 % opts:
13 % opts.lambda is the coefficient of sparse component
14 % opts.mu is the coefficient of error term in the cost function
15 % opts.max_iter is the maximum iteration number
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16 % opts.rho_D is one of the thresholds in the stopping criterion
17 % opts.rho_S is one of the thresholds in the stopping criterion
18 % opts.L0 is the initial low-rank component
19 % opts.S0 is the initial sparse component
20 % opts.Y_D is the initial Lagrange multiplier
21
22
23 [ lambda , mu , max_iter , rho_D , rho_S , L0 , S0 , Y_D ] = parseInputs (D , opts ) ;
24 for k = 2
25 L = L0 ;
26 S = S0 ;
27 Y_S = rand ( size (S ) ) ;
28 n_1 = size (D , 1 ) ;
29 n_2 = size (D , 2 ) ;
30
31 U_S = rand ( size (S , 1 ) ,k ) ;
32 V_S = rand (k , size (S , 2 ) ) ;
33 C_1 = 0 ;
34 C_2 = 0 ;
35
36 %rank_L = zeros(max_iter ,1);
37 %error_D = zeros(max_iter ,1);
38 %error_S = zeros(max_iter ,1);
39
40 for iter = 1 : max_iter
41 % update L
42 [ U , Sigma , V ] = svd (D+Y_D/mu−S , ’econ’ ) ;
43 Sigma1 = sign ( Sigma ) .∗ max ( abs ( Sigma ) − 1/mu , 0) ;
44 L = U∗Sigma1∗V ’ ;
45 %rank_L(iter) = rank(L);
46
47 % update S
48 S = sign(−(L−D+Y_S/mu−Y_D/mu−U_S∗V_S ) /2) .∗ max ( abs(−(L−D+Y_S/mu−

Y_D/mu−U_S∗V_S ) /2) − lambda /(2∗mu ) , 0) ;
49
50 % update U_L
51 U_S = max ( ( mu∗C_1+mu∗S∗V_S ’+Y_S∗V_S ’ ) /(mu ∗( eye (k )+V_S∗V_S ’ ) ) , 0 ) ;
52
53 % update V_L
54 V_S = max ( inv (mu ∗( eye (k )+U_S ’∗ U_S ) ) ∗(mu∗C_2+mu∗U_S ’∗ S+U_S ’∗ Y_S )

, 0 ) ;
55
56 % update Y_D, Y_S, Y_U_S , Y_V_S
57 Y_D = Y_D+mu ∗(D−L−S ) ;
58 Y_S = Y_S+mu ∗(S−U_S∗V_S ) ;
59
60 obj_D ( iter ) = norm (D−L−S , ’fro’ ) ;
61 error_D ( iter ) = obj_D ( iter ) /norm (D , ’fro’ ) ;
62 obj_S ( iter ) = norm (S−U_S∗V_S , ’fro’ ) ;
63 error_S ( iter ) = obj_S ( iter ) /norm (S , ’fro’ ) ;
64
65 % break if it meets the stopping criteria
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66 if iter > 2 && error_D ( iter ) < rho_D && error_S ( iter ) < rho_S &&
numel ( find (S<0) ) == 0

67 break ;
68 end
69 end
70 rank_L (k ) = rank (L ) ;
71 sparsity_S (k ) = nnz (S ) /numel (S ) ;
72 error_D_final (k ) = error_D ( iter ) ;
73 error_S_final (k ) = error_S ( iter ) ;
74
75 % store the sign information of low-rank term
76 count_L = numel ( find (L<0) ) ;
77 count_L_final (k ) = count_L ;
78
79 % store the sign information of sparse term
80 count_S = numel ( find (S<0) ) ;
81 count_S_final (k ) = count_S ;
82
83 % store the sign information of U_S term
84 % U_S_sign = zeros(size(U_S));
85 % U_S_sign = sign(U_S);
86 % count_U_S = 0;
87 % for i = 1:1:n_1
88 % for j = 1:1:k
89 % if U_S_sign(i,j) == -1
90 % count_U_S = count_U_S+1;
91 % break;
92 % end
93 % end
94 % if count_U_S == 1
95 % break;
96 %
97 % end
98 % end
99 % count_U_S_final(k) = count_U_S;

