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Abstract

This thesis evaluates the pass-through of the 2001 and 2012 Dutch Value Added Tax
(VAT) increases to customer prices using a difference-in-differences model. To this end,
the first difference and feasible generalised least squares estimators are introduced. Con-
trary to the conventional pooled OLS estimator, these estimators always show significant
causal effects for both VAT hikes. These also dramatically improve the accuracy of the
estimates compared to earlier research on the incidence of VAT. For the 2012 tax in-
crease, the null hypothesis of full pass through is even rejected. This result is a novelty
in the econometric literature. Even in more general settings, the estimators used in this
thesis prove far superior over conventional causal estimation techniques of difference-in-
differences models.

Keywords: efficient linear regression, panel data, first difference, difference-in-differences,
value added tax
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Chapter 1

Introduction

Standard macroeconomic models suggest that taxation has a major disruptive effect on
the economy (Stiglitz, 1988, p. 390). The Value Added Tax (hereinafter referred to as:
VAT) is progressively winning importance in public finance. The VAT is best described
as a tax on consumption. Economists stress the fact that consumption taxes tend to
have a less disruptive effect on the economy than income taxes. Hence, a world wide shift
from income taxes to the VAT can be observed (Sanger and Thomas, 2018). E.g., the
Netherlands increased its standard rate from 17.5% to 19% in 2001 and to 21% in 2012.
Furthermore, the Dutch government considers the increase of the reduced rate from 6%
to 9%. These increases lead to all kind of economic impact questions, among which
the question to what extent the VAT increases are passed through on consumer prices
remains unclear. Naturally, research has been done on this matter but the conclusions are
ambiguous. The Bureau of Economic Policy Analysis (CPB) for example suggests that
we cannot reject the hypothesis that the 2001 and 2012 VAT increases were completely
passed through to consumer prices (Vrijburg, Mellens, and Dijkstra, 2014). Benedek,
de Mooij, Keen, and Wingender (2015) came to the same conclusion in a more general
setting.

The statistical models used in these papers are often based on the Difference-in-Differences
(DD) model. These models aim to capture a causal treatment effect of a policy change
over a certain time period - in this case the VAT pass through. DD models are com-
monly used in econometric literature, yet Bertrand, Duflo, and Mullainathan (2004)
suggest that the standard errors reported by most estimators are incorrect due to the
presence of strong autocorrelation in the error term. In particular, this could lead to
misleading inference. They recommend using robust standard errors that take the of
serial correlation (also referred to as autocorrelation) into account. However, these can
be substantially bigger than their non-robust counterparts. The non-rejection of the full
pass through hypothesis in the paper of Vrijburg et al. (2014) and Benedek et al. (2015)
was largely due to the fact that the estimates were accompanied with very high stan-
dard errors. This is likely a sign that the estimators were inefficient and consequently
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produced inaccurate estimates.

1.1 Research question

This thesis deals with linear panel data models. It is largely known fact that the OLS
estimator is only efficient provided the error term is serially uncorrelated and the vari-
ances are equal among the cross sectional units (homoscedasticity). In all other cases,
OLS is not guaranteed to be efficient and other linear estimator may perform better.
As noted in the introduction, a solution that is often used in practice is the use of OLS
accompanied with serial correlation robust standard errors. Robust standard errors may
only be applied when semi-parametric linear regression methods are used.1 This thesis
further investigates other semi-parametric linear regression estimators that are more ef-
ficient than the OLS estimator in presence of serial correlation and/or unequal variances
among the cross sectional units (heteroscedasticity). These estimators will be used to
see if they increase the accuracy of the estimates for the Dutch 2001 and 2012 VAT
increases. In particular, we want to see if these estimators lead to the rejection of the
null hypothesis that the VAT was fully passed to consumer prices. This leads to the
formulation of the following research question:

Do semi-parametric linear regression estimators that are efficient in presence
of serial correlation lead to the rejection of the hypothesis that the Dutch
2001 and 2012 VAT-increases were fully passed through to consumer prices?

Throughout this thesis, we restrict the analysis to the class of linear Generalised Method
of Moments (GMM) estimators. This broad class of estimators only require appropriate
moment conditions rather than the full specification of distributions. This is often con-
sidered a semi-parametric approach (e.g. Wooldridge, 2001), but Robert (2007) argues
that such statistical methods qualify as non-parametric. However, non-parametric re-
gression often refers to kernel density regression techniques. That is, qualifying the class
of GMM estimators as non-parametric may cause confusion and so the class of GMM
estimators is qualified as semi-parametric.

1.2 Scientific significance

The Difference-in-Differences model is among the most commonly used causal estima-
tion techniques in econometrics. The DD is easy to implement and circumvents many
endogeneity problems which would otherwise cause OLS to be inconsistent. Given the
fact that these models are often heavily affected by serial correlation, most researchers
apply the OLS estimator and accompany them with serial correlation robust standard
error. This most commonly applied solution proposed by Bertrand et al. (2004) is far
from satisfactory.2 While it leads to a decrease of type I errors (rejecting a true null
hypothesis), it also leads to a dramatic increase of type II errors (failing to reject a false

1In a Maximum Likelihood context, this is an indication of a model misspecification.
2They proposed more solutions, but these are not commonly implemented.
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null hypothesis). This thesis investigates estimators that are efficient in presence of se-
rial correlation. Such estimators simultaneously reduce type I errors without increasing
type II errors. This is a far superior solution compared to OLS accompanied with serial
correlation robust standard errors.

The estimators that are derived in this thesis will be used to capture the causal effect
of the 2001 and 2012 VAT increases on consumer prices. Due to the fact that earlier
research used inefficient estimators, this thesis will derive a more decisive answer on
whether these VAT hikes were fully passed through to consumer prices. This gives
policymakers extra tools for designing an efficient system of consumption taxes.

1.3 Structure and main findings

This thesis is roughly subdevided in two parts. The first part discusses the theoretical
linear regression methods for panel data models. In the second part, these methods are
applied on the incidence of VAT. The following topics are discussed to derive an answer
on the research question:

Part I

Chapter 2 introduces the general framework of this thesis. The generalised method of
moments estimator and its properties will be introduced and compared with maximum
likelihood estimation (MLE). Furthermore, some general conventions that will be used
throughout this thesis are introduced and the classical linear regression assumptions are
revisited.

Extending these results to a regression framework, chapter 3 discusses non-parametric
transformations of the OLS estimator that are efficient under alternative formulations of
the classical assumptions. While the finite sample properties under the Gauss-Markov
assumptions are discussed, special emphasis is placed on the asymptotic properties of
these estimators. It appears that many desirable properties of these estimators can
be derived asymptotically under assumptions that are considerably weaker than the
ones needed for the finite sample properties. This includes an asymptotic efficiency
result. These estimators are compared with their fully parametric Bayesian or maximum
likelihood analogue.

These results are extended in chapter 4 for parametric transformations of the OLS
estimator. While these estimators allow a more accurate specification of dependence
structures, it also appears that these estimators in general violate the Gauss-Markov
assumptions. However, they do preserve some asymptotic efficiency results. Because
efficiency strongly relies on the correct specification of the model, chapter 5 introduces
some specification tests that are useful in determining which model is most appropriate
to use. This chapter also gives a brief introduction in causal estimation, where special
emphasis is placed the difference-in-differences model. It appears that these models are
usually affected by heavy serial dependence, reducing the efficiency of the usual OLS
estimator. Given the theory and simulations made in the previous chapters, estimators
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are proposed that are likely to perform well for causal estimation using difference-in-
differences.

Part II

Chapter 6 introduces the legal and economic concepts. We will need those results to
fully justify the choices made in the causal regression framework. This chapter starts
by discussing the Dutch VAT act after which the economic theory behind the incidence
of VAT is discussed. In particular, a theoretic economic model is derived that is used
to formulate some hypotheses. This model provides for example a relative theoretical
upper bound for the VAT pass through.

This theory is then used to make causal inference on the tax incidence of the 2001
and 2012 VAT hikes, which is done in chapter 7. These results are compared with the
outcome of the CPB anaysis (Vrijburg et al., 2014). It appears that most of their results
are only significant at a 10% level. Even though this thesis adheres a 5% bound, we can
reproduce most of their findings at a 1% level. Furthermore, some of their conclusions
are rejected. This includes the rejection of the null hypothesis that the 2012 VAT was
fully passed through to consumer prices.

1.4 Basic statistics and probability

While the reader is assumed to be familiar with basic probablistic and statistics, some
of the necessary preliminaries will be reconsidered. It is especially recommended to read
paragraph 1.4.1 for the short review of semi-parametric statistical methods.

Definition 1.4.1 (Conditional Expected Value). Let X : Ω → R be an integrable
random variable on (Ω,F ,P). Let A ⊂ F be a sigma-algebra. Then the conditional
expectation of X w.r.t. A, denoted as E[X|A] is the unique A-measurable random
variable satisfying ∫

A
XdP =

∫
A
E[X|A]dP, A ∈ A (1.1)

In this thesis the law of iterated expectations will often be used - the theorem and proof
will be stated below:

Theorem 1.4.1 (Law of Iterated Expectations, LIE). Let X be an integrable random
variable defined on (Ω,F ,P). Let A ⊂ F be a σ-algebra. Then

E[E[X|A]] = E[X] (1.2)

Proof. Note that Ω ∈ A and simply pick A = Ω, i.e.
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E[X] =

∫
Ω
XdP

=

∫
Ω
E[X|A]dP

= E[E[X|A]]

This thesis heavily relies on asymptotic theory, hence the following convergence notions
are important.

Definition 1.4.2. Let {Xn}n∈N be a sequence of random variables defined on the prob-
ability space (Ω,F ,P).

1. The sequence of random variables {Xn}n∈N is said to converge almost surely to
a random variable X iff

P[ lim
n→∞

Xn = X] = 1 (1.3)

Notation: Xn
a.s.→ X or as-limn→∞Xn = X.

2. The sequence of random variables {Xn}n∈N is said to converge in probability to
a random variable X iff

∀ε > 0 : lim
n→∞

P[|Xn −X| > ε] = 0 (1.4)

Notation: Xn
p→ X or p-limn→∞Xn = X.

3. The sequence of random variables {Xn}n∈N is said to converge in distribution
to a random variable X iff

∀x ∈ R at which F is continuous lim
n→∞

FXn (x) = FX (x) (1.5)

Where FXn and FX represent the cumulative distribution functions of Xn and X

respectively. Notation: Xn
d→ X or d-limn→∞Xn = X.

Theorem 1.4.2 (Law of Large Numbers, LLN). Let {Xn}n∈N be a sequence of iid
random variables. Then

X̄n :=
1

n

 N∑
i=1

Xi

 a.s.→ E[Xi] (1.6)

Theorem 1.4.3 (Central Limit Theorem, CLT ). Let {XN}N∈N, XN ∈ RT be a se-
quence of iid random variables with E[XN ] = 0 and E[XNX

T
N ] <∞. Then,

N−1/2
N∑
i=1

Xi
d→ N (0,D) (1.7)

9



where D
T×T

= E[XNX
T
N ].

Theorem 1.4.4 (Continuous Mapping Theorem, CMT - Mann and Wald (1943)). Let
{Xn}n∈N be a K-dimensional sequence of random vectors. If g : RK → RL is a contin-
uous function, then:

Xn
a.s.→ X =⇒ g (Xn)

a.s.→ g (X) (1.8)

1.4.1 Basic statistical inference

Definition 1.4.3. Let θ̂ be an estimator for θ, then:

1. θ̂ is said to be unbiased when E[θ̂] = θ;

2. θ̂ is said to be weakly consistent when p-limn→∞ θ̂ = θ;

3. θ̂ is said to be strongly consistent when as-limn→∞ θ̂ = θ.

This thesis focusses on strongly consistent estimators. They will simply be referred to
as consistent estimators.

Definition 1.4.4 (Asymptotic normality of an estimator). Let {θ̂N}N∈N, θ̂N ∈ RK be
a sequence of estimators for θ ∈ RK .

(i) If √
N
(
θ̂N − θ

)
d→ N (0,V) (1.9)

then θ̂N is said to be
√

N-asymptotically normally distributed.

(ii) The matrix V is called the asymptotic variance-covariance matrix, which is
a positive semi-definite matrix.

Notation: V = Avar

(√
N
(
θ̂N − θ

))
.

(iii) Assume we have a consistent estimator V̂N for V. Then the asymptotic stan-
dard error of θ̂Ni , i = 1, . . . ,K is defined as

se
(
θ̂Ni

)
=
(
V̂Ni,i/N

)1/2
(1.10)

(iv) The asymptotic variance of the estimator θ̂N is defined as Avar
(
θ̂N

)
= V

N .

