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ABSTRACT

Context. The apparent close encounters of two satellites in the plane of the sky, called mutual approximations, have been suggested as
a different type of astrometric observation to refine the moons’ ephemerides. The main observables are then the central instants of the
close encounters, which have the advantage of being free of any scaling and orientation errors. However, no analytical formulation is
available yet for the observation partials of these central instants, leaving numerical approaches or alternative observables (i.e. deriva-
tives of the apparent distance instead of central instants) as options.
Aims. Filling that gap, this paper develops an analytical method to include central instants as direct observables in the ephemerides
estimation and assesses the quality of the resulting solution.
Methods. To this end, the apparent relative position between the two satellites is approximated by a second-order polynomial near the
close encounter. This eventually leads to an expression for mutual approximations’ central instants as a function of the apparent relative
position, velocity, and acceleration between the two satellites.
Results. The resulting analytical expressions for the central instant partials were validated numerically. In addition, we ran a covariance
analysis to compare the estimated solutions obtained with the two types of observables (central instants versus alternative observ-
ables), using the Galilean moons of Jupiter as a test case. Our analysis shows that alternative observables are almost equivalent to
central instants in most cases. Accurate individual weighting of each alternative observable, accounting for the mutual approximation’s
characteristics (which are automatically included in the central instants’ definition), is however crucial to obtain consistent solutions
between the two observable types. Using central instants still yields a small improvement of 10–20% of the formal errors in the radial
and normal directions (RSW frame), compared to the alternative observables’ solution. This improvement increases when mutual
approximations with low impact parameters and large impact velocities are included in the estimation.
Conclusions. Choosing between the two observables thus requires careful assessment, taking into account the characteristics of the
available observations. Using central instants over alternative observables ensures that the state estimation fully benefits from the
information encoded in mutual approximations, which might be necessary depending on the application of the ephemeris solution.
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1. Introduction

Natural satellites are among the most fascinating objects in our
Solar System. In particular, leading candidates for extraterres-
trial habitats are found among Jovian and Saturnian satellites.
Knowing more about the past history of these moons is key to
understanding whether they offer life-favourable conditions now
and, therefore, to analysing the conditions for habitability in our
Solar System and beyond (Marion et al. 2003; Parkinson et al.
2008; Lunine 2017). However, the moons’ origin and evolution
still remain poorly understood, while they are crucial to inves-
tigate the existence and stability of these putative habitats (e.g.
Crida & Charnoz 2012; Ćuk et al. 2016; Fuller et al. 2016).

Measuring and fitting the current motion of natural satellites
provides valuable insights into their dynamical history. In partic-
ular, it helps to understand tidal dissipation mechanisms, which
play a crucial role in planetary systems’ orbital evolution (Lainey
et al. 2009, 2012, 2020; Fuller et al. 2016). More generally, deter-
mining natural satellites’ dynamics indirectly gives hints about
planetary formation processes (e.g. Heller et al. 2015; Samuel
et al. 2019).

As our interest in natural satellites grows, more dedi-
cated missions are being proposed to explore them (JUICE,
Europa-Clipper, IVO, MMX, etc.). Precise knowledge of the
moons’ current states then also becomes crucial to optimise the
orbital design of such missions, for instance to propose effi-
cient orbital insertions and flybys (Murrow & Jacobson 1988;
Raofi et al. 2000; Lynam & Longuski 2012). Due to inaccuracies
in the predicted state of the targeted body, corrective manoeu-
vres are indeed required before and after flybys (or, similarly,
orbital insertions) and can be significantly reduced by improved
ephemerides.

Determining the orbits of natural satellites is typically
achieved with observations of their absolute positions in the
sky or of their relative motion with respect to one another.
Spacecraft-based observations (either radiometric tracking or
optical data) can also be used, but they are much sparser because
they are only collected during planetary missions.

Extremely precise measurements are necessary to be sensi-
tive to very weak dynamical effects, such as tidal forces, which
drive the orbital evolution of planetary systems. Unfortunately,
the precision of Earth-based classical astrometric observations is
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Fig. 1. Observation of a mutual approximation (i.e. close encounter
between two natural satellites). The apparent distance between the two
satellites (blue dots in the top panel) is frequently measured and a poly-
nomial is used to fit these observations and estimate the central instant
of the close encounter (typically fourth-order polynomial, displayed in
red). The residuals between the apparent distances measurements and
the fitted polynomial are shown in black (bottom panel).

limited, typically ranging from 50 to 150 milliarcseconds (mas)
(e.g. Stone 2001; Kiseleva et al. 2008; Robert et al. 2017).

A lot of effort has thus been dedicated to develop more pre-
cise types of observations. For example, relative measurements
of the positions of two satellites in the sky plane have been
shown to be more accurate, with a precision down to 30 mas
(Peng et al. 2012). Relative astrometric observations can indeed
benefit from the so-called precision premium: the precision is
significantly improved when apparent distances get smaller than
85 mas. In such a situation, instrumental and astronomical error
sources tend to have a similar effect on the measurement of each
of the two satellites’ position, and thus they eventually cancel out
(Pascu et al. 1994; Peng et al. 2008).

Alternatively, the relative position of two satellites can also
be precisely measured by observing mutual events – occultations
or eclipses (e.g. Emelyanov 2009; Emelyanov et al. 2011; Dias-
Oliveira et al. 2013; Arlot et al. 2014). During mutual events, one
satellite masks the other, resulting in a drop of the flux received
by the observer. Those mutual phenomena can provide measure-
ments of satellites’ relative positions with a precision of about 10
mas (Emelyanov 2009; Dias-Oliveira et al. 2013). However, they
can only be witnessed during the equinox of the central planet,
which occurs every 6 yr for Jupiter and 15 yr for Saturn. This
significantly limits the number of available observations.

To overcome the limitations of the above-mentioned obser-
vations, a very promising alternative technique called mutual
approximation was recently proposed by Morgado et al. (2016),
though initially suggested in Arlot et al. (1982). This method
determines the so-called central instant at which a close
encounter occurs in the sky plane (i.e. the apparent distance
between two satellites reaches a minimum, see Fig. 1). The pre-
cision of mutual approximations was found to be comparable to
that of mutual events (Morgado et al. 2016, 2019).

Central instants are free of any orientation and scaling errors
in the instrumental frame: they do not depend on the abso-
lute value of the apparent distance itself, nor on the relative

orientation of the two satellites (Emelyanov 2017). This elim-
inates two major error sources present in classical astrometric
observations. Properly recording the observational time at the
ground station becomes crucial, but this can be easily achieved
with GPS receivers or dedicated software. Most importantly,
mutual approximations occur very regularly, and thus offer a
very promising alternative to eclipses and occultations (Morgado
et al. 2016, 2019).

To estimate ephemerides using mutual approximations, the
observation partials for central instants are required. They link a
small variation of the parameters to be estimated (natural satel-
lites’ states in our case) to a change in the observable. However,
the central instants’ complex definition and their relation to the
satellites’ states makes deriving these equations difficult. Other
astronomic observables only depend on the apparent (relative)
position of the observed body which is an indirect function of
its inertial position, after projection on the plane of the sky.
Mutual approximations, on the other hand, are also determined
by the apparent relative velocity and acceleration of the two
satellites. As a consequence, such observations are affected by
the satellites’ inertial relative dynamics, and not only by their
position.

Emelyanov (2017) and Morgado et al. (2019) therefore
assumed that variational equations could not be solved analyt-
ically when using central instants, as analytical partials were not
yet available (or easily derivable) for such observables. Those
central instants partials could be computed numerically, but this
process is highly computationally demanding (Emelyanov 2017)
and can also be error prone. Consequently, it was suggested to
use a modified observable and fit the derivative of the apparent
distance instead of the central instant itself (Emelyanov 2017;
Morgado et al. 2019, Lainey, in preparation). This modified
observable can be expressed as a simple function of the rela-
tive position and velocity of the two satellites (see Sect. 2.5).
Moreover, the apparent distance derivative is by definition equal
to zero at closest encounter, which significantly simplifies the
equations.

This indirect method is currently the recommended approach
to obtain the mutual approximations’ observation partials
(Emelyanov 2017; Morgado et al. 2019). Fundamentally, defin-
ing the central instant tc directly or stating that the derivative of
the apparent distance should be equal to zero at tc both express
the fact that the point of closest approach is reached at this
instant. However, the information both observable types convey
to the state estimation is not necessarily identical and it has not
yet been proven that fitting the derivative of the apparent dis-
tance is equivalent to fitting the central instants. Actually, using
numerical partials for central instants led to convergence issues
in Emelyanov (2017), while none were encountered with alter-
native observables. This would indicate that the two observables
are not completely interchangeable.

To extend the current framework available for the mutual
approximation technique, this paper develops an analytical for-
mulation for the observation partials of the central instants. To
achieve this, the relative motion of the two satellites in the plane
of the sky is approximated by a polynomial function around
the close encounter. The polynomial coefficients are defined
from the relative position, velocity, and acceleration of the two
satellites, as seen from the observer. It thus becomes possi-
ble to derive analytical expressions for the change in central
instant induced by a variation in either the two satellites’ or the
observer’s states.

We successfully performed the state estimation with mutual
approximations’ suggested alternative observables (derivatives
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of the apparent distance) and with central instants separately,
using our analytical observation partials for the latter. This com-
parison aims at quantifying the influence of the observable
choice on the estimated solution. We show that it is essential
to adopt an appropriate weighting strategy when using alterna-
tive observables to achieve consistent results between the two
observable types, but that central instants can nonetheless yield
a 10–20% reduction in formal errors.

We develop the analytical framework for mutual approxi-
mations’ central instants in Sect. 2, while the details of the
observables simulation and state estimation are provided in
Sect. 3. The results of our comparative analysis are discussed
in Sect. 4, first using a simple test case limited to mutual approx-
imations between Io and Europa, before extending it to the four
Galilean moons. The main concluding points are summarised in
Sect. 5. All the numerical simulations presented in this paper
were conducted using the Tudat toolkit developed by the Astro-
dynamics & Space Missions department of Delft University of
Technology (see Appendix C in Dirkx et al. 2019).

2. Using mutual approximations in the estimation

In this section, we first provide a formal definition to describe
the observation of a mutual approximation between two satellites
in Sect. 2.1. We develop an analytical formulation for the cen-
tral instants and their observation partials in Sects. 2.2 and 2.3,
respectively. The light-time effect contribution to those partials
is discussed in Sect. 2.4. Finally, the alternative mutual approx-
imations’ observable (i.e. derivative of the apparent distance, as
introduced in Sect. 1) is presented in more details in Sect. 2.5.

2.1. Mutual approximation definition

A mutual approximation involves an observer (denoted by the
subscript O in the following), which is most commonly a
ground station, and two natural satellites, between which a close
encounter is observed (subscripts S 1 and S 2, respectively).
Because the light has a finite speed, the time at which the mutual
approximation is observed (observation time tO ) differs from the
time at which the light eventually received by the observer got
reflected by each of the satellites (tS 1 and tS 2 for satellites 1 and 2,
respectively).