100
101 % store the sign information of V_S term
102 % V_S_sign = zeros(size(V_S));
103 % V_S_sign = sign(V_S);
104 % count_V_S = 0;
105 % for i = 1:1:k
106 % for j = 1:1:n_2
107 % if V_S_sign(i,j) == -1
108 % count_V_S = count_V_S+1;
109 % break;
110 % end
111 % end
112 % if count_V_S == 1
113 % break;
114 %
115 % end
116 % end
117 % count_V_S_final(k) = count_V_S;
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118 end
119
120
121 % Parameter initialization
122 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

123 function [ lambda , mu , max_iter , rho_D , rho_S , L0 , S0 , Y_D ] = parseInputs (D , opts )
124
125 if ~exist (’opts’ ,’var’ )
126 opts = struct ( ) ;
127 end
128
129 % parameters
130 lambda = parseFieldr (opts , ’lambda’ ) ;
131 mu = parseFieldr (opts , ’mu’ ) ;
132 rho_D = parseFieldr (opts , ’rho_D’ ) ;
133 rho_S = parseFieldr (opts , ’rho_S’ ) ;
134 max_iter = parseFieldr (opts , ’max_iter’ ) ;
135 L0 = parseField (opts , ’L0’ , rand ( size (D ) ) ) ;
136 S0 = parseField (opts , ’S0’ , rand ( size (D ) ) ) ;
137 Y_D = parseField (opts , ’Y_D’ , rand ( size (D ) ) ) ;
138
139
140 % Struct field
141 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

142 function val = parseField ( stats , field , default )
143 if isfield ( stats , field )
144 val = stats . ( field ) ;
145 else
146 val = default ;
147 end
148
149
150 % Required field
151 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

152 function val = parseFieldr ( stats , field )
153 if isfield ( stats , field )
154 val = stats . ( field ) ;
155 else
156 error (’Required field %s not provided’ , field ) ;
157 end

A-1-3 Proposed algorithm 2

1 function [ L , S , count_L_final , count_S_final , count_U_S_final , count_V_S_final
, rank_L , sparsity_S , error_D_final , k , iter ] = NSRPCA_no_S (D , opts )

2 % Proposed algorithm 2: Nonnegative Sparse Component RPCA 2
3 % cost function L(L,U_S,V_S) =
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4 % ||L||_*+<Y_D,D-L-U_S*V_S >+\mu/2||D-L-U_S*V_S||_F^2+...
5 % +\mu/2||U_S-C_1||_F^2+\mu/2||V_S-C_2||_F^2
6 % constraints: D = L+S
7 % U_S>=0, V_S >=0
8
9 % input: D is the image matrix

10 % opts:
11 % opts.lambda is the coefficient of sparse component
12 % opts.mu is the coefficient of error term in the cost function
13 % opts.max_iter is the maximum iteration number
14 % opts.rho_D is one of the thresholds in the stopping criterion
15 % opts.L0 is the initial low-rank component
16 % opts.Y_D is the initial Lagrange multiplier
17
18 [ lambda , mu , max_iter , rho_D , rho_S , L0 , S0 , Y_D ] = parseInputs (D , opts ) ;
19 for k = 2
20 L = L0 ;
21
22 n_1 = size (D , 1 ) ;
23 n_2 = size (D , 2 ) ;
24
25 U_S = rand ( size (L , 1 ) ,k ) ;
26 V_S = rand (k , size (L , 2 ) ) ;
27 C_1 = 0 ;
28 C_2 = 0 ;
29
30 for iter = 1 : max_iter
31 % update L
32 [ U , Sigma , V ] = svd (D+Y_D/mu−U_S∗V_S , ’econ’ ) ;
33 Sigma1 = sign ( Sigma ) .∗ max ( abs ( Sigma ) − 1/mu , 0) ;
34 L = U∗Sigma1∗V ’ ;
35 %rank_L(iter) = rank(L);
36
37 % update U_L
38 U_S = max ( ( D∗V_S ’+Y_D∗V_S ’ / mu−L∗V_S ’+C_1−sign ( U_S∗V_S ) ∗V_S ’∗

lambda/mu ) /( eye (k )+V_S∗V_S ’ ) , 0 ) ;
39
40 % update V_L
41 V_S = max ( inv ( eye (k )+U_S ’∗ U_S ) ∗(U_S ’∗ D+U_S ’∗ Y_D/mu−U_S ’∗ L+C_2−U_S