The expression for the asymptotic variance of θ̂N may be confusion due to devision by
N . The name ’asymptotic variance’ should in particular not be taken literally. Assume

for the moment that θ̂N
a.s.→ θ. Since θ is non-stochastic, Avar

(
θ̂N

)
a.s.→ 0. The definition

of asymptotic variance is better seen as the large sample behaviour of the variance.
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Efficiency

The question often arrises whether an estimator is efficient compared to other estimators.
For this thesis, the concept of relative efficiency will play a central role in this thesis.

Definition 1.4.5 (Efficient estimators). Let θ̂ be a consistent and a
√
N -asymptotically

normally distributed estimator for θ with Avar
(
θ̂
)

= V
N .

(i) Let θ̄ be another
√
N -asymptotically normally distributed estimator for θ with

Avar
(
θ̄
)

= D
N . θ̂ is said to be asymptotically efficient relative to θ̄ if

D−V (1.11)

is a positive semi-definite (PSD) matrix (Wooldridge, 2001, p. 42).

(ii) An estimator θ̂ is said to be efficient for a finite sample if it is unbiased and,
for any other estimator θ̄,

Var
(
θ̄
)
−Var

(
θ̂
)

(1.12)

is a PSD matrix.

1.4.2 Hypothesis Testing

This section introduces the asymptotic theory for hypothesis testing for a certain pa-
rameter θ

K×1
. Let θ̂

K×1
be a consistent estimator for θ s.t.

√
N
(
θ̂ − θ

)
d→ N (0,V) (1.13)

where V denotes a positive definite asymptotic variance-covariance matrix.

Wald Statistic

Wald (1939) introduced a statistic that is useful to test hypotheses in a semi-parametric
setting where no distributions have been prespecified (a likelihood ratio test is infeasi-
ble). As a preliminary remark, the Wald test greatly relies on asymptotics and may be
unreliable for small samples.

Consider testing J hypotheses on the K-parameters in θ̂, which are denoted by a (non-
stochastic) matrix R

J×K
. That is, we wish to test

H0 = Rθ = r

H1 = Rθ 6= r

For which the test statistic is given by

WN =
(√

NRθ̂ − r
)T (

RVRT
)−1 (√

NRθ̂ − r
)

d→
H0

χ2
J . (1.14)
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If the variance-covariance matrix V is unknown, it can be replaced by a consistent
estimator of V, which will be denoted as V̂, in which case it is useful to rewrite the
Wald statistic in equation 1.14 as

WN =
(
Rθ̂ − r

)T (
R

V̂

N
RT

)−1 (
Rθ̂ − r

)
d→
H0

χ2
J (1.15)

Let α be the significance level (in this thesis α = 0.05), then the H0 hypothesis is rejected
if for a critical region Cα

α = PH0 [WN > Cα] = 1− PH0 [WN ≤ cα]
d→
H0

1− F (Cα)

where F denotes the CDF of a χ2
J distribution. This result suggests

Cα = F−1 (1− α) (1.16)

And so, H0 is rejected if
WN > Cα (1.17)

Theorem 1.4.5. The Wald-statistic is asymptotically equivalent to the Likelihood Ratio
test.

Proof. See Atkison and Lawrance, 1983.

Example 1.4.1 (Wald F-test). Assume we are considering the regression model

yi
T×1

= Xi
T×K

β
K×1

+ εi
T×1

, (1.18)

where β = [α, θ] is the parameter to be estimated, α the intercept and Xi is a design
matrix. The F-test tests the hypothesis

H0 : θ = 0

H1 : θ 6= 0

i.e. under the null hypothesis, the true model merely consists of the intercept α while
under the alternative hypothesis, θ is significantly different from 0. The Wald F-test
uses

R = IK−1

r
K−1×1

= [0, 0, · · · , 0]T
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Example 1.4.2 (Wald t-test). We consider again the regression model described in
equation 1.18. Let βi, i = 1, . . . , k be i-th component of β. The t-test tests the hypoth-
esis

H0 : βi = 0

H1 : βi 6= 0

i.e. under the null hypothesis, βi is not significantly different from 0. The Wald t-test
uses

R = eTi

r
K×1

= 0

where ei is a vector with a 1 on the i-th row and 0 everywhere else.

1.4.3 Bayesian Inference

Bayesian inference strongly relies on Bayes’ theorem, which will be stated here for com-
pleteness.

Theorem 1.4.6. (Bayes)

Let (Ω,F ,P) be a probability space. Let A,B ∈ F be two events. Then

P[A|B] =
P[B|A]P[A]

P[B]
(1.19)

The probability P[A] can be interpreted as the initial degree of belief for the event A.

In the previous chapters, the idea was to infer the fixed parameter θ based on observations
of the random variable X. This is based on the classical or frequentist approach to
statistics. In Bayesian statistics, the parameter θ is assumed to be a priori random.
More specifically, the Bayesian setup is given by

θ ∼ π (θ) , Prior

X|θ ∼ π
(
X|θ

)
, Likelihood

θ|X ∼ π
(
θ|X

)
Posterior

Using the Bayes’ theorem, we get

π
(
θ|x
)

=
π (θ)π

(
x|θ
)∫

Θ π (θ′)π
(
x|θ′

)
dθ′
∝ π (θ)π

(
x|θ
)

(1.20)

As per the Bernstein-von Mises theorem, Bayesian statistics is mainly justified for finite
samples. This theorem suggests that as the sample size increases, the influence of the
prior parameter reduces. That is, the posterior becomes independent of the of the prior
distribution as N →∞ (van der Vaart, 1998, p.141-142).
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Prior selection

Bayesian inference strongly relies on the selection of the priors. In this paragraph we
will provide some commonly used priors.

Non-informative priors If little to nothing is known about the prior distribution
of θ, then the prior distribution should be as uninformative as possible. That is. the
prior should affect inference as little as possible. Such priors are called non-informative,
although the this name is misleading as no prior is truely non-informative (Robert,
2007). Many non-informative priors have been proposed over the years, but Jeffreys
prior remains among the most commonly used non-informative prior in pratice.

Definition 1.4.6. (Jeffreys, 1961)

Jeffreys prior for a parameter θ ∈ Θ is given by

π (θ) ∝
√
I (θ) (1.21)

Where I (θ) represents the fisher information of θ contained in the likelihood function
π
(
y|θ
)
.

Jeffreys prior is considered to be non-informative because it is invariant under reparametri-
sation.

Conjugate Priors The posterior distribution depends on the choice of prior distribu-
tion. However, in most cases the former is intracable (van der Meulen, 2017). However,
if the prior has the same distribution as the posterior, then there exists a closed form
expression. This loose statement is formalised in the concept of conjugacy.

Definition 1.4.7. (A formalisation of the definition given in Lavine, 2014)

Let F and G denote classes of density functions for the likelihood function and the prior,
respectively. Pick π

(
y|θ
)
∈ F and π (θ) ∈ G arbitrarily. The class G of prior density

functions is said to be conjugate for the class F of likelihood functions if the posterior
density π

(
θ|y
)
∈ G.

In words, a prior for θ is said to be conjugate if the posterior has the same distribution
as the prior. A conjugate prior has the property that inference on θ can be conducted
analytically.
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Part I

Theoretical Analysis of Panel
Data
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Chapter 2

Assumption in Linear Regression
models

All linear panel data model estimators derived in this thesis are based on a common
set of assumptions. Because this thesis will use regression methods that may not be
familiar to the reader, these assumptions will be analysed. Shortly summarised, the aim
is to make reduce the amount of assumptions made compared to conventional maximum
likelihood estimation OLS. This allows for a more flexible regression design. In this
chapter, the following model problem will be considered

yi,t
R

= xi,t
1×K

β
K×1

+ εi,t
R
, i = 1, . . . , N, t = 1, . . . , T (2.1)

where N is the amount of cross-sectional units and T the amount of time periods. In
T -dimensions, the model is written as

yi
T×1

= Xi
T×K

β
K×1

+ εi
T×1

, i = 1, . . . , N (2.2)

The parameter of interest is β. Note that this is a special case of multivariate regression,
where we assume that the parameter β is common among the cross-sectional units and
time periods. The reader is assumed to be familiar with basic properties of the OLS
estimator. If this is not the case, then it may be better to read section 3.2 first and
return to this chapter afterwards.

2.1 Conventions

2.1.1 Random Sampling

Throughout this thesis, a random sampling assumption is imposed. This means that
{Xi, yi}Ni=1 is an i.i.d. sequence. In particular, this implies that {εi}Ni=1 is an i.i.d.
sequence. Given that a population model is used, the random sampling assumption can
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be described as the fact that an i.i.d. sample can be drawn from the population. This
assumption is only imposed in the cross sectional dimension of the model, no assumptions
are yet imposed on the dependence for the time dimension (also referred to as ’serial
dependence’). In particular, {xi,t, yi,t}Tt=1 may be be an arbitrarily dependent sequence.

2.1.2 Stochastic Regressors

A general convention in this thesis is that the matrix of regressors (also referred to as
’design matrix’) is assumed to be stochastic rather than fixed. In regression models, the
data used for linear regression is more often than not an outcome of a random variable.
Assuming that this data is obtained from a deterministic process would immediately lead
to a misspecification of the model. The fixed regressor assumption is usually defended
with the argument that most OLS properties do not depend on assumptions on the
regressors (Cf. Greene, 2011, p. 56 and Wooldridge, 2001, p. 9-10). While it is quite
correct that OLS results like unbiasedness, consistency and the Gauss-Markov theorem
can be derived with fixed regressors, it does pose some possible serious threats. This
thesis also discusses estimators that only have a relevant interpretation under a random
regressor assumption.

Example 2.1.1. Consider the maximum likelihood estimation of the model problem

(2.2) under the assumption εi|Xi
iid∼ N

(
0, σ2

εIT
)
. Assume now, counterfactually, that

the regressors are fixed. This means that it is automatically independent of εi and so

yi
iid∼N

(
Xiβ, σ

2
εIT

)
, i = 1, . . . , N (2.3)

i.e. apperently the normality assumption can be checked by plotting the values of yi
(and possibly rejected) while in reality only

yi|Xi
iid∼N

(
Xiβ, σ

2
εIT

)
(2.4)

holds.

2.1.3 Further conventions

Conditional expectation

The conditional expectation as in definition 1.4.1 was defined conditional on a σ-algebra.
And so, as in most literature, when E[εi|Xi] is written, it is meant to say E[εi|σ (Xi)],
where σ (Xi) is the smallest σ-algebra containing Xi.

Existence of the moment conditions

Throughout this thesis, no specific distributional assumption on Xi and εi are required.
However, it is assumed that Xi and εi are distributed in such a way that the appropriate
moments actually exist. This excludes for example that εi|Xi ∼ Cauchy (ε0, γ).
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2.2 Generalised Method of Moments

The class Generalised Method of Moments estimators proposed by Hansen (1982) is a
class of semi-parametric estimators that only require moment conditions to hold. That
is, no distributions need to be predetermined. This estimator is based on the analogy
principle rather than the likelihood principle.

Suppose the parameters θ ∈ RK is to be estimated from a matrix Zi ∈ T × L, where
L ≥ K and the true value of this parameter is θ0 ∈ RK . The GMM requires, for some
function g (Zi, θ),

E[g (Zi, θ0)] = 0 (2.5)

to hold.

The GMM solves for a quadratic form of the sample analogue of 2.5, i.e.

θ̂ = argmin
θ

 N∑
i=1

g (Zi, θ)

T Ŵ

 N∑
i=1

g (Zi, θ)

 , (2.6)

where as-limN→∞ Ŵ = W and W is positive definite.

The GMM-estimated parameters have, under some relatively weak assumptions, some
desirable properties like consistency and and asymptotic normality. In this thesis how-
ever, these properties will be proved separately for each estimator as they give a good
example on how the specific assumptions are used. It is also important to note that for
most estimators, the GMM estimator reduces to the more familiar Method of Moments
estimator. More specifically, if θ is just-identified (necessarily K = L), then for linear
regression, the Method of Moments estimator is appropriate.1

The GMM estimator described above is very general and also allows for non-linear
estimation. Since only linear models will be considered, we write equation (2.6) as

θ̂ = argmin
θ

 N∑
i=1

Zi (yi −Xiθ)

T Ŵ

 N∑
i=1

Zi (yi −Xiθ)

 . (2.7)

The GMM estimator for θ is given by (Wooldridge, 2001, p. 190)

θ̂GMM =

 N∑
i=1

XT
i ZiŴZTi Xi

−1 N∑
i=1

XT
i ZiŴZTi yi

 (2.8)

In most cases, Zi = Xi, but this is formulation is slightly more general and useful in
some cases of model misspecification.2 Assume for the moment that Zi = Xi and assume

1GMM estimation is only useful in case of Generalised Instrument Variable regression, a topic which
will be shortly touched upon.

