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Abstract: The increasing demands on throughput and accuracy of semiconductor manufactur-
ing equipment necessitates accurate feedforward motion control that includes compensation of
input nonlinearities. The aim of this paper is to develop a data-driven feedforward approach
consisting of a Wiener feedforward, i.e., linear parameterization with an output nonlinearity,
to achieve high tracking accuracy and task flexibility for a class of Hammerstein systems. The
developed approach exploits iterative learning control to learn a feedforward signal from data
that minimizes the error and utilizes a control-relevant cost function to learn the parameters of
a Wiener feedforward parameterization. Experimental validation on a wirebonder shows that
the developed approach enables high tracking accuracy and task flexibility.

Keywords: Iterative and repetitive learning control, Identification and control methods,
Nonlinear system identification, Data-driven control, Learning for control.

1. INTRODUCTION

The increasing demands on throughput and accuracy of
semiconductor manufacturing equipment necessitates ac-
curate feedforward motion control (Fleming and Leang,
2014). An example of such a semiconductor manufacturing
machine is a wirebonder, which bonds small wires between
the integrated circuit and a die with micrometer precision.
Besides the stringent requirements on high manufacturing
throughput and micrometer accuracy, flexibility in the mo-
tion tasks need to be attained (Boeren et al., 2016), posing
challenges on feedforward control. Moreover, nonlinear ef-
fects, such as input nonlinearities, changing environments,
and machine-to-machine differences pose challenges for
the control methodology. Data-driven feedforward tuning
methods are envisaged to deal with these requirements and
challenges through machine-specific calibration procedures
and compensation of nonlinear effects.

Data-based feedforward tuning methods, such as itera-
tive learning control (ILC), enable learning of feedforward
signals to achieve high motion accuracy. In ILC, feed-
forward signals are iteratively learned from data using a
linear model of the system for repeating motion tasks, en-
abling compensation of repetitive disturbances, including
repetitive nonlinear effects. To achieve task flexibility, i.e.,
changes in the motion task, basis functions are introduced,
see, e.g., (van de Wijdeven and Bosgra, 2010). In ILC with
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basis functions (ILC BF), the feedforward signal is param-
eterized by basis functions as a function of the motion task,
enabling task flexibility. These basis functions constitutes
the approximate inverse model of the system, necessitating
proper selection of these to obtain high tracking accuracy
and task flexibility. In (van der Meulen et al., 2008),
polynomial functions of the motion tasks are included,
resulting in a linear parameterization of the feedforward
signal and allowing inclusion of nonlinear basis functions,
e.g., Coulomb friction. In (Poot et al., 2021), the linear
parameterization is extended with a high-order noncausal
FIR parameterization while maintaining the possibility
of prescribing nonlinear basis functions, enabling higher
tracking performance. In (Bolder and Oomen, 2015), the
FIR parameterization is extended to a rational parame-
terization, allowing better representation of the inverse
system by learning both poles and zeros of the feedforward
filter. These learning methods enable high performance for
systems that are approximated well by a linear system.

To achieve high performance for nonlinear systems, exten-
sions are necessary as linear parameterization are often
insufficient to describe the nonlinear dynamics, which is
particular the case for systems with input nonlinearities,
e.g., magnetic saturation in linear actuators (Polinder,
2002). These types of systems often exhibit predominantly
linear dynamics with a static input nonlinearity, i.e., these
systems can be accurately described by Hammerstein sys-
tems. A variety of model structures are developed for
Wiener and Hammerstein systems, including polynomials
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(Giri et al., 2002) and piecewise-linear parameterizations
(Giri and Bai, 2010, Chapter 6). Identification of these
type of systems is generally based on input and output
data (Giri and Bai, 2010) and the optimization schemes
are often focused towards model accuracy such that the
model prediction error is minimized, which not necessarily
have to result in the a minimizing the tracking error for
feedforward control.