’∗ sign ( U_S∗V_S ) ∗lambda/mu ) , 0 ) ;
42
43 % recover S
44 S = U_S∗V_S ;
45
46 % update Y_D, Y_S, Y_U_S , Y_V_S
47 Y_D = Y_D+mu ∗(D−L−S ) ;
48
49 obj_D ( iter ) = norm (D−L−S , ’fro’ ) ;
50 error_D ( iter ) = obj_D ( iter ) /norm (D , ’fro’ ) ;
51
52 % break if it meets the stopping criteria
53 if iter > 2 && error_D ( iter ) < rho_D && numel ( find (S<0) ) == 0
54 break ;
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55 end
56 end
57
58 rank_L (k ) = rank (L ) ;
59 sparsity_S (k ) = nnz (S ) /numel (S ) ;
60 error_D_final (k ) = error_D ( iter ) ;
61
62 % store the sign information of low-rank term
63 count_L = numel ( find (L<0) ) ;
64 count_L_final (k ) = count_L ;
65
66 % store the sign information of sparse term
67 count_S = numel ( find (S<0) ) ;
68 count_S_final (k ) = count_S ;
69
70 count_U_S = numel ( find (U_S<0) ) ;
71 count_U_S_final (k ) = count_U_S ;
72
73 count_V_S = numel ( find (V_S<0) ) ;
74 count_V_S_final (k ) = count_V_S ;
75
76 end
77
78 % Parameter initialization
79 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

80 function [ lambda , mu , max_iter , rho_D , rho_S , L0 , S0 , Y_D ] = parseInputs (D , opts )
81
82 if ~exist (’opts’ ,’var’ )
83 opts = struct ( ) ;
84 end
85
86 % parameters
87 lambda = parseFieldr (opts , ’lambda’ ) ;
88 mu = parseFieldr (opts , ’mu’ ) ;
89 rho_D = parseFieldr (opts , ’rho_D’ ) ;
90 rho_S = parseFieldr (opts , ’rho_S’ ) ;
91 max_iter = parseFieldr (opts , ’max_iter’ ) ;
92 L0 = parseField (opts , ’L0’ , rand ( size (D ) ) ) ;
93 S0 = parseField (opts , ’S0’ , rand ( size (D ) ) ) ;
94 Y_D = parseField (opts , ’Y_D’ , rand ( size (D ) ) ) ;
95
96
97 % Struct field
98 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

99 function val = parseField ( stats , field , default )
100 if isfield ( stats , field )
101 val = stats . ( field ) ;
102 else
103 val = default ;
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104 end
105
106
107 % Required field
108 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

109 function val = parseFieldr ( stats , field )
110 if isfield ( stats , field )
111 val = stats . ( field ) ;
112 else
113 error (’Required field %s not provided’ , field ) ;
114 end

A-1-4 IALM algorithm

1 function [ L , S , sparsity_S , iter ] = basic_RPCA (D , opts )
2 % RPCA algorithm
3 % cost function L(L,S) = ||L||_*+\lambda||S||_1+<Y,D-L-S>+\mu/2||D-L-S||

_F^2
4 % constraints: D = L+S
5
6 % input: D is the image matrix
7 % opts:
8 % opts.lambda is the coefficient of sparse component
9 % opts.mu is the coefficient of error term in the cost function