2In case of endogeneity, we will briefly discuss this later on in this thesis.
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that all the inverses
(∑N

i=1 XT
i Xi

)−1
and Ŵ−1 exist a.s. (we will make a more careful

analysis later). In full matrix notation, the GMM estimator equals

θ̂GMM =
(
XTXŴXTX

)−1 (
XTXŴXiy

)
=
(
XTX

)−1
Ŵ−1

(
XTX

)−1 (
XTX

)
Ŵ (Xy)

=
(
XTX

)−1 (
XT y

)
which is the famous OLS estimator. In particular, it does not matter which weighting

matrix is chosen as long as Zi = Xi (in fact,
(∑N

i=1 ZTi Xi

)
being invertable is enough).

We will continue writing this as N∑
i=1

XT
i Xi

−1 N∑
i=1

XT
i yi

 (2.9)

2.2.1 Exogeneity

Exogeneity is not unambiguously defined in linear regression literature. Some authors
say that the matrix of regressors Xi is said to be exogenous if E[XT

i εi] = 0, i.e. Xi and
the error term εi are orthogonal (cf. Wooldridge, 2001). Furthermore, we assume that
E[εi] = 0. Note this is not a major assumption, since the inclusion of an intercept in
the model already guarantees that E[εi] = 0. The orthogonality definition of exogeneity
can be defended from the perspective that a consistent OLS estimator can be derived
under this rather weak assumption. However, for many practical purposes a stronger
assumption commonly called ’strict exogeneity’ is preferred over uncorrelatedness, as is
also the case in this thesis. Hence, the following definition of exogeneity shall be used in
this thesis

Definition 2.2.1 (Exogeneity and endogeneity, cf. Greene (2011)). Let Xi be a matrix
of regressors (also commonly referred to as design matrix).

1. Xi is said to be strictly exogenous if

E[εi|Xi] = 0 (2.10)

2. Xi is said to be endogenous if

E[XT
i εi] 6= 0 (2.11)

This assumption is one of the two key assumptions of linear regression (e.g. required
for consistency), but is also the most difficult one to test. If endogeneity is present,
then OLS-estimation is inconsistent and biased. In this case, (generalised) instrumental
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variables estimation (discussed in chapter 5) may be preferred, but this is generally
speaking very difficult. One way to see this is to note that endogeneity basically means
that we got the causation wrong. This could be the result of not omitting relevant
variables in the model (Cf. Greene, 2011, p. 89-93). That is, we either need to find these
variables or change the causality assumption. Since the former may be impossible due
to the fact that these variables are unobservable, many researchers tend to choose for
the latter which is what the method of instrumental variables aims to do.

2.2.2 Full rank condition

An assumption that may look trivial at first but nonetheless one of the two core assump-
tion of linear regression is the rank condition.

Definition 2.2.2 (Rank condition). The matrix of regressors Xi is said to be of full
rank if

P[rank

 N∑
i=1

XT
i Xi

 = K] = 1 (2.12)

i.e. rank
(∑N

i=1 XT
i Xi

)
a.s.
= K.

In some literature (cf. Wooldridge, 2001), the slightly weaker assumption,

rank
(
E[XT

i Xi]
)

= K, (2.13)

is imposed which suffices to derive asymptotic properties of the OLS estimator. The
rank condition defined in equation (2.12) is more natural and this assumption in prac-
tice almost never fails for the OLS estimator anyway. This condition will prove to be
challenging for some other linear estimators, but this does not depend on the formulation
of the rank condition.

2.2.3 Homoscedasticity and serial correlation

The serial uncorrelatedness and homoscedasticity of the error term variance is, contrary
to popular belief, an auxiliary assumption. That is, it is not required for the consis-
tency and unbiasedness of the OLS estimator. They are required to prove the efficiency
properties of the linear regression estimator.

Definition 2.2.3 (Efficiency assumptions). Let Xi denote the matrix of regressors and
εi the error term.

1. The variance of the error term is said to be homoscedastic if

diag
(
E[εiε

T
i |Xi]

)
= σ2

εIT , i = 1, . . . , N (2.14)
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2. The variance of the error term is said to be heteroscedastic if

diag
(
E[εiε

T
i |Xi]

)
= diag[σ2

1, σ
2
2, · · · , σ2

T ], i = 1, . . . , N (2.15)

and for at least one t and s, t 6= s, σ2
t 6= σ2

s .

3. The variance of the error term is said to be serially uncorrelated if

E[εi,tεi,s|Xi] = 0, t 6= s, t, s = 1, . . . , T (2.16)

If the variance of the error term is heteroscedastic or serially correlated, then the esti-
mates for β are still consistent (and possibly unbiased). However, the usual expression
for the standard errors is wrong as these are based on the homoscedasticity assumption.
To get around this problem, heteroscedastic and serial correlation robust estimators can
be used. These are usually, but not necessarily, larger than the non-robust standard
errors (Auld, 2012). Note that in presence of heteroscedasticity or serial correlation in
the error term, OLS is usually no longer efficient.

2.3 Maximum Likelihood Estimation

The class of maximum likelihood estimators (hereinafter also referred to as ’MLE’) is
among the most common methods to estimate linear regression models (or, more gener-
ally, statistical models).

Let π
(
yi|Xi; θ

)
3 be a likelihood function and let θ

K×1
be the estimand. Then the maxi-

mum likelihood estimator for θ equals

θ̂MLE = argmax
θ

π
(
yi|Xi; θ

)
. (2.17)

In addition to being consistent, maximum likelihood estimation in exponential family
models are asymptotically efficient (van der Meulen, 2017, p. 38)4. This is a considerably
stronger result than relative efficiency, which is usually best efficiency property that can
be proven for estimators in the class of the generalised method of moments. At the
other hand, MLE methods strongly rely on the correct specification of the model and
the distributions. That is, if a model is misspecified then MLE is often inconsistent. In
this section, some properties of the MLE estimator will be discussed that are needed to
derive the usual OLS estimator.

2.3.1 Normality of the error term

The usual OLS estimator can only be obtained provided the error εi|Xi
iid∼ N (0,Σ),

where Σ is a variance-covariance matrix. That is, if the errors are not normally dis-

3This notation is motivated by the Bayesian notation for the likelihood function.
4This is a sufficient condition, not necessary. See Wooldridge, 2001, Ch. 13
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tributed, then is some cases generalised linear models may be used provided the distri-
bution of the error term is supported. Otherwise, MLE estimators are often non-linear
and may not have a closed form expression.

2.3.2 Homoscedasticity

In the introduction about GMM-estimation for linear models it was shown that the
homoscedasticity assumption was not actually needed to derive a consistent estimator
for β. This is different in MLE estimation. That is, if the variance of the error term is

heteroscedastic, then assuming εi|Xi
iid∼N

(
0, σ2

εIT
)

is a misspecification of the model.
In this particular case, it will not cause inconsistency. At the other hand, MLE is (i) not
efficient and (ii) the reported standard errors are wrong, potentially leading to improper
inference.

2.4 Generalised Method of Moments vs. Maximum Like-
lihood Estimation

The focus on this thesis will lie on GMM-based estimators because they are more robust
to model misspecifications (more precisely formulated, the class of GMM estimators
require less model specifictions). That, however, does not mean that GMM estimators
are always more useful than MLE methods. While under appropriate assumptions the
GMM-OLS estimator can be proven to be the Best Linear Unbiased Estimator5, it does
not necessarily mean it is the Best Consistent Estimator. As noted before, that property
remains to the MLE estimator.

5Also known as the Gauss-Markov theorem.
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Chapter 3

Non-parametric transformations

So far, the basic assumptions that are made in linear regression models have been re-
visited. It was argued that the generalised method of moments provides a much more
flexible regression framework compared to maximum likelihood methods at the cost of
efficiency properties. This chapter continues developing the linear regression framework
based on the generalised method of moments. First, the pooled OLS estimator is in-
troduced. This estimator is essentially the OLS extension for panel data models. It is
also the core of this thesis since all other estimators derived in this thesis to some extent
relate to pooled OLS. This is also the reason that the properties of this estimator are
treated thorougly.

After deriving the pooled OLS estimator, the analysis turns to non-parametric transfor-
mations of this estimator. The term non-parametric transformation refers to the fact
that the transformation itself does not induce the estimation of more variance param-
eters. While pooled OLS produces unbiased and consistent estimates under relatively
weak assumptions, the transformed estimators prove to have some desirable finite sample
efficiency properties in some specific cases. That is, using such estimators may dramat-
ically improve the accuracy of the estimates compared to the ones produced by the
conventional pooled OLS estimator.

3.1 Model Problem

Throughout this chapter we consider the following linear regression model:

yi,t
R

= xi,t
1×K

β
K×1

+ εi,t
R
, i = 1, . . . , N ; t = 1, . . . , T (3.1)

where yi,t is the dependent variable, xi,t the explanatory variables, β a vector of regressors
and εi,t the error term with

εi,t = µi + vi,t. (3.2)

µi is said to be the unobserved individual specific effect and vi,t is a remainder term.
In particular, µi is time-invariant. As a T-dimensional vector, equation (3.1) can be
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rewritten as

yi
T×1

= Xi
T×K

β +

εi︷ ︸︸ ︷
~1Tµi
T×1

+ vi
T×1

, (3.3)

where ~1T represents a T -dimensional vector of ones.

3.2 Pooled Ordinary Least Squares Estimator
As mentioned in the introduction of this chapter, the pooled OLS estimator is essentially
the OLS extension for panel data. While the OLS estimator and its properties are well
known, the GMM formulation of OLS is not. The pooled OLS forms the basis of all other
estimators derived in this thesis and it is consequently important that all properties are
understood.

3.2.1 Finite Sample properties

This paragraph establishes the finite sample properties of the pooled OLS estimator.
Caution must be paid to the fact that the assumptions under which these properties can
be derived are considerably stronger than under which similar asymptotic properties can
be derived.

• Assumption F.POLS.1: E[εi|{Xj}Nj=1] = 0

• Assumption F.POLS.2: P[rank
(∑N

i=1 XT
i Xi

)
= K] = 1

• Assumption F.POLS.3: E[εiε
T
i |{Xj}Nj=1] = σ2

εIT

In this finite sample analysis of the pooled OLS estimator, we want to derive the results
conditional on {Xi}Ni=1 (e.g. conditional unbiasedness). These properties are due to
the law of iterated expectations stronger than their unconditional counterparts. It is

important to note that assumption F.POLS.2 can be attenuated to rank
(
E[XT

i Xi]
)

= K

if we are satisfied with unconditional results. The goal of this paragraph is to derive
the famous Gauss-Markov theorem. This theorem basically states that the pooled OLS
estimator is the Best Linear Unbiased Estimator for β̂.

Pooled OLS Estimator as a GMM estimator

The assumptions formulated above suggest the use of a Generalised Method of Moments
estimator. We have seen that under assumption F.POLS.1, the GMM estimator is
invariant under the choice of the weighting matrix. F.POLS.1 implies that εi and Xi

are orthogonal,

E[XT
i εi] = E[XT

i E[εi|{Xi}Ni=1]]

= E[XiE[0]]

= 0
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so in particular,
E[XT

i (yi −Xiβ)] = 0 (3.4)

the analogy principle suggests using the sample average to estimate β

1

N

N∑
i=1

Xi

(
yi −Xiβ̂

)
= 0. (3.5)

Solving for β̂ results in the pooled OLS estimator,

β̂POLS =

 N∑
i=1

XT
i Xi

−1 N∑
i=1

XT
i yi

 , (3.6)

where
(∑N

i=1 XT
i Xi

)−1
exists a.s. due to assumption F.POLS.2.

Unbiasedness

The pooled OLS estimator is conditionally unbiased under assumptions F.POLS.1 and
F.POLS.2. Indeed,

E


 N∑
i=1

XT
i Xi

−1 N∑
i=1

XT
i yi

 |{Xi}Ni=1

 LIE
= β +

 N∑
i=1

XT
i Xi

−1

×

 N∑
i=1

XT
i

�
��

�
��
�*0

E[εi

∣∣∣∣{Xi}Ni=1]


which implies that, conditional on {Xj}Nj=1, β̂POLS is unbiased. This property is also
preserved unconditionally due to the law of iterated expectations:

E[β̂POLS ] = E[E[β̂POLS |{Xi}Ni=1]] = E[β]

= β

so under F.POLS.1-F.POLS.2, β̂ is also unconditionally unbiased.