The relative range vectors between the satellites and the
observer can thus be defined as follows (see Fig. 2):

rS 1
O

= rS 1 (tS 1 ) − rO (tO ), (1)

rS 2
O

= rS 2 (tS 2 ) − rO (tO ). (2)

The relative velocity and acceleration of the two satellites can
then be expressed as

ṙS i
O

=
drS i

O

dt
=

drS i

dt
(tS i ) −

drO

dt
(tO ), (3)

r̈S i
O

=
d2rS i

O

dt2 =
d2rS i

dt2 (tS i ) −
d2rO

dt2 (tO ); i ∈ {1, 2}. (4)

As mentioned in Sect. 1, a mutual approximation is defined
as a point of closest encounter of two satellites in the field of
view of an observer (see Fig. 1). This corresponds to the moment
at which the apparent distance between the two moons reaches a
minimum. The apparent distance as seen by an observer is

d =
√

X2 + Y2, (5)

Fig. 2. Schematic representation of the different coordinate systems and
positions. The first satellite and all associated notations are depicted in
red, while blue is used for the second satellite. rS i

O
denotes the relative

position vector between satellite i and the observer, and
[
xi, yi, zi

]
corre-

spond to the observer-centred cartesian coordinates of satellite i. αS i and
δS i refer to the right ascension and declination of satellite i, as seen by
the observer.

[
x′i , y

′
i , z
′
i

]
are the satellites’ central body-centred cartesian

coordinates.
[
eS i

r
, eS i

s
, eS i

w

]
defines the RSW reference frame associated

with satellite i. The vectors eS i
r

, eS i
s

, and eS i
w

correspond to the radial,
normal, and axial directions, respectively.

where X and Y are the coordinates of the relative position
between the satellites, in the instrumental frame of the observer.

The apparent relative position coordinates X and Y are
defined as

X = (αS 2 − αS 1 ) cos
(
δS 1 + δS 2

2

)
, (6)

Y = δS 2 − δS 1 . (7)

X and Y thus depend on the right ascensions αS i and declina-
tions δS i of the two satellites, which are functions of the inertial
relative range vectors with respect to the observer:

αS i

(
rS i

O

)
= 2 arctan

 yi√
x2

i + y2
i + xi

 , (8)

δS i

(
rS i

O

)
=
π

2
− arccos

 zi√
x2

i + y2
i + z2

i

 , (9)

where
[
xi, yi, zi

]
correspond to the components of the relative

range vectors rS i
O

(see Fig. 2). X and Y are thus time-dependent,
as they are indirectly defined by the time-varying relative range
vectors between each of the two satellites and the observer. In the
rest of this paper, ri denotes the norm of these relative range vec-
tors and rixy the norm of the reduced vector

[
xi, yi, 0

]
. δm refers to

the average declination, such that δm =
(
δS 1

+ δS 2

)
/2. The differ-

ences in right ascension and declination are noted ∆α = αS 2 −αS 1

and ∆δ = δS 2 − δS 1 .
By definition, the central instant tc of a mutual approximation

(recorded by the observer) fulfills the following condition:

d
dt

( √
X(tc)2 + Y(tc)2

)
= 0. (10)

The apparent distance at tc is referred to as the impact parameter
of the mutual approximation and denoted dc.
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2.2. Analytical expressions for central instants

The central instant tc is typically determined by fitting a fourth
order polynomial to the apparent distance history between two
satellites (see Fig. 1). The roots of the derivative of the fitted
polynomial provide the estimated central instant of the close
encounter. For simulated mutual approximations, the procedure
can be iterated to improve the precision of the predicted central
instants by re-centring the polynomial fit on the current estimate
of the point of closest approach.

A fourth order polynomial is needed to reproduce the relative
motion of the two satellites over the typical duration of a close
encounter (i.e. 60 minutes). However, when focusing on only a
fraction of this event, a fourth order polynomial is not neces-
sary. For instance, a second order polynomial provides a fit over
the interval [tc − 15min; tc +15min] which is as good as the one
provided by a fourth order polynomial over the whole event, as
shown in Appendix A.

To derive observation partials, we quantify the effect of very
small changes in position and velocity of the two satellites. We
are thus investigating only slight variations of the central instant
tc, and can limit our analysis to short time intervals centred on
the current estimate of tc. Consequently, for our analysis, it is safe
to approximate the apparent relative motion of the two satellites
by a second order polynomial only.

Around the point of closest approach, the relative position
coordinates X and Y can thus be expressed as a function of three
polynomial coefficients each:

X(t − tc) = a0 + a1(t − tc) + a2(t − tc)2, (11)

Y(t − tc) = b0 + b1(t − tc) + b2(t − tc)2. (12)

These polynomial coefficients are directly given by the
apparent relative position, velocity, and acceleration coordinates
at central instant tc. Introducing the relative time t′ = t − tc
as well as simplified notations (Xc = X(tc), Ẋc = Ẋ(tc), etc.),
Eqs. (11) and (12) can be rewritten as follows:

X(t′) = Xc + Ẋct′ +
Ẍc

2
t′2, (13)

Y(t′) = Yc + Ẏct′ +
Ÿc

2
t′2. (14)

The relative velocity coordinates are then approximated by a
first order polynomial when close enough to the central instant:

Ẋ(t′) = Ẋc + Ẍct′, (15)

Ẏ(t′) = Ẏc + Ÿct′. (16)

Higher-order terms could be included in Eqs. (13)–(16).
However, as discussed above, a second-order polynomial is well-
suited to reproduce the apparent relative motion of the two
satellites around the point of closest encounter. Higher-order
terms can thus be safely neglected, as shown by the verification
of our analytical partials for central instants (see Appendix D).

As already mentioned in Sect. 2.1, the derivative of the
apparent distance is equal to zero at central instant tc. Therefore,
the dot product between the relative position and velocity vectors
must be equal to zero, leading to the following condition:(

Xc + Ẋct′ +
Ẍc

2
t′2

) (
Ẋc + Ẍct′

)
+

(
Yc + Ẏct′ +

Ÿc

2
t′2

) (
Ẏc + Ÿct′

)
= 0. (17)

The above equation can be rewritten as a third-order polyno-
mial expression in t′:(

Ẍ2
c + Ÿ2

c

)
t′3 + 3

(
ẊcẌc + ẎcŸc

)
t′2

+ 2
(
Ẋ2

c + Ẏ2
c + XcẌc + YcŸc

)
t′ + 2

(
XcẊc + YcẎc

)
= 0. (18)

Solving for t′ is equivalent to finding the roots of this cubic
polynomial, which can be done analytically with Cardano’s for-
mula (e.g. Weisstein 2002). In case the cubic polynomial has
three real roots, the closest to the current tc estimate should be
selected, the other two falling outside the nominal duration of
the close encounter event in most cases. An analytical expression
can thus be derived for t′, as a function of the apparent position,
velocity, and acceleration components at tc:

t′ = f
(
Xc,Yc, Ẋc, Ẏc, Ẍc, Ÿc

)
. (19)

Formulations for Ẋ and Ẏ are derived from expressions for X
and Y (Eqs. (6) and (7)), as follows:

Ẋ =∆α̇ cos (δm) − ∆α sin (δm) δ̇m, (20)

Ẏ =∆δ̇. (21)

α̇ and δ̇ can be computed from Eqs. (8) and (9) as a function of
the inertial relative position and velocity:

α̇S i
=

xiẏi − yi ẋi

r2
ixy

, (22)

δ̇S i
=
−zi (xi ẋi + yiẏi) + r2

ixy
żi

r2
i rixy

; i ∈ 1, 2. (23)

Finally, the apparent relative acceleration components Ẍ and
Ÿ are required and can be similarly derived:

Ẍ = ∆α̈ cos (δm) − 2δ̇m∆α̇ sin (δm)

− ∆α
(
δ̇2

m cos (δm) + δ̈m sin (δm)
)

(24)

Ÿ = ∆δ̈, (25)

where the second time derivatives of α and δ also depend on the
inertial relative acceleration:

α̈S i
=
−2 (xiẏi − yi ẋi) (xi ẋi + yiẏi)

r4
ixy

+
(xiÿi − yi ẍi)

r2
ixy

, (26)

δ̈S i
=

1
r2

i rixy

 − zi (xi ẍi + yiÿi) + r2
ixy

z̈i

−zi
(xiẏi − yi ẋi)2

r2
ixy

+
2
(
rS i

O
· ṙS i

O

)
r2

i

(
zi(xi ẋi + yiẏi) − żir2

ixy

) ; i ∈ {1, 2}. (27)

Inserting Eqs. (8)–(9), (22)–(23), and 26–27 into Eqs. (6)–
(7), (20)–(21), and (24)–(25) gives a direct analytical expression
for t′, and therefore for the central instant tc, via Eq. (19).
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2.3. Partials with respect to the natural satellites’ states

To estimate ephemerides using central instants as observables,
the partials of tc with respect to the states of the two natural satel-
lites are required. Recalling the analytical expression obtained
for t′ (Eq. (19)) and noting q the vector of parameters, the central
instants partials are

∂t′

∂q
=
∂ f

(
Xc,Yc, Ẋc, Ẏc, Ẍc, Ÿc

)
∂q

(28)

=
∂ f

∂[Xc,Yc]
∂[Xc,Yc]
∂q

+
∂ f

∂[Ẋc, Ẏc]
∂[Ẋc, Ẏc]
∂q

+
∂ f

∂[Ẍc, Ÿc]
∂[Ẍc, Ÿc]
∂q

. (29)

The partials of the relative apparent position, velocity, and
acceleration can be decomposed as a function of the partials of
αS i

, δS i
, α̇S i

, δ̇S i
, α̈S i

, and δ̈S i
, as follows:

∂ [X,Y]
∂q

=
∂[X,Y]
∂ [α, δ]S i

∂ [α, δ]S i

∂q
, (30)

∂[Ẋ, Ẏ]
∂q

=
∂[Ẋ, Ẏ]
∂ [α, δ]S i

∂ [α, δ]S i

∂q
+
∂[Ẋ, Ẏ]
∂[α̇, δ̇]S i

∂[α̇, δ̇]S i

∂q
, (31)

∂
[
Ẍ, Ÿ

]
∂q

=
∂[Ẍ, Ÿ]
∂[α, δ]S i

∂[α, δ]S i

∂q
+
∂[Ẍ, Ÿ]
∂[α̇, δ̇]S i

∂[α̇, δ̇]S i

∂q

+
∂[Ẍ, Ÿ]
∂[α̈, δ̈]S i

∂[α̈, δ̈]S i

∂q
; i ∈ {1, 2}. (32)

From the definition of the apparent position (X,Y), velocity
(Ẋ,Ẏ), and accelerations (Ẍ,Ÿ) in Eqs. (6)–(7), (20)–(21), and
(24)–(25), their partials with respect to the satellites’ states can
be easily derived (the proof is left as an exercise to the reader).
Finally, the partials of α, δ, α̇, δ̇, α̈, and δ̈ also need to be com-
puted with respect to the position and velocity vectors of the two
satellites.

To quantify the influence of the uncertainties in the
observer’s state on the estimated solution, partials with respect
to rO and ṙO might also be required. All derivations are provided
in Appendix B. Our analytical formulation for the partials of the
central instants with respect to both the satellites’ and observer’s
states were validated numerically. The results of this verification
are reported in Appendix D.