10 % opts.max_iter is the maximum iteration number
11 % opts.rho is the threshold in the stopping criterion
12 % opts.L0 is the initial low-rank component
13 % opts.S0 is the initial sparse component
14
15 [ lambda , mu , max_iter , rho , L0 , S0 , Y ] = parseInputs (D , opts ) ;
16 L = L0 ;
17 S = S0 ;
18 n_1 = size (D , 1 ) ;
19 n_2 = size (D , 2 ) ;
20
21 for iter = 1 : max_iter
22 % update L
23 [ U , Sigma , V ] = svd (D−S+Y/mu , ’econ’ ) ;
24 Sigma1 = sign ( Sigma ) .∗ max ( abs ( Sigma ) − 1/mu , 0) ;
25 L = U∗Sigma1∗V ’ ;
26
27 % update S
28 S = sign (D−L+Y/mu ) .∗ max ( abs (D−L+Y/mu ) − lambda/mu , 0) ;
29
30 % update Y
31 Y = Y+mu ∗(D−L−S ) ;
32 obj ( iter ) = norm (D−L−S , ’fro’ ) ;
33 error = obj ( iter ) /norm (D , ’fro’ ) ;
34
35 % break if it meets the stopping criteria
36 if iter > 2 && obj ( iter ) < rho∗norm (D , ’fro’ )
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37 break ;
38 end
39 end
40 rank_L = rank (L ) ;
41 sparsity_S = nnz (S ) /numel (S ) ;
42 error_final = error ;
43
44 % store the sign information of low-rank term
45 count_L = numel ( find (L<0) ) ;
46
47 % store the sign information of sparse term
48 count_S = numel ( find (S<0) ) ;
49
50 % % store the sign information of low-rank term
51 % L_sign = zeros(size(L));
52 % L_sign = sign(L);
53 % count_L = 0;
54 % for i = 1:1:n_1
55 % for j = 1:1:n_2
56 % if L_sign(i,j) == -1
57 % count_L = count_L+1;
58 % break;
59 % end
60 % end
61 % if count_L == 1
62 % break;
63 %
64 % end
65 % end
66 %
67 % % store the sign information of sparse term
68 % S_sign = zeros(size(S));
69 % S_sign = sign(S);
70 % count_S = 0;
71 % for i = 1:1:n_1
72 % for j = 1:1:n_2
73 % if L_sign(i,j) == -1
74 % count_S = count_S+1;
75 % break;
76 % end
77 % end
78 % if count_S == 1
79 % break;
80 %
81 % end
82 % end
83
84
85 % Parameter initialization
86 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

87 function [ lambda , mu , max_iter , rho , L0 , S0 , Y ] = parseInputs (D , opts )
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88
89 if ~exist (’opts’ ,’var’ )
90 opts = struct ( ) ;
91 end
92
93 % parameters
94 lambda = parseFieldr (opts , ’lambda’ ) ;
95 mu = parseFieldr (opts , ’mu’ ) ;
96 rho = parseFieldr (opts , ’rho’ ) ;
97 max_iter = parseFieldr (opts , ’max_iter’ ) ;
98 L0 = parseField (opts , ’L0’ , zeros ( size (D ) ) ) ;
99 S0 = parseField (opts , ’S0’ , zeros ( size (D ) ) ) ;

100 Y = parseField (opts , ’Y’ , zeros ( size (D ) ) ) ;
101
102
103
104 % Struct field
105 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

106 function val = parseField ( stats , field , default )
107 if isfield ( stats , field )
108 val = stats . ( field ) ;
109 else
110 val = default ;
111 end
112
113
114 % Required field
115 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

116 function val = parseFieldr ( stats , field )
117 if isfield ( stats , field )
118 val = stats . ( field ) ;
119 else
120 error (’Required field %s not provided’ , field ) ;
121 end

A-2 Functions

A-2-1 F-measure

1 function [ p , r , score ] = F_measure_multi (S , GT )
2
3 S_reshape = reshape (S ( : ) , [ ] , 1 ) ;
4 S_reshape ( S_reshape>0) = 255 ;
5 GT_reshape = reshape (GT ( : , : , 1 : 1 0 ) , [ ] , 1 ) ;
6
7 S_compare = S_reshape−GT_reshape ;
8 FP = numel ( find ( S_compare == 255) ) ;
9 FN = numel ( find ( S_compare == −255) ) ;
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10 TP = numel ( find ( GT_reshape == 255 ) ) − FN ;
11 p = TP /(TP+FP ) ;
12 r = TP /(TP+FN ) ;
13 score = 2∗p∗r/(p+r ) ;
14
15 end

1 function [ p , r , score ] = F_measure_single (S , GT , k )
2
3 S_reshape = S ( : , k ) ;
4 S_reshape ( S_reshape>0) = 255 ;
5 GT_reshape = reshape (GT ( : , : , k ) , [ ] , 1 ) ;
6
7 S_compare = S_reshape−GT_reshape ;
8 FP = numel ( find ( S_compare == 255) ) ;
9 FN = numel ( find ( S_compare == −255) ) ;