25



Variance

Under assumptions F.POLS.1 and F.POLS.2, the conditional variance-covariance matrix
of β̂POLS is given by

Var
(
β̂|{Xi}Ni=1

)
= Var

β +

 N∑
i=1

XT
i Xi

−1 N∑
i=1

XT
i εi

∣∣∣∣{Xi}Ni=1


= E

[ N∑
i=1

XT
i Xi

−1 N∑
i=1

XT
i εi

 N∑
i=1

εTi Xi

 N∑
i=1

XT
i Xi

−1 ∣∣∣∣{Xi}Ni=1

]

RS
=

 N∑
i=1

XT
i Xi

−1 N∑
i=1

XT
i E
[
εiε

T
i |{Xi}Ni=1

]
Xi

 N∑
i=1

XT
i Xi

−1

This expression of the finite sample variance matrix is valid in absence of assumption
F.POLS.3. That is, no restrictions have been imposed on the variance matrix. It is
consequently robust to arbitrary serial correlation and heteroscedasticity (cf. Arel-
lano, 1987). Under assumption F.POLS.3, this matrix reduces to the familiar variance-
covariance matrix of the OLS estimator,

σ2
ε

 N∑
i=1

XT
i Xi

−1

(3.7)

The unconditional variance-covariance matrix of the POLS-estimator is obtained by the
law of total variance.

Var
(
β̂
)

= σ2
εE


 N∑
i=1

XT
i Xi

−1
 (3.8)

where we used that Var
(
E[β̂|{X}Ni=1]

)
= 0 due to the unbiasedness of the pooled OLS

esimator.

The Gaus-Markov Theorem

The Gauss-Markov theorem proves an efficiency property of the pooled OLS estimator.
This theorem states that no other linear unbiased estimator achieves a lower variance. A
more precise statement is given in theorem 3.2.1. The Gauss-Markov theorem is usually
proved under a fixed regressor assumption. If stochastic regressors are assumed, then
the Gauss-Markov theorem is commonly called the conditional Gauss-Markov theorem.
It is important to note that the Gauss-Markov theorem strongly relies on assumption
F.POLS.3, which was not needed to derive the unbiasedness of the POLS estimator.

26



Theorem 3.2.1 (Gauss-Markov). Assume assumptions F.POLS.1-F.POLS.3 hold. if β̃
is another linear unbiased estimator of β, then, conditional on {Xi}Ni=1,

Var
(
β̃|{Xi}Ni=1

)
−Var

(
β̂|{Xi}Ni=1

)
(3.9)

is a positive semidefinite matrix. That is to say, the pooled OLS estimator is the Best
Linear Unbiased Estimator (BLUE) conditionally on {Xi}Ni=1.

Proof. Let β̄ be another estimator for β given by

β̄ =
N∑
i=1

Ci
K×T

yi. (3.10)

This estimator is not necessarily unbiased. To be unbiased, it must satisfy

N∑
i=1

CiXi = IK .

To see this, note

E

 N∑
i=1

Ciyi|{Xi}Ni=1

 =E

 N∑
i=1

CiXi + Ciεi|{Xi}Ni=1


F.POLS.1

=

 N∑
i=1

CiXi

β

and so indeed,
∑N

i=1 CiXi = IK for β̄ to be unbiased.

Continuing the analysis, consider the (finite) variance of β̄,

Var

 N∑
i=1

Ciyi|{Xi}Ni=1

 =

N∑
i=1

Ci Var
(
εi|{Xi}Ni=1

)
CT
i

= σ2
ε

N∑
i=1

CiC
T
i (3.11)

Define Di = Ci −
(∑N

i=1 XT
i Xi

)−1
Xi, or, equivalently,

Ci = Di +

 N∑
i=1

XT
i Xi

−1

Xi. (3.12)
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Equation 3.11 becomes

σ2
ε

N∑
i=1

CiC
T
i = σ2

ε

N∑
i=1

Di +

 N∑
i=1

XT
i Xi

−1

Xi


Di +

 N∑
i=1

XT
i Xi

−1

XT
i


T

= σ2
ε

N∑
i=1

DiD
T
i + DiX

T
i

 N∑
i=1

XT
i XT

i

−1


(∗)
= σ2

ε

N∑
i=1

DiD
T
i +

���
���

���
���

2DiXi

 N∑
i=1

XT
i Xi

−1

+

∑
i=1

XT
i Xi

−1

= Var
(
β̂|{Xi}Ni=1

)
+ σ2

ε

N∑
i=1

DiD
T
i

(*) follows from the fact that
∑N

i=1 DiXi = 0. Noting that
∑N

i=1 DiD
T
i is a positive

semi-definite matrix, it also follows that

Var
(
β̄|{Xi}Ni=1

)
−Var

(
β̂|{Xi}Ni=1

)
is a positive semi-definite matrix. As required.

As noted in the introduction on the Gauss-Markov theorem, this proof strongly relied
on assumption F.POLS.3. If F.POLS.3 fails, then the OLS estimator is not necessarily
BLUE. There does exist an estimator that preserves the Gauss-Markov property even
when assumption F.POLS.3 fails, which will be discussed later on.

The Gauss-Markov has some strengths and weaknesses. A strength of the Gauss-Markov
theorem is that it is the Best Linear Unbiased Estimator for finite samples. Usually, com-
parable results for general estimators can only be derived asymptotically. For example,
MLE estimation only guarantees, under some weak assumptions, that the estimator is
asymptotically efficient. A weakness of the Gauss-Markov theorem is that it only proves
that the POLS estimator is the best linear unbiased estimator. That is, it does not
rule out that there may exist non-linear unbiased estimators with smaller finite sample
variances.

3.2.2 Asymptotic properties

This paragraph follows chapter 7 of Wooldridge (2001). To derive a consistent OLS
estimator for β, the following assumptions are imposed (these are slightly reformulated
from Wooldridge (2001)),

• Assumption A.POLS.1: E[XT
i εi] = 0, i = 1, . . . , N
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• Assumption A.POLS.2: rank
(
E[XT

i Xi]
)

= K i = 1, . . . , N

• Assumption A.POLS.3: E[εiε
T
i |Xi] = ITσ

2
ε , i = 1, . . . , N

Assumption A.POLS.1 is the weakest assumption possible to obtain a consistent esti-
mator for β. Assumption A.POLS.2 may seem trivial, because it can only fail if Xi has
linearly dependent rows (which is usually not the case). In fact, this assumption is often
omitted in text books. This assumption is included in this thesis because it will prove
to be restrictive for other estimators. It should be noted that assumption A.POLS.1
is insufficient to derive the unbiasedness of the pooled OLS estimator - the stronger
assumption F.POLS.1 is required for that.

Consistency

The pooled OLS estimator consistently estimates β̂ under assumption A.POLS.1 and
A.POLS.2. In particular, we do not need assumption A.POLS.3 to derive the consistency
of this estimator.

Theorem 3.2.2. Under A.POLS.1 and A.POLS.2, pooled OLS is consistent. That is,

as-lim
n→∞

β̂POLS = β (3.13)

Proof.

as-lim
n→∞

 n∑
i=1

XT
i Xi

−1 n∑
i=1

XT
i yi


=β + as-lim

n→∞

 n∑
i=1

XT
i Xi

−1 n∑
i=1

XT
i εi


CMT

= β +

as-lim
n→∞

1

n

n∑
i=1

XT
i Xi

−1as-lim
n→∞

1

n

n∑
i=1

XT
i εi


=β + E[XT

i Xi]
−1︸ ︷︷ ︸

A.POLS.2

��
���:0

E[XT
i εi]︸ ︷︷ ︸

A.POLS.1

=β

Consistency is generally considered a minimum property an estimator should satisfy for
asymptotic inference. Consistency for example does not imply unbiasedness (’asymp-
totic’ pooled OLS is an example). The converse is neither true but we will not see any
example of that in this thesis.
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Asymptotic variance and normality

Even though no distributions were specified so far, the Central Limit Theorem in combi-
nation with the random sampling assumption does provide the

√
N -asymptotic normality

of the pooled OLS estimator. As noted before, assumption A.POLS.3 is an auxiliary
assumption. It was not needed to prove consistency and will not be needed to prove the√
N -normality of the Pooled OLS estimator. This is a useful property, as assumption

A.POLS.3 is rarely met in practice (i.e. heteroscedasticity and/or serial correlation in
the error term). Failure of this assumption implies that the regular standard errors,
which rely on assumption A.POLS.3, are incorrect. This affects reliable inference in the
linear model. White (1984) provided an expression for the asymptotic variance that is
robust to general heteroscedasticity. This result was extended by Arellano (1987) to take
arbitrary serial correlation into account. The latter result will be derived here.

Theorem 3.2.3. Assume assumptions A.POLS.1 and A.POLS.2 hold, then

1. The pooled OLS estimator is
√
N asymptotically normally distributed, i.e.

√
N
(
β̂POLS − β

)
d→ N

(
0,A−1BA−1

)
(3.14)

2. The asymptotic variance of
√
N
(
β̂POLS − β

)
is given by

Avar

(√
N
(
β̂POLS − β

))
= A−1BA−1 (3.15)

where B = Var[XT
i εi] and A = E[XT

i Xi]

Proof. (For an alternative proof, see Wooldridge, 2001).

Recall

√
N
(
β̂POLS − β

)
=

 1

N

N∑
i=1

XT
i Xi

−1 1√
N

N∑
i=1

XT
i εi

 (3.16)

1. The convergence in distribution follows from the fact that

d-lim
N→∞

√
N
(
β̂POLS − β

)
= d-lim

N→∞

 1

N

N∑
i=1

XT
i Xi

−1 1√
N

N∑
i=1

XT
i εi


CMT

= d-lim
N→∞

1√
N

N∑
i=1

A−1XT
i εi

CLT
= N

(
0,A−1BA−1

)
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where the Central Limit Theorem can be applied due to the random sampling assumption
(see paragraph 2.1.1), in particular {XT

i εi}Ni=1 is an i.i.d. sequence.

The asymptotic variance equals

Avar

[√
N
(
β̂POLS − β

)]

=as-lim
n→∞

 1

N

N∑
i=1

XT
i Xi

−1 1√
N

N∑
i=1

XT
i εi

 1√
N

N∑
i=1

XT
i εi

T  1

N

N∑
i=1

XT
i Xi

−1

RS
= as-lim

n→∞

 1

N

N∑
i=1

XT
i Xi

−1 1

N

N∑
i=1

XT
i εiε

T
i Xi

 1

N

N∑
i=1

XT
i Xi

−1

CMT
= E[XT

i Xi]
−1︸ ︷︷ ︸

A−1

V[XT
i εi]︸ ︷︷ ︸

B

E[XT
i Xi]

−1︸ ︷︷ ︸
A−1

which proves the asymptotic variance part.

This result suggests that the usual standard errors are incorrect in absence of assumption
A.POLS.3. However, this theorem suggests there exists an estimable expression for

the asymptotic variance-covariance matrix Avar
(
β̂POLS

)
. Note that the asymptotic

variance-covariance matrix of β̂POLS is given by

Avar
(
β̂POLS

)
=

A−1BA−1

N
. (3.17)

Taking the sample analogue of A, the estimator

Â =
1

N

N∑
i=1

XT
i Xi (3.18)

consistently estimates A. To obtain a consistent estimator for B, we define the pooled
OLS residuals as ε̂i,t = yi − Xiβ̂POLS . A consistent estimator for B is given by (Cf.
Wooldridge, 2001, p. 160)

B̂ =
1

N

N∑
i=1

Xiε̂iε̂
T
i Xi. (3.19)

A consistent estimator for Avar
(
β̂POLS

)
is obtained by substituting Â and B̂ in equa-

tion (3.17), i.e.

Avâr
(
β̂POLS

)
= Â−1B̂Â−1. (3.20)

This estimator of the asymptotic variance-covariance matrix is called the estimator for
the robust asymptotic variance-covariance matrix.
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If assumption A.POLS.3 is met, the expression of the variance reduces to a more familiar
expression.

Corollary 3.2.1. Assume assumptions A.POLS.1 - A.POLS.3 hold, then

Avar

(√
N
(
β̂POLS − β

))
= σ2E

[
XT
i Xi

]−1
(3.21)

Proof. In this case, matrix B = σ2
εE[XT

i Xi]. Substituting this in the expression for the
robust variance-covariance matrix proves the required.

Asymptotic Efficiency

The Gauss-Markov theorem suggests that, under appropriate assumptions, the Pooled
OLS estimator is the Best Linear Unbiased Estimator for finite samples. Asymptotic
efficiency is considerably more difficult, because it must attain the Cramer-Rao lower
bound. The class of GMM estimators in general cannot be shown to satisfy this property
since no distributions are specified.

In this thesis, the model problem will often be transformed by pre-multiplying equa-
tion (3.3) with a transformation matrix Q

S×T
, after which Pooled OLS is applied on the

transformed system. This results in a certain estimator β̄. That is, β̄ is the pooled OLS
estimator applied on

Qyi = QXiβ + Qεi (3.22)

Throughout this thesis, β̄ is (i) consistent and (ii)
√
N
(
β̄ − β

)
→ N (0,D). These can

be proven to hold provided the following assumptions are imposed.