2.4. Light-time effects

In Sect. 2.3, the contribution of the light-time effects was not yet
included in the observation partials and we therefore assumed
that both tO and tS i were fixed. Corrections required to account
for the finite speed of light are now discussed.

When computing light-time effects, we typically fix either
the time at the observed body (here tS i ) or the time at the observer
(tO ). The other one is determined via an iterative scheme to
ensure that the difference between the two times matches the
light-time calculated from the observer and observed bodies’
states (Moyer 2000). For mutual approximations, the reception
time should always be fixed. Fixing the two transmission times
would indeed lead to two different inconsistent reception times
for a unique observation. The light-time equations are expressed
as follows (Moyer 2000):

tS i − tO =

∣∣∣rS i (tS i ) − rO (tO )
∣∣∣

c
; i ∈ {1, 2}, (33)

where c refers to the speed of light and the observation time tO
is a fixed unique value.

The partials of the light-time with respect to a vector of
parameters q can then be derived from Eq. (33):

∂tS i

∂q
=

1
c

rS i
O

rS i
O

(
∂rS i

∂q
(tS i ) −

∂rO

∂q
(tO ) + ṙS i (tS i )

∂tS 1

∂q

)
. (34)

Solving for the partials of tS i with respect to q, we finally obtain
(Moyer 2000)

∂tS i

∂q
=

1
c

rS i
O

rS i
O
− rS i

O
· ṙS i

c

(
∂rS i

∂q
(tS i ) −

∂rO

∂q
(tO )

)
. (35)

The time tS i thus depends on both the natural satellite’s and
observer’s states. As already mentioned, right ascension and dec-
lination partials with respect to the vector of parameters q were
provided for fixed tO and tS i in Sect. 2.3. When accounting for
the light-time effect, the complete formulation for those partials
becomes

∂ [α, δ]S i

∂q
=
∂ [α, δ]S i

∂q

∣∣∣∣∣∣
tS i

+
[
α̇, δ̇

]
S i

∂tS i

∂q
; i ∈ {1, 2}. (36)

The same applies to the partials of α̇, δ̇, α̈, and δ̈, and leads
to the following expressions:

∂[α̇, δ̇]S i

∂q
=
∂[α̇, δ̇]S i

∂q

∣∣∣∣∣∣∣
tS i

+ [α̈, δ̈]S i

∂tS i

∂q
, (37)

∂[α̈, δ̈]S i

∂q
=
∂[α̈, δ̈]S i

∂q

∣∣∣∣∣∣∣
tS i

+ [
...
α,

...
δ ]S i

∂tS i

∂q
; i ∈ {1, 2}. (38)

According to Eq. (38), the complete partials for α̈S i
and δ̈S i

require one to compute
...
α S i

and
...
δ S i

(see Eq. (38)), and thus the
time derivative of the relative acceleration of each satellite with
respect to the observer. This would significantly increase both
the implementation and computational efforts, while the α̈S i

and
δ̈S i

partials only marginally contribute to the central instant par-
tials (at most of the order of 0.001% for the case of the Galilean
satellites, see Table E.1). As a consequence, neglecting the light-
time effects when computing the partials for α̈S i

and δ̈S i
is a fair

simplifying assumption, which was applied in the rest of this
study.

2.5. Alternative observables

As already mentioned in Sect. 1, the alternative observable rec-
ommended by Morgado et al. (2019) correspond to the derivative
of the apparent distance, defined as

h =
d
dt

(√
X2 + Y2

)
=

XẊ + YẎ√
X2 + Y2

. (39)

If X and Y and their time derivatives Ẋ and Ẏ were computed
at the exact central instant tc of the close encounter, the observ-
able h would by definition be equal to zero. This is however not
the case. This observable thus indirectly evaluates the difference
between the current estimate of tc and its true value by quanti-
fying how much the derivative of the apparent distance departs
from zero.
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In contrast to central instants which also depend on the satel-
lites’ relative accelerations, alternative observables are thus only
a function of their relative position and velocity. The partials of
such an observable with respect to a vector of parameters q are
much easier to derive than for central instants and are given by
Morgado et al. (2019):

∂h
∂q

=
1√

X2 + Y2

(
X
∂Ẋ
∂q

+ Ẋ
∂X
∂q

+ Y
∂Ẏ
∂q

+ Ẏ
∂Y
∂q

)
− XẊ + YẎ(

X2 + Y2)3/2

(
X
∂X
∂q

+ Y
∂Y
∂q

)
. (40)

The results of the comparison between the two types of observ-
ables are discussed in Sect. 4.

3. Observations simulation and ephemerides
estimation

We first describe how mutual approximations are simulated in
Sect. 3.1, before introducing the covariance analysis used to com-
pare the two observable types in Sect. 3.2. The strategy applied
to weight the mutual approximations’ observables is then dis-
cussed in Sect. 3.3. Finally, Sect. 3.4 defines an additional figure
of merit to analyse the estimation solution.

3.1. Mutual approximations simulation

We used simulated mutual approximations in our analysis. As a
preliminary test case, we first propagated the trajectories of Io
and Europa only and detected close encounters between these
two moons (results discussed in Sects. 4.1 to 4.4). A more
complete simulation including all Galilean moons was also con-
ducted to verify the findings of the former simple test case
(Sect. 4.5).

The orbits of the Galilean moons were propagated using a
simplified dynamical model. For each of the moons, we consid-
ered only the point-mass gravitational accelerations exerted by
Jupiter and the three other satellites. A more detailed dynami-
cal model (e.g. Dirkx et al. 2016; Lainey et al. 2004) would yield
more accurate propagated orbits for the Galilean moons, and thus
affect the predicted mutual approximations. However, we focus
on comparing two types of mutual approximations’ observables.
High-accuracy dynamical modelling is therefore not critical for
this study, as long as the same set of simulated observations is
used for both observable types.

Mutual approximations were simulated for the period 2020–
2029. To limit the number of observations, we only considered
mutual approximations with an impact parameter lower than 30
arcseconds (as), in accordance with Morgado et al. (2019). We
selected three of the ground stations involved in the 2016–2018
observational campaign reported in Morgado et al. (2019), des-
ignated by FOZ, OHP, and OPD (their coordinates are reported
in Table 1). To ensure the feasibility of the observation, events
which would be observable during daytime were discarded. In
addition, the lower limit on the distance between the mutual
approximation and the limb of Jupiter was set to 10 as. Only
mutual approximations that would be observed from the three
ground stations under an elevation angle larger than 30 degrees
were included.

When achievable under the aforementioned conditions, a sin-
gle event can be observed by several ground stations. Those mul-
tiple observations of one mutual approximation were assumed to

Table 1. Ground stations’ geodetic coordinates.

Alias
Site Longitude (E) Latitude (N) Altitude (m)
Location

FOZ
Foz do Iguacu −54◦35′37.0′′ −25◦26′05.0′′ 184
PR-Brazil

OHP
Haute-Provence 05◦42′56.5′′ 43◦55′54.7′′ 633
France

OPD
Itajuba −45◦34′57.5′′ −22◦32′07.8′′ 1864
MG-Brazil

Notes. The three ground stations reported in this table are the ones from
which the observations of the mutual approximations are simulated. The
table is adapted from Morgado et al. (2019).

have uncorrelated noise and thus they were added as indepen-
dent observations to the state estimation. This implies that such
simultaneous observations improve the estimation solution by
increasing the size of the observational data set, as formal errors
are expected to scale down with

√
n (n being the total number of

observations).
Finally, weather conditions were taken into account to obtain

a realistic set of observations. Due to bad weather conditions,
about 35% of the predicted mutual approximations could not
be observed during the 2016–2018 campaign (Morgado et al.
2019). We took a conservative approach to simulate these bad
weather conditions and discarded 50% of the viable observa-
tions, selected arbitrarily using a uniform distribution.

The distribution per year of the remaining simulated mutual
approximations is shown in Fig. 3. Figure 3a displays the frac-
tion of simulated events per ground station, while Fig. 3b focuses
on the number of mutual approximations for each combination
of two Galilean moons. It is interesting to note that no mutual
approximation respecting the conditions mentioned in the previ-
ous paragraphs could be found in 2020, and that some years are
more favourable to such events, due to the time evolution of the
Earth–Jovian system relative geometry.

3.2. Covariance analysis

To compare state estimations obtained with the two types of
mutual approximation observables, we limited ourselves to a
covariance analysis. Despite its limitations (Gaussian observa-
tion noise, dynamical and observational models assumed per-
fect), such an analysis is well-adapted for comparison purposes.
Formal errors are known to be too optimistic compared to true
errors, but we only focus on comparing two sets of estimation
errors and not on absolute error values. Since mutual approxi-
mations are almost exclusively sensitive to the relative dynamics
between the two satellites while both their absolute states are
estimated, realistic errors are anyway difficult to achieve without
including other observations.

In our simulations, the estimated parameters were the ini-
tial states of the moons involved in the mutual approximations.
In most of our analysis, only the Jupiter-centred initial states
of Io and Europa are estimated (Sects. 4.1 to 4.4), while we
also solved for the initial states of Ganymede and Callisto in
the more complete case used for verification (see Sect. 4.5). For
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Fig. 3. Distribution of the simulated mutual approximations per year, depending on the ground station (panel a) and on the two moons involved
(panel b). Mutual approximations which have been discarded to mimic the effect of bad weather conditions are not included in this distribution.

the moons’ initial position components, a priori covariance of
100 km was considered, while it was set to 100 m s−1 for their
initial velocity. These a priori values are large, but were only
included to slightly constrain the estimation, thus avoiding an
ill-posed problem and making the comparison between the two
observable types’ estimation solutions possible.

3.3. Data weights

Observation weights are usually applied to account for the qual-
ity of the data. For our comparative analysis, it is essential to
ensure that the data weights are consistent between the two types
of observables. We used an error of 3.5 s for the central instants
tc (average error obtained over the 104 observed mutual approx-
imations of the 2016–2018 campaign reported in Morgado et al.
2019).

To derive appropriate weights for the alternative observables,
the shape of the simulated mutual approximation must be taken
into account. By definition, the derivative of the apparent dis-
tance (i.e. alternative observable) is always equal to zero at t = tc.
However, an error of 3.5 s in the determination of the central
instant would shift this value away from zero. The exact value
of the resulting alternative observable error directly depends on
the specific geometry of each mutual approximation. The alter-
native observable error was thus individually computed for each
observation, as follows:

σalt. =

∣∣∣ḋ(tc − σtc )
∣∣∣ +

∣∣∣ḋ(tc + σtc )
∣∣∣

2
, (41)

where σtc is set to its averaged value (σtc = 3.5 s) and ḋ is the
derivative of the apparent distance (given by Eq. (39)).

Consistent weights between the two observables are not only
needed to perform a meaningful comparison. When using alter-
native observables, weighting can be an indirect way to account
for the satellites’ relative dynamics during the close encounter.
Indeed, a non-zero value for the derivative of the apparent dis-
tance at tc only quantifies how much the observed central instant
departs from the current point of closest approach. However,
it does not provide any information about the current apparent
distance minimum. For a given non-zero value of the appar-
ent distance derivative, the difference between the observed and

current central instants entirely depends on the satellites’ appar-
ent relative dynamics, which drive the geometry of the observed
encounter.