10 TP = numel ( find ( GT_reshape == 255 ) ) − FN ;
11 p = TP /(TP+FP ) ;
12 r = TP /(TP+FN ) ;
13 score = 2∗p∗r/(p+r ) ;
14
15 end

A-2-2 Peak Signal-to-noise Ratio (PSNR)

1 function [ MSE , ratio ] = PSNR_multi (S , GT )
2 % Calculate peak signal -to-noise ratio between recovered S with ground
3 % truth data
4 S_reshape = reshape (S ( : ) , [ ] , 1 ) ;
5 GT_reshape = reshape (GT ( : , : , 1 : 1 0 ) , [ ] , 1 ) ;
6 MSE = sum ( ( S_reshape − GT_reshape ) . ^2 ) /( size ( S_reshape , 1 ) ∗size ( S_reshape

, 2 ) ) ;
7 MAX = 255 ;
8 ratio = 10∗log10 ( MAX^2/MSE ) ;
9

10 end

1 function [ MSE , ratio ] = PSNR_single (S , GT , k )
2 % Calculate peak signal -to-noise ratio between recovered S with ground
3 % truth data
4
5 S_reshape = reshape (S ( : , k ) , size (GT ( : , : , k ) , 1 ) , [ ] ) ;
6 GT_reshape = GT ( : , : , k ) ;
7 MSE = sum ( ( S_reshape − GT_reshape ) .^2 , ’all’ ) /( size ( S_reshape , 1 ) ∗size (

S_reshape , 2 ) ) ;
8 MAX = 255 ;
9 ratio = 10∗log10 ( MAX^2/MSE ) ;

10
11 end

A-2-3 Receiver Operating Characteristic (ROC)
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1 function [ X , Y , AUC ] = ROC_curve_multi (S , GT )
2 % ROC curve of the video frames
3
4 S_reshape = reshape (S ( : ) , [ ] , 1 ) ;
5 GT_reshape = reshape (GT ( : , : , 1 : 1 0 ) , [ ] , 1 ) ;
6
7 % range = [0,1]
8 S_reshape = ( S_reshape − min ( S_reshape ( : ) ) ) . / ( max ( S_reshape ( : ) ) − min (

S_reshape ( : ) ) ) ;
9 GT_reshape = ( GT_reshape − min ( GT_reshape ( : ) ) ) . / ( max ( GT_reshape ( : ) ) −

min ( GT_reshape ( : ) ) ) ;
10 [ X , Y , T , AUC ] = perfcurve ( GT_reshape ’ , S_reshape ’ , 1 ) ;
11
12 end

1 function [ X , Y , AUC ] = ROC_curve_single (S , GT , k )
2 % ROC curve of the video frames
3
4 S_reshape = S ( : , k ) ;
5 GT_reshape = reshape (GT ( : , : , k ) , [ ] , 1 ) ;
6
7 % range = [0,1]
8 S_reshape = ( S_reshape − min ( S_reshape ( : ) ) ) . / ( max ( S_reshape ( : ) ) − min (

S_reshape ( : ) ) ) ;
9 GT_reshape = ( GT_reshape − min ( GT_reshape ( : ) ) ) . / ( max ( GT_reshape ( : ) ) −

min ( GT_reshape ( : ) ) ) ;
10 [ X , Y , T , AUC ] = perfcurve ( GT_reshape ’ , S_reshape ’ , 1 ) ;
11
12 end

A-2-4 Colormap

1 function [ TP , FP , TN , FN , S_mask_color ] = colormap (S , GT , k )
2
3 S_mask = S ( : , k ) ;
4 S_mask ( S_mask>0) = 255 ;
5 GT_reshape = reshape (GT ( : , : , k ) , [ ] , 1 ) ;
6 TP = 0 ;
7 FP = 0 ;
8 TN = 0 ;
9 FN = 0 ;