• Assumption A.POLS.1(b): E[εi|Xi] = 0

• Assumption A.POLS.2(b): rank
(
E[XT

i QTQXi]
)

= K.

Assumption A.POLS.1(b) implies assumption A.POLS.1. The central asymptotic effi-
ciency question in this thesis is whether the estimator β̂ outperforms β̄. That is,

Avar
(
β̂
)
−Avar

(
β̄
)

(3.23)

is a positive semidefinite matrix. In that case, β̂ is said to be efficient relative to β̄.

Theorem 3.2.4 (Efficiency of the pooled OLS estimator — Mostly own work). As-
sume assumptions A.POLS.1(b), A.POLS.2, A.POLS.2(b) and A.POLS.3 hold. Let β̄
be the estimator obtained after applying Pooled OLS on the transformed system given in
equation (3.22). Then,

Avar
(
β̄
)
−Avar

(
β̂POLS

)
(3.24)

is a positive semi-definite matrix.
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Proof. Under assumption A.POLS.1 - A.POLS.3, Avar
(
β̂POLS

)
= σ2

εE[XT
i Xi]

−1/N ,

where we will denote V = σ2
εE[XT

i Xi]
−1. The asymptotic variance of β̄ is given by

Avar
(
β̄
)

= D/N . Matrix D is given by

D = Avar
(√

N
(
β̄ − β

))
=

 1

N

N∑
i=1

XT
i QTQXi

−1 1

N

N∑
i=1

XT
i QT εiε

T
i QXi

 1

N

N∑
i=1

XT
i QTQXi

−1

LLN→ E[XT
i QTQXi]

−1 Var
(
XT
i QTQεi

)
E[XT

i QTQXi]
−1

=
(
σ2
ε

)2
cov

(
XT
i QTQεi,X

T
i εi

)−1
Var

(
XT
i QTQεi

)
cov

(
XT
i QTQεi,X

T
i εi

)−1

Analogously, the asymptotic variance of V can be written ass

V =
(
σ2
ε

)2
Var

(
XT
i εi

)−1

We have now written the asymptotic variance of β̄ in such a way that it can easily be
compared with β̂. In fact, we can now follow the method used by Newey and McFadden
(1983/2007, vol. 4, p. 2166) to prove D −V is positive semi-definite.1 Let A1 = XT

i εi
and A2 = XT

i QTQεi, then

D−V ∝ cov (A2,A1)−1
(

Var (A2)− cov (A2,A1) Var (A1)−1 cov (A1,A2)
)

cov (A1,A2)−1

= cov (A2,A1)−1 Var
(
A2 − cov (A1,A2) Var (A1)−1 A1

)
cov (A1,A2)−1 ,

so D − V is proportional to a PSD matrix. Since σ2
ε > 0, we have established that

D−V is in fact a PSD matrix. That is, no transformed system outperforms β̂POLS . As
required.

3.2.3 Simulations

In this paragraph, we will consider some simulations of the Pooled OLS estimator. In
particular, we want to show that the normality assumption is not actually needed for
the theoretical results to hold. Both a small sample and large sample simulation are
considered.

Small sample simulation

Consider a panel data model with N = 50 cross sectional units and T = 20 time periods.
Two models are simulated in this paragraph. Throughout this thesis, the abbriviation
SS stands for Small Sample.

1They prove that the MLE estimator is asymptotically more efficient than minimum distance esti-
mators, yet their proof can be applied in a similar fashion.
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Case 1: Gauss-Markov assumptions hold The model is simulated under the fol-
lowing assumption.

• Assumption SS.POLS.1: εi|Xi
iid∼ τ3 (0, IT ), where τν (µ,Σ) denotes a student t

distribution with ν degrees of freedom, µ a location vector and Σ a shape matrix.

and consider the model
yi = α+ Xiβ (3.25)

where Xi is some arbitrary generated data based following a normal distribution. The
true values of the parameters are α = 1 and β = 2.

The Pooled OLS regression is performed R = 3000 times. Table 3.1 presents the results
for the simulation, where we especially wish to compare the type I and type II errors made
in this simulation. A type I error refers to the fact that the estimate was significantly
different from the true value of the parameter, while a type II error refers to the fact that
the estimate was not significantly different from 0 (both at a 5% level). In statistics, type
I errors are generally considered worse than type II errors (although it is not as black
and white as text books tell and the consequences should be determined case-by-case).
The amount of type I errors are expected to be around 5% in both cases.

The amount of type I errors are, as expected, around 5%. Furthermore, no type II errors
were observed. We note that the maximum likelihood standard errors on average are
lower than the pooled OLS standard errors. This is not an indication that the Gauss-
Markov assumptions are not satisfied, since the MLE estimator for the parameter β
is non-linear in this case (Liu and Rubin, 1995). This illustrates that Gauss-Markov
does not have power against non-linear estimators. While the MLE estimator would
theoretically be preferred as the estimator of choice, this simulation clearly shows that
pooled OLS in absence of normality may still produce very accurate estimates.

Table 3.1: Pooled OLS summary (R=3000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

(Intercept) 1.0018 0.0542 19.2859 0 4.3% 0%
x 1.9997 0.0207 101.1183 0 5.33% 0%

Table 3.2: MLE estimation summary (R=3000 simulations)

Estimate Std.Error Z value p-value Type I Type II

(Intercept) 1.0016 0.0396 25.4376 0 4.83% 0%
beta 1.9996 0.0151 133.41 0 5.5% 0%

Case 2: Heteroscedasticity In this example we compare the MLE estimator with
the Pooled OLS estimator under heteroscedasticity.

34



• Assumption SS.POLS.1: εi
iid∼ τ3

(
0, diag

(
σ2
t

))
, where σ2

t = t2

Under assumption SS.POLS.1, the pooled OLS estimator is still supposed to produce
unbiased estimates. The results are based on heteroscedastic robust standard errors.
Note that pooled OLS no longer satisfies the Gauss-Markov theorem, i.e. there may exist
another linear estimator that outperforms pooled OLS.2 A summary of the simulation
is presented in table 3.3. Note that pooled OLS produces about the same standard
errors and as the maximum likelihood estimator, although the amount of type I errors
produced by pooled OLS is considerably larger than the MLE type I errors. This is likely
a result of overestimation of the actual standard errors in the MLE estimates, meaning
that these estimates in reality are more accurate than displayed here.

Table 3.3: Summary Pooled OLS (R=3000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

(Intercept) 1.001 0.3854 2.6002 0.0658 5.03% 26.2%
x 2.0018 0.1464 13.741 0 4.83% 0%

Table 3.4: Summary MLE (R=3000 simulations)

Estimate Std.Error Z value p-value Type I Type II

(Intercept) 0.9961 0.3073 3.2466 0.02 4.13%
x 2.0039 0.117 17.1742 0 4%

Figure 3.1: Residuals pooled OLS estimator

2We will find out later that such estimator indeed exists.
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Large sample simulations

In this paragraph we will consider some large sample simulations for the Pooled OLS
estimator. Given the nature of this research, this means that the amount of cross
sectional units N is large while the amount of periods T remains fixed. In particular,
we consider a panel of N = 1000 and T = 20. Only the estimates of the pooled OLS
estimator will be presented as maximum likelihood is computationally too expensive.

Case: Efficiency assumptions holds

Again we assume

• Assumption LS.POLS.1: εi|Xi
iid∼ τ3 (0, IT ).

and so the efficiency assumptions hold. Table 3.5 presents the results for the Pooled
OLS estimator. From this table we can observe that the estimates are very accurate (i.e.
low standard errors) compared to its small sample counterpart.

Table 3.5: Summary pooled OLS (R=3000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

(Intercept) 1.0018 0.0542 19.2859 0 4.3% 0%
beta 1.9997 0.0207 101.1183 0 5.33% 0%

3.2.4 Bayesian Inference

The pooled OLS estimator can also be described in a Bayesian context. In this para-
graph, we will show that the maximum a posteriori (MAP) estimator may in fact be
equal to the pooled OLS estimator. MAP estimation is not very common in Bayesian
statistics. The reason why we opt for MAP estimation is the fact that it also makes a
link with the MLE estimator. That is, we will use a prior such that the MAP estimator
is in fact also the MLE estimator.

• Assumption B.POLS.1: εi|Xi
iid∼N

(
0, σ2

εIT
)

• Assumption B.POLS.2: P[rank
(∑N

i=1 XT
i Xi

)
= K] = 1

These assumptions imply that

yi|Xi, β, σ
2
ε
iid∼N

(
Xiβ, ITσ

2
ε

)
(3.26)
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and so the likelihood function is given by

π
(
y1:N |X1:N , β, σ

2
ε

)
∝

N∏
i=1

(
1

σ2

)T/2
exp

(
− 1

2σ2
ε

(yi −Xiβ)T (yi −Xiβ)

)

=

(
1

σ2
ε

)NT/2
exp

− 1

2σ2
ε

N∑
i=1

(yi −Xiβ)T (yi −Xiβ)

 . (3.27)

We impose a non-informative Jeffreys prior. The prior distribution is given by (Box and
Tiao, 1992, p. 426)

π
(
µ, σ2

ε

)
∝ 1

σ2
ε

. (3.28)

In that case, the posterior is given by

π
(
θ|y1:N ,X1:N

)
∝
(

1

σ2
ε

)NT/2+1

exp

− 1

2σ2
ε

N∑
i=1

(yi −Xiβ)T (yi −Xiβ)

 (3.29)

Under this particular prior, the maximum a-posteriori estimator for β is in fact the
pooled OLS estimator.

3.3 Fixed Effects Estimator

In the introduction of this chapter, the error term was written as εi = µi~1T + vi. The
pooled OLS estimator ”ignored” the unobserved individual specific fixed effect µi. The
estimates provided by the pooled OLS estimator are hence only consistent provided
E[µi|Xi] = 0. But if cov (µi,Xi) 6= 0 =⇒ E[µi|Xi] 6= 0, then pooled OLS is inconsistent
due to endogeneity with the unobserved individual specific fixed effect. The fixed effects
estimator provides a first relaxation of the strict exogeneity assumption as formulated
in assumption A.POLS.1. In fixed effect models, µi is assumed to be a parameter in
the model and vi,t the (random) error term. In particular, the fixed effects estimator
allows E[µi|Xi] 6= 0. The results for this estimator are only derived asymptotically. This
section follows chapter 10 of Wooldridge (2001). Under the following assumptions, a
consistent estimator can be derived for a model with unobserved individial specific fixed
effects.

3.3.1 Derivation of the estimator

In order to derive the fixed effect estimator, the model problem given in equation (3.1)
is first averaged over time. That is,

ȳi = x̄i + µi + ε̄i, (3.30)
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where ȳi = 1
T

∑T
t=1 yi,t, x̄i = 1

T

∑T
t=1 xi,t and ε̄i = 1

T

∑T
t=1 εi,t. Substracting equation

(3.30) from the model problem results in

yi,t − ȳi =
(
xi,t − x̄i

)
β +

(
εi,t − ε̄i

)
:= ẏi,t = ẋi,tβ + ε̇i,t (3.31)

The individual specific effect µi disappeared due to its time invariance. The fixed effects
estimator is obtained by applying the Pooled OLS estimator on (3.31), i.e.

β̂FE =

 N∑
i=1

ẊT
i Ẋi

−1 N∑
i=1

ẊT
i ẏi

 (3.32)

In vector form, equation (3.31) is written as

ẏi
T×1

= Ẋi
T×K

β
K×1

+ ε̇i
T×1

(3.33)

To derive the fixed effects estimator with a transformation matrix, the time-demeaning
matrix can be written as (Baltagi, 2005, p. 12)

Q
T×T

= IT −~1T
(
~1TT~1T

)−1
~1TT . (3.34)

This is an idempotent matrix with rank T − 1. Pre-multiplying Q with equation (3.31)
results in the set of equations (3.33).

3.3.2 Asymptotic properties

• Assumption A.FE.1: E
[
vi|Xi, µi

]
= 0.

• Assumption A.FE.2: rank

(∑T
t=1 E

[(
xi,t − x̄i

)T (
xi,t − x̄i

)])
= K

• Assumption A.FE.3: E[εiε
T
i |Xi, µi] = σ2

εIT

Again, note that E[µi|Xi] may be unequal to 0. This property comes at a price, as per
assumption A.FE.2 time-invariant data cannot be included in the regression.

Consistency

A natural question that may arrise is whether the fixed effects transformation under
assumptions A.FE.1 - A.FE.3 still yields a consistent estimator for β. The answer is
given in corollary 3.3.1.