This effect is, by definition, inherently captured by central
instants, for which applying an appropriate constant weight value
is thus suitable. For alternative observables, on the other hand,
individual weights accounting for each mutual approximation’s
dynamics, as given in Eq. (41), are crucial. This is necessary to
translate an error in the estimated central instant to an error in
the derivative of the apparent distance.

The importance of applying this weighting strategy to obtain
consistent estimation solutions with the two different observable
types is demonstrated in Sect. 4.4. Furthermore, we computed
the appropriate alternative observables’ weights for the past
mutual approximations observed during the 2016–2018 cam-
paign and reported in Morgado et al. (2019). These weights are
provided in Appendix F and should be used when including the
2016–2018 mutual approximations in the state estimation.

3.4. Contribution of each observation to the solution

To perform a detailed comparison of the two observable types,
mutual approximations’ contributions to the solution were used
as an additional figure of merit to complement the covari-
ance analysis. In this study, each observation’s contribution to
the solution is defined as the root-mean-square (RMS) of the
weighted observation partial with respect to the parameters of
interest’s vector q.

For example, the contribution c of an observation h to Io’s
Jupiter-centred initial position vector is expressed as:

c(rIo )(h) =

√(
∂h

∂xIo (t0)

)2

+

(
∂h

∂yIo (t0)

)2

+

(
∂h

∂zIo (t0)

)2

, (42)

where t0 is the initial epoch at which Io’s state is estimated.
The contribution c(q)(h) to the vector of parameters q is then
normalised as follows (the bar indicates normalisation):

c̄(q)(h) =
log

(
c(q)(h)

)
− log

(
min(c(q))

)
log

(
max(c(q))

)
− log

(
min(c(q))

) , (43)
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Fig. 4. Time evolution of the formal errors in Io’s and Europa’s initial RSW coordinates (radial, normal, and axial directions, see Fig. 2), as more
observations are progressively included in the state estimation. The blue line displays the time evolution of the formal errors obtained by using the
central instants as observables (left y-axis). The red line corresponds to the time evolution of the formal errors obtained from alternative observables
(left y-axis too). The initial values of the formal errors, before including any observation, correspond to the a priori covariance values used for the
regularisation (i.e. 100 km, see Sect. 3.2). The grey line (right y-axis) represents the relative difference (in percentage) between the two solutions as
a function of time. The formal errors are equal to their initial values until the inclusion of the first mutual approximation (towards the end of 2021)
and no difference between the two observables’ solutions is thus observed beforehand.

where c(q) is the vector containing the contributions of the entire
set of mutual approximations with respect to q (for one type of
observable).

4. Results

We present here the results of the comparison between the
ephemeris estimation determination solutions obtained using
central instants and alternative observables, respectively. The
comparison is first conducted for a simple test case with Io and
Europa only, to analyse how each mutual approximation con-
tributes to the ephemerides solution and how this affects the
relative performance of the two types of observables. Results of
this first analysis are presented in Sects. 4.1 to 4.4. A more com-
plete test case also including Ganymede and Callisto is used to
verify those findings (Sect. 4.5).

4.1. Comparison over the 2020–2029 observational period

We first only simulated mutual approximations between the
two innermost Galilean moons, for the period 2020–2029, and
estimated Io’s and Europa’s initial states from those simulated
observations. The evolution of the formal errors with time is dis-
played in Fig. 4, as more mutual approximations are included
in the estimation. The differences in formal errors between the
two types of observables do not exceed 20% at the end of our
simulation, after 10 yr of observations. Alternative observables
and central instants lead to comparable formal errors evolu-
tions. At first order, this proves that the two types of mutual
approximations’ observables are largely equivalent, at least when
enough observations are added to the state estimation. It vali-
dates the recommendations formulated in Morgado et al. (2019),
but seems to contradict the results on numerical partials in
Emelyanov (2017).

Nonetheless, using central instants still results in slightly
lower formal errors for each component of both Io’s and Europa’s

initial position. The formal error improvement is stronger in the
radial and normal directions (about 20% for both Io and Europa
at the end of simulation) and less significant in the axial direc-
tion (only 10–12%). As mentioned in Sect. 2.5, the observation
partials developed for the central instants account for variations
in the apparent relative acceleration between the two satellites,
while this is not the case for alternative observables. The addi-
tional information captured by central instants thus principally
lies within the orbital plane of the Galilean moons, within which
the inter-moons accelerations primarily lie. On the other hand,
the central instants are not significantly more sensitive than
alternative observables to state variations in the axial direction.

Interestingly, the difference in formal errors between the two
types of observables is not constant over time, as clearly high-
lighted by Fig. 4. It can be as low as a few percents (e.g. Io’s
normal position in year 2021) or as high as 35% (e.g. Io’s normal
position during the first half of year 2027). This is related to the
mutual approximations’ heterogeneous contribution to the solu-
tion: it varies from one observation to another, but also between
the two observable types. The cause of this heterogeneity is
further discussed in Sect. 4.2.

First, as expected, the contribution of each mutual approx-
imation depends on the time at which it occurs. Observations
collected further in time (with respect to the initial epoch t0 at
which the states are estimated) indeed contribute more to the
initial state solution. This directly results from the fact that later
observations provide tighter constraints to the initial state due to
the orbit propagation: the effect of a slight variation in the initial
state of Io and Europa on their trajectories grows with time. How-
ever, this time trend similarly affects both observable types and
thus it has no noticeable influence on the solution improvement
provided by central instants.

Nonetheless, the observable type choice also has an effect
on some mutual approximations’ contribution to the estimated
solution. Figure 5 displays the normalised contribution ratio
of central instants over alternative observables, as defined in
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Fig. 5. Reduction in formal errors obtained by using central instants instead of alternative observables, as more observations are added to the
solution. It is displayed on the left axis, for the three position components in RSW frame (panel a: Io, panel b: Europa). On the right axis (purple
dots), the ratio between the normalised contributions of central instants over their corresponding alternative observables is displayed, for each
mutual approximation (normalised contributions are computed as in Eq. (43)). As mentioned in Sect. 3.1, the first simulated observation only
occurs towards the end of 2021, hence the lack of data beforehand.
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Fig. 6. Observations’ contributions to the estimated initial positions’ solution (in colours), as a function of each mutual approximation’s charac-
teristics (impact parameters and impact velocities, reported on the x- and y-axes, respectively). Panel a: normalised contribution of each mutual
approximation to the solution (averaged between Io and Europa), when using central instants. Panel b: ratio between the normalised contributions
of central instants over their corresponding alternative observables. The normalised contribution of each mutual approximation to the solution is
obtained with Eq. (43).

Sect. 3.4, for each mutual approximation. Some mutual approx-
imations, mostly concentrated in the 2026–2027 period, con-
tribute significantly less to both Io’s and Europa’s estimated
positions when alternative observables are used instead of cen-
tral instants. As expected, these observations coincide with an
increase of the difference in formal errors between the two
observables. The coming sections investigate why this discrep-
ancy between the two observable types only concerns some
mutual approximations and specific observational periods.

4.2. Influence of the mutual approximations’ characteristics

To better characterise the difference between the two observ-
able types, we further analyse the relative contribution of

each observation and the effect of the mutual approximation’s
characteristics. Section 4.2.1 discusses the influence of the
impact parameter and velocity on each mutual approximation’s
contribution to the solution, for both central instants and alterna-
tive observables. The link between those characteristics and the
observation geometry is explored in Sect. 4.2.2.

4.2.1. Influence of impact parameter and velocity on each
mutual approximation’s contribution

Focusing on the central instants case first, Fig. 6a shows that
each mutual approximation’s contribution to the estimated posi-
tions (averaged between Io and Europa) strongly depends on
the impact parameter and velocity. Highest contributions are
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Fig. 7. Effect of the inertial geometry on the mutual approximations’
impact characteristics. Both the impact parameter and the inertial dis-
tance between Io and Europa (as opposed to apparent distance as seen
from the ground stations) are displayed, for each mutual approximation.
The colours represent the time at which the observation is made.

systematically obtained with both low impact parameter and
velocity (up to about 7 as and 1 mas s−1, respectively). Mutual
approximations with either low impact parameter and high
impact velocity, or high impact parameter but low impact veloc-
ity also contribute significantly to the ephemerides solution.

Using alternative observables instead of central instants
alters the way some mutual approximations contribute to the
estimated solution, as hinted in Sect. 4.1. Figure 6b displays the
ratio between central instants’ and alternative observables’ con-
tributions to the estimated initial positions (contributions were
again averaged between Io and Europa). Mutual approximations
characterised by low impact parameter and high impact veloc-
ity contribute significantly less to the solution when switching
to alternative observables. More precisely, most mutual approx-
imations with impact parameters lower than 5 as and impact
velocities larger than 4 mas s−1 contribute about 2 times more
to the estimated solution when using central instants instead of
alternative observables.

This analysis proves that the differences between the two
observable types for some mutual approximations is amplified
by specific impact characteristics. Furthermore, mutual approx-
imations identified as unfavourable for alternative observables
(low impact parameters with large impact velocities) are not
evenly distributed over the 2020–2029 observational period,
but rather concentrated in the 2026–2027 interval. As expected,
it corresponds to the period during which the differences in
formal errors between the two observables increase (Sect. 4.1,
see Fig. 5).

It is interesting to note that mutual approximations
characterised by extremely low impact parameters are also
unfavourable from an observational perspective, and not only
from an estimation point of view. If the two satellites eventually
become so close that a (partial) occultation occurs, the observer
cannot distinguish between their images anymore, introducing a
gap in the apparent distance measurements near the point of clos-
est approach and thus leading to a larger error in the estimated
central instant (Morgado et al. 2019).
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Fig. 8. Effect of the observation geometry on the mutual approxima-
tions’ impact parameters. The angle between the orbital plane of the
Galilean moons and the observation vectors (Earth-Io in black and
Earth-Europa in red) is plotted for each mutual approximation. The
corresponding impact parameters (in as) are represented by blue dots.

4.2.2. Link to the observation geometry

Interestingly, most of the mutual approximations simulated
over the 2026–2027 period are characterised by low impact
parameters (lower than 5 as), while it is not the case outside of
this time interval. This is clearly shown in Fig. 8, where impact
parameters are displayed in blue.

The apparent relative motion of the two moons is driven
by two parameters: their inertial relative motion in the Jovian
system and the observation geometry. Figure 7 focuses on the
former and shows the absolute distance between Io and Europa
for each mutual approximation, as a function of the corre-
sponding impact parameter. The time at which each mutual
approximation occurs is displayed in colours. When excluding
the 2026–2027 interval (orange dots), the impact parameters take
a wide range of values (up to the limit of 30 as). The lowest
impact parameters usually coincide with low inertial distances
between Io and Europa, typically below 3.5 × 105 km (see the
fraction of Fig. 7 highlighted in red). It should be noted that the
reverse is not true: low inertial distances do not automatically
lead to low impact parameters.