Although high tracking accuracy is enabled by ILC, it
lacks the ability to compensate for nonlinearities in the
input when incorporating a linear parameterization for
task flexibility. Moreover, data-driven Hammerstein sys-
tem identification methods enable identification of a pa-
rameterized nonlinear system, but these are not geared
towards reducing the tracking error in feedforward control.

The aim of this paper is to develop a data-driven feedfor-
ward tuning approach consisting of a Wiener feedforward,
i.e., linear parameterization with an output nonlinearity,
to achieve high tracking accuracy and task flexibility for
a class of Hammerstein systems. The developed approach
exploits ILC to learn a feedforward signal from data that
minimizes the error and utilizes a control-relevant cost
function to learn the parameters of a Wiener feedforward
parameterization.

This research extends pre-existing research of (van Hulst
et al., 2022) with experimental validation on a commercial
wirebonder and an analysis on the cost landscape of the
nonlinear optimization problem. See (van Hulst et al.,
2022) for comparison of the developed approach with
traditional system identification methods.

This paper is structured as follows. In Section 2, the prob-
lem is formulated. In Section 3, the developed approach
is introduced. In Section 4, the experimental validation is
presented. Lastly, in Section 5, the conclusions are given.

Notation. Systems are assumed to be discrete-time (DT),
linear, time-invariant (LTI), single-input, single-output
(SISO) and are denoted by H(z) with complex indeter-
minate z. Signals are tacitly assumed of length N ∈ Z+.
The output y(k) of the response of H(z) to input u is
y(k) =

∑∞
l=−∞ h(l)u(k − l), where h(l) is the impulse

response of the system H(z). Assuming u(k) = 0 for k < 0
and k > N − 1, the response can be cast into a finite-time
convolution as

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with u, y ∈ RN the input and output, respectively, and
H ∈ RN×N the convolution matrix corresponding toH(z).
The i-th element of a vector x is denoted by x[i]. The
weighted 2-norm of the vector x ∈ Rn with positive
semi-definite weighting matrix W ∈ Rn×n is denoted by

‖x‖W =
√
x�Wx.

2. PROBLEM FORMULATION

In this section, the problem is formulated. First, the con-
trol setting is described. Second, the pre-existing approach
and its shortcomings are highlighted. At last, the problem
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Fig. 1. Closed-loop control scheme with plant Pfull that
is described by a Hammerstein system, feedback con-
troller C, and feedforward signal f .

is stated and the requirements for the solution are formal-
ized.

2.1 Control setting

Consider the control scheme depicted in Figure 1, where
Pfull is assumed to be a nonlinear Hammerstein system
consisting of a static input nonlinearity g with intermedi-
ate output x and LTI dynamics P . Moreover, the output
is assumed to be subjected to output noise v ∈ RN . The
plant Pfull is controlled by DT and LTI feedback controller
C and the closed-loop system is assumed to be stable.

The goal is to design f such that accurate tracking of
the reference is obtained. Assume that Pfull is linear, i.e.,
x = u, then, from Figure 1, the error is derived as

e = Sr − SPfullf − Sv, (2)

where S := (1+PfullC)−1 is the sensitivity. To obtain task
flexibility it is necessary to design f as a function of r, as
described next.

2.2 Problem of pre-existing approach

To obtain task flexibility, the feedforward signal is now
an explicit function of the reference signal r. Often, the
feedforward signal is parameterized by so called basis
functions,

f = F (θ)r (3)

where F (θ) is the convolution matrix representation of a
parameterized feedforward filter F (θ, z) with parameters
θ. The parameters θ can be learned from data with pre-
existing solutions such as ILC with basis functions, see,
e.g., (van de Wijdeven and Bosgra, 2010). This solution
is able to cope with closed-loop noise and learns the
parameters θ from that minimize the tracking error for
a certain motion task.

By substituting (3) in (2), the error can be expressed as

e = Sr − SPfullF (θ)r − Sv, (4)

from which can be observed that the reference-induced
error are eliminated for any motion task r when F = P−1

full.
In the case that Pfull is linear, F can be designed as a
linear LTI system to achieve this. However, in case Pfull is
a nonlinear Hammerstein system, reference induced errors
are introduced and no task flexibility is obtained for linear
parameterizations of F .