Corollary 3.3.1. Assume assumption A.FE.1 - A.FE.2 hold, then fixed effects estimator
consistently estimates β. That is,

as-lim
N→∞

β̂FE = β
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Proof. Because the Fixed Effects estimator is a POLS-estimator on equation (3.33),
it suffices to show that assumption POLS.1 holds under A.FE.1. for the transformed
systsem, i.e. E[ẊT

i,tε̇i,t] = 0. Indeed,

E[ẋTi,tv̇i,t] = E[
(
xi,t − x̄i

)T (
vi,t − ε̄i

)
]

= E[xTi,tvi,t − xTi,tv̄i − x̄ivi,t + x̄iε̄i]

All these terms are, due to A.FE.1, again uncorrelated (this is easily proved using the
Law of Iterated Expectations). So indeed,

E[ẊT
i,tε̇i,t] = 0

Serial correlation

The Fixed Effects transformation was obtained by substracting the time series average.
This induces serial correlation in the system, as shown in corollary 3.3.2. Note that
under assumption A.FE.3 (required for efficiency) there are no obvious restrictions for
the transformed errors.

Corollary 3.3.2. Assume assumptions A.FE.1 - A.FE.3 hold. Then, the correlation
coefficient for the transformed error is given by

ρ
(
ε̇i,t, ε̇i,s

)
= − 1

T − 1
(3.35)

Proof. (Clarification of the proof given by Wooldridge (2001, p. 270))

Recall that the correlation coefficient of equation (3.35) is defined as

ρ
(
ε̇i,t, ε̇i,s

)
=

cov
(
ε̇i,t, ε̇i,s

)
SD

(
ε̇i,t
)
SD

(
ε̇i,s
) (3.36)

where SD
(
ε̇i,t
)

=
√

Var
(
ε̇i,t
)
. First, an expression for the covariance will be derived.

cov
(
ε̇i,t, ε̇i,s

)
= E[

(
εi,t − ε̄i

) (
εi,s − ε̄i

)
]

= E[εi,tεi,s]− E[εi,tε̄i]− E[εi,sε̄i] + E[ε̄2
i ] (3.37)

The first term equals zero due to assumption A.FE.3, since the original errors are serially
uncorrelated. As for the second term,

E
[
εi,tε̄i

]
=

1

T
E

εi,t T∑
j=1

εi,j


=

1

T
σ2
ε (3.38)
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since εi,t and εi,s are serially uncorrelated for s 6= t. The expression for the third term
is the same second term. The expression for the fourth term is given by

E[ε̄2
i ] =

1

T 2
E

 T∑
j=1

εi,j

T∑
k=1

εi,k


=

1

T 2

T∑
j=1

E[ε2
i,l]

=
1

T
σ2
ε (3.39)

Substituting these results in equation (3.38) results in

cov
(
ε̇i,t, ε̇i,s

)
= − 1

T
σ2
ε . (3.40)

An expression for the standard deviation is also required in order to derive the serial
correlation of the transformed errors. Noting that Var

(
ε̇i,t
)

= E[ε̇2
i,t] due to A.FE.1,

E[ε̇i,t] = E[ε2
i,t]− 2E[εi,tε̄i] + E[ε̄2

i ]

= σ2
ε −

2

T
σ2
ε +

1

T
σ2
ε

= σ2
ε

(
1− 1

T

)
(3.41)

i.e.

SD
(
ε̇i,t
)

=

√
σ2
ε

(
1− 1

T

)
. (3.42)

Combining equations (3.38) and (3.42) results in

ρ
(
ε̇i,t, ε̇i,s

)
= − 1

T − 1
, (3.43)

as required.

These results have some implications. The transformed system induces negative serial
correlation which tends to 0 as T → ∞. Also, the expression for the variance given in
equation (3.41) suggests that it does not depend on t, i.e. it is heteroscedastic across t.

Asymptotic normality and variance

Given the proof for corollary 3.3.1, it should not come as a surprise that
√
N
(
β̂ − β

)
is asymptotically normally distributed.
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Corollary 3.3.3. Assume assumptions A.FE.1 and A.FE.2 hold. Then,

√
N
(
β̂FE − β

)
d→ N

(
0,A−1 Var

(
Ẋiε̇i

)
A−1

)
(3.44)

where A = E[ẊT
i Ẋi].

If, in addition, A.FE.3 holds, then A−1 Var
(
Ẋiε̇i

)
A−1 = A−1 and so

Avar
(
β̂FE

)
=

A−1

N
(3.45)

We will not prove the asymptotic
√
N -normality of the fixed effects estimator, because

it analogous to the proof of the asymptotic
√
N -normality of the pooled OLS estima-

tor. The structure of the asymptotic variance is a special property of the fixed effects
estimator which we will investige further.3

Proof. The asymptotic variance of the fixed effects estimator is given by

Avar
(
β̂FE

)
=E[ẊT

i Ẋi]
−1E[ẊT

i ε̇iε̇
T
i Ẋi]E[ẊT

i Ẋi]
−1

=E[XT
i QTQXi]

−1E[XT
i QTQεiε

T
i QTQXi][X

T
i QTQXi]

−1

Noting that Q is idempotent, this equation reduces to (applying the LIE),

=σ2
εE[XT

i QTQXi]
−1E[XT

i QTQXi][X
T
i QTQXi]

−1

=σ2
εE[ẊT

i Ẋi]
−1

As required.

Asymptotic Efficiency

This paragraph rejects a claim of Wooldridge (2001, p. 269) about the fixed effects
estimator. He suggests this estimator is the most efficient estimator under assumption
A.FE.1 - A.FE.3 (without proof). This claim is false. Consider the following theoretical
model;

• Assumption AM.FE.1: Assumption A.POLS.1 holds

• Assumption AM.FE.2: Assumption A.FE.2 holds

• Assumption AM.FE.3: Assumption A.POLS.3 holds

3It is special in the sense that it does not have the structure of a robust variance-covariance matrix,
i.e. A−1BA−1 reduces to A−1 which is not at all obvious under assumption A.FE.3.
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Assumption AM.FE.1 and AM.FE.3 imply there are no unobserved fixed effects. As-
sumption AM.FE.2 in particular means there are no time-invariant regressors. Under
this theoretical model, both A.POLS.1 - A.POLS.3 and A.FE.1 - A.FE.3 hold.

Theorem 3.2.4 (asymptotic efficiency of the pooled OLS) suggests that under POLS.1
- POLS.3, no transformation outperforms the pooled OLS estimator. So at best, the
fixed effects estimator is as efficient as the pooled OLS estimator. Given the expression
of the fixed effects asymptotic variance-covariance matrix, this is not an unreasonable
conjecture. However, another hypothesis is that the fixed effects estimator is less efficient
than pooled OLS since the fixed effects transformation induces serial correlation in the
system. Theorem (3.3.1) confirms the latter hypothesis. Before turning to this theorem,
the following linear algebra fact is useful.

Lemma 3.3.1. Let A,B ∈ RN×N be non-singular matrices. If

A−1 −B−1 (3.46)

is a positive semi-definite matrix, then

B−A (3.47)

is a positive semi-definite matrix.

Theorem 3.3.1 (Own work). Under Assumption AM.FE.1 - AM.FE.3, the Pooled OLS
estimator is asymptotically more efficient than the fixed effects estimator, i.e.

Avar
(
β̂FE

)
−Avar

(
β̂POLS

)
(3.48)

is a positive semi-definite matrix.

Proof. To prove this result, we use the time demeaning matrix of equation (3.34). So
the asymptotic variance of the fixed effects estimator is given by

Avar
(
β̂FE

)
= E[XT

i QTQXi]

= E[XT
i QXi]

−1,

where the last equality follows due to the fact that Q is idempotent. Consider now

Avar
(
β̂POLS

)−1
−Avar

(
β̂FE

)−1
= σ2

εE[XT
i Xi −XT

i QXi]

= E[XT
i (IT −Q) Xi] (3.49)

so

IT −Q =
1

T

(
~1T~1

T
T

)
, (3.50)
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which is proportional to a matrix consisting of ones. This matrix is obviously PSD,
suggesting that matrix (3.49) is a positive semi-definite. To finish the proof, note

Avar
(
β̂POLS

)−1
−Avar

(
β̄FE

)−1
is positive semi-definite

=⇒ Avar
(
β̂FE

)
−Avar

(
β̂POLS

)
is positive semi-definite,

as required.

The point of this example is that it is unadvisable to just use the fixed effects estimator
in all cases in which no time-invariant regressors are present. After all, if Wooldridge’s
claim were true and assumption A.FE.2 holds (no time-invariant regressors), the fixed
effect estimator would always be preferable over the pooled OLS estimator because it
can never be ruled out that no unobserved fixed effect exists. This point is especially
important if T is small.

3.3.3 Simulation

In this paragraph we consider a simulation of a model in which the use of the fixed effects
estimator leads us to make a type II error (it fails to reject a false null hypothesis) while
the pooled OLS leads to correct inference. We consider a slightly adjusted model than
the ones used in previous simulations:

yi
T×1

= Xi
T×1

β
R

+ εi
T×1

. (3.51)

where the true value of β = 2. The intercept α has been removed from the model
because it is time invariant, i.e. inclusion of an intercept would be a violation of the
rank condition for the fixed effects estimator. In this simulation, we take a relatively
small sample of N = 50 and T = 3. The key assumption in this model is:

• Assumption SS.FE.1: εi|Xi
iid∼N

(
0, σ2

εIT
)
, where the true value of σ2

ε = 25.

Case 1: Inefficiency

Under Assumption SS.FE.1, pooled OLS is the Best Linear Unbiased Estimator and
asymptotically more efficient than the fixed effects estimator. The results of the pooled
OLS estimator applied on this model are presented in table 3.6. It is for now important
to notice that, in this simulation, the Pooled OLS estimator only produces type II errors
in 2.2% of the cases.

The results for the fixed effects estimator are given in table 3.7. The fixed effects esti-
mator has clearly a much higher type I error compared to the Pooled OLS estimator,
suggesting that this estimator is much less accurate that the pooled OLS estimator. Se-
rial correlation robust standard errors have been used, suggesting that they apparently
underestimate the actual standard errors. The point of this simulation is to show that,
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especially in short panels (small T ), the fixed effects estimator may easily be inefficient.
As noted before, the fixed effect transformation induces serial correlation in the model
under assumption SS.FE.1. Consequently, the fixed effects estimator is less efficient than
the pooled OLS model. Given T = 3, the autocorrelation coefficient of the transformed
model equals

ρ
(
ε̇i,t, ε̇i,s

)
= − 1

T − 1
= −1

2
, s 6= t.

Table 3.6: Pooled OLS (R=1000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

beta 1.9991 0.4627 4.4917 0.0048 5.3% 2.2%

Table 3.7: Fixed effects (R=1000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

beta 2.0213 0.6899 3.2273 0.0498 7.3% 19.2%

Case 2: Presence of fixed effects

The pooled OLS estimator was argued to be inconsistent in presence of an unobserved
individual specific fixed effect that caused assumption A.POLS.1 to fail. In this para-
graph we consider a panel that has N = 1000 cross-sectional units and T = 20 time
periods. This model will be formulated such that it includes an individual specific fixed
effect. The model problem considered here is the standard fixed effects model, i.e.

yi = Xiβ + µi~1T + vi (3.52)

The following assumptions are imposed.

• Assumption LS.FE.1: vi|Xi, µi
iid∼N (0, IT )

• Assumption LS.FE.2: µi
ind∼ N

(
µ̄i, σ

2
µi

)
, where both σ2

µi , µ̄i ∈ [1, 10] are

arbitrary integers.

The results for the pooled OLS estimator are presented in table 3.8. The excessive
amount of type I errors produced by this estimator indeed suggests that it produces
inconsistent estimates due to the presence of an individual specific fixed effect. The
POLS estimator should clearly be rejected as a reliable estimator.

The outcomes for the fixed effects estimator are given in table 3.9. The dramatic reduc-
tion in type I errors produced by the fixed effects estimator obviously suggests that this
estimator is to be preferred over the POLS estimator. At the other hand, the amount
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of type I errors did not converge to 5%, again an indication that the robust standard
errors underestimate the actual standard errors.

Table 3.8: Pooled OLS summary (R=1000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

beta 2.3960 0.0256 110.2407 0 98.30% 0.00%

Table 3.9: Fixed effects summary (R=1000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

beta 2.000 0.0028 712.919 0 6.00% 0.00%

3.3.4 Bayesian inference

The Fixed Effect transformation can also be justified from a Maximum Likelihood As-
sumption under the usual assumptions for panel data models.