However, during the 2026–2027 period, mutual approxima-
tions with low impact parameters are systematically achieved,
even for large inertial distances between Io and Europa. This
difference between the inertial and apparent relative motions is
caused by the evolution of the observation geometry. Figure 8
displays the angle between the orbital plane of the Galilean
moons and the two observation vectors (Earth-Io and Earth-
Europa), for each mutual approximation. The 2026–2027 period
coincides with an almost perfect alignment between the satellite-
observer vectors and the moons’ orbital plane, resulting in
overall lower apparent distances during Io-Europa close encoun-
ters. Those low impact parameters then regularly happen to
be combined with large impact velocities. This is why mutual
approximations with both aforementioned characteristics, for
which the differences between the two observable types are the
largest (see Sect. 4.2.1), mostly occurred during years 2026 and
2027.

Such an observational period is thus not a special isolated
case, but rather a periodic effect of the Earth–Jovian system
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geometry. Therefore, mutual approximations less favourable to
alternative observables are expected to occur repeatedly, about
every 6 yr, and coincide with the so-called ‘mutual events
season’ during which eclipses and occultations occur. Implica-
tions of this effect of the observation geometry concerning the
selection of the appropriate mutual approximations’ observable
type are discussed in Sect. 4.3.

It must be stressed that the selected weighting strategy
for alternative observables (Sect. 3.3) accounts for the mutual
approximation’s characteristics and thus indirectly for the close
encounter’s geometry. The aforementioned impact of the obser-
vation geometry on the equivalence between the two observable
types and more precisely on the benefit of using central instants
over alternative observables is therefore already attenuated by
our careful weighting of the latter. Section 4.4 investigates
the consequences of this geometry effect when not taken into
consideration in the observation weights.

4.2.3. Observational period reduced to 2026–2027

To quantify the impact of using a limited observation set when
it unfortunately corresponds to the observational period less
favourable to alternative observables, we ran additional simu-
lations including only 2026–2027 mutual approximations in the
state estimation. Table 2 compares the improvement in formal
errors provided by central instants over alternative observables
with either complete (2020–2029) or partial (2026–2027) obser-
vation sets.

As expected, the differences in formal errors between the
two observables increase when only considering 2026–2027
observations, except for Europa’s axial position component. The
improvement provided by central instants is multiplied by factors
ranging from 1.5 to 3 for most position and velocity components.
Compared to results obtained with the complete observation set,
formal errors’ improvements in the axial direction become more
significant. They are even comparable to those achieved in the
radial direction for both Io’s and Europa’s velocity.

Although alternative observables and central instants were
proven to lead to very comparable solutions in nominal config-
urations, the influence of the available set of observations must
thus not be neglected. If the number of mutual approximations is
limited, or the period over which they were observed too short, it
is recommended to investigate the characteristics of the available
mutual approximations before selecting an observable type. The
improvement provided by using central instants is indeed ampli-
fied when exclusively including mutual approximations observed
under unfavourable observation angles (2026–2027 period in our
case).

4.3. Implications

If enough observations are available, the improvement provided
by using central instants instead of alternative observables is
limited to about 20% for our Io-Europa test case. However,
such improvement might still be relevant when concurrently esti-
mating other dynamical parameters along with natural bodies’
ephemerides. Accurate determination of the tidal dissipation, in
particular, is required to gain insights into the orbital evolution
of planetary systems.

Recent estimations from astrometric data indeed showed that
Saturn’s tidal quality factor Q can vary by several orders of mag-
nitude from one moon’s forcing frequency to another (Lainey
et al. 2020). These results are highly inconsistent with current
evolution models and thus they highlight the need for accurate

Table 2. Improvements in the final errors obtained with central instants,
using two different observations sets.

Parameters Improvement formal errors Ratio
2020–2029 [1] 2026–2027 [2] [2]/[1]

Position radial 21.9 % 45.2 % 2.1
Io normal 17.4 % 26.7 % 1.5

axial 12.0 % 29.5 % 2.5

Velocity radial 17.3 % 26.5 % 1.5
Io normal 22.3 % 46.3 % 2.1

axial 2.9 % 25.1 % 8.6

Position radial 19.7 % 59.8 % 3.0
Europa normal 20.4 % 27.8 % 1.4

axial 11.0 % 2.5 % 0.2

Velocity radial 22.1 % 29.3 % 1.3
Europa normal 19.7 % 59.7 % 3.0

axial 4.2 % 33.6 % 7.8

Notes. The improvement in formal errors obtained with central instants
is computed with respect to formal errors resulting from alternative
observables, in two different cases. First, all mutual approximations
simulated over the whole 2020–2029 period are included (referred to
as case [1] in the table). Second, only mutual approximations occurring
during the 2026–2027 period are selected (referred to as [2]).

frequency-dependent estimation of tidal parameters (Fuller et al.
2016). This is for instance not yet done for Jupiter, whose tidal
quality factor is currently only determined at Io’s frequency. A
20% improvement in the formal errors of the natural satellites’
initial states might be critical for such applications. As many per-
turbing dynamical effects can be absorbed by a variation in the
initial state, any improvement in the state estimation can indeed
help to detect and estimate such small tidal effects.

Furthermore, a 20% improvement in the predicted position
and/or velocity of the targeted body is not negligible for orbital
design applications. It can indeed affect the corrective manoeu-
vres required before and after a flyby or an orbital insertion,
allowing for a more efficient design and thus reducing the ∆V
budget.

The impact of the mutual approximations’ observables
choice then depends on the timing of the manoeuvre. Figure 9
displays the improvement in propagated errors in radial, normal,
and axial direction for both Io’s and Europa’s positions. The 20%
difference in the formal errors of the initial states can increase
once propagated, at least in the radial and normal directions.
Depending on the time at which the manoeuvre is planned, the
improvement in the accuracy of the predicted targeted body’s
state might thus be higher than 20% if central instants are used.
Looking at Fig. 9a, differences can reach up to 35% for Io’s
radial and normal position components while they increase up
to almost 40% for Europa (see Fig. 9b).

For Europa, the largest differences in propagated errors
clearly correspond to the 2026–2027 period and thus coincide
with the least favourable observation geometry for alternative
observables (see discussion in Sect. 4.2). This effect is how-
ever barely noticeable in Fig. 9a, for Io’s case. Yet, it should be
pointed that when a very sensitive manoeuvre is planned during
such a particular observational period, the impact of the observ-
able choice on the quality of the estimated solution might not be
negligible.
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Fig. 9. Propagated formal errors in position components over the observational period (panel a: Io, panel b: Europa). The errors in position are
expressed in the RSW frame (see Fig. 2) and are obtained from the propagated covariance matrix and estimated initial states. The purple dots (right
axis) display the ratio between the normalised contributions of central instants over their corresponding alternative observables, for each mutual
approximation.

All aforementioned points are direct consequences of the
imperfect equivalence between the two types of observables,
which might be accentuated when fewer observations are avail-
able. In practice, however, this would be balanced by other
observations combined with mutual approximations in the state
estimation. Building on Sect. 4.2, it is nonetheless worth
highlighting that the number and distribution of the observations
should be carefully considered when selecting an appropriate
observable for the processing of mutual approximations data.

The fact that the alternative observables’ unfavourable obser-
vational period corresponds to the mutual events season might
also be an interesting finding for the processing of the mutual
events themselves. Indeed, if the timings at which eclipses and
occultations occur were to be directly used as observables (as
it is the case with mutual approximations’ central instants), the
aforementioned effect of the observation geometry would first
need to be carefully investigated.

4.4. Influence of the weighting scheme

When enough mutual approximations are available, the good
match which can be achieved between both observable types’
estimated solutions actually strongly depends on the accurate
weighting of each mutual approximation. As highlighted in
Sect. 3.3, individual weights have to be computed for alterna-
tive observables. Using a single averaged value for alternative
observables’ weights yields a much larger discrepancy with
respect to the central instants solution over the full simulation,
as reported in Table 3. Compared to formal errors obtained
with alternative observables, those achieved with central instants
are then reduced by a factor 1.5 to 2.7 for the initial position
components, and up to a factor 4 for the velocity components.

These results clearly prove that the equivalence between the
two observable types is conditioned by the appropriate weighting
of alternative observables. As mentioned in Sect. 3.3, it is cru-
cial to carefully compute suitable observation weights to ensure
that the alternative observables indirectly take into account the
geometry of the close encounter in the plane of the sky.

Emelyanov (2017) already conducted a comparative analy-
sis between the two types of observables, although the central

Table 3. Comparison of the final formal errors obtained with the two
types of observables, when applying constant weight values.

Parameters Formal errors with Ratio
Central Alternative

instants [1] observables [2] [2]/[1]

x′Io 7.01 km 11.2 km 1.6
y′Io 10.4 km 17.6 km 1.7
z′Io 14.5 km 37.3 km 2.6

ẋ′Io 0.372 m s−1 1.30 m s−1 3.5
ẏ′Io 0.373 m s−1 0.904 m s−1 2.4
ż′Io 0.562 m s−1 1.86 m s−1 3.3

x′Europa 2.31 km 6.24 km 2.7
y′Europa 13.6 km 20.5 km 1.5
z′Europa 26.3 km 49.1 km 1.9

ẋ′Europa 0.191 m s−1 0.535 m s−1 2.8
ẏ′Europa 0.222 m s−1 0.851 m s−1 3.8
ż′Europa 0.454 m s−1 1.75 m s−1 3.9

Notes. The final errors are expressed in satellites’ central body-centred
cartesian coordinates. The central instants solution is obtained with a
constant weight σtc = 3.5 s (see Sect. 3.3). For the alternative observ-
ables, we use the average of the individual weights defined by Eq. (41):
σalt. = 8.87× 10−3 mas s−1.

instant partials were computed numerically. Interestingly, a con-
vergence issue was encountered with alternative observables,
while none was reported for central instants. This indicates
that the two observables types were not perfectly equivalent in
this case, which might be due to the weighting issue we just
highlighted.

4.5. Verification case: four galilean moons

As verification, we simulated mutual approximations between
the four Galilean moons of Jupiter. Ganymede’s and Callisto’s
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Table 4. Comparison of the formal errors in the initial positions of the
four Galilean moons.

Moon Position Formal errors (km) Relative
component Central Alternative difference

instants observables (%)

Radial 0.222 0.242 8.2
Io Normal 6.60 7.30 9.6

Axial 4.49 4.57 1.7

Radial 0.908 1.02 10.7
Europa Normal 5.27 5.90 10.7

Axial 10.3 10.1 2.2

Radial 1.22 1.37 11.3
Ganymede Normal 5.99 6.39 6.2

Axial 17.9 18.1 1.1

Radial 1.55 1.56 0.7
Callisto Normal 8.64 8.93 3.2

Axial 25.5 26.0 1.6

Notes. The formal errors in position are expressed in the RSW frame
(see Fig. 2) and are provided for the two types of observables. The last
column displays the relative difference between the two. All predicted
mutual approximations between the four moons over the period 2020–
2029 were included in the state estimation.

initial states were then estimated in addition to Io’s and Europa’s.
The resulting formal errors in the four moons’ initial states are
provided in Table 4. Even if not displayed here, the time evo-
lution of the errors in Io’s and Europa’s initial states show a
behaviour comparable to what was observed in the first test case
limited to Io and Europa only (see Fig. 4). The final formal errors
are however a bit lower in the four moons’ case.