2.3 Problem formulation

The objective in this paper is to design f as a function
of r such that reference-induced errors are eliminated for
linear systems P with a static input nonlinearity, i.e.,
the Hammerstein system Pfull = P (g(u)). The problem
is that a linear feedforward parameterization using ILC
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(Giri et al., 2002) and piecewise-linear parameterizations
(Giri and Bai, 2010, Chapter 6). Identification of these
type of systems is generally based on input and output
data (Giri and Bai, 2010) and the optimization schemes
are often focused towards model accuracy such that the
model prediction error is minimized, which not necessarily
have to result in the a minimizing the tracking error for
feedforward control.

Although high tracking accuracy is enabled by ILC, it
lacks the ability to compensate for nonlinearities in the
input when incorporating a linear parameterization for
task flexibility. Moreover, data-driven Hammerstein sys-
tem identification methods enable identification of a pa-
rameterized nonlinear system, but these are not geared
towards reducing the tracking error in feedforward control.

The aim of this paper is to develop a data-driven feedfor-
ward tuning approach consisting of a Wiener feedforward,
i.e., linear parameterization with an output nonlinearity,
to achieve high tracking accuracy and task flexibility for
a class of Hammerstein systems. The developed approach
exploits ILC to learn a feedforward signal from data that
minimizes the error and utilizes a control-relevant cost
function to learn the parameters of a Wiener feedforward
parameterization.

This research extends pre-existing research of (van Hulst
et al., 2022) with experimental validation on a commercial
wirebonder and an analysis on the cost landscape of the
nonlinear optimization problem. See (van Hulst et al.,
2022) for comparison of the developed approach with
traditional system identification methods.

This paper is structured as follows. In Section 2, the prob-
lem is formulated. In Section 3, the developed approach
is introduced. In Section 4, the experimental validation is
presented. Lastly, in Section 5, the conclusions are given.

Notation. Systems are assumed to be discrete-time (DT),
linear, time-invariant (LTI), single-input, single-output
(SISO) and are denoted by H(z) with complex indeter-
minate z. Signals are tacitly assumed of length N ∈ Z+.
The output y(k) of the response of H(z) to input u is
y(k) =

∑∞
l=−∞ h(l)u(k − l), where h(l) is the impulse

response of the system H(z). Assuming u(k) = 0 for k < 0
and k > N − 1, the response can be cast into a finite-time
convolution as
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, (1)

with u, y ∈ RN the input and output, respectively, and
H ∈ RN×N the convolution matrix corresponding toH(z).
The i-th element of a vector x is denoted by x[i]. The
weighted 2-norm of the vector x ∈ Rn with positive
semi-definite weighting matrix W ∈ Rn×n is denoted by

‖x‖W =
√
x�Wx.

2. PROBLEM FORMULATION

In this section, the problem is formulated. First, the con-
trol setting is described. Second, the pre-existing approach
and its shortcomings are highlighted. At last, the problem
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Fig. 1. Closed-loop control scheme with plant Pfull that
is described by a Hammerstein system, feedback con-
troller C, and feedforward signal f .

is stated and the requirements for the solution are formal-
ized.

2.1 Control setting

Consider the control scheme depicted in Figure 1, where
Pfull is assumed to be a nonlinear Hammerstein system
consisting of a static input nonlinearity g with intermedi-
ate output x and LTI dynamics P . Moreover, the output
is assumed to be subjected to output noise v ∈ RN . The
plant Pfull is controlled by DT and LTI feedback controller
C and the closed-loop system is assumed to be stable.

The goal is to design f such that accurate tracking of
the reference is obtained. Assume that Pfull is linear, i.e.,
x = u, then, from Figure 1, the error is derived as

e = Sr − SPfullf − Sv, (2)

where S := (1+PfullC)−1 is the sensitivity. To obtain task
flexibility it is necessary to design f as a function of r, as
described next.