• Assumption B.FE.1: yi|Xi, µi
iid∼N

(
Xiβ + µi~1T , σ

2
vIT

)
• Assumption B.FE.2: P[rank

(∑N
i=1 ẊT

i Ẋi

)
= K] = 1

Under assumption B.FE.1 and assumption B.FE.2, the likelihood ratio for y1:N |X1:N is
given by

π
(
y1:N |Xi:N

)
=

(
1

2πσ2
v

)NT/2
× exp

− 1

2σ2
v

N∑
i=1

(
yi −Xiβ −~1Tµi

)T (
yi −Xiβ −~1Tµi

)
A non-informative Jeffreys prior for θi =

(
σ2
v , β, µi

)
is given by π (θ) ∝ 1

σ2
v
. In this case,

the posterior is given by

π
(
θ1:N |y1:N ,X1:N

)
∝
(

1

σ2
v

)NT/2+1

× exp

− 1

2σ2
v

N∑
i=1

(
yi −Xiβ −~1Tµi

)T (
yi −Xiβ −~1Tµi

)
(3.53)
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Theorem 3.3.2. The MAP-estimator for the Bayesian Fixed Effect model with Jeffreys
prior is given by the frequentist fixed effect estimator, i.e.

β̂ =

 N∑
i=1

ẊT
i Ẋi

−1 N∑
i=1

ẊT
i ẏi

 (3.54)

Proof. The log-posterior is given by

log
(
π
(
θ1:N |y1:N , X1:N

))
∝−

(
NT

2
+ 1

)
log
(
σ2
v

)
− 1

2σ2
v

N∑
i=1

(
yi −Xiβ −~1Tµi

)T (
yi −Xiβ −~1Tµi

)
(3.55)

The MAP-estimator for µi is derived by taking the derivative of (3.55) with respect to
µi, setting this 0 and solve for µi.

∂ log (π)

∂µi
∝ 1

σ2
v

N∑
i=1

yTi ~1T + 2βTXT
i
~1T + 2µiT = 0 (3.56)

Rewriting this results in
µ̂i = ȳi − X̄iβ (3.57)

Substituting estimator 3.57 in equation (3.55) results in

log
(
π
(
θ1:N |y1:N , X1:N

))
∝−

(
NT

2
+ 1

)
log
(
σ2
v

)
− 1

2σ2
v

N∑
i=1

(ẏi − ẋiβ)T (ẏi − ẋiβ) (3.58)

Where ȳi = 1
T

∑T
t=1 yi,t and x̄i = 1

T

∑T
t=1 xi,t.

This is again a transformed pooled Bayesian regression model with a Jeffreys prior,
which MAP estimation is known and given by

β̂BFE =

 N∑
i=1

ẊT
i Ẋi

−1 N∑
i=1

Ẋiẏi

 (3.59)

as required.
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3.4 First Difference Estimator

Another method to eliminate inconsistencies caused by individual specific fixed effects
is to take the first differences of the model problems and apply Pooled OLS on that
transformation. This results in the first difference estimator. This estimator has received
little attention in the panel data literature compared to the fixed effects estimator.
However, the first difference estimator has very desirable properties in presence of heavy
serial correlation in the error term. That is, it may even be preferred over pooled OLS
in absence of unobserved individual specific fixed effects.

Derivation of the Estimator

The First Difference estimator is derived after taking the first difference transformation
of the model problem formulated in equation section 3.1. That is, the first differenced
model becomes

∆yi,t = ∆xi,tβ + ∆εi,t, t = 2, . . . , T (3.60)

where ∆yi,t = yi,t − yi, t− 1 and ∆xi,t, ∆εi,t are defined analogously. As noted in the
introduction, this transformation removes the unobserved individual specific fixed effect
µi. Indeed,

∆εi,t = µi + vi,t − µi − vi,t−1 = vi,t − vi,t−1

and so the individual specific fixed effect is removed.

In vector form, the first differenced transformed model will be written as

∆yi
T−1×1

= ∆Xi
T−1×K

β
K×1

+ ∆εi
T−1×1

. (3.61)

The first difference estimator is the pooled OLS estimator applied on the transformed
model in equation (3.61), i.e.

β̂FD =

 N∑
i=1

∆Xi∆Xi

−1 N∑
i=1

∆Xi∆yi

 (3.62)

In matrix form, define the following transformation matrix

Q
T−1×T

=


−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0
...

. . .
. . . 0

0 · · · · · · · · · −1 1

 (3.63)

Then the set of equations (3.61) is obtained by premultiplying the model problem with
Q.
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3.4.1 Serial correlation

As noted in the introduction of this section, the FD estimator has some desirable prop-
erties in presence of heavy serial correlation. A distinction will be made between the
differenced errors and the original errors. The former refers to ∆εi, while the latter
refers to εi. To see why the FD estimator has special properties, consider the covariance
of ∆εi,t and ∆εi,t−1. That is,

cov
(
∆εi,t,∆εi,t−1

)
= E[∆εi,t∆εi,t−1]

= cov[εi,t, εi,t−1]− cov[εi,t, εi,t−2]−Var[εi,t−1] + cov[εi,t−1, εi,t−2].

This term is already an indication that the ρ
(
∆εi,t,∆εi,t−1

)
≤ 0 if the original errors

are positively serially correlated. Continuing the analysis, extra assumptions are made
on the serial correlation of the original error term.

Original errors follow a random walk

Let εi,t follow a random walk, i.e. εi,t = εi,t−1 + ηi,t where E[ηi,t|Xi] = 0. Then

cov[εi,t, εi,t−1] = cov[εi,t−1 + ηi,t, εi,t]

= cov[εi,t−1εi,t−1] +
XXXXXXE[ηi,tεi,t−1]

= Var[εi,t−1εi,t−1]

and in a similar fashion

cov[εi,t, εi,t−2] = cov[εi,t−1, εi,t−2]

resulting in

cov
(
∆εi,t,∆εi,t−1

)
= 0 (3.64)

=⇒ ρ
(
∆εi,t,∆εi,t−1

)
= 0 (3.65)

So if the original errors follow a random walk, the differenced errors are serially uncor-
related.

Original error is serially uncorrelated

Assume now that the original error is serially uncorrelated, as is the case under Assump-
tion A.FE.3. In that case, equation (3.64) reduces to

cov[∆εi,t,∆εi,t−1] = −Var[εi,t−1]

= −σ2
∆

ρ
(
∆εi,t,∆εi,t−1

)
= −

σ2
∆

2σ2
∆

= −1/2

ergo, if the original errors are serially uncorrelated, then the first order lag of the differ-
enced errors have an autocorrelation equalling −1/2.
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3.4.2 Finite sample properties

For the finite sample properties to hold, the following assumptions are imposed.

• Assumption F.FD.1: E[vi|{Xj , µj}Nj=1] = 0

• Assumption F.FD.2: P[rank
(

∆Xi (∆Xi)
T
)

= K] = 1

• Assumption F.FD.3: E[∆εi (∆εi)
T |{Xj , µj}Nj=1] = σ2

∆IT−1

Note that the FD estimator is indeed identified due to assumptions F.FD.1 and F.FD.2.

Unbiased

The FD estimator is an unbiased estimator for β.

Corollary 3.4.1. The FD estimator β̂FD is, conditional on {Xj , µj}Nj=1, an unbiased
estimator for β.

Proof. This is a shortened proof.

E[β̂FD|{Xj , µj}Nj=1] = β +

 N∑
i=1

(∆Xi)
T ∆Xi

−1 N∑
i=1

T∑
t=1

xTi,tE[vi,t − vi,t−1|{Xj , µj}Ni=1]


= β

as required.

The unconditional unbiasedness follows from the Law of Iterated Expectations.

Variance matrix

The variance-covariance matrix of the FD estimator, conditional on {Xj , µj}Nj=1, equals

Var
(
β̂FD|{Xj , µj}Nj=1

)
= σ2

∆

 N∑
i=1

(∆Xi)
T ∆Xi

−1

, (3.66)

implying that the unconditional variance-covariance matrix of β̂FD equals

Var
(
β̂FD

)
= σ2

∆E


 N∑
i=1

(∆Xi)
T ∆Xi

−1
 . (3.67)
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Finite sample efficiency

The FD estimator under assumptions F.FD.1-F.FD.3 satisfies the Gauss-Markov prop-
erties and hence the fact that the FD estimator is the Best Linear Unbiased Estimator
should not come as a surprise. Rather than proving this result here, it may be useful to
compare the pooled OLS estimator with the first difference estimator in the following
theoretical model:

• Assumption FM.FD.1: Assumption F.POLS.1 holds;

• Assumption FM.FD.2: Assumption F.FD.2 holds;

• Assumption FM.FD.3: Assumption F.FD.3 holds;

Assumption FM.FD.1 implies that there are no unobserved individual specific fixed
effects and so the Pooled OLS estimator is unbiased. Assumption FM.FD.2 suggests,
among others, that there are no a.s. time-invariant regressors. Assumption FM.FD.4
implies that the pooled OLS does not satisfy the Gauss-Markov assumption as per the
analysis made in paragraph 3.4.1. It is hence not guaranteed to satisfy to be the most
efficient estimator. To prove the efficiency of the First Difference estimator, a lemma is
needed. Recall that Ag is called the generalised inverse if

AAgA = A (3.68)

Lemma 3.4.1 (Own work). Assume assumptions FM.FD.1 - FM.FD.3 hold, then the
variance-covariance of the original errors equals

E[εiε
T
i |{Xi}Ni=1] = σ2

∆

(
QTQ

)g
(3.69)

where
(
QTQ

)g
denotes the generalised inverse of

(
QTQ

)
.4

Proof. From assumption FM.FD.3, it follows

σ2
∆IT−1 = E[∆εi∆ε

T
i |{Xj}Nj=1]

= QE[εiε
T
i |{Xj}Nj=1]QT (3.70)

Premultiply equation (3.70) with QT and post multiply this equation with QT . Then,(
QTQ

)
E[εiε

T
i |{Xj}Nj=1]

(
QTQ

)
= σ2

∆QTQ (3.71)

from the definition of pseudo-inverse,

E[εiε
T
i |{Xj}Nj=1] = σ2

∆

(
QTQ

)g
(3.72)

as required.

4It does not necessarily have to be the reflective generalised inverse.
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Lemma 3.4.2 makes it possible to prove the following theorem. Let Σ = σ2
∆

(
QTQ

)g
.

Corollary 3.4.2 (Own work). Under assumptions FM.FD.1 - FM.FD.3, the Pooled
OLS estimator is less efficient for finite samples than the First Difference estimator.

Proof.

Var
(
β̂POLS |{Xj}Nj=1

)
K×K

=

 N∑
i=1

XT
i Xi

−1 N∑
i=1

XiΣXi

 N∑
i=1

XT
i Xi

−1

, (3.73)

whereas

Var
(
β̂FD|{Xj}Nj=1

)
K×K

= σ2
∆

 N∑
i=1

XiQ
TQXi

−1

. (3.74)

To see that Var
(
β̂POLS |{Xj}Nj=1

)
−Var

(
β̂FD|{Xj}Nj=1

)
is a positive semi-definite ma-

trix, a slightly changed version of the Gauss-Markov tric is needed. To do so, first
define

Ci =

 N∑
j=1

XT
j Xj

Xi.

Hence, the variance-covariance matrix of the Pooled OLS estimator can be rewritten as

Var
(
β̂POLS |{Xj}Nj=1

)
=

N∑
i=1

CiΣCT
i (3.75)

This expression does not have a Gauss-Markov structure. We consequently take a slightly
adjusted difference matrix,

Di = Ci −

 N∑
i=1

XT
i QTQXi

−1

XT
i QTQ (3.76)

This expression has the usual properties, i.e.

1.
∑N

i=1 DiXi = 0

2.
∑N

i=1 Diyi = β̂POLS − β̂FD

Rewrite Ci as

Ci = Di +

 N∑
i=1

XT
i QTQXi

−1

XT
i QTQ (3.77)
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and so expression (3.75) can be rewritten as

N∑
i=1

Di +

 N∑
i=1

XT
i QTQXi

−1

XT
i QTQ

(QTQ
)g

×

Di +

 N∑
i=1

XT
i QTQXi

−1

XT
i QTQ


T

=
N∑
i=1

DiΣDT
i +σ2

∆

 N∑
i=1

XT
i QTQXi

−1

×
N∑
i=1

XT
i QTQ

(
QTQ

)g
QTQXi

×

 N∑
i=1

XT
i QTQXi

−1

lemma
=

3.4.2

N∑
i=1

DiΣDT
i + σ2

∆

 N∑
i=1

XT
i QTQXi

−1
N∑
i=1

XT
i QTQXi

 N∑
i=1

XT
i QTQXi

−1

=
N∑
i=1

DiΣDT
i + σ2

∆

 N∑
i=1

XT
i QTQXi

−1

=

N∑
i=1

DiΣDT
i + Var

(
β̂FD|{Xi}Ni=1

)
In particular, this means that

Var
(
β̂POLS |{Xj}Nj=1

)
−Var

(
β̂FD|{Xj}Nj=1

)
(3.78)

is a positive semi-definite matrix and so the FD estimator is indeed more efficient in
finite samples than the Pooled OLS estimator under assumptions M.FD.1 - M.FD.3. As
required.