Similarly to the Io-Europa test case, using central instants
over alternative observables mostly improves errors in the radial
and normal directions, but only has a marginal effect on the
axial direction errors. For Europa’s axial position, the estima-
tion is even 2% better with alternative observables. As shown in
Table 4, differences in formal errors between the two types of
observables are significantly lower for Callisto than for the three
other moons. These differences are only of a few percents, while
they reach about 10% for Io’s, Europa’s, and Ganymede’s initial
positions.

Again, the contribution of each mutual approximation to
the estimated ephemerides solution also reflects the higher sen-
sitivity of central instants to the complex dynamics at play
in the Jovian system. Figure 10 shows the contribution of
every observation to the initial position of Io (blue), Europa
(orange), Ganymede (green), and Callisto (purple). As expected,
all mutual approximations contribute to estimating the initial
states of Io, Europa, and Ganymede because of the Laplace res-
onance between these three moons. On the other hand, only
mutual approximations directly involving Callisto significantly
help to determine its initial state.

In Fig. 10, clear periodic patterns can be identified in the
central instants case, at least when enough observations are
available, such as for Io-Europa, Io-Ganymede, and Europa-
Ganymede mutual approximations. While still present, those
patterns are however less pronounced for the alternative observ-
ables case. They are directly related to the relative motion of
the satellites in the Jovian system (inertial motion, as opposed

to apparent). This again indicates that part of the informa-
tion encoded in mutual approximations is not fully captured by
alternative observables.

As already highlighted by the Io-Europa case (Sect. 4.1),
central instants are indeed more sensitive to the apparent rel-
ative acceleration between the two satellites. Central instants’
partials directly account for any acceleration variation induced
by a small change in initial states, while alternative observables
do not. This may also explain why differences between the two
observables are lower for Callisto. As it is the most remote moon
with respect to Jupiter, the distance between Callisto and each
of the three other moons is larger than the distances between Io,
Europa, and Ganymede, resulting in smaller inter-moon acceler-
ations. Furthermore, because of the Laplace resonance between
the three innermost Galilean satellites, accelerations exerted by
one of these three moons on the other two strongly influence
their dynamics. These two combined effects might strengthen
the advantage of central instants over alternative observables for
Io, Europa, and Ganymede, compared to Callisto.

Overall, all findings obtained in the first simple Io-Europa
test case are confirmed by this second analysis extended to the
four Galilean moons. The two types of observables lead to almost
equivalent solutions if the alternative observables are properly
weighted (see Sect. 3.3), despite a 10% reduction of the formal
errors in both radial and normal directions when using central
instants. The effect of the observation geometry is also simi-
lar to the Io-Europa case: low impact parameter, large impact
velocity mutual approximations simulated in 2026–2027 are
unfavourable to alternative observables.

5. Conclusion and discussion

We developed an analytical formulation for the observation par-
tials of the mutual approximations’ central instants. This allows
those central instants to be directly used as observables to esti-
mate the ephemerides of natural satellites. Our analytical method
relies on a second-order polynomial to approximate the relative
motion of two satellites around their point of closest approach.
From this polynomial function, we derived an expression for the
central instant as a function of the apparent relative position,
velocity, and acceleration of the two satellites.

Higher-order terms could theoretically be included in our for-
mulation. Using a third-order polynomial to reproduce the appar-
ent relative motion of the two moons (Eqs. (11)–(12)) would lead
to a fourth-order polynomial for the central instant (Eq. (18)).
The roots of such a polynomial could still be computed ana-
lytically, but at the cost of a dramatic increase in complexity.
However, a second-order polynomial has been proven sufficient
to capture the apparent relative dynamics of the two satel-
lites around their closest encounter and to yield highly accurate
analytical partials for central instants.

Numerically computing partials for central instants is
extremely computationally demanding (Emelyanov 2017). It
requires to independently propagate small variations in each of
the estimated parameters (at least six initial state components for
each of the two moons involved). Afterwards, the new central
instants must be determined, which is a time-consuming process
in itself. Should central instants be used, our analytical approach
is thus significantly faster than the numerical computation of the
observation partials.

We conducted a comparative covariance analysis using either
only central instants, or only mutual approximation’s alterna-
tive observables to estimate the Galilean moons’ ephemerides.
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Fig. 10. Normalised contribution of mutual approximations between Io and Europa (I-E, left plots), Io and Ganymede (I-G, centre-left plots), Io and
Callisto (I-C, centre-right plots), Europa and Ganymede (E-G, right plots) to the initial position of Io (blue), Europa (orange), Ganymede (green),
and Callisto (purple). Results for Europa-Callisto and Ganymede-Callisto mutual approximations are not represented here, but do not show any
trend that is not already highlighted by the contributions of the other observations. The first simulated observation only happens at the end of year
2021, explaining the lack of data before that date.

When using the entire set of viable mutual approximations over
the period 2020–2029, the difference in formal errors does not
exceed 20% between the two types of observables. The central
instants achieve the best ephemerides solution because alterna-
tive observables do not account for some of the dynamical effects
affecting the close encounter (e.g. apparent relative acceleration
between the two satellites). In contrast, these effects are directly
captured by central instants, which is beneficial for the resulting
estimated solution.

Overall, we still prove alternative observables to be almost
equivalent to central instants, but only under specific condi-
tions. First, when using alternative observables, the shape of
the observed close encounter must indirectly be accounted for
in the calculation of the observation weights, while it is auto-
matically included in the central instant case. Individual and
accurate weighting of each event, based on the apparent relative
dynamics of the satellites, is then crucial to obtain a consistent
solution. It is indeed necessary to convert any error in the esti-
mated central instant to an error in the derivative of the apparent
distance. We show that when using a single averaged value to
weight all mutual approximations, the formal errors in initial
states obtained with central instants were 1.5 to 4 times lower
than with alternative observables in our test case. As discussed
in Sect. 4.4, an inappropriate weighting scheme could thus pos-
sibly explain previous indications of a non-equivalence between
the two observable types (Emelyanov 2017). When using alterna-
tive observables, we therefore recommend to adopt the weighting
strategy described in Sect. 3.3, and more precisely to compute
the weights with Eq. (41). In Appendix F, we provide the appro-
priate alternative observables’ weights for the 2016–2018 mutual
approximations reported in Morgado et al. (2019). These weight
values should be applied for the 2016–2018 observations to be
properly included in the state estimation.

Furthermore, all mutual approximations do not homoge-
neously contribute to the ephemerides solution. The satellites’
dynamics are overall better constrained by mutual approxima-
tions with a low impact parameter (typically below 7 as) and low

relative velocity (1 mas s−1), for both observable types. However,
some characteristics in particular are unfavourable to alternative
observables: mutual approximations with low impact parameters
but large impact velocities contribute significantly more to the
estimated solution when using central instants (factor 2 to 3).
Preferring central instants is thus particularly advantageous for
these specific mutual approximations, which are not isolated
events but periodically represent most of the observations for 1
or 2 yr (see discussion in Sect. 4.2.2).

Choosing between the two types of observables when
estimating ephemerides from mutual approximations therefore
requires critical evaluation. If many mutual approximations are
available to estimate the moons’ ephemerides, one can safely use
alternative observables without substantially degrading the solu-
tion. However, this does not systematically hold for a small set of
observations, especially if they are all collected during the alter-
native observables’ unfavourable observation period. The formal
error reduction provided by our method then strongly depends on
the mutual approximations’ characteristics.

The relevance of selecting central instants over alterna-
tive observables eventually depends on the application of the
ephemerides solution. As detailed in Sect. 4.3, a 10–20%
improvement in the formal errors of the satellites’ state might
be significant when concurrently estimating tidal parameters.
It may also be non-negligible for mission design applications.
Improved ephemerides are indeed crucial to design efficient
flybys or orbital insertions requiring only limited corrective
manoeuvres. The timing of the manoeuvres must then be taken
into consideration to select a suitable observable, especially if
they coincide with observation geometries less favourable to
alternative observables.

As mentioned in Sect. 4.3, a comparable analysis could
be conducted for mutual events. We expect to obtain consis-
tent results with respect to the mutual approximations’ case,
given the similarities between the two types of observation.
However, all mutual events occur during the alternative observ-
ables’ unfavourable observational period. It is thus important to
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confirm the influence of the observation geometry on the differ-
ences between central instants’ and alternative observables’ state
estimation solutions. This could be an interesting result, in case
the timings of eclipses and occultations would be directly used
as observables, as for mutual approximations.
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Appendix A: Fitting a polynomial to a close
encounter’s apparent distance history
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Fig. A.1. Apparent distance measurements during a mutual approximation (blue dots on top panels). The polynomial used to fit these observations
is typically a fourth order one (left panel). A second order polynomial was also tested, for the whole duration of the event (middle panels) and over
a reduced time interval (30 min) centred on the central instant tc. For each of the three case, the residuals between the fitted polynomial and the
true apparent distance history are displayed in the bottom panels.

As described in Sect. 1, the apparent distance history during
a close encounter between the two satellites is typically fitted
with a fourth order polynomial (e.g. Morgado et al. 2016). This
allows to estimate the mutual approximation’s central instant,
as well as its impact parameter for instance. In this appendix,
we discuss the influence of the order of the fitting polyno-
mial. The maximum absolute values of the residuals between
the fitted polynomial and the true apparent distance history are
reported in Table A.1 (for the first mutual approximations pre-
dicted between Io and Europa, starting from 01/01/2020). For
clarity, the apparent distance observations, fitted polynomial and
resulting residuals are displayed in Fig. A.1 for the first mutual
approximation.

When switching from a fourth order to a second order
polynomial to reproduce the apparent distance history over the
whole duration of the close encounter (i.e. 60 min), the resid-
uals increase by almost a factor 10. However, if we only focus
on a small fraction of the event (here only 30 min centred on
the central instant), a second order polynomial achieves similar
residuals as a fourth order polynomial applied to the full close
encounter duration. This proves that a second order polynomial
is well-suited when focusing on short time intervals centred on
tc. This is the case when deriving observation partials for central
instants, as we then only consider slight changes in tc, induced
by small variations of the estimated parameters.

Appendix B: Position and velocity partials of αααSi,
δδδSi, α̇̇α̇αSi, δ̇̇δ̇δSi, α̈̈α̈αSi and δ̈̈δ̈δSi

B.1. αSi and δSi partials

First, we derive the partials of the right ascension αS i and dec-
lination δS i with respect to the two satellites’ and observer’s

Table A.1. Maximum absolute values for the residuals between the
apparent distance history and the fitted polynomial.

Mutual Max. absolute residual value [as]
approx. [tc − 30min; tc + 30min] [tc − 15min; tc + 15min]

4th order 2nd order 2nd order

1 3.50 × 10−2 2.84 × 10−1 3.11 × 10−2

2 3.13 × 10−2 2.45 × 10−1 2.97 × 10−2

3 3.55 × 10−2 2.67 × 10−1 3.28 × 10−2

4 3.84 × 10−2 2.99 × 10−1 3.40 × 10−2

5 3.78 × 10−2 2.79 × 10−1 3.32 × 10−2

Notes. The residuals are compared between three configurations: fourth
order and second order polynomials used over the whole duration of the
close encounter (i.e. 60 min: [tc − 30min; tc + 30min]) and second order
polynomial over a reduced interval centred on the central instant (only
30 min: [tc − 15 min; tc + 15 min]). Results are reported for five mutual
approximations.

positions, as follows:
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The partials of αS i and δS i with respect to the velocity vectors are
by definition equal to zero:

∂ [α, δ]S i

∂ṙS i
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=

00
0

 ; i , j. (B.4)

B.2. α̇Si and δ̇Si partials

The partials of α̇S i and δ̇S i with respect to the position vectors of
the two satellites and the observer are
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We also compute partials of α̇S i and δ̇S i with respect to the two
satellites’ and the observer’s velocity vectors:
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B.3. α̈Si and δ̈Si partials

The partials of α̈S i and δ̈S i with respect to position vectors lead to
more complex expressions. We therefore split those partials into
two terms. The first one, denoted as gα̈S i

or gδ̈S i
, correspond to

the contribution of the acceleration partials (more details about
how to compute them are provided in Appendix C). The rest of
the partial expression is included in the other term (g′α̈S i

or g′
δ̈S i

).
We thus obtain the following formulation for the partial of

α̈S i with respect to the position of satellite i:
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The partials of α̈S i with respect to the position vectors of the
observer and of the other satellite j are
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Similarly, the position partials of δ̈S i are written as follows:
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i ẋi − xiyiẏi
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r2

i


2zi ẋi
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∂ẍi
∂zS j

+ yi
∂ÿi
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Finally, the velocity partials also have to be derived for
α̈S i and δ̈S i . We again split the partials expressions into two
terms, designated by kα̈S i

and k′α̈S i
(or kδ̈S i

and k′
δ̈S i

). Again
kα̈S i

corresponds to the contribution of the acceleration partials.
Starting with the partials of α̈S i with respect to the satellites’ and
observer’s velocity vectors, we obtain the following expressions:
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∂ÿi
∂ẏO
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Lastly, we obtain the following formulations for the partials of
δ̈S i with respect to the satellites’ and observer’s velocity vectors:
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(
r2

ixy
− z2

i

)
+ 2yizi (xi ẋi + yiẏi)
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∂ÿi
∂ẋO
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∂ẏO

+ yi
∂ÿi
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∂ẍi
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Appendix C: Acceleration partials

As shown in Appendix B, computing α̈S i
and δ̈S i

partials requires
to first compute the partials of those relative acceleration, start-
ing from Eq. (4):

∂r̈S i
O

∂q
=
∂r̈S i (tS i )
∂q

− ∂r̈O (tO )
∂q

; i ∈ {1, 2}. (C.1)

The vector of parameters q can either refer to one of the satellites
state sS i (tS i ) or to the observer state sO (tO ). We first consider the
partials with respect to the observer state, given by

∂r̈S i
O

∂sO (tO )
=
∂r̈S i (tS i )
∂sO (tO )

− ∂r̈O (tO )
∂sO (tO )

; i ∈ {1, 2}. (C.2)

The acceleration r̈S i (tS i ) of the satellite i at time tS i depends
on the observer state sO at t = tS i , assuming the observer’s
body indeed exerts an acceleration on satellite i (although such
acceleration is usually negligible, see simplifying assumptions
discussed at the end of this appendix). Equation (C.2) must thus
be rewritten as

∂r̈S i
O
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ΦO (tO , tS i ) −
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∂sO (tO )

; i ∈ {1, 2}. (C.3)

Similarly, acceleration partials with respect to the two satellites’
states are expressed as follows:

∂r̈S i
O

∂sS i (tS i )
=
∂r̈S i (tS i )
∂sS i (tS i )

− ∂r̈O (tO )
∂sS i (tO )

ΦS i (tS i , tO ), (C.4)

∂r̈S i
O

∂sS j (tS j )
=
∂r̈S i (tS i )
∂sS j (tS i )

ΦS j (tS j , tS i )

− ∂r̈O (tO )
∂sS j (tO )

ΦS j (tS j , tO ); {i, j} ∈ {1, 2}, j , i. (C.5)

According to Eqs. (C.3)–(C.5), four state transition matrices
need to be computed. However, a few remarks must be consid-
ered, in light of the computational effort this would require. For
mutual approximations between the Galilean moons observed
from the Earth, the satellite-observer distance is comparable
between the two satellites. The difference between the two times
tS 1 and tS 2 is thus very small, and the state transition matrices
ΦS i (tS i , tS j ) (with {i, j} ∈ {1, 2} and j , i) are consequently close
to unit matrices.

The difference between each time tS i and the observation
time tO is larger. However, looking at Eqs. (C.3)–(C.5), the state
transition matrices ΦO (tO , tS i ) and ΦS i (tS i , tO ) are always multi-
plied by partials of the observer’s body acceleration with respect
to one of the satellite’s state, or the other way around. Consid-
ering the large satellites–observer distances, these accelerations
partials can actually be neglected.

Overall, for mutual approximations between Galilean moons,
the state transition matrices appearing in Eqs. (C.3)–(C.5) can
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be either approximated by unit matrices, or the entire accel-
eration partial term they contribute to can be neglected. This
significantly simplifies the implementation and reduces the com-
putational effort. Acceleration partials are anyway only required
to compute the partials of α̈S i

and δ̈S i
, which represent a marginal

contribution of the total central instant partials (see Sect. 2.4).
Simplifying assumptions to compute those acceleration partials
can therefore be made safely.

Appendix D: Verification of the analytical partials

Table D.1. Comparison between analytical and numerical solutions for
the changes in central instants.

Mutual Change in tc Relative
approx. analytical (s) numerical (s) error (–)

1 2.17458 2.17455 7.84 × 10−6

2 36.7842 36.7824 4.85 × 10−5

3 73.9007 73.8972 4.76 × 10−5

4 94.9994 94.9951 4.56 × 10−5

5 111.043 111.038 4.74 × 10−5

6 132.098 132.092 4.55 × 10−5

7 169.169 169.161 4.55 × 10−5

8 203.983 203.974 4.58 × 10−5

9 206.006 206.198 9.30 × 10−4

10 241.156 241.145 4.53 × 10−5

11 261.643 261.631 4.35 × 10−5

12 278.322 278.309 4.51 × 10−5

13 298.557 298.544 4.21 × 10−5

14 335.416 335.403 4.04 × 10−5

15 371.133 371.117 4.27 × 10−5

16 372.219 372.205 3.84 × 10−5

17 408.219 408.202 4.23 × 10−5

18 445.273 445.254 4.21 × 10−5

19 464.009 463.996 2.82 × 10−5

20 482.288 482.267 4.21 × 10−5

Notes. This table compares the analytical and numerical solutions for
the changes in central instants after applying a small variation (0.001%)
in the initial states of Io, Europa and the Earth. Analytical approxi-
mations of the changes are derived from the central instants partials
provided in Sect. 2.3. Results are here only reported for the 20 first
mutual approximations detected in 2020 (although verification was
conducted over 200 observations).

The central instants partials derived in Sect. 2.3 were val-
idated numerically, by comparing the analytically estimated
change in central instant with the actual change obtained when
applying a small variation to the estimated parameters. Partials

were expressed with respect to rS 1 (tS 1 ), rS 2 (tS 2 ) and rO (tO ) (for the
first satellite’s, second satellite’s and observer’s states, respec-
tively). Analytical approximations of the changes in central
instants were derived from the observation partials with respect
to the initial state of interest, multiplied with the appropriate state
transition matrix, as follows:

∆tc =
∂tc

∂rS 1 (tS 1 )
Φ

(
tS 1 , tc

)
∆rS 1 (tc), (D.1)

∆tc =
∂tc

∂rS 2 (tS 2 )
Φ

(
tS 2 , tc

)
∆rS 2 (tc), (D.2)

∆tc =
∂tc

∂rO (tO )
Φ

(
tO , tc

)
∆rO (tc). (D.3)

The results of the numerical verification are reported in
Table D.1. The extremely low differences found between the ana-
lytical and numerical changes in central instant prove the validity
of our analytical partials.

Appendix E: Contribution of the α̈̈α̈αSi and δ̈̈δ̈δSi

partials to the central instant partials

Table E.1 gives the relative contributions of the α̈S i and δ̈S i par-
tials to the total central instant partials. They are reported for
the first five Io-Europa mutual approximations in 2020 and are
shown to be negligible.

Appendix F: Alternative observables’ weights
for past mutual approximations (2016–2018
observational campaign)

We computed the alternative observables’ weights for the past
mutual approximations observed during the 2016–2018 cam-
paign, which are provided in Morgado et al. (2019). Tables
F.1–F.3 contain the weight values obtained with Eq. (41), fol-
lowing the weighting strategy described in Sect. 3.3 (we have
shown this approach to be crucial to obtain consistent estima-
tion solutions between central instants and alternative observable
in Sect. 4.4).

For consistency purposes, the errors in central instant σ(tc)
given in Morgado et al. (2019) were translated into errors in the
alternative observable σalt. using the same ephemerides as the
ones used in Morgado et al. (2019; i.e. JUP310 with DE435 from
JPL). Table F.1 corresponds to mutual approximations observed
in 2016, while Tables F.2 and F.3 are dedicated to 2017 and 2018
observations, respectively. The geodetic coordinates of the six
different ground stations can be found in Morgado et al. (2019).
We recommend to use the computed weight values σalt. when
including the 2016–2018 observations in the state estimation
with alternative observables.
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Table E.1. Relative contributions of the α̈S i and δ̈S i partials to the total central instants partials.

Mutual Relative contribution to the tc partials (%)
approx.

w.r.t. first satellite’s state sS 1 = [rS 1 ṙS 1 ]T

xS 1 yS 1 zS 1 ẋS 1 ẏS 1 żS 1

1 6.8 × 10−7 1.3 × 10−4 3.2 × 10−4 1.1 × 10−5 9.1 × 10−8 9.3 × 10−8

2 5.4 × 10−6 2.8 × 10−4 1.0 × 10−3 1.3 × 10−4 1.0 × 10−6 6.4 × 10−7

3 4.9 × 10−6 2.2 × 10−4 8.0 × 10−4 1.1 × 10−4 8.8 × 10−7 3.9 × 10−7

4 1.2 × 10−6 9.8 × 10−5 2.9 × 10−4 1.3 × 10−5 1.4 × 10−8 4.7 × 10−8

5 3.0 × 10−6 1.2 × 10−5 4.4 × 10−4 6.5 × 10−5 5.1 × 10−7 1.0 × 10−7

w.r.t. second satellite’s state sS 2 = [rS 2 ṙS 2 ]T

xS 2 yS 2 zS 2 ẋS 2 ẏS 2 żS 2

1 2.5 × 10−7 3.3 × 10−5 7.9 × 10−5 2.2 × 10−5 8.7 × 10−8 1.2 × 10−9

2 7.1 × 10−7 7.1 × 10−5 2.6 × 10−4 7.8 × 10−5 2.7 × 10−7 1.6 × 10−7

3 6.5 × 10−7 5.5 × 10−5 2.0 × 10−4 6.4 × 10−5 1.4 × 10−7 4.7 × 10−8

4 3.5 × 10−7 2.6 × 10−5 7.2 × 10−5 2.6 × 10−5 1.0 × 10−8 2.2 × 10−7

5 4.1 × 10−7 3.1 × 10−5 1.1 × 10−4 3.7 × 10−5 3.4 × 10−9 1.7 × 10−7

w.r.t. observer’s state sO = [rO ṙO ]T

xO yO zO ẋO ẏO żO

1 1.7 × 10−6 5.3 × 10−5 1.7 × 10−4 8.6 × 10−3 3.5 × 10−6 8.3 × 10−5

2 1.0 × 10−5 9.0 × 10−5 6.1 × 10−4 4.4 × 10−2 9.2 × 10−4 5.5 × 10−4

3 8.7 × 10−6 7.2 × 10−5 4.6 × 10−4 3.7 × 10−2 9.0 × 10−4 4.8 × 10−4

4 2.8 × 10−6 4.3 × 10−5 1.5 × 10−4 9.6 × 10−3 2.4 × 10−5 1.5 × 10−4

5 5.1 × 10−6 4.1 × 10−5 2.5 × 10−4 2.2 × 10−2 6.0 × 10−4 2.9 × 10−4

Notes. The partials are computed with respect to the first satellite’s state sS 1 , second satellite’s state sS 2 and observer’s state sO , all expressed in
cartesian coordinates. Results are only reported for five mutual approximations (five first Io-Europa mutual approximations from 01/01/2020).
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Table F.1. Appropriate weights for alternative observables, for the mutual approximations observed in 2016.

Date Event Station tc (UTC) σ(tc) (s) σalt. (mas s−1)

2016-02-03 E-G OPD 04:48:01.1 4.2 1.357 · 10−2

2016-02-08 I-E FOZ 06:29:38.4 0.6 2.428 × 10−3

2016-02-15 I-E FOZ 08:39:28.5 1.1 3.769 × 10−3

2016-02-24 I-G OPD 01:53:25.5 1.1 3.508 × 10−3

FEG 01:53:27.3 4.0 1.276 × 10−2

2016-02-25 I-E GOA 23:55:58.2 2.4 7.070 × 10−3

2016-03-04 I-E GOA 02:09:59.3 2.3 4.095 × 10−3

2016-04-02 I-E FOZ 05:45:57.1 2.2 3.206 × 10−3

OPD 05:46:03.2 2.5 3.643 × 10−3

FEG 05:45:59.1 3.8 5.538 × 10−3

2016-04-02 I-C OPD 23:24:20.4 1.2 1.846 × 10−3

FOZ 23:24:22.4 1.4 2.153 × 10−3

FEG 23:24:22.3 3.5 5.383 × 10−3

2016-04-12 I-C OPD 04:35:29.7 8.9 1.631 × 10−2

FOZ 04:35:31.1 1.1 2.016 × 10−3

FEG 04:35:29.1 2.5 4.581 × 10−3

2016-04-12 I-E FOZ 04:45:49.0 10.1 1.167 × 10−3

2016-04-12 E-C FOZ 05:01:34.6 1.9 3.337 × 10−3

FEG 05:01:36.1 4.2 7.376 × 10−3

2016-04-12 I-E OPD 21:17:16.2 0.8 1.653 × 10−3

2016-04-19 I-E OPD 23:35:15.3 1.0 2.456 × 10−3

FOZ 23:35:14.2 2.1 5.158 × 10−3

GOA 23:35:13.3 2.2 5.404 × 10−3

UTF 23:35:15.2 3.2 7.860 × 10−3

OHP 23:35:13.9 1.5 3.686 × 10−3

2016-04-20 E-C OHP 20:15:57.8 1.8 2.474 × 10−3

2016-04-24 I-G OPD 22:35:12.0 0.5 2.609 × 10−3

UTF 22:35:13.1 2.6 1.357 × 10−2

2016-04-29 I-G OPD 00:32:28.1 2.4 1.023 × 10−2

UTF 00:32:28.6 4.2 1.790 × 10−2

2016-05-02 I-G OPD 01:08:50.3 1.5 7.411 × 10−3

FOZ 01:08:50.7 2.3 1.136 × 10−2

FEG 01:08:49.1 1.8 8.893 × 10−3

UTF 01:08:51.1 4.5 2.223 × 10−2

2016-05-03 E-G OPD 01:04:55.4 1.3 2.391 × 10−3

UTF 01:04:55.5 1.9 3.494 × 10−3

2016-05-06 E-C OPD 00:59:06.8 6.5 7.955 × 10−3

2016-05-19 E-G FOZ 22:52:31.9 1.0 3.485 × 10−3

2016-05-27 E-G FEG 02:00:21.8 5.5 1.853 × 10−2

2016-06-17 I-E OPD 00:48:02.9 1.3 1.059 × 10−2

FEG 00:48:07.0 4.8 3.910 × 10−2

2016-06-28 I-G OPD 23:58:57.1 1.4 3.857 × 10−3

FEG 23:58:59.0 1.1 3.031 × 10−3

2016-06-28 I-E OPD 22:36:02.2 0.5 2.567 × 10−3

FEG 22:36:02.9 1.2 6.160 × 10−3

2016-07-08 E-G OPD 21:51:35.5 0.6 1.445 × 10−3

FEG 21:51:32.6 3.3 7.946 × 10−3

Notes. The alternative observables’ weights are provided in mas s−1 for the mutual approximations reported in Morgado et al. (2019) for the year
2016. I-E, I-G, I-C, E-G and G-C refer to mutual approximations between Io and Europa, Io and Ganymede, Io and Callisto, Europa and Ganymede,
Europa and Callisto, and Ganymede and Callisto, respectively. This table is adapted from Morgado et al. (2019).
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Table F.2. Appropriate weights for alternative observables, for the mutual approximations observed in 2017.

Date Event Station tc (UTC) σ(tc) (s) σalt. (mas s−1)

2017-02-07 I-E FOZ 04:36:54.1 1.0 3.525 × 10−3

2017-02-26 I-E FOZ 04:32:43.5 1.3 4.368 × 10−3

2017-02-27 I-G FOZ 03:36:51.3 1.1 1.609 × 10−3

2017-03-07 I-G FOZ 03:00:44.4 32.9 2.126 × 10−3

2017-03-14 I-G FOZ 07:19:33.8 1.1 6.109 × 10−4

2017-04-04 I-E OHP 20:43:34.4 0.7 3.227 × 10−3

2017-04-06 I-E FEG 03:46:43.1 2.2 6.249 × 10−3

2017-04-08 E-G FOZ 01:52:40.5 1.0 1.924 × 10−3

2017-04-13 I-E FOZ 05:49:28.3 1.0 2.712 × 10−3

2017-05-06 I-G GOA 02:16:30.2 1.7 4.460 × 10−3

2017-05-08 I-E FOZ 01:11:26.5 1.0 2.124 × 10−3

2017-05-13 I-G FOZ 04:47:32.1 1.0 2.418 × 10−3

2017-05-15 I-E FEG 03:23:43.1 1.7 3.237 × 10−3

2017-05-31 E-G FEG 22:30:36.2 27.9 9.891 × 10−4

2017-06-08 I-E FEG 23:48:57.1 7.5 6.752 × 10−3

GOA 23:48:58.1 1.8 1.621 × 10−3

2017-06-23 I-E FOZ 23:17:09.0 1.1 8.644 × 10−4

GOA 23:17:07.7 1.9 1.493 × 10−3

2017-07-06 E-G FOZ 22:58:42.6 1.4 8.937 × 10−4

FEG 22:58:41.1 19.4 1.238 × 10−2

2017-07-25 I-E FOZ 22:40:24.8 1.2 2.166 × 10−3

FEG 22:40:21.3 3.3 5.957 × 10−3

2017-08-02 G-C FEG 23:38:20.0 7.7 4.172 × 10−3

2017-08-10 E-C FOZ 23:41:23.6 48.2 1.680 × 10−3

2017-08-24 I-G FEG 22:35:37.6 6.6 3.915 × 10−3

Notes. The alternative observables’ weights are provided in mas s−1 for the mutual approximations reported in Morgado et al. (2019) for the year
2017. I-E, I-G, I-C, E-G and G-C refer to mutual approximations between Io and Europa, Io and Ganymede, Io and Callisto, Europa and Ganymede,
Europa and Callisto, and Ganymede and Callisto, respectively. This table is adapted from Morgado et al. (2019).
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Table F.3. Appropriate weights for alternative observables, for the mutual approximations observed in 2018.

Date Event Station tc (UTC) σ(tc) (s) σalt. (mas s−1)

2018-03-05 I-E FOZ 05:10:29.7 0.6 1.378 × 10−3

2018-03-11 I-G OPD 05:40:46.7 1.8 6.834 × 10−4

FOZ 05:40:47.0 2.0 7.594 × 10−4

2018-03-12 I-E OPD 07:20:57.6 0.5 1.236 × 10−3

FOZ 07:20:58.8 1.4 3.461 × 10−3

2018-03-17 I-E FOZ 03:15:03.2 0.8 2.898 × 10−3

2018-03-24 I-E FOZ 05:18:47.9 0.7 2.527 × 10−3

2018-04-06 I-E OPD 02:40:32.0 1.2 3.641 × 10−3

FOZ 02:40:31.4 1.0 3.034 × 10−3

2018-06-11 E-G FEG 23:03:46.0 1.8 2.885 × 10−3

GOA 23:03:45.1 1.2 1.923 × 10−3

2018-06-19 E-G FOZ 01:55:19.9 1.1 1.785 × 10−3

2018-06-22 I-G FEG 02:17:09.5 7.2 1.005 × 10−3

OPD 02:17:12.6 4.5 6.282 × 10−4

FOZ 02:17:12.5 5.6 7.818 × 10−4

GOA 02:17:09.9 6.5 9.074 × 10−4

2018-06-23 I-E FOZ 00:40:47.4 1.1 4.486 × 10−3

2018-07-07 I-G OPD 00:30:56.8 1.1 1.829 × 10−3

FEG 00:30:57.0 2.2 3.658 × 10−3

2018-07-11 E-C OPD 22:48:02.8 1.4 1.010 × 10−3

2018-07-12 I-E FEG 01:07:36.3 2.5 5.285 × 10−3

OPD 01:07:37.4 1.0 2.114 × 10−3

2018-07-13 E-G OPD 02:01:30.9 1.1 9.424 × 10−4

FEG 02:01:29.9 5.4 4.626 × 10−3

2018-07-19 I-C OPD 01:52:08.6 1.9 1.502 × 10−3

FOZ 01:52:09.3 2.1 1.661 × 10−3

2018-08-07 E-G OPD 23:15:18.8 1.3 2.118 × 10−3

2018-08-12 I-E OPD 23:54:58.4 1.1 1.186 × 10−3

FOZ 23:54:58.5 1.2 1.294 × 10−3

Notes. The alternative observables’ weights are provided in mas s−1 for the mutual approximations reported in Morgado et al. (2019) for the year
2018. I-E, I-G, I-C, E-G and G-C refer to mutual approximations between Io and Europa, Io and Ganymede, Io and Callisto, Europa and Ganymede,
Europa and Callisto, and Ganymede and Callisto, respectively. This table is adapted from Morgado et al. (2019).
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