2.2 Problem of pre-existing approach

To obtain task flexibility, the feedforward signal is now
an explicit function of the reference signal r. Often, the
feedforward signal is parameterized by so called basis
functions,

f = F (θ)r (3)

where F (θ) is the convolution matrix representation of a
parameterized feedforward filter F (θ, z) with parameters
θ. The parameters θ can be learned from data with pre-
existing solutions such as ILC with basis functions, see,
e.g., (van de Wijdeven and Bosgra, 2010). This solution
is able to cope with closed-loop noise and learns the
parameters θ from that minimize the tracking error for
a certain motion task.

By substituting (3) in (2), the error can be expressed as

e = Sr − SPfullF (θ)r − Sv, (4)

from which can be observed that the reference-induced
error are eliminated for any motion task r when F = P−1

full.
In the case that Pfull is linear, F can be designed as a
linear LTI system to achieve this. However, in case Pfull is
a nonlinear Hammerstein system, reference induced errors
are introduced and no task flexibility is obtained for linear
parameterizations of F .

2.3 Problem formulation

The objective in this paper is to design f as a function
of r such that reference-induced errors are eliminated for
linear systems P with a static input nonlinearity, i.e.,
the Hammerstein system Pfull = P (g(u)). The problem
is that a linear feedforward parameterization using ILC
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Fig. 2. Proposed closed-loop control scheme with plant
Pfull that is described by a Hammerstein system,
feedback controller C, and Wiener feedforward f =
h(Fr).

BF is unable to compensate for the input nonlinearity,
resulting in low performance and no task flexibility. Data-
driven Hammerstein system identification methods enable
learning of a system parameterization that is task flexible
but these are not geared towards reducing the tracking
error in feedforward control as these use input-output data
(Giri and Bai, 2010) instead of a relevant motion task, i.e.,
control-relevant.

The requirements for the solution of the problem are
summarized:

R1. High tracking accuracy defined by zero reference-
induced error, i.e., e ≈ −Sv.

R2. Flexibility with respect to the motion task.
R3. Feedforward parameterization as function of r.
R4. Data-driven tuning of the parameters.
R5. Control-relevant optimization that minimizes the er-

ror.

In the next section, the developed approach that is a
solution to the problem is presented.

3. APPROACH

The developed approach consists of a Wiener parameter-
ization of the feedforward with a data-driven optimiza-
tion using ILC. First, the feedforward parameterization is
presented. Second, the aspects regarding data generation
using ILC is elaborated upon. Third, the control-relevant
optimization problem is defined.

3.1 Wiener feedforward parameterization

Consider Figure 2 where the Wiener feedforward f =
h(Fr), consisting of a linear system F (θ) with parameters
θ and a static output nonlinearity h(φ) with parameters φ.
Note that for brevity the parameters θ, φ are often omitted.
The key idea in the proposed solution is to design h and F
such that the error is minimized for any reference r. The
error can be derived from the figure and is given by

e = r − Pg
(
Ce+ h(Fr)

)
. (5)

Zero reference-induced error for any reference r is obtained
for Pg

(
h(Fr)

)
= r and is satisfied if h = g−1 and F =

P−1. Recall from (4) that F ≈ P−1 can often be achieved
with pre-existing linear parameterizations, such as basis
functions (van de Wijdeven and Bosgra, 2010). Moreover,
in case the inverse input nonlinearity is described by h(φ)
with, e.g., a polynomial function (Giri et al., 2002), that
approximates g−1, the requirements R1., R2., and R3. can
be satisfied.

3.2 Data generation using iterative learning control

To learn the parameters θ of F (θ) and φ of h(φ) using
data, ILC is exploited to generate the data.

The idea in norm-optimal ILC (NOILC) is to learn f that
compensates for repetitive disturbances in a trial-to-trial
fashion using a cost criteria. Temporarily assume that Pfull

is linear, i.e., u = x and Pfull = P , from Figure 1, the error
of (2) in a noiseless situation can be written as

ej = Srj − SPfj , (6)

where j denotes the trial index.

By increasing the index j to j + 1, and assuming a
trial-invariant reference, i.e., r = rj = rj+1, the error
propagation from trial j to j + 1 can be derived by
subtraction, resulting in

êj+1 = ej − ŜP (fj+1 − fj), (7)

where êj+1 is the predicted error of the next iteration and

ŜP a model of the real system SP . The objective in ILC
is to minimize êj+1 based on measurements ej and fj , and

the model ŜP .

To minimize the tracking error of the next trial êj+1, the
following optimization for ILC is defined

fNOILC
j+1 = argmin

fj+1
‖ej−ŜP (fj+1−fj)‖2We

+‖fj+1‖2Wf
, (8)

where We � 0 and Wf � 0. The solution is computed
analytically and is given by

fNOILC
j+1 = Lej +Qfj ,

L = R−1ŜP
�
We,

Q = R−1
(
ŜP

�
WeŜP

)
,

R = ŜP
�
WeŜP +Wf .

(9)

Monotonic convergence with respect to ‖ fj ‖2 of the
solution can be guaranteed by selecting Wf � 0 and is
often necessary in case of model-mismatch (Bolder et al.,
2014). Note that bias is introduced if Wf is increased, as
this results in non-zero error. Moreover, due to closed-loop
noise, bias might be introduced. At last, note that basis
functions ILC is obtained when selecting f = Ψ(r)θ and
results in a convex optimization problem with an analytic
solution, see, e.g., (van de Wijdeven and Bosgra, 2010).

The key idea of learning fNOILC using ILC is that ILC
can compensate for any repetitive disturbances, including
those arising from input nonlinearities. Using (9), fNOILC

can be learned in a few iterations for a repeating reference
r to minimize the tracking error despite nonlinearities.

Next, the developed approach regarding learning the
Wiener parameterization from this data is explained.

3.3 Optimization problem

The key idea in the developed approach is to fit the Wiener
parameterization h(F (θ)r, φ) on the converged fNOILC, as
the latter is designed to minimize the tracking error in the
presence of input nonlinearities.

To optimize the parameters θ and φ from the data, the
following control-relevant cost function is defined
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K(θ, φ) := ‖ŜP
(
fNOILC − h(F (θ)r, φ)

)
‖2, (10)

where ŜP is introduced to make the cost function control-
relevant as it relates the feedforward signal to its contribu-
tion to the error, see (Aarnoudse et al., 2021). The optimal
parameters can be computed using

{θopt, φopt} = argmin
{θ,φ}

K(θ, φ), (11)

which is a nonconvex optimization problem. Hence, a
solver is necessary that avoids local minima, see Section
4.4 for an analysis on the optimization problem.

The reference used in NOILC should be a concatenation
of typical relevant reference to make the cost function
relevant for control. Moreover, for an accurate estima-
tion of the Wiener feedforward parameters, the reference
should be persistently exciting with respect to the input
nonlinearity. At last, the frequency content of the reference
should be in the range where P−1 is approximated well by
F (θ).

Since fNOILC can be learned from data, the developed

approach satisfies R4. Moreover, the weighting ŜP in
the cost function enables a control-relevant optimization
problem as it satisfying requirement R5.

To summarize, by parameterizing the feedforward signal
using a Wiener parameterization as a function of r and
learning the parameters using data from ILC, the require-
ments formulated in Section 2 can be satisfied. Next, the
developed approach is validated on an experimental setup.

4. EXPERIMENTAL VALIDATION

In this section the proposed method is validated on a
wirebonder and compared to the pre-existing linear feed-
forward method of ILC BF. First, the experimental setup
is explained. Second, the modeling aspects of the devel-
oped approach are discussed. Third, aspects regarding
data generation are mentioned. Fourth, the optimization
problem is analyzed. At last, the results and comparisons
are presented.