10 S_mask_color = cat (3 , S_mask , S_mask , S_mask ) ;
11
12 for i=1:size (S , 1 )
13 if ( S_mask (i )==255 && GT_reshape (i , 1 ) ==255)
14 TP=TP+1;
15 S_mask_color (i , 1 , 2) = 255 ;
16 S_mask_color (i , 1 , [ 1 3 ] ) = 0 ;
17 elseif ( S_mask (i )==0 && GT_reshape (i , 1 ) ==255)
18 FN=FN+1;
19 S_mask_color (i , 1 , 3) = 255 ;
20 S_mask_color (i , 1 , 1 : 2 ) = 0 ;
21 elseif ( S_mask (i )==0 && GT_reshape (i , 1 )==0)
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22 TN=TN+1;
23 else
24 FP=FP+1;
25 S_mask_color (i , 1 , 1) = 255 ;
26 S_mask_color (i , 1 , 2 : 3 ) = 0 ;
27 end
28 end
29
30 S_mask_color = reshape ( S_mask_color , size (GT , 1 ) , size (GT , 2 ) , [ ] ) ;
31
32 end
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Appendix B

Theorem

B-1 Karush–Kuhn–Tucker (KKT) conditions

Consider a nonlinear optimization problem with equality and inequality constraints as

optimize f(x)
s.t. gi(x) ≤ 0,
hi(x) = 0,

(B-1)

where x ∈ Rn and the number of inequality and equality constraints are denoted by m and k
respectively. Then the cost function of the optimization problem can be formulated as

L(x, µ, λ) = f(x) + µT g(x) + λTh(x), (B-2)

where g(x) = (g1(x), . . . , gm(x))T and h(x) = (h1(x), . . . , hk(x))T . Scalars λ and µ are the
Lagrange multipliers that incorporate the constraints into the cost function. According to
[22], the first order KKT conditions are

for maximizing f(x) ∇xL = ∇f(x∗)−
m∑
i=1

µi∇gi(x∗)−
k∑
j=1

λj∇hj(x∗) = 0,

for minimizing f(x) ∇xL = ∇f(x∗) +
m∑
i=1

µi∇gi(x∗) +
k∑
j=1

λj∇hj(x∗) = 0,

∇µL = gi(x∗) ≤ 0 for i = 1, . . . ,m,
∇λL = hj(x∗) = 0 for j = 1, . . . , h,

µi ≥ 0 for i = 1, . . . ,m,
µigi(x∗) = 0 for i = 1, . . . ,m.

(B-3)
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Glossary

List of Acronyms

PCA Principal Component Analysis
PCP Principal Component Pursuit
ALM Augmented Lagrange Multiplier Method
ADM Alternating Direction Method
RPCA Robust Principal Component Analysis
APG Accelerated Proximal Gradient
OCT Optical Coherence Tomography
EALM Exact ALM
IALM Inexact ALM
KKT Karush–Kuhn–Tucker
NMF Nonnegative Matrix Factorization
CNMF Constrained NMF
SNMF Structured NMF
SVD Singular Value Decomposition
FPCP Fast PCP
TVRPCA Total Variation Regularized RPCA
TP True Positive
TN True Negative
FP False Positive
FN False Negative
MSE Mean Squared Error
PSNR Peak Signal-to-noise Ratio
ROC Receiver Operating Characteristic
TPR True Positive Rate
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FPR False Positive Rate
AUC Area Under Curve

Chenyang Ling Master of Science Thesis


	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Introduction to RPCA
	Applications of RPCA
	Background and foreground decomposition applications of RPCA
	General applications of RPCA

	Existence of negative pixels
	Introduction to NMF
	Applications of NMF
	Objective and structure of the thesis

	Algorithm
	RPCA model
	NMF model
	Validation test on NMF

	Proposed model 1
	Main optimization problem
	Sub-problem of L
	Sub-problem of S
	Sub-problems of US and VS
	Update rules

	Proposed model 2
	Main optimization problem
	Update rules

	Connection with other algorithms for background and foreground decomposition
	Algorithm comparison

	Experiment
	Dataset
	Evaluation criterion
	MSE and PSNR
	F-measure
	ROC curve

	Parameter selection
	Algorithm result comparison
	Qualitative analysis
	Quantitative analysis


	Conclusion

	Appendices
	Matlab codes of proposed algorithms
	Main files
	Demo
	Proposed algorithm 1
	Proposed algorithm 2
	IALM algorithm

	Functions
	F-measure
	PSNR
	ROC
	Colormap


	Theorem
	KKT conditions


	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols



