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Symbol Quantity Unit
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Abstract

The primary objective of this research is to develop an energy management system for the
Co-creation center (CCC) that maximizes the use of passive energy sources while maintaining
indoor thermal comfort. Passive energy sources have the potential to significantly reduce
the energy consumption of the building. However, to achieve optimal energy savings, it is
necessary to integrate multiple passive energy sources and develop a control strategy that
can manage them effectively.

Model Predictive Control (MPC) strategies have been extensively researched in the litera-
ture as a means of optimizing energy consumption in buildings. However, most studies
only consider a single passive energy source or energy distribution in multiple zones. There
is limited research on the optimal management of multiple passive energy sources.

To address this gap, this thesis investigates the use of an MPC strategy to optimize the oper-
ation of multiple passive energy sources in a building. Specifically, the research focuses on
four solar blinds, a Phase Change Material (PCM) battery, sky windows, heat recuperation,
natural ventilation, and an active energy source. Grey-box modeling is used to model the
building, and the model is calibrated using experimental data.

The MPC problem is then set up to minimize energy supplied by Heat pump (HP) while
ensuring indoor thermal comfort during occupied periods. An adaptive comfort model is
used as a criterion to satisfy during occupied periods. The proposed MPC control is then
implemented in the building.

The results show that the proposed MPC outperforms the rule-based controller in terms
of energy consumption and maintaining thermal comfort. The research further provides
insights into the potential of MPC strategy to increase the energy flexibility of buildings.
The final parts of this research focused on varying the PCM temperatures and using a more
flexible thermal comfort model and studying its effects on the energy demand of the build-
ing. The findings could be used to inform the design of energy-efficient buildings and the
development of smart energy management systems.
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1 Introduction

1.1 Building energy demand

The depletion of fossil resources is largely caused by the increasing energy consumption in
modern times. Urban areas are responsible for about 40% of total energy consumption in
the EU [4]., with two-thirds of that energy being used for Heating Ventilation and Air Con-
ditioning (HVAC). This results in 25% of total energy consumption being used to maintain
pleasant indoor temperatures. In 2015, the Dutch government implemented Building reg-
ulations to reduce energy consumption in the sector, and as of 2021, all new constructions
must meet the requirements for Nearly Energy-Neutral Buildings (BENG). The BENG has a
three-step approach to decrease CO2 consumption[5]:

• Limit the energy consumption per built area

• Limit the maximum primary fossil energy consumption.

• Increase the share of renewable energy

According to BENG regulations [6], the average consumption for a newly constructed office
building is 90 kWh/m2 per year. Of this amount, a maximum of 40 kWh/m2 can come from
non-renewable sources, and at least 30% must be sourced from renewable energy.

1.2 CONVERGE project

The feasibility of meeting BENG standards varies depending on the type of building; for ex-
ample, a terraced building may find it easier to meet the requirements due to less surface
area for energy loss, while a standalone office building may have a higher energy demand in
the range of 100-150 kWh/m2 per year [7], requiring technical innovations to reduce energy
consumption. An initiative aimed at finding innovative solutions for building energy is the
TU Delft CONVERGE project (www.thegreenvillage.org/project/converge/).

Passive climate control methods have been identified as a potential means of decreasing
energy consumption in buildings. Such strategies include the use of operable windows, so-
lar blinds, phase change materials, and heat recovery systems. In 2018, the Green Village
foundation of TU Delft began a project aimed at researching and developing a nearly zero-
energy building, which was originally based on the ”Earth, Wind Fire” project. The project,
called CONVERGE (short for COmfortable Natural Ventilation and Energy REduction), has
two primary objectives:
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1.2. CONVERGE PROJECT

• Optimum integration of passive climate control systems into Building energy manage-
ment system (BEMS) to reduce at least 80 % of energy demand

• To serve as a test bed to gain insights and apply this knowledge in practice

The Co-Creation Centre serves as both a gathering place and a research hub. It features
a spacious conference room that can accommodate various events like conferences, educa-
tional seminars, and office meetings. The number of attendees can range from a small group
to a full house. The conference room, which is visible in Figure 3.3 features large glass walls.
On the right side, the service cabin is equipped with a kitchen, restrooms, and technology
facilities. The building features cutting-edge glass engineering, as evidenced by its fully

Figure 1.1: Co-creation center

transparent triple-glazed facades and glass columns. To mitigate overheating, the building
was designed with large overhangs and automated outdoor sunshades. Originally intended
for a capacity of 30 individuals, the building was later modified to accommodate up to 240
attendees in a meeting setting prior to the imposition of Covid restrictions. The building’s
climate is maintained by a climate tower, which can be seen on the left in Figure 1, and its
energy performance is further enhanced through the installation of PV panels on the tower.
The building aspires to achieve energy neutrality or even a positive energy balance, which
exceeds the Dutch BENG standard. Additionally, the building serves as a research facility
to study the feasibility of passively heating, cooling, and ventilating a transparent building
while maintaining comfort levels. The building is continuously monitored through an ex-
tensive sensor network.

The TU Delft plays a significant role in the CONVERGE project by dedicating its researchers
and students to it. Additionally, companies such as Van Dorp, Priva, and Hunter Douglas

Master of Science Thesis 2 N.Rajappa
5317703



1.3. RESEARCH QUESTION

provide the necessary hardware and software for the project to be executed. The Green
Village also comprises a wide range of stakeholders, which is leveraged to raise awareness
about the project.

1.3 Research Question

The research question is ”How to design an efficient model predictive control strategy to the
Co-creation center which integrates solar shading with passive ventilation and phase change
materials with the goal of optimizing the passive energy utilization ratio while maintaining
indoor thermal comfort ?”. In order to effectively tackle the primary research questions, it
is essential to break them down into smaller objectives. These sub-questions act as stepping
stones, providing a framework for the research and serving as a structured approach to
direct our inquiry. The sub-questions are :

1. How well does the developed building model compare to the thermal behavior in an
actual building?

2. How can a building’s model be created to be both accurate and not overly complex for
model-based control?

3. How does the created model predictive control strategy effectively combine passive
and active energy sources while still ensuring thermal comfort?

4. Is it possible to decrease energy consumption in a building by using this strategy
compared to a rule-based controller in a real-case scenario?

1.4 Report Outline

The report is structured as follows: It begins with Chapter 1, which introduces the CON-
VERGE project and outlines the research objectives. Chapter 2 focuses on the application of
the adaptive thermal comfort model within the project. Moving on to Chapter 3 provides an
overview of the existing control system and the established benchmark for this research. In
Chapter 4, the report delves into the thermodynamic modeling of the various components
of the Co-creation center, followed by a chapter dedicated to the validation of this model.
From Chapter 6 onwards, the report shifts its focus to the development of the control sys-
tems’ MPC problem setup. The subsequent chapter discusses the practical implementation
and application of the developed MPC. Chapters 8 and 9 examine the performance improve-
ments resulting from the implementation of the MPC, while Chapters 10 and 11 explore
potential modifications to further enhance the system. Finally, the last chapter provides the
report’s conclusions, along with recommendations for future work.
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2 Adaptive thermal comfort models

The primary purpose of a building is human habitation. Moreover, people spend almost
90% of their time in buildings. Numerous researchers have shown that indoor comfort plays
a crucial role in occupants’ health, morale, productivity, and satisfaction. It is thus essential
to preserve a comfortable indoor environment whilst trying to reduce the energy consump-
tion of the HVAC systems [8]. Appendix B explains the various aspects of indoor comfort.

The Netherlands has established a number of guidelines for the indoor thermal comfort of
buildings since the 1970s [9] , with Fanger’s comfort model [10] serving as the foundation for
these guidelines. However, it has been revealed through comprehensive experimentation by
de Dear et al. [11] that individuals have varying evaluations of indoor climate, particularly
when they possess the ability to control or influence the indoor climate. The phenomenon
of thermal adaptability, driven by factors such as expectations of indoor climate, has led to
the development of flexible temperature ranges in building design [12] , with the potential
to reduce the energy consumption of heating, ventilation, and air conditioning systems.

As a result, new adaptive indoor thermal climate directives have been formulated for the
Netherlands [13] , in alignment with ASHRAE 55-2004 [14] based on experiments by de
Dear and Brager [11]. In recent years, thermal comfort models have increasingly taken hu-
man adaptability into account, with adaptive thermal comfort being defined as the ability
of individuals to re-establish comfort through various means such as behavioral adaptation,
which can include personal, environmental, technical and organizational adjustments [15] .
This can include actions such as adjusting window openings, dressing according to external
weather conditions and making dietary adjustments. It is important to note that physio-
logical adaptation does not affect an individual’s neutrality. But psychological adaptation
corresponds to altered perception or response to sensory information [16].

2.1 Adaptive temperature limits (ATG)

The ASHRAE 55-2004 standard outlines a method for determining appropriate thermal con-
ditions in naturally conditioned spaces, however, this method is only relevant for certain
types of buildings where the indoor thermal climate is primarily influenced by the occupants
(through operable windows, for example) and mechanical air conditioning is not utilized.
Brager and de Dear define air-conditioned buildings as sealed, centrally air-conditioned
spaces with open floor plans, in which occupants are not able to open or close windows.

In the Netherlands and similar climatic zones, this distinction proves to be impractical as
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2.1. ADAPTIVE TEMPERATURE LIMITS (ATG)

most buildings fall somewhere between these two extremes. To address this issue, two build-
ing types referred to as alpha and beta were introduced by Van der Linden[12]. According
to the classification scheme provided by them, if a building has a sealed facade and if two
occupants have no more than one operable window, the building belongs to type beta. The
CCC hence belongs to type beta.

Figure 2.1: Adaptive thermal comfort model (beta)

Figure 2.2: Adaptive thermal comfort model (alpha)
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2.1. ADAPTIVE TEMPERATURE LIMITS (ATG)

In Figure 2.2 and Figure 2.1, along the horizontal axis, Te,re f is to be found and Te,re f is
the adapted version of TRMO. The temperature limits have been described for acceptability
limits of 65, 80 and 90% respectively. In the ATG method, Te,re f is calculated as:

Te,re f =
Ttoday + 0.8Tyesterday + 0.4Tday be f ore yesterday + 0.2Tbe f ore two days

2.4
(2.1)

Considering the building type to be BETA, the target indoor temperature can be calculated
as shown in Equation 2.2 . Assuming 80 % acceptability criteria, the allowable temperature
band is ±2oC.

Ttarget = 21.45 + 0.11Te,re f ± 2 in oC (2.2)

Considering the building to be belonging to ALPHA ( as discussed in Chapter 11), the target
temperature and the lower limit of operating temperature would be the same, but the upper
limit would be modified if Te,re f is greater than 11oC as:

Tupper = Ttarget + 0.21 ∗ (Te,re f − 11) + 2 in oC (2.3)

The adaptive comfort limits can be applied to office buildings where the activity level of
occupants is in the range of 1.0-1.4 met and clothing values are between 0.5-1.0 clo and
hence it is suitable to be applied to CCC.

2.1.1 Conclusion

To ensure the comfort of occupants, an adaptive comfort model has been studied and is to be
applied to this thesis. According to the classification criteria provided by Van der Linden[12],
the CCC belongs to the category BETA and the target indoor temperature can be estimated
using Equation 2.2. However, the application of ALPHA model will be also discussed in
Chapter 11. One of the main advantages of the adaptive comfort model is that it allows
for more energy-efficient building design and operation by allowing for a wider range of
temperatures, as the occupants have the ability to adapt to the thermal environment.
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3 Existing energy components and control
options of Co-creation center

3.1 The building energy components

A unique feature of the CONVERGE project is that it combines multiple passive climate
control sources and an online control system. The building is equipped with hundreds of
sensors and actuators that provide the data for accurate measurement and control. The
main focus of the project is on developing an online smart energy management system that
ensures occupants’ comfort while being energy efficient. The project includes the design
of a climate tower, which integrates heat recovery systems, phase change materials, and a
heat pump for air conditioning and ventilation as shown in Figure 3.2. The building has

Figure 3.1: General overview of the Co-creation center

fully transparent triple-glazed facades, which are used in conjunction with solar blinds to
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3.1. THE BUILDING ENERGY COMPONENTS

Figure 3.2: An overview of the HVAC components installed in CCC

passively regulate the indoor climate. The building has a floor area of 315m2, and the fa-
cades have a U-value of 0.53 W/m2K. The building is also equipped with 34 photovoltaic
panels, each with a maximum output of 300 W, located on the climate tower, which have an
estimated annual electricity production range of 6,000 to 7,000 kWh. [17]

The building utilizes a combination of passive solar heating and active heating systems
to maintain thermal comfort during the winter months. The transparent facade allows for
solar gain, while preheated displacement ventilation is utilized via the floor to further en-
hance the heating of the interior spaces. An air-based heat pump located in the climate
tower serves as the primary heating source for the building. The climate tower, which serves
as a large air handling unit, also controls the ventilation system which is monitored by the
indoor CO2 concentration to minimize the number of air changes during the heating season.
Additionally, a counter-flow heat exchanger with heat recovery is implemented to further
reduce the energy consumption required for ventilation [17].

During the summer months, the building employs a variety of strategies to mitigate so-
lar load and maintain thermal comfort. One such strategy is the use of shading devices such
as blinds, as depicted in Figure 3.1. Additionally, overhangs are employed to reduce the
amount of direct sunlight entering the building. A phase change material (PCM) battery is
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3.1. THE BUILDING ENERGY COMPONENTS

also utilized, consisting of 1,170 panels (totaling 2,106 kg, 181 kWh) [17] of calcium chlo-
ride hexahydrate, with a phase change temperature between 20 and 23 °C [17], to provide
additional cooling or heating capacity to the building. The PCM battery can be cooled by
ventilation during the night and heated by warm return air.

Furthermore, during the cooling season (summer and spring), natural ventilation through
skylights and doors can be employed during the day and at night to provide additional
cooling. Additional cooling can also be achieved through the use of a heat pump, utilizing
return air as a cold source. [17].

A simplified model of the Co-creation center is presented in Figure 3.3, consisting of dif-

Figure 3.3: Simplified model of CCC various energy components

ferent components such as the roof, ceiling, raised floor, basement floor, four walls made of
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3.1. THE BUILDING ENERGY COMPONENTS

State Material X Y Z ρ cp κ α ξ ϵ ϵlow
Units - m m m Kg/m3 J/(KgK) W/(mK) - - - -

Tz Air 13.5 22.5 5.2 1.225 1000 - - - - -

Tr Bitmen 13.5 22.5 0.004 1050 1800 0.167 0.87 - 0.92 -

Tc Steel 13.5 22.5 0.003 7850 840 0.167 - - - -

Tn,i, Ts,i Glass 13.5 5.2 0.008 2470 792 - 0.078 0.78 0.77 0.16

Te,i, Tw,i Glass 22.5 5.2 0.008 2470 792 - 0.078 0.78 0.77 0.16

Tr f Calcium 13.5 22.5 0.038 1550 800 - 0.2 - -
Sulphate

Tb f Concrete 13.5 22.5 0.225 2000 840 0.313 - - -

Tpcm CCH 0.198 0.57 0.013 1300 1400 - - - - -

Table 3.1: Dimensions and thermo-physical properties of the building components

triple-glazed glass, an inner zone, and separate nodes representing the flow of air, HEX rep-
resents the heat exchanger for heat recovery and HP represents the heat pump. The different
geometrical dimensions (length, width and depth represented by X, Y and Z respectively)
and physical properties of the various states are represented in Table 3.1 To simplify the
model, the significant components were discretized into a single node, and an assumption
of uniform temperature throughout was made. This approach was aimed at reducing the
complexity of the model by simplifying its components while retaining the essential features
needed to analyze the system. These components are affected by disturbances such as :

• Ambient temperature

• Ground temperature

• Ambient Wind speed

• Solar irradiance components ( Id and Ib)

• Occupancy

• Dew point temperature
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3.2. CONTROL SYSTEM: PID CONTROLLER

3.2 Control system: PID controller

The described control system is used to regulate the temperature within a building by con-
sidering various factors such as solar irradiation, exterior temperature, and wind conditions.
The system utilizes temperature measurements collected in situ and algorithms to keep the
tracking error e (the difference between the actual temperature and the desired temperature)
close to zero.

One method that has been implemented for this purpose is a PID (Proportional-Integral-
Derivative) controller. PID controllers are widely used in control systems due to their ac-
curacy and reliability in maintaining a desired set point [18]. The controller continuously
balances the selected inputs, such as shades aperture, ventilation flow rates, and heat pump
power, by adjusting a correction factor u that depends on the tracking error feedback.

In more detail, the PID controller is composed of three main components: the proportional,
integral and derivative terms. The proportional term is responsible for providing a correc-
tion factor that is proportional to the error, the integral term accumulates the error over
time, and the derivative term predicts the future error based on the current rate of change.
These three terms are combined together to form the control signal. The controller continu-
ously monitors the error and adjusts the correction factor u in real-time to maintain a stable
temperature within the building.

u = Kpe + Ki

∫ t

0
e dt + Kp

de
dt

(3.1)

where Kp and Kp are control parameters tuned for the current controller.

Control of indoor thermal comfort

The indoor thermal comfort is managed by controlling the air temperature set-point. A
separate set-point is selected for summer and winter seasons [17]. The air temperature set-
point also takes into account the radiant temperature of the glass, which is the temperature
that one feels when standing next to the glass, to maintain the operative temperature above
21°C during the winter season [17]. This ensures that the indoor environment is comfortable
for the building’s occupants.

Solar blinds control

The building is equipped with individually controllable shading devices, i.e blinds, on all
four facades. These shading devices can be adjusted to various tilt angles and vertical heights
to provide precise control of solar radiation entering the building. Four different shading
control strategies were developed and evaluated to optimize the building’s thermal comfort
[17]:
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3.2. CONTROL SYSTEM: PID CONTROLLER

1. Fixed passive strategy: This strategy involves pre-determined fixed positions for the
shading devices and does not involve any active or automated adjustments based on
real-time conditions.

2. Sun-tracking dynamic control: This strategy is based on a traditional sun-tracking
algorithm, which involves the active and automated control of the tilt of the shading
devices, such as blinds, to block direct sunlight at all times.