4.1 Wirebonder experimental setup

The experimental setup is a commercial wirebonder by
ASMPT, depicted in Figure 3, that consists of a stacked
xyz-stage of which only the x-stage is considered. The
actuator in this machine subjected to magnetic saturation,
resulting in a nonlinear relationship between the applied
current of the actuator and the resulting force. Moreover,
the dynamics of the machine can be approximated well
by a linear system. Hence, it is expected that the system
can be modeled accurately by a Hammerstein system
description.

4.2 Wiener feedforward parameterization

The developed approach models the feedforward signal
using a parametric Wiener parameterization. Hereto, it is
assumed that the linear part of the Wiener representation
can describe the linear dynamics of P . The system is
expected to be approximated well by a rigid-body feedfor-
ward parameterization compensating effects due to moving

Fig. 3. Commercial wirebonder from ASM Pacific Tech-
nology consisting of a stacked xyz-stage of which only
the x-stage is considered and subjected to nonlinear
current saturation due to magnetic saturation.

a mass with friction. The feedforward parameterization is
given by

F (θ, z) =
1− z−1

Ts
θ1 +

(1− z−1)2

T 2
s

θ2, (12)

where θ1 and θ2 correspond to, respectively, velocity and
acceleration feedforward parameters.

The input nonlinearity describes the magnetic saturation
that takes place in the actuator (Polinder, 2002). Magnetic
saturation causes the force of the actuator to drop-off
as the input current in the motor increases and can be
modeled with

g(u) = Imax · tanh
( u

Imax

)
, (13)

where Imax is the current saturation parameter (Na et al.,
2018). The inverse input nonlinearity compensating this
nonlinear behavior is the inverse of (13) with rigid-body
feedforward, and is given by

f = h(F (θ)r, φ) = φ · atanh
(F (θ)r

φ

)
, (14)

where φ models the current saturation parameter Imax.

4.3 Data generation

In order to generate relevant data for the developed ap-
proach, a relevant reference is performed and the feedfor-
ward compensating all repetitive disturbances is learned
using NOILC. A reference is used that consists of a
sequence of 5 quintic-polynomial reference profiles with
varying maximum accelerations. These varying maximum
accelerations ensure that different levels of saturation take
place in the actuator, making the reference persistently
excited. The motion distance is kept short to avoid any
excitation of position dependency. The reference position
and acceleration are depicted in Figure 4.

Next, the NOILC algorithm is setup with We = I and
a nonzero value for Wf is necessary for convergence of
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K(θ, φ) := ‖ŜP
(
fNOILC − h(F (θ)r, φ)

)
‖2, (10)

where ŜP is introduced to make the cost function control-
relevant as it relates the feedforward signal to its contribu-
tion to the error, see (Aarnoudse et al., 2021). The optimal
parameters can be computed using

{θopt, φopt} = argmin
{θ,φ}

K(θ, φ), (11)

which is a nonconvex optimization problem. Hence, a
solver is necessary that avoids local minima, see Section
4.4 for an analysis on the optimization problem.

The reference used in NOILC should be a concatenation
of typical relevant reference to make the cost function
relevant for control. Moreover, for an accurate estima-
tion of the Wiener feedforward parameters, the reference
should be persistently exciting with respect to the input
nonlinearity. At last, the frequency content of the reference
should be in the range where P−1 is approximated well by
F (θ).

Since fNOILC can be learned from data, the developed

approach satisfies R4. Moreover, the weighting ŜP in
the cost function enables a control-relevant optimization
problem as it satisfying requirement R5.

To summarize, by parameterizing the feedforward signal
using a Wiener parameterization as a function of r and
learning the parameters using data from ILC, the require-
ments formulated in Section 2 can be satisfied. Next, the
developed approach is validated on an experimental setup.

4. EXPERIMENTAL VALIDATION

In this section the proposed method is validated on a
wirebonder and compared to the pre-existing linear feed-
forward method of ILC BF. First, the experimental setup
is explained. Second, the modeling aspects of the devel-
oped approach are discussed. Third, aspects regarding
data generation are mentioned. Fourth, the optimization
problem is analyzed. At last, the results and comparisons
are presented.

4.1 Wirebonder experimental setup

The experimental setup is a commercial wirebonder by
ASMPT, depicted in Figure 3, that consists of a stacked
xyz-stage of which only the x-stage is considered. The
actuator in this machine subjected to magnetic saturation,
resulting in a nonlinear relationship between the applied
current of the actuator and the resulting force. Moreover,
the dynamics of the machine can be approximated well
by a linear system. Hence, it is expected that the system
can be modeled accurately by a Hammerstein system
description.

4.2 Wiener feedforward parameterization

The developed approach models the feedforward signal
using a parametric Wiener parameterization. Hereto, it is
assumed that the linear part of the Wiener representation
can describe the linear dynamics of P . The system is
expected to be approximated well by a rigid-body feedfor-
ward parameterization compensating effects due to moving

Fig. 3. Commercial wirebonder from ASM Pacific Tech-
nology consisting of a stacked xyz-stage of which only
the x-stage is considered and subjected to nonlinear
current saturation due to magnetic saturation.

a mass with friction. The feedforward parameterization is
given by

F (θ, z) =
1− z−1

Ts
θ1 +

(1− z−1)2

T 2
s

θ2, (12)

where θ1 and θ2 correspond to, respectively, velocity and
acceleration feedforward parameters.

The input nonlinearity describes the magnetic saturation
that takes place in the actuator (Polinder, 2002). Magnetic
saturation causes the force of the actuator to drop-off
as the input current in the motor increases and can be
modeled with

g(u) = Imax · tanh
( u

Imax

)
, (13)

where Imax is the current saturation parameter (Na et al.,
2018). The inverse input nonlinearity compensating this
nonlinear behavior is the inverse of (13) with rigid-body
feedforward, and is given by

f = h(F (θ)r, φ) = φ · atanh
(F (θ)r

φ

)
, (14)

where φ models the current saturation parameter Imax.

4.3 Data generation

In order to generate relevant data for the developed ap-
proach, a relevant reference is performed and the feedfor-
ward compensating all repetitive disturbances is learned
using NOILC. A reference is used that consists of a
sequence of 5 quintic-polynomial reference profiles with
varying maximum accelerations. These varying maximum
accelerations ensure that different levels of saturation take
place in the actuator, making the reference persistently
excited. The motion distance is kept short to avoid any
excitation of position dependency. The reference position
and acceleration are depicted in Figure 4.

Next, the NOILC algorithm is setup with We = I and
a nonzero value for Wf is necessary for convergence of

Fig. 4. Normalized time-domain error and feedforward
signal of NOILC ( ), pre-existing case without com-
pensation ( ), the developed approach ( ), with the
scaled reference position ( ) and acceleration ( ).
Clearly, the feedforward is dominated by acceleration
feedforward and ILC BF with nonlinear compensation
achieves lower error compared to the ILC BF without
nonlinear compensation.

NOILC due to model-mismatch. Note that this creates
some bias in the cost function, hence, the resulting NOILC
feedforward signal results in nonzero error but no major
drawbacks are expected due to this. The NOILC algorithm
is applied to this reference for 15 iterations, allowing
sufficient iterations for convergence.

The time-domain error and feedforward signals of NOILC,
including the scaled reference, are denoted in Figure 4.
Clearly, the NOILC signals resembles the shape of the
reference acceleration profile, confirming the assumption
that the system is dominated by rigid-body feedforward.

4.4 Optimization analysis

The cost function of (10) can be evaluated using the
generated data and the proposed Wiener feedforward
parameterization. Using a particle swarm optimization
scheme, the minimum is found. The resulting normalized
parameters are φ = 1.89 and θ2 = 1.03, θ1 is omitted as
this parameter is less relevant. The saturation curve for the
current-force relationship in the actuator for the optimal
value is shown in Figure 5, showing clear saturation of the
force at high currents.