3. Energy-based dynamic control strategy: This strategy involves the active and auto-
mated control of the shading devices based on the amount of available solar energy
and the thermal load within the building at any given time. This strategy aims to
optimize the use of solar energy and manage the heat requirements of the building by
adjusting the position of the shading devices.

4. Visual comfort-based dynamic control: This strategy involves the active and automated
control of the shading devices based on the combined requirements of preventing
discomfort glare and maximizing the view out. The control of the shading devices is
based on illuminance data obtained from sensors installed on the roof of the building.
The strategy aims to balance the visual comfort of the building’s occupants and the
natural light in the space by adjusting the position of the shading devices.

To begin controlling the blinds, the focus should be on using energy-based dynamic control,
which has the potential to save energy. However, it is crucial to integrate visual-comfort-
based dynamic control into the strategy to avoid direct glare and provide a comfortable
environment for the occupants.

Fresh air control

The fresh air supply system in the building is primarily controlled based on the concen-
tration of CO2 in the air when the building is occupied. When the CO2 concentration falls
below 800 parts per million (ppm), the airflow can follow different paths through the climate
tower, which is a large air handling unit. The main goal of this system is to provide healthy
indoor air quality by maintaining the CO2 concentration in the building under 800 ppm.

Heat recuperation control

The airflow control system for passive heating and cooling in the building has the capability
to regulate the operation of the heat exchanger between 0 and 100%. Additionally, the
system allows for the option of directing the exhaust air through or bypassing the PCM
(Phase Change Material) battery. This allows for the optimization of the building’s thermal
comfort by adjusting the airflow and utilizing the PCM battery as a thermal storage.
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3.3. EXISTING MODELS OF THE BUILDING

PCM Heating and cooling control

The fundamentals of Phase Change materials is presented in Appendix D. The airflow
control system for PCM heating and cooling in the building allows for the regulation of the
air passing through the PCM to heat or cool the inlet air. The airflow percentage through
the PCM can be adjusted between 0 and 100%. This control strategy is implemented when
the building is occupied and the goal is to achieve thermal comfort. When the building is
unoccupied or when the indoor air temperature is within the desired range, a portion of the
air can pass through the PCM to either heat or cool the PCM, thus storing heat or cold for
later use [17].

Heat pump control

The heat pump is used to provide additional heating or cooling to the building’s HVAC
system based on the calculated thermal load requirements. However, a limitation is imposed
on the exhaust temperature of the heat pump to prevent overloading the system and to
maintain its efficiency. This limits the maximum amount of energy that can be extracted
from the heat pump, which in turn affects the overall performance of the building’s HVAC
system. The nominal capacity of the heat pump for cooling is 30 kW and for heating is 15
kW.

3.3 Existing models of the building

The present study involves the use of two separate models to simulate the thermal dynam-
ics of a building and its HVAC system. The first model is a Matlab-based multi-node RC
network model, which is obtained by utilizing the concept of lumped parameter modeling.
This method involves the simplification of the building’s thermal dynamics by dividing it
into a limited number of ”nodes” and approximating the thermal properties of each node.
The parameters of the model have been optimized using data, hence it is a grey− box model.
However, the current version of the model in Matlab is dependent on elementary weather
data, which does not account for the actual occupancy and weather conditions of the build-
ing. In order to evaluate the accuracy of the Matlab model, it is necessary to incorporate
actual occupancy and weather data and validate it with a white-box model.

The second model, which serves as the validation tool, is a white-box model developed in
EnergyPlus software. This model has been previously validated with sensor data [17] and
has been demonstrated to provide a high level of accuracy in the design of artificial lighting
components for the building. By inputting identical weather data and occupancy data into
both the Matlab and EnergyPlus models, the Matlab model can be validated by comparing
its predictions with those of the EnergyPlus model.

N.Rajappa
5317703

15 Master of Science Thesis





4 Building Energy Modeling

Efficiently capturing the thermal response of a building to external weather conditions and
occupancy requires a precise model of the building. While external weather data, such as
global horizontal irradiance (GHI), wind characteristics, and outdoor temperatures, can be
obtained through available sensors and through proprietary software (as discussed in Sec-
tion 6.3.4), the measurements are general and may not provide a precise understanding of
the amount of sunlight received. To develop an accurate model of the system, it is essential
to consider the orientation and location of the building.

Static parameters, such as geometrical and thermo-physical values, can be used to estab-
lish a baseline model, which can be refined by tweaking the values of unknown parameters.
Starting with a thermal model of the system can provide a solid foundation for parame-
ter adjustments, allowing for greater accuracy in the model’s predictions. A wide range of
modeling approaches have been investigated to accurately represent the dynamics of energy
flow, and these can be broadly classified into three paradigms: white-box, grey-box, and
black-box modeling as discussed in Appendix C. In this research, the grey-box modeling
approach has been chosen due to its capability to be calibrated using limited data and its ap-
propriateness for applications such as building energy demand estimation, fault detection,
and model-based control.

To simplify the complexity of the model, it is assumed that only components in series, such
as the roof and ceiling, are thermally coupled, and no direct energy transfer (via conduction)
is considered between components such as walls and floors, or between walls and ceilings.
In addition, energy transfer through radiation is neglected, as the difference in energy of the
internal surfaces is mostly a small quantity and the large inner zone results in a low viewing
factor.

It is to be noted that the model has been developed based on the model created by L.A
de Araujo Passos and some alterations have been made to few components that are repre-
sented by (*)

Roof and Ceiling *

The roof is composed of thin bitumen layer, while the ceiling is constructed of corrugated
galvanized steel sheets. Heat transfer between the roof and its surroundings is simulated
using Zhukauskas’ correlation for forced convection. The model also accounts for solar
irradiation and radiation heat transfer between the roof and sky. The approach to model
the sky temperature is discussed in Algorithm 1. Additionally, heat transfer between the
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ceiling and roof occurs through an insulation layer with a thermal conductivity (κins) of
0.167 W/(m.K). The heat transfer between the ceiling and inner zone is modeled using
McAdams’ convection correlations [19] for downward-facing horizontal surfaces. The roof’s
heat balance is discretely modeled within the time step ∆t as:

∆Tr = (Q̇sol − Q̇cond − Q̇rad − Q̇conv)
∆t

ρVcp
(4.1)

Q̇sol = Io Arαr (4.2)

Q̇cond =
κins.A(Tr − Tc)

d
(4.3)

Q̇rad = ϵσA(Tr
4 − Tsky

4) (4.4)

Q̇conv = h̄r,a.A(Tr − Ta) (4.5)

h̄r,a =
Nu.λair

l
(4.6)

l =
A

2X + 2Y
(4.7)

Nu =


0.664Re0.33Pr0.33 Re < 5000
0.037Re0.62Pr0.333 5000< Re< 100000
0.026Re0.8Pr0.333 Re > 100000

(4.8)

The heat balance of the ceiling is modeled as:

∆Tc = (−Q̇cond − Q̇conv)
∆t

ρVcp
(4.9)

Q̇cond = κ.A(Tc − Tr) (4.10)

Q̇conv = h̄c,z.A(Tc − Tz) (4.11)
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h̄c,z =
N⃗uλair

l
(4.12)

l =
A

2X + 2Y
(4.13)

N⃗u =


0.54Ra0.25 Tc < Tz and Ra ≤ 107

0.15Ra0.33 Tc < Tz and Ra > 107

0.27Ra0.25 Tc > Tz

(4.14)

Algorithm 1 Sky temperature modeling
Input :Tdew, Ta
Output: Tsky

procedure
εsky ← 0.736 + 0.00577Tdew

Ih ← εskyσ((Ta + 273.15)4)

Tsky ← ( Ih
σ )

0.25
− 273.15

return Tsky

Four triple-glazed walls*

The utilization of fully glazed wall structures comprising triple-glazed glass with Argon gas-
filled cavities on all four sides is a modern method that has not been extensively researched.
However, this construction approach is not commonly used due to the potential issue of
overheating caused by excessive sunlight penetration, which cannot be effectively controlled
without proper management of blinds or shading devices.

The transfer of heat between the environment and the glazings is modeled using convection
and radiation relations. Forced convection between the external glazing and the environ-
ment is modeled using the Chilton-Colburn correlation, while natural convection inside the
large, narrow vertical cavities formed between the glazings is modeled using McGregor’s
correlation [20]. Churchill and Chu correlation for vertical surfaces [21] is used to model
the convective heat transfer between the interior glazing and the inner zone. Additionally,
the radiative heat transfer between the glazings is also considered due to the relatively high
emissivity of glass.

However, an innovative low ϵ glass is used in the CCC. Low ϵ glass is manufactured by
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coating the glass with metal oxide coatings that reduce the surface emissivity without sig-
nificantly reducing transparency. These coatings are only applied on the cavity side of the
interior and exterior glazing, but not on the middle glazing.Thus, radiative heat transfer in
the cavities is significantly reduced due to the low ϵ glass. In the following equations, the
subscript i represents the side (north, south,east or west) and j=1,2,3 represent the exterior,
middle, and interior glazings, respectively.

∆Ti,j = (Q̇sol − Q̇rad − Q̇conv)
∆t

ρVcp
(4.15)

Q̇sol =


(Io,bαo + (Io,r Io,d)α)A j=1
(Io,bξoαo + (Io,r Io,d)ξα)A j=2
(Io,bξ2

o αo + (Io,r Io,d)ξ
2α)A j=3

(4.16)

Q̇rad =


σA(ϵ(T4

i,1 − T4
sky) +F (T

4
i,1 − T4

i,2)) j=1

σAF (2T4
i,2 − T4

i,1 − T4
i,3) j=2

σAF (T4
i,3 − T4

i,2) j=3

(4.17)

F =
1

1
ϵ +

1
ϵlow
− 1

(4.18)

Q̇conv =


A(h̄1,a(Ti,1 − Ta) + h̄1,2(Ti,1 − Ti,2)) j=1
A(h̄2,1(Ti,2 − Ti,1) + h̄2,3(Ti,2 − Ti,3)) j=2
A(h̄3,2(Ti,3 − Ti,2) + h̄3,z(Ti,3 − Tz)) j=3

(4.19)

h̄j,k =

{Nuj .λair
Y if k=a,z and j ̸= k

Nuk .λArgon
Y if k=1,2,3 and j ̸= k

(4.20)

The expressions for Nusselt number for various scenarios are :

Chilton-Colburn for k=a Nuk = 0.664Re0.5Pr0.333 (4.21)

McGregor for k=1,2,3: Nuk = 0.42Pr0.012Ra0.25(
Y
D
)−0.3 (4.22)

Churchill and Chu for k=z: Nuk =


0.68 + ( 0.67Ra0.25

1+( 0.492
Pr )

0.5625 )
0.4444

Ra < 109

0.825 + ( 0.387Ra0.167

1+( 0.492
Pr )

0.5625 )
0.5926

Ra ≥ 109

(4.23)
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Raised and basement floor

The raised floor is constructed using Calcium sulfate tiles that are upheld by steel pedestals.
Certain tiles have perforations that allow for air movement from the deck below. As a result,
the raised floor is considered a floating plate that separates the interior zone from the deck,
absorbs incoming solar radiation, and interacts with the interior zone through convection
on its upper surface while also interacting with the lower deck through its lower surface.
To model the heat balance of the raised floor, the McAdams’ relation for horizontal surfaces
that face upwards and downwards is employed.

∆Tr f = (Q̇sol − Q̇conv)
∆t

ρVcp
(4.24)

Q̇sol = xh Io A f loorξ3
0α (4.25)

Q̇conv = h̄r f ,z.A(Tr f − Tz) + h̄r f ,deck.A(Tr f − Tdeck) (4.26)

h̄r f ,z =
Nur f ,z.λair

l
(4.27)

h̄r f ,deck =
Nur f ,deck.λair

l
(4.28)

l =
A

2X + 2Y
(4.29)

Nur f ,z =


0.54Ra0.25; Tr f > Tz and Ra ≥ 107

0.15Ra0.333 Tr f > Tz and Ra > 107

0.27Ra0.25 Tr f < Tz

(4.30)

Nur f ,deck =


0.54Ra0.25 Tr f < Tdeck and Ra ≥ 107

0.15Ra0.333 Tr f < Tdeck and Ra > 107

0.27Ra0.25 Tr f > Tdeck

(4.31)

Beneath the deck lies the basement floor, which is separated from the ground by an insula-
tion layer. The insulation material used has a thermal conductivity value of 0.344 W/m/K.
Therefore, in order to accurately model the basement floor, both the heat transfer that oc-
curs through convection between the deck and the basement floor, as well as the heat transfer
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that occurs through the insulation layer between the basement floor and the ground, must
be taken into account. The heat balance of the basement floor is modeled as:

∆Tb f = (−Q̇conv − Q̇cond)
∆t

ρVcp
(4.32)

Q̇cond =
κA(Tb f − Tg)

d
(4.33)

Q̇conv = h̄b f ,deck.A(Tr f − Tdeck) (4.34)

h̄b f ,deck =
Nur f ,deck.λair

l
(4.35)

l =
A

2X + 2Y
(4.36)

Nub f ,deck =


0.54Ra0.25 Tb f < Tdeck and Ra ≥ 107

0.15Ra0.333 Tb f < Tdeck and Ra > 107

0.27Ra0.25 Tb f > Tdeck

(4.37)

It is noteworthy that direct measurement of ground temperature (Tg) underneath the Co-
Creation center is not possible due to the lack of sensors in that location. Instead, an al-
gorithmic model has been developed by Thomas Ceha et.al [22] using a periodic approach,
described in Algorithm 2, which provides an approximation of the daily ground temperature
at a depth of one meter. This model utilizes the data collected by the Royal Netherlands Me-
teorological Institute, representing the average ground temperature observed at the weather
stations in Wilhelminadorp and De Bilt.

The available data spanning over three years was randomly split into two sets, where 70%
of the data is utilized for training the algorithm. During the training phase, the model opti-
mizes the amplitude a, horizontal shift c, and equilibrium point d parameters, with the day
as the sole input parameter. The optimized values of a, c, and d were found to be 5.3 K,
43.9 days, and 88.5 K, respectively. The model’s accuracy was assessed using the remaining
30% of the data by calculating the RMSE , which was found to be 0.594 K, indicating good
performance.

Inner zone*

The interior of the Co-Creation center is modeled as a single zone where the temperature
is affected by various factors including the surrounding components and the energy source.
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Algorithm 2 Ground temperature estimation
Input :{Tg,b, Tg,w} ∈ Data
Output: Optimized values {a, c, d} ∈ u

procedure
Tg,m ← mean(Tg,b, Tg,w)
l ← length(Tg,m)
t← randperm(l, 0.7l) ▷ training set
v← setdiff(1l, t) ▷ Validation set
f un← @(u)function(u, Tg,m(t), t)
uo = [6, 45, 285]
u← fminsearch( f un, uo)
return u

C = function(u, Tg,m, Day)
Tg ← −a Cos( 2π

365 (Day− c)) + d
C ← VAF(Tg, Tg,m)−1 + RMSE(Tg, Tg,m)
return C

The state of this zone is impacted by the movement of air underneath the deck, interior
heat generation, and convection from the walls, roof, and raised floor. The convection phe-
nomenon is described using natural convection correlations from Churchill & Chu [21] and
McAdams. It is assumed that each occupant generates 117 W of internal heat and an average
electrical lighting is used (as discussed in Section A.1.4). Since the heat pump is linked with
an air handling unit, the amount of heat generated by the heat pump (Q̇hp) and the rate of
fresh air flow (ṁ) are adjusted to regulate the temperature of the zone.

The natural ventilation through the thermal chimney (sky windows) is modeled using An-
derson’s fully mixed model [23] with a controllable input for aperture fraction(xsw) ranging
from 0 to 1. The coefficient Cd denotes the effectiveness of natural ventilation. A CFD model
of this specific model has been developed and validated by De Araujo Passos et al. [24] to
estimate the value of Cd as 0.57.

∆Tz = (Q̇hp + Q̇gen − Q̇adv − Q̇vent − Q̇conv)
∆t

ρVcp
(4.38)

Q̇int = 117 ∗ Npeople + 1458 (4.39)

Q̇adv = ṁcp(Tz − Tdeck) (4.40)

Q̇vent = xsw(0.57 ∗ ρair Asw ∗ 9.81 ∗ H ∗
∣∣∣∣Tz − Tambient

Tambient
x
∣∣∣∣)0.5

cp air(Tz − Tambient) (4.41)
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Q̇conv = h̄z,i.A(Tz − Ti) i ∈ (r f , r, n, e, s, w) (4.42)

h̄z,i =
Nui.λair

l
i ∈ (r f , r)

Nui.λair
Y

i ∈ (n, e, s, w) (4.43)

l =
Ai

2X + 2Y
i ∈ (r f , r) (4.44)

Nuz,i =


Chuchill and Chu eq. 4.23 i ∈ (n, e, s, w)

McAdams eq. 4.14 i ∈ (c)
McAdams eq. 4.30 and 4.31 i ∈ (r f )

(4.45)

Heat recovery system

At the top of a climate tower, there is a heat exchanger that exchanges heat between two air
streams: the fresh air stream, which comes from outside and has an ambient temperature
Tambient, and the return air stream, which comes from the indoor zone and has a temperature
Tz. This heat exchanger can potentially pre-heat or pre-cool the outdoor air before it is
conditioned by a PCM battery and a heat pump. The heat exchanger can also be bypassed,
and the proportion of the fresh air stream that passes through the heat exchanger is denoted
by xrec. Assuming the heat transfer efficiency of 80%, the temperature of the fresh air stream
after passing through the heat exchanger as Th, the heat exchanger can be mathematically
modeled as:

xrec ∗ 0.8(Tz − Tamb) = (Th − Tamb) (4.46)

PCM battery*

After the heat exchanger, there is a large stack of batteries made up of PCM in the climate
tower. Appendix D gives an overview of PCM and its incorporation techniques. The PCM
used is Calcium Chloride Hexahydrate (CCH), which is enclosed in High Density Polyethy-
lene (HDPE) crystal storage panels. The melting point range of this PCM is between 20-23
degrees Celsius. The PCM battery has an overall thermal storage capacity of 310 kJ/k, which
is calculated based on the phase change process. There is an option for the incoming stream
to bypass the PCM battery, and the ratio of the inlet stream entering the PCM battery is
denoted by xpcm. The properties of the PCM panel are given in Table 4.1.
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Description Value Unit

Dimension (W * L * D ) 275*570*13 mm
Mass 1.8 kg/panel

Density 980 kg/m3

Latent energy 310 kJ/kg
specific heat capacity (liquid phase) 2.1 kJ/(kgK)
specific heat capacity (solid phase) 2.1 kJ/(kgK)

Thermal conductivity (liquid phase) 0.5 W/(mK)
Thermal conductivity (solid phase) 1.1 W/(mK)

Kinematic Viscosity 9.6 * 10−6 m2s

Table 4.1: Properties of the CSP Panel

The heat transfer between the air stream and the PCM battery can be modeled as forced
ventilation:

Q̄pcm = h̄pcm Apcm(Tair,pcm − Tpcm) (4.47)

h̄pcm = Nu
λair
Lpcm

= 16.8W/(m2.K) (4.48)

Nu =


1.62Re0.33Pr0.33 d

Lpcm

−0.33
if Re ≤ 5722

0.027Re0.8Pr0.33 if Re > 5722 and Pr ≥ 0.7

(4.49)

h̄pcm Apcm(Tair,pcm − Tpcm) = xpcmṁcp(Th − Tair,pcm) (4.50)

The CFD simulations performed by [25] reveal that a typical test condition’s convective heat
transfer coefficient can be approximated to be 16.8 W/ m2K. Moreover, the outgoing stream
from the PCM battery is combined with the bypassed stream before it is supplied to the heat
pump and is modeled as:

xpcmTair,pcm + (1− xpcm)Th = Tmix (4.51)

The temperature of the PCM can be modeled as:

h̄pcm Apcm(Tair,pcm − Tpcm) = (1− ypcm)mpcmcp,solid
dTpcm

dt
+

mpcmHpcm
dypcm

dt
+ ypcmmpcmcp,liquid

dTpcm

dt
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where ypcm is the liquid fraction of PCM and Hpcm is the latent heat energy accompanying
phase transfer. The phase transition of the PCM battery is modeled using Scheil-Gulliver’s
linear phase transition equation as explained in Appendix D :

ypcm = 1−min(1, max(0,
23− Tpcm

3
)) (4.52)

Heat pump

The Co-creation center relies on a heat pump as its primary energy source, which functions
to provide a specific temperature to the inner zone based on the decisions of the MPC
algorithm. The temperature of the air stream supplied by the heat pump (Thp) serves as a
variable that can be controlled by the control algorithm.

Q̇hp = ṁcp(Thp − Tmix) (4.53)
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5 Model Calibration and Validation

As the non-linear model developed serves as a testbed for controller development, it is cru-
cial to ensure the representativeness of the actual building. Hence, to evaluate the accuracy
of the model, it was validated using measured data from an extensive list of sensors. These
measurements were obtained during the first week of April 2021 (02-04-2021 to 09-04-2021),
and the validation process aimed to verify the model’s ability to accurately predict the in-
door temperature and other relevant parameters.

For this analysis, the first week of April 2021 is selected as the timeframe, as it provides
variable temperatures and strong solar irradiance, allowing the study of the system under
different conditions. During this test period, the active and passive energy sources were
turned off and the building was unoccupied for the entire duration. This was done so that
the thermodynamic interaction between the building and its external and internal environ-
ment could be well studied.

The CCC building has 35 strategically placed sensors for measuring 8 components, and
the average temperature of each component is estimated based on the readings from the
sensors. This enables the validation of 8 states of the nonlinear model data and verification
of the accuracy of the proposed grey-box model. To validate the model, environmental data
is required, which is obtained from the weather station in the EWI building for the selected
test period. The obtained data comprises of:

• Ambient temperature

• Wind speed

• Dew point temperature

• Global Horizontal Irradiance (GHI)

However, no DNI and DHI sensors are used to measure the direct beam and diffused hori-
zontal irradiances. But, the splitting of global irradiance into DHI and DNI is challenging.
But, it is solvable using the empirical irradiance splitting model by Erbs [26]. This model
uses global irradiance, solar inclination (α), solar hour angle (ω), sky diffusivity and other
empirical coefficients to estimate the diffuse fraction. Once the diffuse fraction is obtained,
DHI and DNI can be directly estimated. From the DNI and DHI values, the oriented solar
irradiation components are calculated using Perez model as discussed in Section A.1.5The
components whose temperatures are compared between the measured sensor data and the
model data are:

• Internal and External glazing temperature
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5.1. PARAMETER OPTIMIZATION

• Roof temperature

• Indoor air temperature

• Raised floor temperature

These temperatures were primarily selected due to the influence in determining the oper-
ating temperature of the building. Table 5.1 presents the results of the initial comparison
between the measured data and the model’s prediction of the temperatures. The analysis

State RMSE [K] NRMSE VAF

Tz 1.92 0.17 63.4
Tc 4.23 0.28 45.8

Text.walls 2.14 0.26 62.5
Tint.walls 5.53 0.32 18.2

Tr f 1.35 0.16 63.4
Tr 2.56 0.12 80.8

Table 5.1: Results of Validation during the first week of April 2021

reveals that the RMSE between the observed and predicted values of indoor air tempera-
tures and floor temperatures falls within a range of 2 oC. However, the RMSE for internal
walls and ceiling temperatures demonstrates significantly higher values. This discrepancy
can have a substantial influence on the determination of the operative temperature, as elabo-
rated upon in Section B.2.3. Consequently, it was deemed necessary to undertake parameter
optimization for those variables with limited confidence in their known values. The opti-
mization process holds the potential to enhance the accuracy of the building model, thus
yielding more precise results.

5.1 Parameter Optimization

5.1.1 Problem setup

An initial list of uncertain parameters was compiled, consisting of the optical properties of
glass, the properties of argon gas, and the thermal conductivity of the ceiling insulation.To
optimize the parameters, an optimization problem was developed wherein the measured
temperatures during the first week of April were used as the training data in order to opti-
mize the parameters. During this period, the actuators were kept constant and heat pump
and ventilation is switched off, as shown in Table 5.2, and the developed building model
was fed with the initial temperatures of the components, weather data, and occupancy data.
the measured temperature of the components and the external weather and occupancy data
is known at timesteps of 30 minutes. Thus, the optimization problem tries to minimize
the difference between the sum of the differences between measured and predicted indoor
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5.1. PARAMETER OPTIMIZATION

Static inputs Symbols Value

Mass flow rate of fresh air ṁ 0 Kg/s
Position of solar blinds xh 0 (open)
Aperture fraction of sky windows xsw 0 (closed)
Fraction of airstream exchanging heat with PCM battery xpcm 0 (bypass)
Fraction of heat recuperation xrec 0 (bypass)

Table 5.2: Static inputs to the model

temperatures (ceiling, air, raised floor, and internal walls) at subsequent timestep. In other
words, the objective function is:

Objective f unction = |Tz measured − Tz predicted|+ |Tr f measured − Tr f predicted|+
|Ti,3 measured − Ti,3 predicted|+ |Tc measured − Tc predicted|

where the equation is constrained to minimize the errors between the measured and pre-
dicted temperatures individually:

c = |Tx measured − Tx predicted| i ∈ r f , z, c, (i, 3) (5.1)

The values of the parameters are required to be within the given bounds, as shown in
Table 5.3. The error between the measured temperatures and the predicted temperatures
of each timestep was iteratively minimized to a global minimum at each timestep using
the solver f mincon ( which uses SQP as explained in Section E.7.3) as the parameters to be
optimized are within 20.
At each time step, a unique value is obtained for each of the parameters. At the end of this
process, the values of the parameters are obtained for this training period, and the data is
processed to remove the outliers in order to obtain the mean value of each parameter. The
outliers can be caused by temperature sensors being susceptible to radiative errors, both
from direct irradiation by the Sun and lighting sources, as well as from thermal sources
such as the walls of a room.

State Parameter Units Initial value Lower bound Upper bound

Tc κ W/(m.K) 0.3 0.1 0.5
Ti,j α - 0.16 0.1 0.2
Ti,j ϵ - 0.8 0.6 1
Ti,j ϵlow - 0.2 0.1 0.2
Ti,j ξ - 0.8 0.6 0.9
Ti,j cp J/(KgK) 800 600 900

Table 5.3: Parameters to be optimized
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5.2. MODEL VALIDATION

5.1.2 Results of model calibration

During the parameter optimization process, outliers that were beyond 3 standard deviations
(SD) were excluded. As a result of this approach, the optimization produced the following
outcomes, as shown in Table 5.4.

State Parameter Units Initial value Optimized value

Tc κ W/(m.K) 0.3 0.344
Ti,j α - 0.16 0.155
Ti,j ϵ - 0.8 0.77
Ti,j ϵlow - 0.2 0.13
Ti,j ξ - 0.8 0.78
Ti,j cp J/(KgK) 800 792

Table 5.4: Results of optimized parameters

5.2 Model Validation

Upon optimizing the parameters, the validation was performed again for the same period
(02-04-2021 to 09-04-2021) and the results are presented as follows:

5.2.1 Results of Validation

Indoor air temperature

Figure 5.1 depicts the comparison in indoor air temperature between the model outputs
and the measured sensor data during 02-04-2021 t0 09-04-2021. It can be observed that the
model is more reactive to external conditions but overall, the mean indoor temperature is
quite similar

Internal and external glazing temperatures

The figures presented demonstrate the degree of similarity in the dynamics of the model and
the measured data. The temperature measurements for April 3 and April 4 are used as they
offer a comparison of a bright, sunny day and a cloudy day in close succession, providing
insight into the system’s dynamics and thermal inertia. Figure 5.2 provides the outputs of
the model while Figure 5.3 provides the readings of the sensors.
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5.2. MODEL VALIDATION

Figure 5.1: Comparison between measured and Model outputs for Indoor air temperature

Figure 5.2: Sensor readings of internal and external glazing temperatures
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5.2. MODEL VALIDATION

Figure 5.3: Outputs of the model for internal and external glazing temperatures

Raised floor temperatures

The analysis of raised floor temperatures during the first week of April is depicted in Fig-
ure 5.4. The comparison indicates a noteworthy level of similarity in the dynamics and
magnitudes between the measured data and the output of the model.

Figure 5.4: Comparison between Measured and Model outputs of Raised floor temperature
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Roof temperatures

The comparison of roof temperatures is presented in Figure 5.5. Since temperature sen-
sors are not placed on the external roof to measure its temperature, the roof temperature
prediction of the MATLAB model is compared with the prediction of the DFesignBuilder
model that has been validated as discussed in Section 3.3. The results show a difference in
magnitude on the first day, which could be due to variations in initial conditions and the
high thermal mass of the roof. However, from the second day onwards, the magnitudes and
thermodynamic behavior of the model and the measured data demonstrate a high degree of
similarity.

Figure 5.5: Comparison between DesignBuilder and model outputs for Raised floor temper-
ature

Ceiling temperature

The comparison of ceiling temperatures is illustrated in Figure 5.6. The analysis reveals a
general similarity in thermodynamic behavior between the measured data and the model.
However, the model slightly overestimates the ceiling temperature, suggesting a potential
discrepancy in the model’s accuracy in estimating the ceiling temperature. The results of the
validation are summarized in Table 5.5. It can be seen that though the RMSE error of every
component, particularly internal walls, and ceiling have reduced. The Normalized Root
mean squared error (NRMSE) is within 0.2 which is within the acceptable limits. The real
reduction is found in the increase in Variance Accounted For (VAF) which gives a measure of
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Figure 5.6: Comparison between measured data and Model outputs for Ceiling temperature

the variance of the measured and predicted temperature. Thus, an increase in VAF indicated
a closer similarity in the system thermodynamics.

State RMSE [K] NRMSE VAF

Tz 1.38 0.1 82.2
Tc 2.57 0.20 59.5

Text.walls 1.81 0.16 75.6
Tint.walls 3.31 0.23 28.1

Tr f 0.98 0.14 80.9
Tr 2.42 0.09 87.8

Table 5.5: Results of Validation during the first week of April 2021

5.3 Conclusions

Following the development of the model, an initial validation process was conducted, which
resulted in significant discrepancies between the measured and predicted temperature val-
ues. Consequently, the model underwent a calibration phase, wherein parameter values
were optimized through the aforementioned processes. Subsequent to the optimization, a
second validation was performed, revealing only a marginal improvement in the accuracy of
the system. Henceforth, throughout the remaining duration of this research, the optimized
parameter values will be utilized.
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6 Design of MPC system

A comprehensive overview of both conventional and intelligent control systems as well
as the fundamentals of the MPC strategy is given in Appendix E. Additionally, the core
principles of MPC strategies and a literature review on the application of MPC in HVAC
control and indoor temperature regulation is provided in Section E.3.

6.1 Non-linear building model

The modeling strategies previously discussed resulted in a nonlinear model of the Co-
creation center building, which serves as a simulation testbed for developing a suitable
controller. The model aims to accurately represent the building’s thermodynamics, and 24
discrete balances are used to achieve this, with each balance representing one state. The
building’s dynamic systems use an Euler backward scheme for time stepping. To solve the
system function, a nonlinear solver called f solve with the Levenberg-Marquardt algorithm
is utilized. The solver iteratively updates the states until the desired benchmark is achieved
for each state. If the change in state values is too high, the function is re-solved with the
updated states using the same timestep and parameters. This iterative process is repeated
until the desired benchmark is reached for all states, after which the next simulation step is
executed.

6.2 Matrix formulation

To reduce the computational burden of solving the model, it has been transformed from
a function into a matrix representation using a nonlinear state-space model. This resulted
in a model with 24 states, 6 inputs, 1 output, and 1 disturbance variable that accounts for
the number of occupants at a given time (as illustrated in Figure 3.3. The continuous-time
model was then discretized with a time step of ∆t, resulting in a nonlinear discrete-time
state-space model.

xk+1 = A(xk, pk)xk + B(xk, pk)uk + dk (6.1)

yk = C(xk, pk)xk +D(xk, pk)uk (6.2)

where:
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• xk : Indoor temperature at time k

• uk : Control input vector at time k

• pk : Timestep dependent parameter at time k

• yk : Measured or observed temperature at time k

• dk : Disturbances to the model(external weather and occupancy)

• A : State matrix modeling the internal thermal dynamics of the building

• B : Input matrix representing the influence of the control inputs on the temperature.

• C : Output matrix mapping the internal temperature to the measured outputs.

• D : Feedthrough matrix representing the influence of control inputs on the measured
outputs.

The state-space representation was chosen for its potential to reduce computational costs
compared to the original function representation. This is due to the fact that numerical
solvers in MATLAB are optimized for matrix operations. As a result of this transformation,
the computation time was reduced by approximately 10%.

6.3 MPC Problem setup

The principal aim of the control system is to reduce primary energy usage while ensuring
the occupants’ comfort through efficient management of both active and passive energy
sources. Therefore, the key challenge of the control system is to generate optimal control
signals for all actuators while minimizing computational expenses. Thus, the control system
design involves balancing the control system’s performance with its computational cost.

6.3.1 Controlled inputs

The complexity of a control system is significantly influenced by the number of controlled
inputs, as these are the parameters that need to be optimized for minimizing the objective
function. In this case, the control system is required to have six control signals, which adds
to the overall complexity of the system. These are :

• Thp : Temperature of airstream after passing through the heatpump

• ṁ : Mass flow rate of fresh air

• xh : Position of solar blinds

• xsw : Aperture fraction of sky windows

• xpcm : Fraction of airstream exchanging heat with PCM battery

• xrec : Fraction of heat recuperation
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Consequently, the solver is responsible for solving the optimization function by optimizing
the six control signals. To ensure that the control signals have realistic and attainable values,
hard bounds are established, which restrict the solver from setting the control signal values
outside the specified range. The limits are given in Table 6.1.

Parameter Lower limit Upper limit

Thp 10 35
ṁ 0.1 1
xh 0 1
xsw 0 1
xpcm 0 1
xrec 0 1

Table 6.1: Lower and Upper limit of controlled inputs

6.3.2 Objective function

The primary objective of the control system is to minimize the energy that needs to be sup-
plied by the heatpump to maintain the temperature of the room. In other words, this is the
heating/cooling load of the building. Therefore, the optimization function utilized in the
control system design solely focuses on minimizing heating/cooling energy that needs to be
supplied. However, several studies have proposed multi-objective optimization approaches
to incorporate both energy and comfort terms into the optimization problem. Nevertheless,
results indicate that using multi-objective optimization leads to increased computation costs
and greater difficulty in achieving convexity. Furthermore, such an approach does not en-
sure the fulfillment of comfort criteria. For these reasons, the current design uses only the
energy term in the optimization:

Q = ṁcp|(Thp − Tmix)| (6.3)

where the terms are described as shown in Figure 3.3.

6.3.3 Constraints

To guarantee that the control system preserves indoor comfort, the comfort criteria are inte-
grated into the system as a non-linear constraint. The comfort criteria for the occupied hours
are obtained from the adaptive comfort model, whereas the criteria for unoccupied hours
are less stringent. The operative temperature for the occupied hours depends on the Te,re f
as discussed in Section 2.1.According to classification criteria provided Peeters’ [12], the Co-
Creation Center belongs to criteria BETA and based on Figure 2.1, the operative temperature
can be calculated as:

Toperative = 21.45 + 0.11 ∗ Te,re f (6.4)
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and the desired temperature bounds are:{
Toperative,hour ± 2oC for hour >8 or hour <16
24± 6oC otherwise

(6.5)

the given error term is:

ei = |Toperative,i − Tzone,i| for i ∈ np (6.6)

and the constraint is:

and ei < 2 (6.7)

When the space is unoccupied, the indoor temperature is maintained within 18-30oC for the
following reasons. Firstly, it prevents the building from experiencing extreme temperature
variations, which can lead to structural damage and cause equipment and materials to de-
grade over time. Secondly, it ensures that the indoor space is at an optimal temperature
when the occupants return, which improves their comfort and productivity. Additionally,
maintaining a consistent indoor temperature can help to reduce energy consumption and as-
sociated costs by preventing the heating or cooling system from having to work at a higher
capacity to adjust the indoor temperature to the desired level.

6.3.4 Disturbance data

The number of people in a building can affect the indoor temperature, and they are con-
sidered as sources of heat that cannot be controlled. Therefore, having knowledge about
occupancy can help in improving the control performance for thermal comfort. An oc-
cupancy schedule is externally fed by the user and can be fed to the MPC controller. A
representative occupancy schedule is depicted in Figure 6.1.

The predictions of the environmental data are done by two different software. The forecasts

Figure 6.1: occupancy schedule over a day

of solar irradiation and temperatures are done through Solcast® (www.solcast.com) which
provides the Global Horizontal Irradiance (GHI) with a time step of 30 minutes and with
a very high accuracy [27]. The Solcast tool is based on Geostationary satellite images that
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Algorithm 3 Oriented solar irradiance parameters
Input :Day, t, βc, γc, Ibn, Id, ρr
Output: Io, Io,b, Io,r, Io,d, θz, γazi

procedure
lat = 4.378 ▷ Latitude
long = 51.996 ▷ Longitude
% Calculations for sun’s elevation, zenith, azimuth, and oriented normal angles

B← 360
365 (Day− 81)

EoT ← 9.87 sin(2B)− 7.53 cos(B)− 1.5 sin(B)
TC ← EoT − 4(15t− long)
ω ← 15(t + TC

60 − 12)
δ← sin−1(sin(−23.45)cos( 360

365 (Day + 10)))
θe ← sin−1(cos(lat)cos(δ)cos(ω) + sin(lat)sin(δ))
θz ← 90− θe
θn ← cos−1(sin(δ)sin(lat)cos(βc)− cos(lat)sin(δ)sin(βc)cos(γc) + cos(δ)cos(lat)..

cos(βc)cos(ω) + cos(δ)sin(lat)sin(βc)cos(γc)cos(ω) + cos(δ)sin(βc)sin(γc))
% Calculations for solar irradiance parameters

a← max(0, cos(θn))
b← max(cos(85), cos(θz))
[F1, F2]← Perez Model(θz, Id, Ibn, Day)
Io,b ← Ibncos(θn)

Io,r ← ρr
2 (Id + Ibncos(θz))(1− cos(βc))

Io,d ← Id(0.5(1− F1)(1 + cos(βc)) + F1
a
b + F2sin(βc))

Io ← Io,b + Io,r + Io,d
return Io, Io,b, Io,r, Io,d

facilitate solar surface irradiance retrieval with the highest spatial and temporal resolution
[27]. The data is then processed to obtain DHI and DNI through solar irradiance splitting
algorithms as explained in Section 5.2. The wind forecast is obtained from Windfinder ®

(nl.windfinder.com). Parameters such as solar-oriented irradiance and unshaded floor area
are calculated using algorithms defined in Algorithm 3 and Algorithm 4, respectively. Re-
search was conducted to investigate the potential impact of natural shading by trees on
indoor operative temperature. However, the findings indicated that the inclusion of trees
resulted in only a minor alteration in indoor operative temperature, with a maximum varia-
tion of approximately 0.2 oC. Consequently, it was determined that considering the effect of
trees would not significantly contribute to the complexity of the model and, therefore, this
aspect was later disregarded.

6.3.5 Prediction horizon

The disturbance dataset employed in this study was sampled at hourly intervals and sub-
sequently interpolated to a more refined timestep of 30 minutes. The performance of the
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Algorithm 4 Unshaded floor area parameters
Input : θz, γazi, Xz, Yz, Zz

Output :Au

procedure
OH =1.86 ▷ The overhang of roof an all sides is 1.86 m
H = Zz −OH tan(90-θz)
γeast = 90
γsouth = 180
γwest = 270
γnorth = 360
if 0 > γazi < 180 then

xe ← H cos(|γazi−γeast |)
tan(90−θz)

xe(xe > Xz) = Xz

if 90 > γazi < 270 then
xs ← H cos(|γazi−γsouth |)

tan(90−θz)

xs(xs > Yz) = Yz

if 180 > γazi < 360 then
xw ← H cos(|γazi−γwest |)

tan(90−θz)

xw(xw > Xz) = Xz

if γazi < 90||γazi > 270 then
xn ← H cos(|γazi−γnorth |)

tan(90−θz)

xn(xn > Yz) = Yz

if γazi < 90 then
Au ← xeYz + xsXz + xnXz − xexs − xexn

else
Au ← xwYz + xsXz + xnXz − xwxs − xwxn

return Au =0

MPC algorithm is significantly influenced by the selection of an appropriate prediction hori-
zon. However, determining an optimal Prediction horizon (Np) is not a singular value, as
it relies on the MPC’s efficacy in regulating building temperature within predefined limits
and minimizing primary energy consumption. Thus, a comprehensive investigation was
conducted to identify a suitable prediction horizon, while ensuring that the computational
time for a single prediction remains within the allotted timestep of 30 minutes. This in-
vestigation spanned a duration of 5 days for each season, effectively capturing the essential
characteristics and dynamics of the respective seasons. The subsequent subsections provide
a comprehensive presentation of the findings obtained during this period. The performance
metrics used are the energy supplied by the heatpump during this 5-day period and the
total temperature violations occurring in this period as ∑n

i=1 ei where ei is the temperature
constraint as explained in Equation 6.7
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6.3.6 Results of varying Prediction horizon

Winter

The period of the simulation was from 01 January 2021 to 05 January 2021 which would be
representative of winter. Figure 6.2 depicts the ability of the MPCs with a control timestep
of 30 minutes to maintain indoor temperature. From Table 6.2, it can be seen that energy
saving is significant till Np = 16 hours, but there are some minor temperature violations
during the course of the week.

Figure 6.2: Indoor temperature control from 01 January 2021 to 05 January 2021

Prediction horizon (hours) Computational time (s) ∑ error [oC] Energy supplied by HP [kWh]

4 40 1.82 148
8 261 0.16 144
16 492 0.68 138
24 1206 0.36 137

Table 6.2: Results of MPC with a control timestep of 30 minutes (winter)

Summer

The period of the simulation was from 20 June 2021 to 25 June 2021 which would be rep-
resentative of summer.Figure 6.3 depicts the ability of the MPCs with a control timestep of
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30 minutes to maintain indoor temperature. From Table 6.3, it can be seen that energy sav-
ing is significant tillNp = 16 hours, but the temperature violations increase for Np=16 hours,
whereas Np = 24 hours performs better in terms of energy and maintaining indoor comfort.

Figure 6.3: Indoor temperature control from 20 June 2021 to 25 June 2021

Prediction horizon (hours) Computational time (s) ∑ error [oC] Energy supplied by HP [kWh]

4 39 12.62 23.76
8 168 4.72 21.89
16 361 5.92 10.67
24 1092 4.61 8.58

Table 6.3: Results of MPC with a control timestep of 30 minutes (summer)

Autumn

The period of the simulation was from 01 October 2021 to 05 October 2021 which would be
representative of Autumn. Figure 6.4 depicts the ability of the MPCs with a control timestep
of 30 minutes to maintain indoor temperature. From Table 6.4, it can be seen that energy
saving is significant till Np = 16 hours and the total temperature violation during the entire
week is minimal as well
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Figure 6.4: Indoor temperature control from 01 October 2021 to 05 October 2021

Prediction horizon (hours) Computational time (s) ∑ error [oC] Energy supplied by HP [kWh]

4 42 11.82 108
8 198 8.21 102
16 392 3.42 94
24 982 2.21 93

Table 6.4: Results of MPC with a control timestep of 30 minutes (autumn)

Spring

The period of the simulation was from 01 March 2021 to 06 March 2021 which would be
representative of Spring. Figure 6.5 depicts the ability of the MPCs with a control timestep
of 30 minutes to maintain indoor temperature. From Table 6.5, it can be seen that energy
saving is significant till Np = 8 hours and the total temperature violations are particularly
minimal if Np is increased to 24 hours.
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Figure 6.5: Indoor temperature control from 01 March 2021 to 06 March 2021

Prediction horizon (hours) Computational time (s) ∑ error [oC] Energy supplied by HP [kWh]

4 51 9.61 74
8 178 6.81 72
16 454 4.81 68
24 1125 0.81 67

Table 6.5: Results of MPC with a control timestep of 30 minutes (spring)

6.3.7 Conclusion

Based on the observations, it is evident that increasing the prediction horizon enhances both
the controller’s capability to maintain indoor comfort and its ability to minimize the energy
demand. Additionally, the tables presented demonstrate a satisfactory convergence of the
solution within a 30-minute (1800 seconds) timeframe. Consequently, a prediction horizon
of 24 hours is considered appropriate for the remainder of this research.
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7 Experimental Validation of MPC

This phase seeks to evaluate the controller’s ability to regulate the temperature of the CCC
building by controlling the HVAC system

7.1 Experiment setup

To evaluate the accuracy of the developed MPC and its ability to regulate indoor temperature,
a set of preliminary experiments was conducted during the second weekend of April 2023,
specifically 08-04-2023 and 09-04-2023. The experiment was conducted during the aforemen-
tioned dates. The first day of the experiment was a rainy day with ambient temperatures in
the range of 8-13oC and the second day was a partly cloudy day with temperatures in the
range of 11-14oC.

The experiment involved feeding the MATLAB model with environmental and occupancy
data obtained from the weather station and the sensors in the CCC building. The MATLAB
program was set to run at a prediction horizon of 24 hours, with one control timestep of 30
minutes.

Since the solar blinds were controlled by an external program and it was not feasible to
interfere in the solar blinds control, the fraction of solar blinds was manually fed to the
MATLAB model. The control inputs from the MATLAB model other than xh ( as discussed
in Section 6.3.1) were then fed into the BEMS for each timestep. This process was repeated
for each time step. The data collected from the sensors at the end of each control step was
assessed using Priva’s online platform to evaluate the performance of the MPC in predicting
the temperature of the CCC building.

7.2 Results

The scatter plots depict the correlation between the sensor readings and the corresponding
output temperatures ( x and y axis in oC) obtained from the MATLAB model throughout the
experimental period. The graph also illustrates the upper and lower boundaries of 0.3oC,
which are visually represented by the light blue lines.
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Figure 7.1: Comparison between measured data and prediction of MPC for Air temperature

Figure 7.2: Comparison between measured data and prediction of MPC for Exterior Glass
temperature
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Figure 7.3: Comparison between measured data and prediction of MPC for Interior Glass
temperature

Figure 7.4: Comparison between measured data and prediction of MPC for floor temperature

7.3 Conclusion

The results presented in Table 7.1 indicate that the RMSE error between the actual temper-
atures and the values predicted by the MATLAB model is within 0.3 K which is a good
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Figure 7.5: Comparison between measured data and prediction of MPC for Ceiling temper-
ature

State Tz Tc Tinteriorglass Toutsideglass Tf loor

RMSE [K] 0.23 0.12 0.26 0.23 0.29

Table 7.1: Results of experiments during the first week of April 2023

level of accuracy when it comes to building indoor temperature prediction [28]. Therefore,
it can be concluded that the developed model provides an accurate representation of the
thermal behavior of the building and has the potential to regulate the indoor comfort of the
building.
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8 Comparitive study: Energy savings
potential

This experiment investigates the efficacy of the developed MPC system in conserving en-
ergy without compromising indoor comfort levels in comparison to the existing Rule-based
controller (as discussed in Section 3.2).

8.1 Experimental setup

The study was conducted for a week in spring during the second week of April 2023, specif-
ically from 10th April 2023 to 14th April 2023. Since both the controllers cannot be run
simultaneously, the RBC was run and MPC was simulated using identical data. During this
period, the temperature bounds were manually set to match the temperature bounds of the
MPC program. Thus, any advantages of using a more flexible temperature bound would
be diminished and the comparison can be fair. This was a period of occupancy and the
Rule-based controller was in operation during the period. During the comparative study,
identical weather and occupancy data were provided to the MPC to assess the performance
of MPC in terms of total energy consumption and the number of comfort violations. Hence,
it is a simulation-based study and the objective was to evaluate the energy-saving potential
of the MPC and compare it with the existing Rule-based Controller (RBC), while ensuring
indoor comfort.

8.2 Results

The results of the comparison indicate that the MPC effectively achieves thermal comfort.
Analysis of the blinds’ position (as shown in Figure 8.3) reveals that the blinds are predom-
inantly open during the day to allow passive heating, and they remain open during most
parts of the night as the heat balance is not affected by the blinds’ position. Furthermore,
the graph depicting the loading and utilization of PCM (Figure 8.4) illustrates that the PCM
is charged during the night and the stored energy is utilized during the early hours of oc-
cupancy. Additionally, the utilization of heat recovery is evident in almost all time periods,
except for a few instances when the heat pump is active (Figure 8.5).
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Figure 8.1: Comparison between indoor temperature regulation by controllers

Figure 8.2: Comparison between energy supplied by Heatpump
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Figure 8.3: Position of the blinds (xh =1 is completely open and xh=0 is completely closed)

Figure 8.4: Usage of PCM

To maintain these temperature limits using the RBC, an energy supply of 69 kWh was re-
quired. On the other hand, the developed MPC consumed approximately 53 kWh, resulting
in a 22% reduction in energy consumption compared to the RBC. The reduction in energy
supplied by heatpump can be attributed to the usage of passive energy sources throughout
the day. PCM is only used up to heat up the building during the inactive periods when
the lower limit of operative temperature is 18oC, whereas heat recovery is used in most
instances. The difference in energy consumption is also because of the fact that the RBC
does not pre-heat the building during the early unoccupied hours of the day. In addition,
it is observed from Figure 8.1 that the MPC pre-heats the building passively using PCM on
13-4 around 17:00 anticipating that it will get cooler as the day progresses. But the rule-
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Figure 8.5: Usage of Heat recovery

based controller fails to recognize this. Another instance is during 11-4 around 17:00 when
the MPC heats up the building knowing that the day will get colder and it will cost more
energy to heat up the building during the night.

Assessment Criteria RBC MPC

Energy supplied BY heatpump [kWh] 69 53.4

Total temperature violations ∑ e [K] 3.89 3.21

Table 8.1: Performance comparison of controllers during 5-day period

8.3 Conclusions

In summary, it is evident from Table 8.1 that the developed MPC demonstrated its effec-
tiveness in maintaining thermal comfort while minimizing energy consumption. The MPC
outperformed the RBC, achieving significant energy savings during the experimental pe-
riod. Furthermore, the MPC reduces the peak heating/cooling load and hence the capacity
of the heat pump can be potentially reduced if this simulation is performed over a typical
meteorological year.
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9 Energy flexibility potential

9.1 Introduction

Energy flexibility refers to the capacity of buildings to adapt their energy consumption in
accordance with the requirements set by energy suppliers. Certain hours of the year witness
significantly high energy demands, placing considerable strain on the energy grid. To meet
this heightened demand, costly electricity sources are employed, resulting in increased elec-
tricity expenses. Conversely, during periods of lower demand, renewable energy sources are
utilized for electricity generation, leading to generally lower electricity costs. In some cases,
electricity prices may even turn negative, providing incentives for electricity utilization dur-
ing periods of extremely low demand. Intelligent BEMS capitalize on this opportunity by
optimizing electricity usage, thereby achieving two key advantages: mitigating stress on the
electricity grid and reducing operational/electricity expenses for the building.

9.2 Modifications to the system

To harness the energy flexibility of a building through MPC, a subtle adjustment was made
to the objective function. Rather than minimizing the energy supplied by heatpump, the
focus shifted to minimizing the energy cost. Hourly energy cost data from PJM Interconnec-
tion, a regional transmission organization in the US, was incorporated into the MPC problem
formulation by linearly interpolating it in timesteps of 30 minutes. It should be noted that
while the dataset is employed in the problem setup, in practical implementation, an energy
cost forecast would be utilized. Consequently, the modified objective function prioritizes the
minimization of energy expenses as:

Q = Costtimestep ∗ ṁcp|(Thp − Tmix)| (9.1)

The energy flexibility potential of MPC is studied by considering two cases, one in summer
and one in winter.
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9.3 Results

9.3.1 Winter

The simulation period is from 01-01-2021 to 03-01-2021 which is representative of Winter.
Simulating a period of three days would give deep insights into the difference in control
strategy as compared to the original objective function. Figure 9.1 illustrates that the de-
veloped MPC optimizes energy usage by consuming more energy when it is available at a
lower cost. This approach reduces the strain on the grid and leads to lower energy costs.
Despite this strategy, the MPC effectively maintains indoor comfort, as demonstrated in Fig-
ure 9.2. The flexibility of the building is leveraged by thermally charging the PCM during
the night when energy costs are lower. This utilization of PCM to increase building flexibility
is evident from Figure 9.3. It is evident that the PCM is heat-loaded during the night when
inexpensive energy is available and the heat energy stored in PCM is utilized in heating the
building in the early parts of the occupied periods of the subsequent day.

Furthermore, Table 9.1 provides support for the effectiveness of the MPC. It reveals that
the MPC not only requires 45% less energy but also results in a 54% reduction in electricity
costs compared to other methods assuming a constant Coefficient of Performance (COP) of
the heatpump.

Figure 9.1: Energy supplied by heatpump from 01-01-2021 to 03-01-2021
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Figure 9.2: Temperature regulation by MPC from 01-01-2021 to 03-01-2021

Figure 9.3: Usage of PCM to increase the energy flexibility of building

9.3.2 Summer

The simulation period is from 20-06-2021 to 22-06-2021 which is representative of Summer.
The developed MPC utilizes energy when available at a lower cost, resulting in reduced
pressure on the grid and lower energy costs as shown in Figure 9.4. Importantly, the MPC
achieves this while maintaining indoor comfort, as shown in Figure 9.5. Figure 9.6 illustrates
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Assessment Criteria Rule-Based
Controller MPC

Energy supplied by heatpump [kWh] 216 117

Estimated cost of electricity [EUR] 27.9 12.7

Table 9.1: Energy flexibility of MPC

the utilization of passive strategies, such as the use of sky windows for natural ventilation
during the day. Furthermore, Figure 9.7 illustrates that the blinds are closed during the day
to prevent overheating of building during the day. It is noteworthy from Figure 9.8that the
temperature of the airstream after passing through PCM (Tmix) is cooler than the temper-
ature of the airstream entering PCM (Th), which indicates that PCM is passively used in
cooling during the day. Also, the PCM is cold-loaded during the night and this energy is
used to cool the building the next day.

In addition,Table 9.2 provides quantitative insights into the performance of the MPC algo-
rithm. It reveals that the MPC achieves a reduction of approximately 48% in energy supplied
and a significant 42% reduction in electricity costs compared to other approaches assuming
a constant COP of the heatpump.

Assessment Criteria Rule-Based
Controller MPC

Energy supplied by heatpump [kWh] 42 21.8

Estimated cost of electricity [EUR] 5.98 3.45

Table 9.2: Energy flexibility of MPC
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Figure 9.4: Energy supplied by heatpump from 20-06-2021 to 22-06-2021

Figure 9.5: Temperature regulation by MPC from 20-06-2021 to 22-06-2021
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Figure 9.6: Usage of passive systems to increase the energy flexibility of building

Figure 9.7: Deployment of solar blinds

Master of Science Thesis 58 N.Rajappa
5317703



9.4. CONCLUSIONS

Figure 9.8: Usage of PCM

Season Regular MPC Modified MPC

Energy supplied by heatpump in summer [kWh] 7.2 21.8

Energy supplied by heatpump in winter [kWh] 98 117

Table 9.3: Energy flexibility of MPC

9.4 Conclusions

The investigation focused on evaluating the energy flexibility potential of the CCC through
the utilization of MPC over a representative period of 3 days in both the summer and winter
seasons. The findings reveal a noteworthy reduction in energy consumption and energy
cost when employing the modified cost function. However, it is intriguing to observe the
energy-saving benefits of the modified optimization function in contrast to the optimization
function employed in previous chapters. Table 9.3 demonstrates that the modified optimized
function necessitates a higher supply of heating/cooling energy for the same sample period
during both the summer (January 1, 2021, to January 3, 2021) and winter (June 20, 2021, to
June 22, 2021), as discussed in Chapter 6. While the modified MPC approach offers cost
savings, it requires a greater amount of heating/cooling energy compared to the previous
optimization function.
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10 Optimization to PCM configuration

The set of simulations focuses on the possibility of varying the temperature range of the
PCM battery to increase the energy savings potential of the building. This simulation-based
study will compare each scenario’s performance for a sample period of 20 days in each of
the four seasons which could give an idea about the average energy consumption of each
season.

10.1 Winter

The period of study is from 01 January 2021 to 20 January 2021. It can be seen from Fig-
ure 10.1 that both the options are able to maintain the indoor operative temperatures within
the permissible limits except few exceptions in unoccupied hours. Using a PCM with 18-
21oC requires less heating energy as this option would provide more latent heat option at a
lower temperature. Furthermore, Figure 10.2 and Figure 10.3 show that the lower temper-
ature option clearly has more temperature between the inlet and exit air temperatures and
the lower temperature option outperforms as depicted in Table 10.1

Figure 10.1: Comparison of temperature regulation by using different PCMs from 01 January
2021 to 20 January 2021
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10.2. SUMMER

Figure 10.2: Utilization of PCM (20-23oC)

Figure 10.3: Utilization of PCM (18-21oC)

Assessment Criteria 18-21oC 20-23oC

Energy supplied by Heatpump [kWh] 1140 1846

Table 10.1: Energy supplied by Heatpump

10.2 Summer

The period of study is from 20 June 2021 to 9 July 2021. It can be seen from Figure 10.4 that
both options are able to maintain the indoor operative temperatures within the permissible
limit. While using 20-23oC, the heating/cooling load is lesser as more energy could be stored
as latent heat in a higher temperature range. Furthermore, Figure 10.5 and Figure 10.6 show
that the difference between the inlet and exit air temperatures is similar for both the options,
but the higher temperature option outperforms as depicted in Table 10.2. Thus, in summer,
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10.3. AUTUMN

using 20-23oC is the better option.

Figure 10.4: Comparison of temperature regulation by using different PCMs from 20 June
2021 to 9 July 2021

Figure 10.5: Utilization of PCM (20-23oC) from 20 June 2021 to 9 July 2021

Assessment Criteria 18-21oC 20-23oC

Energy supplied by Heatpump [kWh] 152 96

Table 10.2: Energy supplied by Heatpump

10.3 Autumn

The period of study is from 01 October 2021 to 20 October 2021. It can be seen from Fig-
ure 10.4 that both options are able to maintain the indoor operative temperatures within the
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Figure 10.6: Utilization of PCM (18-21oC) from 20 June 2021 to 9 July 2021

permissible limit. While using 20-23oC, the heating energy required is lesser as more energy
could be stored as latent heat in a higher temperature range ( as shown in Table 10.3). Thus,
in autumn, using 20-23oC is the better option.

Figure 10.7: Comparison of temperature regulation by using different PCMs from 01 October
2021 to 20 October 2021

Assessment Criteria 18-21oC 20-23oC

Energy supplied by Heatpump [kWh] 418 364

Table 10.3: Energy supplied by Heatpump
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10.4 Spring

The period of study is from 01 March 2021 to 20 March 2021. It can be seen from Figure 10.4
that indoor operative temperature is maintained within the permissible limit except while
using 18-21oC but while using 20-23oC, there are considerable instances of temperature vio-
lations. While using 18-21oC, the heating energy required is lesser as more energy could be
stored as latent heat in a lower temperature range ( as shown in Table 10.4). Thus, in spring,
using 18-21oC is the better option.

Figure 10.8: Comparison of temperature regulation by using different PCMs from 01 March
2021 to 20 March 2021

Assessment Criteria 18-21oC 20-23oC

Energy supplied by Heatpump [kWh] 878 1364

Table 10.4: Energy supplied by Heatpump

10.5 Conclusions

It is evident that employing PCMs within the temperature range of 18-21oC yields greater
effectiveness during the spring and winter seasons, whereas an alternative option proves
more effective during the summer and autumn seasons. Consequently, it would be intrigu-
ing to investigate the feasibility of employing a hybrid combination of two distinct PCM
options, with the aim of surpassing the performance of the previously considered separate
options.

N.Rajappa
5317703

65 Master of Science Thesis



10.6. MODIFICATIONS TO PCM BATTERY

10.6 Modifications to PCM battery

From the previous study, it is clear that a single temperature range of PCM is not the most
efficient option for every season. Thus, it is interesting to see if splitting up of PCM bat-
tery into two equal modules having different phase transition temperature ranges could
reduce the overall heating/cooling load compared to the two options explored before. The
modification requires another term for a fraction of PCM usage. The newer schematic is
represented by a figure shown below in Figure 10.9. The heat transfer between air and PCM
is modeled as described in Section 4 The temperature of air stream after passing through

Figure 10.9: Modification to PCM battery

PCM is expressed as:

Tmix = xpcm1Tair,pcm1 + xpcm2Tair,pcm2 + (1− xpcm1 − xpcm2)Th (10.1)

The optimization parameter xpcm is replaced by xpcm1 and xpcm2 where xpcm1 represents
the fraction of airstream through PCM battery of phase transition temperature between 20-
23oC and xpcm2 representing the fraction through the other one (18-21oC) and the following
sections present the difference in the performance of this approach. In order to closely
observe the difference made by this approach, a sample period of three days is studied for
a season, even though the comparison in energy has been made for the same duration of 20
days for each season.
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10.6.1 Summer

The period of study is from 20 June 2021 to 9 July 2021. It can be seen from Figure 10.10 that
both options are used as a passive energy storage option, but the PCM with higher phase
transition temperature is predominantly used while the lower temperature option is mostly
used during the night for storing energy at a lower temperature.

Figure 10.10: Utilization of PCM in summer

10.6.2 Winter

The period of study is from 01 January 2021 to 20 January 2021. It can be seen from Fig-
ure 10.11 that both options are used as a passive energy storage option, but the PCM with
lower phase transition temperature is the predominantly utilized option

Figure 10.11: Utilization of PCM in winter
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10.6. MODIFICATIONS TO PCM BATTERY

10.6.3 Autumn

The period of study is from 01 October 2021 to 20 October 2021. It can be seen from Fig-
ure 10.12 that both options are used as a passive energy storage option, but the PCM with
higher phase transition temperature is the predominantly utilized option

Figure 10.12: Utilization of PCM in Autumn

10.6.4 Spring

The period of study is from 01 March 2021 to 20 March 2021. It can be seen from Figure 10.13
that both options are used as a passive energy storage option, but the PCM with lower phase
transition temperature is the predominantly utilized option

Figure 10.13: Utilization of PCM in Spring
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10.6. MODIFICATIONS TO PCM BATTERY

10.6.5 Results of the Hybrid system

The tabulated results in Table 10.5 demonstrate the superior performance of the hybrid
combination over the lower temperature PCM during Summer and Autumn, as well as its
outperformance compared to the higher temperature PCM during Winter and Spring. Nev-
ertheless, it is noteworthy that the energy savings achieved by the lower temperature PCM
during Winter and Spring outweigh its comparatively weaker performance during the other
two seasons. Consequently, despite the hybrid option exhibiting favorable performance
characteristics overall, the logical choice still favors the utilization of the lower-temperature
PCM due to its energy savings during the Winter and Spring seasons.

Season 18-21oC 20-23oC Hybrid system

Summer 152 96 112
Winter 1140 1846 1267
Spring 878 1364 924

Autumn 418 364 378
Total 2588 3670 2681

Table 10.5: Energy supplied by Heatpump [kWh]
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11 Alternative thermal comfort model

The control of indoor thermal comfort is based on the beta temperature limits [12]. But this
chapter discusses the possibility of using more flexible temperature limits using the alpha
model as discussed in Section 2.1

11.1 Modifications to the model

This model makes a difference as it has higher upper limits for indoor operative temperature
when the running mean outdoor temperature is more than 11oC. The model is varied as
shown below:

Toperative = 21.45 + 0.11 ∗ Te,re f (11.1)

and the desired temperature limits for occupied hours are:

Toperativelimits ∈
{

Lower limit Toperative,hour − 2oC
Upper limit Toperative,hour + 0.21 ∗ (Te,re f − 11) + 2oC

(11.2)

whereas for the original model, the operative limits are Toperative ±2oC

11.2 Results

The MPC program runs on the aforementioned comfort models from 20-06-2021 to 25-06-
2021, which is representative of Summer and gives an insight into the difference in perfor-
mance if the ambient temperature exceeds the indoor operative temperature. Analysis of
the Figure 11.1 reveals that the alpha model allows for higher upper limits in the indoor
operative temperature, resulting in generally elevated indoor temperatures compared to the
beta model. The cooling energy consumption of the building is minimized as a signifi-
cant portion of temperature control is achieved through passive means. Notably, during
the second day of simulation when the outdoor temperature surpasses the indoor operative
temperature, it was observed that utilizing the alpha model results in reduced cooling load,
as higher indoor operative temperatures are deemed acceptable. As detailed in the Sec-
tion 10.2, temperature control primarily relies on PCM loading during the night and natural
ventilation facilitated by sky windows. Consequently, the implementation of the beta model
necessitates less energy input from the heat pump, consequently reducing the cooling en-
ergy requirement for maintaining thermal comfort. Further analysis of the energy demand
over the 5-day simulation period can be found in Table 11.1.
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11.2. RESULTS

Figure 11.1: Indoor temperature regulation by various indoor comfort models from 20-06-
2021 to 25-06-2021

Figure 11.2: Comparison of Energy supplied by heatpump from 20-06-2021 to 25-06-2021

Assessment Criteria Beta Alpha

Energy supplied by Heatpump [kWh] 8.5 7.2
∑ error [oC] 4.61 4.82

Table 11.1: Performance comparison of MPC on different thermal comfort models from 20-
06-2021 to 25-06-2021
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11.3 Conclusions

Considering the Co-creation center as a building type BETA, as defined by Van der Lin-
den [12].In their criteria, an alternative approach that impacts the upper limit for operating
temperature, particularly in summer conditions is presented. Consequently, this approach
marginally decreases the cooling load, especially on the second day of simulation when the
ambient temperature exceeds the indoor operating temperature.
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12 Conclusions and Future Work

12.1 Conclusions

This research aimed to address the gap in the optimal integration of active and passive en-
ergy sources to minimize energy consumption while maintaining indoor thermal comfort.
The thesis proposed a model predictive control algorithm with low computational costs and
good control performance that could harvest the optimal amount of passive energy from the
building. This research answers the following sub-questions as :

1. How well does the developed building model compare to the thermal behavior in an actual building?

The Co-Creation center building was modeled using the Grey-box modeling approach in
a previous study by Ceha et.al [22], starting with a physics-based model and in the present
study, the model has been calibrated with test data. To ensure the accuracy of the model,
it was then validated with data measured over one week in April 2021. However, concerns
arose about the specificity of the model since it was tuned using the same data. To address
this issue, experiments were conducted to regulate the building’s temperature using the
model, which showed that the temperature predictions of the model were within 0.3 K of
the measured values. This result confirmed the model’s ability to provide a good representa-
tion of the building’s thermal behavior and demonstrated the effectiveness of the developed
controller in regulating the building’s temperature.

2. How can a building’s model be both accurate and not overly complex for model-based control?

In addition to assessing the control performance of the developed Model Predictive Control
(MPC), this research also investigated the computational cost of the optimization function.
The results indicate that the optimization function can be solved successfully within a con-
trol timestep of 30 minutes. This finding led to the consideration of linearization strategies
in the initial stages of the research. However, it was later determined that the existing non-
linear model accurately represents the building and converges well within the chosen control
timestep, rendering linearization unnecessary. Thus, the developed MPC can regulate the
indoor temperature of the building with high accuracy and low computational cost.

3. How does the created model predictive control strategy effectively combine passive and active
energy sources while still ensuring thermal comfort?

The case studies indicate that the utilization of MPC is more prominent with the incor-
poration of passive energy sources, particularly when the prediction horizon is extended.
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12.2. LIMITATIONS OF THIS RESEARCH

This approach can be optimally exploited with precise forecasts of future energy consump-
tion. Moreover, the reduction in the usage of primary energy sources reinforces the notion
that more energy is acquired from passive sources.

4. Is it possible to decrease energy consumption in a building by using this strategy compared to
a rule-based controller in a real-case scenario?

ased on the comparison made during the second week of April, it has been found that
the application of MPC results in a potential reduction of up to 17% in the utilization of
heating/cooling energy from the heatpump. Hence, the MPC system can be utilized for
the effective harnessing of passive energy sources. Furthermore, the MPC system not only
minimizes the energy consumption of the building but also enhances its energy flexibility.
By accurately forecasting future energy requirements, the building’s energy demands can be
made more flexible through the utilization of pre-cooling and pre-heating mechanisms. This
approach not only decreases overall energy consumption but also improves the utilization
of readily available energy, thereby alleviating the stress on the electricity grid.

12.2 Limitations of this research

No glare control

The control strategy employed in the developed MPC system for the blinds is solely based
on energy considerations. Specifically, the blinds are opened when heating is required and
when solar irradiance is present. Conversely, if the building requires cooling, the blinds
are completely closed. However, this approach overlooks the specific conditions of spring
and autumn when ample sunlight is available, but cooling is predominantly needed. As a
result, the blinds would remain open regardless of the need to prevent direct glare. This can
potentially cause visual discomfort for the occupants.

No active fresh air control

In accordance with ASHRAE standards 62.1-2019, a minimum fresh air supply of 2.5-5.1
l/s per person is recommended. Assuming full occupancy within the Co-creation center,
the fresh air supply should be maintained at a minimum of 0.19 Kg/s. To ensure this, an
average lower limit of 0.1 Kg/s for the mass flow rate of fresh air is maintained. However,
it is important to note that this approach does not consider the actual occupancy levels and
can result in ventilation losses, as detailed in Appendix A.

Frequent actuation of actuators

The MPC program operates based on the principle of minimizing the optimization function
to find a global minimum. However, this approach does not take into account the previous
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12.3. RECOMMENDATIONS FOR FUTURE WORK

states of the actuators. Consequently, it can result in frequent opening and closing of valves,
as well as repeated loading and unloading of the PCM battery. Such frequent and abrupt
operations can potentially have detrimental effects on the lifecycle of the actuators and the
PCM battery.

Constant COP of Heatpump

The current objective function of the MPC focuses on minimizing the energy supplied by
the heat pump. However, incorporating the heat pump model and utilizing its electricity
consumption as the objective function would provide a more realistic assessment of per-
formance, particularly in terms of energy savings and energy flexibility potential. This
approach would enable a comprehensive comparison that considers the actual energy con-
sumption of the heat pump, thereby enhancing the accuracy of evaluating energy efficiency
and potential improvements.

12.3 Recommendations for future work

The primary objective of this thesis was to develop an efficient MPC strategy for optimally
integrating various passive energy sources. The proposed methodology has been success-
fully implemented, which validates the effectiveness of the developed MPC approach. How-
ever, as with any research work, there is always room for further improvements and inves-
tigations. Therefore, this article recommends potential avenues for future research in this
area.

Installation of Solar irradiance sensors

Presently, the Co-Creation center utilizes a solitary sensor to measure the Global irradiance,
and the DNI and DHI components are estimated through analytical models. However, these
models make several underlying assumptions, including a constant distribution of diffuse
radiation throughout the day and year, and uniform terrain. In order to improve the accuracy
of the measurements, it is recommended to install DNI and DHI sensors, which can directly
measure each of these components.

Modeling of Indoor Air quality

The model can be enhanced by incorporating the modeling of CO2 concentration of the
air, which would help in maintaining fresh and pollutant-free air. Additionally, the model
should consider maintaining the relative humidity of the air to prevent the growth of mold
and other unwanted elements.
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Interfacing of developed MPC with BEMS

In the testing phase, the results obtained from the MPC algorithm were entered manually
into the BEMS for the operation of energy systems. However, this approach could lead to
potential issues such as delays and human errors during the control process. To address
this limitation, future work should focus on integrating the BEMS with the controllers in an
efficient manner to enable more viable testing and validation activities.

Inclusion of Visual Comfort

The present blind control system does not consider the impact of direct sunlight glare, which
could result in visual discomfort for occupants. Therefore, there is a need to enhance the
model by incorporating improved blind control mechanisms to mitigate the effects of direct
glare.
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A Basics of heat transfer

A.1 Introduction

An in-depth understanding of the energy consumption of buildings is essential for identi-
fying ways to reduce consumption and make it more sustainable. Energy demand can be
divided into two categories: building-related energy demand and user-related energy de-
mand.

User-related energy demand, which primarily comes from electrical appliances, cannot be
directly influenced by the building’s design. Building-related energy demand, on the other
hand, is the thermal energy required to maintain comfort criteria such as temperature and
humidity. This demand is influenced by various factors such as the occupants’ comfort
preferences, building design, occupancy characteristics, weather, and the heat generated by
electrical appliances within the building.

The energy balance of a building can be represented by the sum of the heat generated by
internal sources, the heat transferred from the external environment, and the energy stored
in the building’s components or air-filled zones. The first law of thermodynamics states that:

dE
dt

= Q̇−��>
0

W = ρVcp
dT
dt

(A.1)

where E denotes internal energy, Q̇ is the heat flowing into the system and W is the work
done by the system, ρ is the density, V is the volume, T is the temperature and cp is the
specific heat capacity of the considered component.

To accurately predict the energy consumption of a building, it is crucial to take into ac-
count all the energy flowing into and out of the indoor environment. The energy flow is
dependent on the energy transmitted into the building Q̇trans, the energy transferred via
ventilation Q̇vent, the energy transferred via infiltration Q̇in f , the energy gained from internal
loads Q̇int and the solar energy gain Q̇sol .

ρVcp
dT
dt

= Q̇trans + Q̇vent + Q̇in f + Q̇int + Q̇sol (A.2)

If the total energy flow is negative, it means the building needs extra heating energy to
maintain a comfortable temperature. Conversely, if the energy flow is positive, the building
needs to be cooled to keep it at a suitable temperature.

N.Rajappa
5317703

79 Master of Science Thesis
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A.1.1 Energy flow through transmission

Because of the temperature difference between indoor and outdoor air, heat will transfer
through the building’s components such as the roof, walls, floor, and windows. The heat
transfer through a wall of surface area A is determined using the equation:

Q̇trans = UA(To − Ti) (A.3)

with U =
1

1
αi
+ Rc +

1
αo

[Wm−2K−1] (A.4)

where U is the overall heat transfer coefficient in W/m2K, A is the overall cross-sectional
area of the wall, Rc is the thermal resistance of the wall in W−1m2K, Ti is the indoor tempera-
ture and To is the outdoor temperature . αi and αo are the convective heat transfer coefficient
for indoor and outdoor air respectively.

Determining the heat transfer coefficients is a complex task. As per Obyn et.al [29], the
convective heat transfer coefficient can be experimentally computed by measuring the con-
vective heat flux density and the temperature of the surface as well as the corresponding
fluid medium. However, measuring the heat flux density is a difficult process, thus the co-
efficient is usually represented by a function of the dimensionless Nusselt number (Nu).The
Nusselt number is a measure of the efficiency of heat transfer between a fluid and a solid
surface, as outlined in the following equation:

h =
Nu.k

l
(A.5)

where k is the thermal conductivity of the fluid or gas, h is the convective heat transfer
coefficient between the two mediums in consideration and l denotes the characteristic length
along the direction of motion of the fluid/gas.

The Nusselt number plays a critical role in estimating the convective heat flux, but there
is no universally accepted method for calculating it. Obyn et al. [29] reviewed around 90
different convection coefficient correlations from over 25 sources. These correlations were
specifically chosen for models of vertical and horizontal surfaces in buildings. The estima-
tion methods were broadly classified into four categories:

• Constant Value: Nusselt number can be assumed to be constant over a working range
or constant over divided working spaces defined by if-else statements

• Function of temperature differences: Nu depends on temperature differences. In this
case, the airflow is assumed to be laminar

• Function of airflow: Nu depends on Reynolds number that can be derived from air
change rate. In this case, airflow is assumed to be fully turbulent

• Function of multiple factors: Nu depends on temperature temperature difference as
well as the flow velocity. The flow is assumed to be partly turbulent in this case.
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A.1. INTRODUCTION

To achieve greater precision in estimating the Nusselt number, which is crucial for the analy-
sis of heat transfer, this thesis adopts a method that considers multiple factors. This approach
is chosen over other methods because of its potential to enhance accuracy [29], and it will
be used throughout the remainder of this study.

A.1.2 Energy flow through ventilation

The introduction of outdoor air into the building occurs through various means, including
natural openings such as windows and doorways, or through specialized systems specifi-
cally designed for this purpose. Ventilation systems are basically divided into four types:

• Natural ventilation through grill and window

• Mechanical supply ventilation: A mechanical ventilator is used on the supply side.

• Mechanical exhaust ventilation: A mechanical ventilator is used on the exhaust side.

• Mechanical supply ventilation and mechanical exhaust ventilation with heat recovery.
It is also called Balanced ventilation

The utilization of advanced ventilation systems is crucial in maintaining appropriate indoor
air quality, as well as curbing the transmission of viral infections such as SARS-COVID-19.
These systems monitor the concentration of carbon dioxide in the indoor air and introduce
fresh air when levels exceed 800 parts per million to reduce the transmissivity of viral infec-
tions [30]. This infusion of fresh air not only supplies the necessary oxygen for respiration
but also dilutes pollutants and lowers the humidity levels present due to human respira-
tion and perspiration. In instances where mechanical ventilation is employed on both the
supply and exhaust sides, it is advisable to incorporate heat recovery between the air han-
dling units. For example, during the heating season, outdoor air can be preheated with the
relatively warmer exhaust air. Conversely, during the cooling season, outdoor air can be
precooled by the relatively cooler exhaust air.

The heat loss through a mechanical supply and exhaust ventilation system with heat re-
covery is dependent on the efficiency of heat recovery η which is usually in the range of
0.8-0.9[31]

The heat exchanged in the ventilation system per unit of time is given by:

Q̇vent = ηṁventCp(To − Ti) [W] (A.6)

where To is the outdoor air temperature, Ti is the indoor air temperature , Cp is the specific
heat capacity of air in [J/Kg.K], ṁvent is the mass flow rate of air in [Kg/s] and η is the
efficiency of heat recovery.
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A.1.3 Energy flow through infiltration

The infiltration of exterior air can occur through various means, such as cracks in the build-
ing structure or narrow gaps in windows. In contemporary dwellings, which are often
highly air-tight, the infiltration of air is usually minimal, therefore necessitating the imple-
mentation of sufficient ventilation systems to maintain indoor air quality. The heat transfer
resulting from infiltration can be quantified using the following equation:

Q̇in f = ṁin f Cp(To − Ti) [W] (A.7)

where ṁin f is the mass of infiltrated air in [Kg/s] ,Cp is the specific heat capacity of air in
[J/Kg.K], To is the outdoor air temperature and Ti is the indoor air temperature.

Infiltration in the building occurs mainly due to pressure differences between the indoor
and outdoor environments, resulting from wind-induced airflow or stack effect caused by
temperature differences. However, since the building is a recent construction, the heat trans-
fer caused by infiltration can be disregarded for the rest of this study.

A.1.4 Internal heat gains

The interior of a building contains a variety of sources of energy, including electrical appli-
ances such as computers and televisions, lighting fixtures, and the presence of people. The
combined heating load generated by these factors is commonly referred to as the internal
heat load.

Occupants

The human body generates heat as a byproduct of metabolism, which is dissipated to the
surrounding environment in order to maintain a stable internal body temperature. This
heat is dissipated through various means, including respiration, convection from the skin to
the air, and sweating. The amount of heat transferred is influenced by a variety of factors,
including the individual’s activity level, the level of clothing worn, as well as environmental
factors such as the humidity and temperature of the indoor air [32]

The internal heat gain from people is calculated using typical metabolic heat generation
data given in Table A.1.

Q̇people = npeople ∗ Q̇M [W] (A.8)

where is the typical heat gain caused by people pursuing various activities.
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Resting/Sitting Writing/Typing Standing/Filing Walking Aerobics/Dancing

100 117 144 180 360

Table A.1: Typical heat gains (Q̇M) by people in [W] [1]

Electrical Lighting

The instantaneous electrical lighting power consumed by a building is dependent on the
total electrical lighting installed and the type of lamps used. Additionally, the operation
of the building also plays a role in determining the electrical lighting power. Common
types of lighting used in buildings and their average luminous efficiency range in lumen
per watt (1 lum= 1 lux/m2) is presented in Table A.2. Standards have been established
by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
[33] for the maximum allowable electrical lighting power per square meter of floor area as
shown in Table A.3 ( Plight in ([W/m2]) and since the CCC is a conference room, Plight can be
assumed to be around 12 [W/m2].

However, only a fraction of the power supplied to the lighting equipment is converted to
light, with the majority being converted to heat through convection and radiation. The light
that is produced is absorbed by surfaces within the room and also contributes to the heat-
ing of the room. Therefore, a significant portion of the electricity consumed for lighting is
released into the indoor environment as heat. Exceptions to this include when the luminar-
ies are connected to ventilation ducts and the exhaust air is expelled through the lighting
fixtures, which allows for a large portion of the heat to be removed by the exhaust air. This
concept can be applied in building systems with low heating demand and high cooling de-
mand. In general, the internal heat gains from artificial lighting can be calculated using the
following equation.

Pint,lighting = ζlight A f loorPlight [W] (A.9)

where A f loor is the building floor area, Plight is the electric power of the lighting in W/m2

and ζlight is the fraction of installed power released to the room. ζlight= 0.2-0.6 for ventilated
and ζlight = 1 for non-ventilated luminaires.

Incandescent CFL LED Fluorescent tubes (Argon) Fluorescent tubes (Sodium)

10-13 35-60 45-60 55-90 100-130

Table A.2: Luminous efficacy range of light bulbs (Q̇M) in [lum/W] [2]

Other Electrical appliances

Heat gain from appliances refers to the thermal energy produced by electrical devices and
equipment within a building. This includes but is not limited to, electronic devices such
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Residential Office Retail School Theatre

10 12 18 14 28

Table A.3: Maximum allowable lighting power per floor area Plight [W/m2]

as computers, televisions, and printers. The heat generated by these appliances can sig-
nificantly contribute to the overall internal heat load, particularly in structures with a high
density of occupants or electronic equipment.

Total Internal Energy gains to the model

The Co-creation Center has LED lights that remain switched on when the room is occu-
pied, and it is predominantly used as a conference room, implying a constant activity level.
Although the occupants wear different clothes depending on the season, the variations in
thermal resistances are disregarded during modeling. The internal heat gains of the building
are evaluated using a range of values presented in Table A.3 and Table A.1.

Q̇int.gains = npeople ∗ Q̇M + ζlightPlight A f loor ; [W] (A.10)

⇒ Q̇int.gains = npeople ∗ 117 + 0.4 ∗ 12 ∗ 303.75 [W] (A.11)

A.1.5 Energy flow through solar radiation

Modeling solar radiation is a complex task as it is subject to constant variation due to a
number of factors such as the position of the sun, the geographical location of the building,
and its geometric properties. The amount of solar radiation absorbed also depends on the
dimensions and thermophysical properties of the component. The correlation between solar
irradiance and absorbed heat energy is expressed as:

Q̇in = Io A.ξnαglazing [W] (A.12)

where Q̇in is the rate of absorbed solar radiation energy depends on the total incident radi-
ation per unit area (Io), the effective optical transparency (ξ), the absorptance of the glazing
(αglazing), and n is the number of glazings in series before the considered component and A
is the surface area of the glazing. Furthermore, the total incident solar radiation ( Io) consists
of three components: direct beam, reflected, and diffuse radiation, which are discussed in
further detail in this section

Io = Io,b + Io.r + Io,d (A.13)
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Direct beam radiation

The oriented direct beam radiation Io.b is the direct beam radiation received on the object’s
surface. Contemporary irradiation sensors measure two types of direct beam radiation:

• Direct beam radiation perpendicular to Earth’s horizon (Ibh)

• Direct beam radiation perpendicular to tracking surface (Ibn)

Ibh is measured by stationary upward-facing sensors, whereas the value of Ibn is obtained
by modern sensors orienting themselves with the Sun’s position in the sky. The total direct
beam radiation can be obtained as [34], [35] :

Io,b = Ibh
cos(θn)

cos(θz)
= Ibncos(θn) (A.14)

where θn is the angle between the object’s surface normal and solar beam direction and θz is
the zenith angle.

Reflected radiation

The oriented reflected radiation (Io,r ) represents the quantity of incident radiation that has
been reflected from surfaces in the vicinity, such as the Earth’s surface and surrounding ob-
jects, such as trees and buildings. The horizontal component of solar radiation is determined
by the direct beam radiation perpendicular to the horizon (Ibh ) and the diffused radiation
(Id), as measured by irradiation sensors. Assuming a total isotropic reflection and diffuse
reflectance value of ρr for all irradiance, Io.r can be estimated using [34], [35]:

Io,r = (Id + Ibh)ρr
1− cos(β)

2
(A.15)

where β is the angle between the tilted surface and the earth’s horizon. The ground re-
flectance ρg is expressed in albedo. albedo is defined here as the ratio between the ground-
reflected radiation and the global radiation incident on the ground. Albedo is a quantitative
measure of the reflectivity of a surface. It is defined as the ratio of the amount of shortwave
radiation reflected by a surface to the amount of shortwave radiation incident upon it. This
ratio is typically represented as a decimal value between 0 and 1. High albedo surfaces (such
as snow or ice) reflect most of the incident solar radiation, while low albedo surfaces (such
as dark-colored soil or vegetation) absorb most of the incident solar radiation [36]. Typical
diffuse reflectance values were discussed in [35] and is given in Table A.4 The study con-

Humid climates Dry climates Snow covered grounds

0.2 0.5 0.9

Table A.4: Typical ρg values in [Albedo]

ducted by Ineichen et.al [36] demonstrates that utilizing a localized constant albedo value
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for a specific site can provide more precise results in comparison to utilizing complex mod-
els. The research suggests that a constant albedo value, specific to the site in question, can
be used as an alternative to sophisticated models that require extensive input data.

Diffused radiation

The oriented diffused radiation Io,d is the amount of received solar radiation that has changed
direction due to atmospheric scattering. The extent of scattering is dependent on a wide
range of parameters that are difficult to determine, such as cloud cover and atmospheric
clarity. The value of Io,d entails three types of radiation:

Io,d = Id,iso
1 + cos(β)

2
+ Id,cir

cos(θn)

cos(θz)
+ Id,horFc−hor (A.16)

where Id,iso is the Isotropic diffuse radiation received, Id,cir is the circumsolar radiation which
refers to the onward dispersion of irradiance coming from the sky section surrounding the
Sun, and Id,hor is horizon brightening radiation concentrated around the horizon and it de-
pends on the clearness of Sky.

The literature presents several methodologies for modeling the diffuse irradiance term (Id,iso).
These models that take into account solely Id,iso are classified as Isotropic models, while
models that incorporate all the aforementioned terms are referred to as Anisotropic models.
The values of Id,iso, Id,cir and Id,hor are not individually measurable by sensors, however, the
value of Id can be measured. Therefore, various models have been developed to determine
the total incident solar radiation (Io). The majority of the models concur on the mathemat-
ical expression for the direct beam radiation Io.b and the oriented reflected radiation Io,r,
however, they differ in their expression for the diffuse radiation term (Io,d) [3].

A study [3] conducted a statistical analysis on 30 models using the root mean squared
error (RMSE) and the coefficient of determination (R2) as performance metrics and a com-
parison between the models that performed well and the well-acknowledged models are
presented in Table A.5. The study indicates that Anisotropic models have outperformed
Isotropic models due to their increased complexity. The Perez model and the Muneer model
are particularly promising. As locally trained Artificial Neural Network (ANN) models are
highly specific and cannot be applied in other locations, these models will not be considered.
A comparison between the Perez and Muneer models[37] and [38] suggests that the Perez
model performs better under most sky conditions. Therefore, the Perez model is selected
for the remainder of the thesis.

The Perez model

The Perez model is a widely used model for estimating diffuse radiation on a tilted sur-
face. The Perez model is based on Perez’s anisotropic sky model [43], which is widely used
for the calculation of the diffuse radiation on a tilted surface. Perez’s anisotropic sky model
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Model Name Model Type Complexity Local data needed RMSE R2

Liu and Jordan [39] Isotropic Simple - 7 6

Koronakis [40] Isotropic Simple - 6 7

Hay and Davies [41] Anisotropic Simple - 5 5

Muneer [42] Anisotropic Moderate - 3 4

Perez [43] Anisotropic Moderate - 4 3

Perez opt.[43][3] Anisotropic Complex
√

2 2

MLP [3] ANN Complex
√

1 1

Table A.5: Comparison of 7 models for oriented diffused radiation [3]

considers the sky’s diffuse and circumsolar radiation and the inclination angle of the surface.

The Perez model estimates the diffuse irradiance on a tilted surface by considering the sky’s
diffuse and circumsolar radiation and the inclination angle of the surface. The Perez model
uses the following parameters:

1. The direct normal irradiance (Ibh)

2. The diffuse horizontal irradiance (Id)

3. The relative airmass (ρair)

4. The solar zenith angle (θz)

5. The tilt angle of the surface (β)

6. The azimuth angle of the surface (γ)

7. Ground reflectance (ρg)

The Perez model uses these parameters to estimate the diffuse radiation on a tilted surface.
It is a physically based model and it takes into account the effect of the sun’s position and
atmospheric conditions on the diffuse radiation.

Step 1: Determination of Air mass (m)

m =


1

cos(θz)
; θz ≥ 0 and θz ≤ 70

1
cos(θz)+0.5057∗(96.080−θz)−1.634 θz > 70 and θz ≤ 90

0 otherwise

(A.17)
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Step 2: Determination of clearness of sky (ϵsky)

ϵsky =

Id+Ibn
Id

+ 5.535 ∗ 10−6 ∗ θ3
z

1 + 5.535 ∗ 10−6 ∗ θ3
z

(A.18)

Step 3: Determination of model coefficients
Based on the value of ϵsky, the empirical coefficients of the model are determined as shown
in Table A.6.

Step 4: Calculation of oriented normal radiation(Ion)

Value of ϵsky f11 f12 f13 f21 f22 f23

1-1.065 -0.008 0.588 -0.062 -0.060 0.072 -0.022
1.065 - 1.230 0.130 0.683 -0.151 -0.019 0.066 -0.029
1.230-1.50 0.330 0.487 -0.221 0.055 -0.064 -0.026
1.50-1.95 0.568 0.187 -0.295 0.10 -0.152 -0.014
1.95 - 2.80 0.873 -0.392 -0.362 0.226 -0.462 0.001
2.80-4.50 1.132 -1.237 -0.412 0.288 -0.823 0.056
4.50-6.20 1.060 -1.600 -0.359 0.264 -1.127 0.131
>6.20 0.678 -0.327 -0.250 0.156 -1.377 0.251

Table A.6: Coeffients to the model

Ion = Gsc ∗ (1 + 0.033 ∗ cos(
360 ∗ day

365
)) (A.19)

where Gsc = 1367 kW/m2 is the solar constant

Step 5: Calculation of diffuse fraction (∆)

∆ = ρair ∗
Id
Ion

(A.20)

Step 6: Calculation of model parameters

F1 = max(0, ( f11 +
f12 ∗ ∆ + π ∗ θz ∗ f13

180
)) (A.21)

F2 = f21 + f22 ∗ ∆ +
π ∗ θz ∗ f23

180
(A.22)

a = max(0, sin(θz) (A.23)

b = max(cos(85), cos(θz)) (A.24)
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where a,b,F1 and F2 are model parameters Step 7 : Estimation of oriented diffuse radiation
(Io,d)

Io,d = Id ∗ (1− F1) ∗ 0.5 ∗ (1 + cos(β)) + Id ∗ F1
a
b
+ Id ∗ F2 ∗ sin(β) (A.25)

A.2 Discretization and multi-node modeling of buildings

As the building systems become more complex, owing to the presence of various compo-
nents such as walls and glazing, the mathematical models used to describe the heat transfer
within the building become increasingly intricate. This is due to the non-homogeneity of
the building systems, which results in heat accumulation in certain components. To account
for this non-homogeneity, and also to account for the thermal inertia of systems with a large
mass, it becomes necessary to employ discretization techniques. This allows for the devel-
opment of dynamic equations that accurately model the thermal behavior of the building.
This section focuses on the overall energy balance of an indoor space and the process of
converting this balance into a system of differential equations.

Using the laws of thermodynamics and the principles of conservation of energy and mass,
the overall energy balance equation can be derived by considering the different ways heat
can be gained or lost in a room, such as through conduction, convection, and radiation.
These terms can then be mathematically modeled using differential equations to accurately
represent the heat transfer phenomena in the indoor space. This process of generating a sys-
tem of differential equations allows for a more in-depth analysis of the thermal performance
of a room and can aid in optimizing the insulation, ventilation and heating and cooling sys-
tems for improved energy efficiency.

The finite difference method is a widely used numerical approach for solving differential
equations, including those associated with heat transfer phenomena. The method involves
discretizing a continuous system, such as a room, into a set of discrete elements, referred to
as ”cells”, and approximating the temperature distribution within the room by solving the
finite difference equations.

The discretization process is essential in the context of thermal energy balance, as it al-
lows for the representation of the continuous temperature distribution in a room as a set of
discrete values at specific points in space. The finite difference method for thermal energy
balance entails discretizing the room into small, discrete elements, and approximating the
temperature at the center of each cell using finite difference equations. These equations are
used to calculate the temperature at the center of each cell based on the temperatures of the
surrounding cells and the heat flow into or out of the cell. The most commonly used finite
difference equation in thermal energy balance is the explicit finite difference equation, which
is based on the principle of conservation of energy. The equation relates the temperature at
a point in time and space to the temperatures of the surrounding points at the previous time
step and takes into account the heat flow through the walls, roof, floor, windows, and doors
of the room, as well as any internal heat gains or losses.
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By solving the finite difference equations for each cell in the room, the temperature dis-
tribution throughout the room can be determined at any given time. The results of this
analysis can be utilized to evaluate the thermal performance of a room and to optimize the
insulation, ventilation, heating, and cooling systems in order to improve energy efficiency.
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B Indoor building comfort

B.1 Aspects of thermal comfort

Indoor comfort refers to the state of being within a building that allows its occupants to feel
comfortable both physically and mentally. Indoor comfort is achieved by controlling and
maintaining thermal, acoustic, and visual comfort along with ensuring adequate indoor air
quality.

B.1.1 Thermal comfort

Thermal comfort is the perception of warmth or coldness by the thermal receptors located in
the skin and hypothalamus, which act as thermal sensors. The human body has the ability
to maintain an internal temperature of approximately 37°C ±1°C, regardless of the external
temperature. The signals transmitted by cold sensors and warm sensors determine an in-
dividual’s thermal sensation. Cold sensors, primarily located in the skin, send signals to
the thermoregulatory center when the body temperature drops below 34°C. In response, the
body initiates warming processes such as shivering, increasing muscle activity, and decreas-
ing blood flow to the skin. Warm sensors, primarily located in the hypothalamus, signal
when the body temperature exceeds 37°C. In response, the body initiates cooling processes
such as sweating and increasing blood flow to the skin. Thermal comfort is achieved when
the heat generated by metabolism is in balance with the heat lost from the body [44]. Factors
that influence the heat balance of the human body include skin temperature and metabolism
rate, as well as ambient temperature, clothing, and time of day [45].

A rational approach to evaluate thermal comfort considers it to be dependent on the heat
balance of the human body. In order to attain thermal comfort, the heat flowing into the
body and the heat flowing from the body have to be balanced [46]. The heat balance is
affected by external factors such as ambient temperature, humidity, etc, and internal factors
such as metabolism rate and clothing [10].

B.1.2 Acoustic comfort

Acoustic comfort pertains to the sound environment within a building. It encompasses a
variety of factors such as noise levels, reverberation time, and speech intelligibility. Exces-
sive noise can lead to distractions, discomfort, and even hearing impairment, whereas poor
speech intelligibility can impede effective communication among the occupants [47].
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B.1.3 Visual comfort

Visual comfort pertains to the lighting levels and color rendering within a building. It
encompasses a variety of factors such as the quantity of light, the distribution of light, and
the color of light [48]. Adequate lighting levels are necessary for visual tasks, whereas poor
lighting can cause eye strain, headaches, and visual discomfort. The color rendering of the
light is also significant as it impacts the way colors appear in the space, affecting the visual
aesthetics of the building.

B.1.4 Indoor air quality

Indoor air quality (IAQ) encompasses various factors that contribute to the overall well-
being of the occupants in a building. Specifically, IAQ pertains to the physical and chemical
characteristics of the air inside a building, including factors such as temperature, humidity,
ventilation, and the presence of pollutants or irritants. Poor IAQ can lead to various health
issues such as headaches, fatigue, and respiratory problems, and can exacerbate existing
health conditions. It is thus essential to ensure that the air inside a building is clean, fresh
and healthy, which can be achieved by appropriate ventilation, air filtration, and controlling
the sources of pollutants.

B.2 Parameters related to thermal comfort

The parameters associated with thermal comfort are briefly categorized as Personal and am-
bient parameters. Personal parameters represent the characteristics of the occupant such as
Clothing insulation and Metabolic heat rate. Ambient parameters include temperature, air
velocity, and relative humidity.

B.2.1 Dry bulb (air) temperature

The dry bulb temperature Tdb refers to the air temperature of indoor air. It is a fundamental
parameter in determining thermal comfort within a building. Various models have estab-
lished recommended ranges of values for air temperature to ensure the thermal comfort of
occupants. The dry bulb temperature is an important factor in the design and operation of
a building’s heating, ventilation and air conditioning systems, as it can affect the thermal
comfort and overall well-being of the occupants. [49].
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B.2.2 Mean radiant temperature

The mean radiant temperature TMR is a measure of the thermal radiation that is exchanged
between a human and the surrounding surfaces in a building environment [50] [51] . It is
defined as the temperature of a hypothetical black body that emits and absorbs the same
amount of thermal radiation as the human and the surrounding surfaces. TMR is estimated
by calculating the weighted average of the temperatures of various internal surfaces within a
building. This parameter plays a crucial role in determining the thermal comfort of building
occupants, as it takes into account not only the air temperature but also the temperatures of
the surfaces that surround the occupants.

TMR =
∑n

i=1(Ti ∗ Si)

∑n
i=1 Si

(B.1)

where Ti is the temperature of surface i and Si is the surface area of surface i.

B.2.3 Operative temperature

The operative temperature Top is a measure of thermal comfort that takes into account the
combined effect of air temperature, mean radiant temperature, and air velocity. It is defined
as the temperature of a hypothetical black enclosure in which an occupant would exchange
the same amount of heat by radiation and convection as they do in the actual heterogeneous
environment [14]. The operative temperature is derived as a function of the air tempera-
ture, mean radiant temperature, and air speed, and it is a widely used metric to evaluate
thermal comfort in buildings. It gives a more comprehensive understanding of the thermal
environment by considering various thermal factors and their interactions.

TOP =
(TMR ∗ hr + Tdb ∗ hc)

(hr + hc)
(B.2)

where hr is the radiative heat transfer coefficient (which is dependent on the surface emissiv-
ities, temperature and the view factors of the two surfaces exchanging heat) in [Wm−2 oC−1]
and hc is the convective heat transfer coefficient (which is a function of the surface tempera-
tures and the indoor air velocity) in [Wm−2 oC−1] and the temperatures are in [oC]

B.2.4 Air velocity

Air velocity (va) is a measure of the rate of air movement over a specific displacement over
a fixed period of time. It plays a crucial role in determining the comfort level of building
occupants. A high air velocity, typically above 0.2m/s, can lead to discomfort, particularly
in cold temperatures as it can have a cooling effect on the human body [52] whereas high
air velocities are beneficial when the air temperature is high. In such scenarios, even small
amounts of air movement can cause discomfort due to the enhancement of the cooling effect.
It is important to consider the impact of air velocity on thermal comfort in building design
and operation to ensure the well-being of the occupants. [53].
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B.2.5 Relative humidity

The Relative humidity (RH) is the ratio between the actual water vapour concentration and
the maximum possible concentration (at saturation) of water vapour in air at a given tem-
perature. It is usually expressed in % [54].

RH = 100
pw

psat
(B.3)

where pw is the actual partial pressure of water vapour and psat is the partial pressure of
water vapour in saturated air at a given temperature.

Various studies have suggested that a relative humidity of 30-60 % can be considered com-
fortable for humans. Furthermore, relative humidity of more than 70% can provoke dis-
comfort to humans as when the relative humidity exceeds 70%, it can impede human ther-
moregulation due to the decrease in evaporative cooling capacity of sweat on the skin. This
can lead to an increase in perceived temperature and discomfort [55].

B.2.6 Clothing Insulation

The thermal insulation provided to an individual by their clothing, quantified in terms of the
unit of measurement known as ”clo” (where 1 clo = 155 m2oC.W), is referred to as clothing
insulation.

B.2.7 Metabolic heat rate

The Metabolic heat rate or activity level Ṁ is the net heat flowing from a human body in a
unit of time and it depends on various factors such as age, sex, and activity of a person. It is
usually expressed in met units ( 1 met = 58.2 W.m−2). Moreover, the value is always positive
irrespective of the ambient conditions.
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C Fundamentals of Building Energy
modeling

C.1 Building modeling approaches

The development of an accurate thermal energy-flow model of a building is crucial for
the control and optimization of energy sources, as outlined in the introductory chapter.
These models are used for a variety of purposes, including energy demand estimation,
sizing of heating, ventilation, and air conditioning equipment, optimization, fault detection,
and model-based control [56]. According to Boodi et al., the dynamics of energy flow are
primarily influenced by several factors such as:

• Thermal, physical and geometric properties of the building

• Indoor energy gains

• Occupancy behavior and interaction with the building

• Location and orientation of the building

• External factors such as ambient temperature, wind speed, solar irradiance and cloud
coverage

A wide range of modeling approaches have been investigated to accurately represent the
dynamics of energy flow, and these can be broadly classified into three paradigms: white-
box, grey-box, and black-box modeling. Each paradigm has its own set of advantages and
disadvantages and has been the subject of extensive research in the literature. These stud-
ies emphasize the importance of validating the models using standard validation methods,
which will be discussed in the following section.

C.1.1 White-box modelling

White-box modeling is a method of modeling that utilizes the laws of physics, thermody-
namics, and heat transfer phenomena in the form of differential equations (as discussed
in section 2.1) to be solved. These models are parametric in nature and are theoretically
infinite-dimensional due to a lack of segregation into nodes which makes them computa-
tionally expensive to solve.

However, common assumptions such as homogeneous heating of components make the
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model finite-dimensional. These models can be complex due to their non-linear and contin-
uous nature, requiring a significant amount of computational time and effort. Techniques
such as discretization and linearization can be employed to reduce the complexity of the
model while maintaining accuracy. One commonly used modeling structure in white-box
modeling is the RC network analogy. In this approach, resistance symbolizes the thermal
resistance to the flow of energy caused by conduction, convection, etc. while the capacitance
term represents the capacity to store energy in the component, or the thermal inertia of the
system. The development of accurate white-box models necessitates expert knowledge of
building components’ physical properties, location, and occupancy behavior, as well as ac-
curate data on external disturbances such as climatic conditions and dynamics of building
occupancy.

To address the challenges associated with white-box modeling, a variety of simulation tools
have been developed for Building energy simulation (BES) and dynamics, such as EnergyPlus
[57] and Transient System Simulation Tool (TRNSYS) [58]. These tools are highly optimized
solvers that provide high levels of solution accuracy while minimizing computation time.
They are capable of producing highly complex and robust models for energy demand pre-
diction.

BES models may have difficulty modeling controllers and optimizing building systems.
Co-simulation environments, such as Building Controls Virtual Test Bed (BCVTB) [59] and
Modelica Library Extension (MLE+) have been developed to integrate white-box models with
control techniques developed in software such as MATLAB, Python, or Modelica. But, it is
important to note that these co-simulation software can be computationally expensive due
to inefficiencies in the integration scheme [8]. Thus, white-box modeling using BES tools
can be suitable for building energy demand estimation, construction optimization, and fault
detection, but for optimal control of building’s energy systems, it is preferable to develop
a model directly in MATLAB, Python or Modelica because of its ability to allow real-time
computation.

C.1.2 Black-box modeling

Black-box models are developed using large datasets by optimally relating input parameters,
disturbances to the system, and controllable inputs to the building performance output data
[60]. This approach does not require a deep understanding of the building’s thermodynamic
behavior. Since the model is primarily driven by data, it is generally less complex, but it is
also known for its high accuracy and computational efficiency.

However, since the model is only driven by data, the internal processes remain unknown
and difficult to understand, which reduces the scalability and the degree of control. Addi-
tionally, the accuracy of the model is dependent on the quantity and quality of data fed into
the system. This data can be obtained from various sources such as :

• Real-time data collected by sensors

• Data collected from BES tools
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• Standardized data sets published by ASHRAE

Black-box modeling has been the subject of extensive research over the past decade, and
these models have been found to be suitable for building energy demand prediction and
model-based control, but they are not ideal for control due to a lack of knowledge about
internal processes [61]. The models can be broadly categorized into parametric and non-
parametric, and based on complexity, they are classified as linear and non-linear. The choice
of statistical model is selected based on the required accuracy and available computational
load.

C.1.3 Grey-box modeling

Grey-box modeling is a hybrid approach that combines the principles of physics-based
white-box models and data-driven parameter estimation of black-box modeling. The phys-
ical model of a building is represented in the form of differential equations, which are then
discretized and simplified through state-space dimensionality reduction and linearization.
Grey-box modeling structure uses the simplified Resistor-Capacitor (RC) network analogy.
The simplified RC network is a linear network that is easily scalable by adding more build-
ing components. Data to calibrate these models can be obtained from the same sources
as for the black-box modeling approach. The main advantage of the grey-box approach is
that it requires less data to optimize the model. Additionally, these lumped/simplified RC
networks have a better working range than white-box approximation techniques [62].
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C.2 Numerical validation methods

Model validation is a crucial step in ensuring the robustness and performance of the control
strategy. Several metrics have been proposed to evaluate the validity of an MPC model,
including model accuracy, robustness, and complexity. It is important to note that the choice
of the model prediction error measure depends on the application and the objective of the
MPC [63].

1. Mean Absolute Error (MAE) is defined as the average of the absolute differences be-
tween the predicted and measured outputs over a certain time horizon.

2. Mean Squared Error (MSE) is defined as the average of the squared differences between
the predicted and measured outputs over a certain time horizon.

3. Root Mean Squared Error (RMSE) can be obtained by taking the square root of the MSE,
which gives a measure of the error in the same units as the measured and predicted
outputs.

4. Normalized Root Mean Squared Error (NRMSE) can be computed by normalizing the
RMSE by the range of the measured outputs, providing a measure of the error relative
to the system’s dynamic range.

5. Correlation coefficient (R) measures the correlation between the predicted and measured
outputs. A value of 1 indicates a perfect correlation, while a value of -1 indicates a
perfect negative correlation.

The goal is to reduce significant errors, and using Root mean squared error (RMSE) can
be effective because it gives more weight to larger errors. When conducting validation,
it’s necessary to evaluate and compare values across different ranges and NRMSE can be a
valuable approach for this purpose.

C.2.1 Normalised Root-mean-square error (NRMSE)

The NRMSE is particularly useful in situations where the range of the measured outputs is
variable. The normalization of the error by the range of the measured outputs allows for a
fair comparison of the model’s performance across different operating conditions, and it is
particularly useful when the measured outputs have different units or when comparing the
performance of different models. [63]

Furthermore, the NRMSE provides a measure of the model prediction error relative to the
system’s dynamic range, which can be more informative in situations where the absolute
error is not informative on its own. For example, in some control systems, small errors may
be acceptable, while in others, even small errors may cause significant problems. In various
studies, an NRMSE value of lesser than 0.2 has been regarded as an acceptable value.

RMSE =

√√√√ 1
N

N

∑
i=1

(y(i)− ŷ(i))2 (C.1)
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NRMSE =
RMSE

ymax − ymin
(C.2)

C.3 Conclusion

Different approaches have been employed to develop accurate building models, with the
grey-box modeling approach being extensively studied due to its simplicity in control and
the availability of building data. MATLAB is a commonly used software platform for devel-
oping building models, despite the intricacy of thermodynamic properties involved. Model-
ing convection coefficients and solar irradiance is a significant challenge. Researchers have
conducted substantial research to develop accurate modeling techniques and convection cor-
relations. Additionally, complex algorithms have been analyzed to model solar irradiance
on tilted surfaces. The Perez model has been recognized as the most suitable choice for
modeling solar irradiance.

Once a model is developed, it is necessary to validate it to ensure that it accurately repre-
sents the thermodynamics of the building. Several performance parameters are considered
during model validation. Since the aim is to minimize significant errors, RMSE can be a use-
ful metric because it assigns more weight to larger errors. When evaluating and comparing
values across different ranges during validation, NRMSE can be a valuable approach for this
purpose, and an NRMSE of 0-0.2 is regarded as an acceptable range.
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D Phase Change Materials: An Overview

Research in modeling of PCM employs both numerical and experimental methodologies,
although there is no consensus on the optimal numerical approach as it is dependent on the
specific system configuration and analysis being conducted. However, there remains a need
for further research on developing robust models for predictive control and optimization,
particularly in regard to the hysteresis properties of PCMs [64].

D.1 Characteristics of PCMs

A PCM possesses a set of unique characteristics that make them suitable for thermal energy
storage applications. These include:

1. A specific phase change temperature, at which the material undergoes a transition
from solid to liquid or vice versa.

2. A high thermal energy storage density, which allows for the storage of large amounts
of thermal energy in a small volume.

3. A significant latent heat of fusion or solidification, corresponds to the amount of ther-
mal energy absorbed or released during the phase change process.

4. The presence of hysteresis, which is the phenomenon of different phase change tem-
perature ranges during heating and cooling.

5. Non-toxicity and Durability to withstand repeated charge-discharge cycles over an
extended period.

6. Low thermal conductivity, which results in prolonged storage of thermal energy.

7. Low cost for some PCMs, making them readily available.

A compilation of the PCM properties for various classifications, as reported in scholarly liter-
ature, that are appropriate for the construction of applications in accordance with European
climatic conditions are presented in Table D.1.
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D.2. PCM INCORPORATION TECHNIQUES

PCM type Melting temperature
(oC)

Heat of fusion
(W/m.K) Density(Kg/m2) Ref

Paraffin wax 27–29 245 770 (liquid)
880 (solid) [65]

CA-MA-PA hydrated salt 18.6 128.2 N/A [66]

PureTemp 23 22.2-24.2 170.71 830 (liquid)
910 (solid) [67]

RT-18 26-29 190 756 [68]

CaCl2.6H2O 20-23 310 1800 [69]

HS29 20-23 310 1530 (liquid)
1680 (solid) [70]

Table D.1: Thermo-Physical properties of PCM

D.2 PCM Incorporation techniques

In an active system, the PCM is typically used in conjunction with a heating or cooling sys-
tem, such as a refrigeration or heating system. The PCM is charged with heat energy by the
system during periods of excess heat production or low thermal demand, and then released
when the demand for heat is high or the heat production is low. In a passive system, the
PCM is typically used in conjunction with natural ventilation or radiators to charge and
discharge the PCM . As such, the thermal performance of the PCM is primarily dependent
on the convective heat transfer between the air and the PCM.

For a climate such as the Netherlands, PCMs are mainly utilized in two ways:

• Absorb the cold from external air during summer nights and release it during the
following day

• Absorb the heat from the return air during autumn/winter when the system over-
produces the heating demand

D.3 Choice of PCM: Calcium Chloride Hexahydrate

Traditionally, the most widely utilized PCM for temperature regulation in buildings has been
based on paraffin. However, the flammable nature of this substance has resulted in its un-
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D.4. MODELING OF PHASE CHANGE MATERIALS

desirable use in building applications. Recent advancements in the field have resulted in
the development of salt hydrate-based PCMs, which offer several significant benefits over
their paraffin-based counterparts. These PCMs are non-flammable, non-toxic, and free from
harmful properties, and can be specifically designed to suit a specific temperature range.

The PCM utilized in the panels is CCH, which is encased within crystal storage panels made
of high-density polyethylene The PCM has a melting point range of 20-23 degrees Celsius.
The overall thermal storage capacity of the panel related to the phase change process is cal-
culated to be 310 kJ/kg. The utilization of CCH is justifiable due to its elevated Latent heat,
Non-Flammablity and broad Operating Temperature Range.

D.4 Modeling of Phase Change materials

Research has shown that PCM can be modeled with high accuracy using a linear phase
change ( as described by the Scheil-Gulliver equation [71] ) in between 20 to 23oC.

The Scheil-Gulliver equation is a mathematical model that describes the solidification ki-
netics of a liquid metal. The equation relates the solid fraction, f, and the undercooling,
∆T, which is the difference between the liquidus temperature (the temperature at which
a metal commences solidification) and the solidification temperature [72]. The equation is
represented as:

f = 1− (
∆T

∆Tm
)(1/n) (D.1)

where ∆Tm is the maximum undercooling, which is the difference between the liquidus tem-
perature and the solidification temperature (the temperature at which a metal is fully solid),
and n is a constant that is dependent on the material and the cooling rate.

The Scheil-Gulliver equation is based on the assumption that solidification proceeds at a
constant rate and that the solid and liquid phases are in equilibrium. It also presumes that
the solidification process is diffusion-controlled, meaning that the rate of solidification is
determined by the diffusion of atoms or molecules from the liquid to the solid phase. The
Scheil-Gulliver equation can be utilized to predict the solid fraction of liquid metal as a func-
tion of cooling rate and undercooling. The PCM material selected for this thesis is CCH, and
its specifications include a melting temperature range of 3 degrees Celsius (∆Tm = 3 oC) and
a phase change exponent of 1 (n = 1) as experimentally verified by Peter can den Engel et.
al [25].
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E Control Systems in buildings

Building control systems, also known as building automation systems or BEMS, are designed
to monitor and control the indoor climate of buildings to improve operational performance
and ensure the comfort of occupants. These systems typically use centralized, integrated
networks of hardware and software to monitor and control indoor conditions. Two main
types of building control schemes for indoor environments are conventional controllers and
intelligent controllers. Conventional controllers use simple control algorithms, whereas in-
telligent controllers use more advanced algorithms and have the ability to adapt to changes
in the environment.

E.1 Conventional controllers

Building control systems are a fundamental aspect of building energy management, as they
play a critical role in achieving energy efficiency and sustainability. Several standard con-
trol schemes, such as On-Off control, Proportional-integral (PI), and Proportional-integral-
derivative (PID) controllers, have been widely utilized in building control [73]. However,
these control systems have demonstrated poor performance in various applications and dis-
turbed environments, and have not provided an optimal control strategy.

The use of on/off controllers, specifically, is commonly utilized for regulating indoor tem-
perature; however, this approach is known to result in significant energy consumption and
wastage because of instabilities and frequent overshooting of set points.

P, PI, and PID controllers are closed-loop/feedback controls that lack direct knowledge of
the system being controlled and possess constant parameters [73]. These controllers have
been found to provide poor control performance for processes that are noisy and nonlin-
ear, with large time delays when used alone. The performance of these controllers can be
improved through the cascading of multiple PID controllers or linking feedback and feed-
forward controllers. However, even with these enhancements, the system could be unstable.
Therefore, control designers and engineers have turned to optimal, predictive, and adaptive
techniques to improve control performance and stability.
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E.2 Intelligent controllers

In the 1990s, a significant amount of research was focused on advanced energy and comfort
management controls [73]. The main research trends that emerged in this field include:

1. Learning-based methods: These methods include the use of artificial intelligence,
fuzzy systems, and neural networks, such as fuzzy control with conventional controls,
Adaptive fuzzy neural network (ANFIS) systems, etc.

2. MPC technique: This technique follows the principles of classical controls and uses
mathematical models to predict the behavior of the system.

3. Agent-based control systems: These systems use autonomous agents to manage and
control building systems.

These research trends aimed to improve the performance and energy efficiency of build-
ing control systems, through the implementation of advanced control algorithms, and self-
learning and adaptability capabilities. While it is intriguing to determine the most effective
implementation of intelligent control, this study will focus on analyzing the application of
the Model Predictive Control strategy.

E.3 Model Predictive Control

Model Predictive Control (MPC) is an advanced control strategy that optimizes system con-
trol based on a mathematical model. It combines control theory, optimization, and prediction
to achieve desired performance while considering system constraints.

MPC operates by making predictions about the system’s future behavior and generating
an optimal control sequence accordingly. This sequence is then applied to the system within
a specific time frame, and the process is repeated periodically. By continuously updating
the control sequence using new measurements and predictions, the control action can be
adjusted dynamically to optimize the system’s behavior.

The key steps involved in MPC are as follows:

• System Modeling: Develop a mathematical model of the system based on known sys-
tem dynamics, describing the relationship between inputs and outputs.

• Objective Function Formulation: Define an objective function that captures the de-
sired control objectives, incorporating performance criteria and potential penalties for
constraint violations.

• Prediction: Utilize the system model to predict the system’s future behavior over a
defined time horizon by applying the current control sequence and estimating future
states and outputs.
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• Optimization: Formulate an optimization problem aimed at finding the optimal con-
trol sequence that minimizes the objective function while adhering to system con-
straints. The optimization algorithm seeks the control sequence that yields the best
predicted performance.

• Constraint Handling: Account for constraints such as physical limits, safety bound-
aries, or operational restrictions during the optimization process. Adjust the control
sequence to ensure that the predicted system behavior remains within the acceptable
limits.

• Control Action: Implement the first control action from the optimal control sequence
on the system. Periodically repeat the process by updating the control sequence based
on new measurements and predictions.

In MPC, a mathematical model of the process is used to predict its behavior and gener-
ate control signals to achieve a desired outcome [74]. The control signal is obtained by
minimizing an objective function while taking into account constraints on the system. The
minimization is performed iteratively over a finite prediction horizon. MPC is applied us-
ing a receding horizon approach where the control signals are recalculated at each iteration
based on a moving prediction horizon, but only the first step of the control is implemented.

This approach enables a more adaptable and quick-responding control strategy and also
helps overcome the limitations of unstable solutions and a lack of feedback [8]. Figure E.1
illustrates a simplified layout of MPC strategy.

Figure E.1: Simplified layout of MPC strategy
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E.4 Model Predictive Control of PCMs in HVAC systems

The control strategy for HVAC systems that utilize PCMs requires the monitoring of the
temperature of the PCM and the regulation of the flow of heat to and from it. This is typ-
ically accomplished through the manipulation of a heat transfer fluid, such as water or a
refrigerant that is in thermal communication with the PCM. The control algorithm should
take into account not only the properties of the PCM material, but also the overall perfor-
mance, energy consumption, and thermal comfort of the building’s inhabitants.

A research by Gholamibozanjani et.al [75] presents the results of a numerical study that
investigated the use of a MPC strategy to control the heating process using a heat exchanger
containing PCM and a solar air collector. The study also looked at the effect of different
parameters such as prediction horizon, time step, PCM content in the heat exchanger, and
simulation length on the performance of the MPC strategy. The results showed that a greater
prediction horizon, smaller time step and a higher amount of PCM content in the heat ex-
changer were more beneficial in terms of cost savings for electricity.

The research by Serale et.al [76] presents an innovative MPC algorithm for managing en-
ergy systems based on latent heat exchange using PCMs. The algorithm incorporates the
correlation of experimental specific heat capacity data of the PCM slurry as a piecewise-
affine function [76]. The results of the study showed that the MPC algorithm was able
to optimize a defined objective function by anticipating the building energy demand and
weather disturbances, resulting in energy savings of up to 19.2% compared to a rule-based
controller.

E.5 Feasibility of MPC

MPC is well-suited for this research as the control decision should not only consider the
present input parameters, but also the future states. Each model used in MPC comprises
of the dynamics, weather conditions, occupancy, and disturbances at each step [73]. The
prediction model can be created using the modeling approaches discussed in the previous
section.

The feasibility of the optimization is constrained by the limitations of the actuators and other
constraints. The complexity of the optimization is determined by the objective function, con-
straints, and the complexity of the model. It is important to note that complex optimization
problems are usually computationally expensive, thus there is a trade-off between control
performance and computational effort.
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E.6 Selection of objectives and constraints

The objective function represents the ultimate goal of the optimization process. The func-
tion is minimized in order to achieve convergence toward the goal. In the context of indoor
climate control, the goals are often related to occupants’ comfort, such as air temperature,
air exchange rates, and the relative humidity of air. Alternatively, the energy consumption
can also serve as an objective function in the optimization problem. Numerous studies have
demonstrated that minimizing the energy consumption while ensuring that comfort criteria
are maintained as constraints, is an effective method to formulate the MPC problem [77].

In MPC, constraints can be broadly classified into two categories: hard constraints and soft
constraints. Hard constraints are limiting factors that must be adhered to in order to ob-
tain a feasible solution. For instance, in building control applications, hard constraints may
include temperature limits and maximum heating/cooling power limits. These constraints
are considered mandatory and must be satisfied for the MPC algorithm to be considered
successful. Whereas soft constraints are objectives or preferences that the MPC algorithm
should aim to satisfy but can be traded off with other objectives. For instance, soft con-
straints in building control applications can be occupant’s comfort or energy efficiency of
the HVAC components.

However, there is no universally optimal objective function or constraint for a given MPC
problem as every system has unique dynamics and end-goal. Literature has presented vari-
ous tried and tested methods that can be used. Therefore, one can experiment with a range
of combinations of objectives and constraints to determine the most effective solution. It
is worth noting that the choice of algorithm, methodologies and tuning method may vary
depending on the specific application, the complexity of the system, the computational re-
sources available and other factors.

E.7 MPC problem classes

In this section, an overview of the most significant classes of MPC problems will be pre-
sented. These MPC problems are differentiated by the type and structure of the correspond-
ing optimization problem that must be solved through direct methods. Direct methods, in
this context, refer to the process of translating the Optimal Control Problem into an Opti-
mization Problem and subsequently obtaining its solution utilizing numerical optimization
techniques[8].

E.7.1 Linear MPC

Linear model predictive control (LMPC) is a widely used technique in which the prediction
model and the constraints are linear, and the objective function is either linear or quadratic.
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One of the key advantages of linear MPC is its ease of integration through recursive sub-
stitution of consecutive state variables into large prediction matrices [8]. The prediction
matrix is then incorporated into the objective function to form a Hessian matrix, and for
the optimization problem to be convex, the Hessian matrix should be positive semi-definite
[78]. The computational complexity of this dense linear optimization problem scales with
f (N3n3

u) where N is the control horizon and nu is the number of inputs [79].

Linear MPC has been widely researched in both academic and industrial settings due to
its efficient implementation and scalability. Studies have demonstrated the ability to imple-
ment linear MPC with thousands of parameters and optimization variables [80]. However,
it should be noted that heat transfer phenomena are non-linear in nature and various meth-
ods have been proposed to linearize them with a high degree of accuracy [81]. Due to its
efficiency and scalability, Linear MPC is considered to be a viable option for indoor climate
control.

E.7.2 Nonlinear MPC

In Nonlinear model predictive control (NLMPC), either the prediction model or the objective
function is nonlinear. This can be the case when modeling heat transfer phenomena, as they
can be non-linear (such as radiation and convection), and many research studies have used
non-linear models to develop accurate building energy models.

Unlike Linear MPC, the optimization problem in Nonlinear MPC is not convex, which means
that the solution space contains multiple local minima. Therefore, the solvers used for lin-
ear optimization problems can no longer ensure that the solution is a global minimum [78].
However, advanced solvers have been developed, such as fminbbnd, fminsearch and fmin-
con in MATLAB, which can start from multiple initial points and ensure that the solution
found is a global minimum.

Nonlinear MPC has great potential in the building sector as it can provide improved ac-
curacy over linear models [82]. However, the main disadvantage is the high computational
demand. Nevertheless, Nonlinear MPCs are gaining increasing importance in this sector due
to their improved accuracy [83] [84]. Non-linear MPC is chosen to capture the non-linearities
in irradiances and convection relations.

E.7.3 MPC solvers

The use of solvers in commercial applications has seen significant advancements in recent
years, with a variety of techniques being utilized to address optimization problems of vary-
ing complexity and scale. These are briefly discussed below:

• Mixed-Integer Nonlinear Programming (MINLP): MINLP is a type of optimization
that combines nonlinear programming with integer constraints, which restrict some or
all of the decision variables to integer values.

Master of Science Thesis 110 N.Rajappa
5317703



E.8. CONCLUSION

• Nonlinear Programming (NLP): NLP is a type of optimization used for solving objec-
tive functions that are not linear, subject to nonlinear constraints.

• Sequential quadratic programming (SQP): SQP is an iterative optimization algorithm
that solves non-linear constrained optimization problems by approximating the objec-
tive function and constraints with quadratic models.

• fminunc: This function is used for solving unconstrained optimization problems with
smooth objective functions.

• fmincon: This function is used for solving constrained optimization problems with
linear or nonlinear constraints.

• patternsearch: This function is used for finding the global minimum of a function
without requiring gradient information. It is suitable for optimization problems with
non-smooth and discontinuous objective functions.

• Genetic Algorithm (GA): This function is used for solving optimization problems with
discrete variables, integer variables, or mixed-integer variables. It is suitable for global
optimization problems.

• fgoalattain: This function is used for solving multi-objective optimization problems
where the objective functions need to be minimized or maximized subject to con-
straints.

Since the number of variables in the optimization problem is relatively small, with fewer
than a hundred variables, fmincon is a suitable optimization algorithm to use because it can
handle both linear and non-linear constraints and provide faster convergence compared to
other solvers. It is particularly useful when the optimization problem is non-linear with
constraints that can be expressed as inequalities and is highly flexible and provides a variety
of options for controlling the optimization process. Moreover, fmincon is a well-established
solver that has been extensively tested, and is known for its robustness.

E.8 Conclusion

In recent decades, extensive research efforts have focused on optimizing the control of BEMS
by implementing advanced control strategies, such as MPC. MPC is favored due to its capa-
bility to consider the future state of the system and optimize control signals based on pre-
dicted disturbances. Various combinations of hard constraints and optimization functions
have been investigated and evaluated in the literature. However, it is widely recognized that
there is no universal solution that can be applied to all scenarios.

Given that convection and radiation terms introduce non-linearities in the equations, a non-
linear model of the building was deemed necessary to effectively capture its thermodynamic
behavior. As the number of variables in the optimization problem is relatively small, with
fewer than a hundred variables, fmincon is a suitable optimization algorithm to employ.
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