Figure 6 shows the cost function landscape, where the
value of the velocity parameter is fixed at the optimal
value. The cost function landscape is nonlinear and has
a global minimum. Note that there exist a clear valley
around the global optimum, indicating that a low cost
can be obtained for different current saturation param-
eters for different mass parameters. Which is beneficial if
relearning of the mass parameter is possible after fixing
the current saturation parameter. For low values of the
current saturation, i.e., a very strong compensation of the
saturation, the cost increases rapidly. If the compensation
is too strong, a lower mass parameter is expected as less
linear feedforward force is necessary, which is clear form

Fig. 5. Normalized current-force relationships for the pre-
existing linear feedforward case ( ) and the satu-
ration curve described by (13) with the optimal pa-
rameter φ = 1.89 ( ). The figure is normalized with
respect to the maximum current in the NOILC signal
and the linear force relationship.

Fig. 6. The normalized cost function landscape fixed for
the optimal value of velocity parameter as a function
of current saturation and mass parameter where the
optimum value is denoted by ( ). The cost function
has one clear optimum,

the curvature of the valley towards lower mass values for
lower current saturation parameters.

4.5 Results

The nonlinear compensation of the current saturation with
the optimized parameters is applied in the feedforward
scheme. A comparison between the pre-existing approach,
namely ILC BF without the nonlinear compensation, and
the developed approach where the nonlinear compensation
is learned and applied in ILC BF scheme where only θ
is relearned but φ is fixed on the optimal value. The
results are compared in Figure 4. Clearly, the tracking
error of the developed approach is significantly lower than
the pre-existing method that does not have nonlinear
compensation. Moreover, the performance seems to be
more consistent as the error increases for higher reference
accelerations.

The performance regarding extrapolation is validated by
performing individual references with varying motion dis-
tances and maximum accelerations. The estimated mass
parameters for the pre-existing method without nonlinear
compensation and the developed approach are depicted
in Figure 7. The learned mass parameter increases for
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Fig. 7. Normalized mass parameter tuned per individual
reference with varying motion distances (left) and
varying setpoint acceleration (right) using the pre-
existing linear feedforward without compensation ( )
and the developed approach with nonlinear compen-
sation ( ), normalized with respect to the first value of
the pre-existing approach. The variation in the mass
parameter is significantly reduced with the developed
framework compared to pre-existing linear feedfor-
ward case, indicating extrapolation capabilities using
the developed framework.

increased setpoint acceleration if no compensation is ap-
plied, which is expected as the mass parameter could
try to counteract the saturation effect by increasing the
input current of the actuator. Moreover, the pre-existing
approach has a 5 percent variation, while the mass param-
eter of the developed approach varies significantly less for
varying motion distances. The results in Figure 7 strongly
suggest that the developed approach is able to achieve
task flexibility as the mass parameter only shows minor
variation with respect to the different references.

Note that mass parameter still varies slightly in Figure 7
for different references, which can be explained by the fact
that the NOILC signal is unable to achieve zero error as
there is bias in the cost function due to Wf �= 0 or by
inevitable model-mismatch in the parametric model of the
saturation effect.

5. CONCLUSION

This paper proposes a data-driven tuning method of a
Wiener feedforward for a class of nonlinear Hammerstein
systems that achieves high tracking accuracy and task
flexibility. The developed method employs a Wiener pa-
rameterization for the feedforward and the feedforward
parameters are optimized based on a control-relevant cost
function and data generated by ILC. The developed ap-
proach is experimentally validated on a wirebonder and
shows that the mass parameter for varying maximum
accelerations and varying motion distances is significantly
more consistent than the pre-existing linear feedforward
approach, indicating task flexibility. The cost landscape is
analyzed and shows a clear global minimum.

Future research focuses on extending the feedforward to
compensate for other unmodeled nonlinear effects, such
as, position dependent effects, cogging, etc.
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