The unconditional results are preserved by the law of iterated expectations.

3.4.3 Asymptotic properties

The assumptions required to derive the appropriate asymptotic results are weaker than
the ones needed to derive the finite sample results. That is, F.FD.1 - F.FD.3 imply the
following assumptions.
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• Assumption A.FD.1: E[vi,t|Xi, µi] = 0, t = 1, . . . , T

• Assumption A.FD.2: rank
(
E[
∑T

t=2 ∆xTi,t∆xi,t]
)

= K

• Assumption A.FD.3: E[∆εi∆ε
T
i |Xi, µi] = σ2

∆IT−1 with ∆εi ∈ RT−1.

Consistency

The first difference estimator consistently estimates β under assumptions A.FD.1 and
A.FD.2.

Corollary 3.4.3. If A.FD.1 and A.FD.2 hold, then the first difference estimator con-
sistently estimates β, i.e.

as-lim
N→∞

β̂FD = β (3.79)

Proof. One way to prove this is to show that assumptions A.FD.1 imply A.POLS.1. We
take that for granted.

as-lim
N→∞

β̂FD = β + as-lim
N→∞

 N∑
i=1

(∆Xi)
T ∆Xi

−1 N∑
i=1

(∆Xi)
T ∆εi


= β + E[(∆Xi)

T ∆Xi]
−1
((((

((((E[(∆Xi)
T ∆εi]

proving the required.

Asymptotic normality and asymtotic variance

Just as in the pooled OLS case, the first difference estimator is asymptotically normally
distributed under A.FD.1 and A.FD.2, i.e.

d-lim
N→∞

√
N
(
β̂FD − β

)
= N

(
0,A−1BA−1

)
(3.80)

where A = E[(∆Xi)
T ∆Xi] and B = Var

(
(∆Xi)

T ∆εi

)
implying that

Avar
(
β̂FD

)
=

1

N

(
A−1BA−1

)
. (3.81)

Under Assumption A.FD.3
A−1BA−1 = σ2

∆A−1, (3.82)

suggesting that

Avar
(
β̂FD

)
=

1

N

(
σ2

∆A−1
)

(3.83)
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3.4.4 Simulation

We compare the Pooled OLS estimator with the first difference estimator in a panel of
N = 50 cross sectional units and T = 20 time units. We assume that

• Assumption SS.FD.1: Assumption F.POLS.1 holds and {µi}Ni=1 is independent
in mean of {εi|Xi}Ni=1

• Assumption SS.FD.2: Assumption F.FD.2 holds

• Assumption SS.FD.3: Assumption F.FD.3 holds

The model we consider is again
yi = Xiβ + εi (3.84)

where the true value of β equals 2. Furthermore, εi,t = ρεi,t−1 + ηi,t, where ηi
iid∼

N
(

0, σ2
ηIT

)
. The true value of ρ = 0.99 and σ2

η = 100.

Pooled OLS estimates

The pooled OLS estimator is supposed to be inefficient because it does not satisfy the
Gauss-Markov properties. The pooled OLS estimates are given in table 3.10. Obviously,
the pooled OLS estimator preserves the property of being an unbiased estimator, so the
average of the estimates should not come as a surprise. However, in over 50% of the
cases we did make a type II error, underlining the poor performance of the pooled OLS
estimator in case of heavy serial correlation. From figure 3.3 we can clearly observe that
the pooled OLS residuals are strongly serially correlated.

Table 3.10: Pooled OLS estimates (R = 3000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

1 2.0034 1.0603 1.9622 0.1698 5.83% 51.4%
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Figure 3.2: POLS Residuals

First difference estimates

Under assumptions SS.FD.1 - SS.FD.3, the first difference estimator is the Best Linear
Unbiased Estimator. The results of the simulations are given in table 3.11. The first
difference estimator clearly outperforms the pooled OLS estimator under this model
formulation. No type II errors were observed for the the first difference estimator, while
the percentage of type I errors made by the first difference estimator remains constant.
From figure 3.3 we can also observe that the first difference residuals seem to follow a
white noise process, suggesting that serial correlation has been removed.

Table 3.11: First difference (R=3000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

1 1.9964 0.088 23.0416 0 5.5% 0%
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Figure 3.3: FD Residuals

3.4.5 Bayesian Inference

The variance-covariance matrix Σ is only positive semi-definite, so a multivariate normal
distribution will not have a density w.r.t. a Lebesgue measure. On the contrary, we can
obtain a Bayesian approach to first differencing under the following assumptions.

• Assumption B.FD.1: ∆εi|Xi
iid∼N

(
0, σ2

∆IT−1

)
• Assumption B.FD.2: P[rank

(∑N
i=1 XT

i QTQXi

)
= K] = 1

Under assumptions B.FD.1 and B.FD.2,

yi:N |Xi:N , β, σ
2
v
iid∼N

(
0, σ2

∆IT−1

)
. (3.85)

The maximum a posteriori estimator under Jeffreys’ prior is equal to the first difference
estimator. This point will not be shown again.

3.5 Summary

This paragraph discussed several estimators that could be obtained with a non-parametric
transformation. First, the pooled OLS estimator was derived as a (generalised) method
of moments estimator. It appeared that most finite sample properties relied on stronger
assumptions than comparable asymptotic properties. In fact, asymptotic efficiency prop-
erties could be derived under relatively weak assumptions.

We also saw that the conventional standard errors of the OLS estimator are often invalid
due to serial correlation or heteroscedasticity. To circumvent this problem, the notion
of robust standard errors was introduced. These errors remain valid in presence of
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serial correlation and heteroscedasticity. They are usually bigger than their conventional
counterparts, but there are some cases in which they are smaller (i.e. the normal OLS
standard errors are biased upwards).

The second estimator discussed in this chapter was obtained by a fixed effects trans-
formation. The resulting fixed effects estimator consistently estimates the parameter β
in presence of an endogeneous unobserved individual specific fixed effect. On the other
hand, if such unobserved individual specific effect is absent, this estimator may easily
be inefficient compared to pooled OLS. It was argued that this is especially a problem
when T is small since the fixed effects transformation induces negative serial correlation
in the model. This serial correlation increases monotonically to zero as T →∞.

This chapter was concluded with the first difference estimator, which is obtained by
subtracting the first differences from the model. This estimator proved to be efficient
for finite samples in case the original error term follows a random walk. Also for weaker
types of serial dependence, this estimator may prove far superior over the conventional
pooled OLS estimator in terms of accuracy.
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Chapter 4

Parametric Transformations

In the previous chapters it was shown that the assumptions of homoscedasticity and
serial uncorrelatedness of the error term were not actually needed to derive consistent and
unbiased estimates for β. However, these estimators are not guaranteed to be efficient in
presence of serial correlation or heteroscedasticity. This chapter starts by reviewing the
generalised least squares (GLS) estimator proposed by Aitken (1934). This estimator
has both finite sample and asymptotic efficiency properties. GLS is in pratice infeasible,
because it requires knowing the variance-covariance matrix of the error term up to a
constant. Therefore, the analysis turns to parametric transformations of the pooled
OLS estimator. That is, the transformation induces extra variance parameters. Those
methods are commonly referred to as feasible GLS because of their close relation with the
actual GLS estimator. After deriving some general results of feasible GLS estimation,
the analysis considers how this estimation technique can be implemented to take serial
correlation into account. Furthermore, the conventional random effects estimator will
be derived as a feasible GLS estimator.

The model problem in this chapter is again the standard Panel Data regression model
given by equation (4.1)

yi = Xiβ + εi (4.1)

4.1 Generalised Least Squares

As mentioned in the introduction in this chapter, GLS is efficient even if in presence
of heteroscedasticity and serial correlation in the error term. However, the basic GLS
method requires that the variance-covariance matrix of the error term is known up to a
constant. This is more often than not the case. Hence, the GLS estimator discussed in
this chapter is often considered infeasible. The GLS estimator is included in this thesis
because the feasible GLS estimator strongly relies on it.
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4.1.1 Derivation of the GLS estimator

The GLS estimator is justified by a transformation of the model problem described in
(4.1). That is, both sides are multiplied by Σ−1/2, i.e.

Σ−1/2yi = Σ−1/2Xi + Σ−1/2εi

y∗i = X∗i + ε∗i (4.2)

The generalised least squares estimator is obtained by applying pooled OLS on
equation (4.2). That is,

β̂GLS =

 N∑
i=1

XT
i Σ−1Xi

−1 N∑
i=1

XiΣ
−1yi

 (4.3)

4.1.2 Finite Sample properties

The finite sample properties of the GLS estimator can be derived under the following
set of assumptions.

• Assumption F.GLS.1: E[εi|{Xj}Nj=1] = 0

• Assumption F.GLS.2: P[rank
(∑N

i=1 XT
i Σ−1/2XT

i

)
= K] = 1, where Σ = E[εiε

T
i ]

is assumed to be known.

• Assumption F.GLS.3: E[εiε
T
i |{Xj}Nj=1] = E[εiε

T
i ]

Unbiased

The unbiasedness of the GLS estimator may sound trivial, but in fact it is not. The only
reason why the GLS estimator can be proven to be unbiased without more assumptions
is due to the fact that the variance-coviarance matrix Σ is assumed to be known.

Corollary 4.1.1. Assume assumptions F.GLS.1 and F.GLS.2 hold. Then the GLS
estimator is unbiased conditionally on {Xj}Nj=1.

Proof.

E


 N∑
i=1

XT
i Σ−1Xi

−1 N∑
i=1

XiΣ
−1yi

∣∣∣∣{Xi}Ni=1


=β +

 N∑
i=1

XT
i Σ−1Xi

−1 N∑
i=1

XT
i Σ−1E[εi|{Xj}Nj=1]


F.GLS.1

= β.
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The unconditional unbiasedness follows from the law of iterated expectations.

Variance

The variance of the GLS estimator is important, because its expression will make the
Gauss-Markov property of the GLS estimator obvious.

Var
(
β̂GLS |{Xi}Ni=1

)
= Var

β +

 N∑
i=1

XT
i Σ−1Xi

−1 N∑
i=1

XT
i Σ−1εi

 |{Xi}Ni=1


=E

[ N∑
i=1

XT
i Σ−1Xi

−1 N∑
i=1

XT
i Σ−1εi

 N∑
i=1

εTi Σ−1Xi


×

 N∑
i=1

XT
i Σ−1Xi

∣∣∣∣{Xi}Ni=1

]

=

 N∑
i=1

XT
i Σ−1Xi

−1 N∑
i=1

XT
i Σ−1E[εiε

T
i |{Xi}Ni=1]Σ−1Xi


×

 N∑
i=1

XT
i Σ−1Xi


F.GLS.3

=

 N∑
i=1

XT
i Σ−1Xi

−1

The unconditional variance follows from the law of total variance, i.e.

Var
(
β̂
)

= E


 N∑
i=1

XT
i Σ−1Xi

−1
 (4.4)

Gauss-Markov theorem

As noted in the introduction of this chapter, the conditional Gauss-Markov theorem also
holds under assumptions F.GLS.1 - F.GLS.3.

Theorem 4.1.1 (Conditional Gauss-Markov). Assume F.GLS.1 and F.GLS.3 hold.
Then, if β̄ is another linear unbiased estimator,

Var
(
β̄
)
−Var

(
β̂GLS

)
is a semi-positive definite matrix. That is to say, the GLS estimator is BLUE.
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Proof. The proof may be obvious from the expression of the finite sample variance-
covariance matrix of the GLS-estimator as given in equation (4.4). It is, however, eas-
ier to note that the GLS transformed system implies assumption F.POLS.3. Recall
F.POLS.3 states that

E[εiε
T
i |{Xj}Nj=1] = σ2

εIT . (4.5)

For the transformed system,

E[ε∗i ε
∗T
i |{Xj}Nj=1] = Σ−1/2E[εiε

T
i |{Xj}Nj=1]Σ−1/2

= Σ−1/2ΣΣ−1/2

= IT

implying the transformed system given by (4.2) satisfies the Gauss-Markov assumptions
and hence the GLS-estimator is BLUE.

4.1.3 Asymptotic properties

To derive asymptotic properties, the following assumptions are imposed. These as-
sumptions are sufficient for consistency, but they do not guarantee the estimator to be
unbiased.

• Assumption A.GLS.1:E[εi|Xi] = 0

• Assumption A.GLS.2: rank
(
E[XT

i Σ−1Xi]
)

= K, where Σ = E[εiε
T
i ] denotes

a known variance-covariance matrix.

• Assumption A.GLS.3: E[εiε
T
i |Xi]

Assumption A.GLS.1 is the strict exogeneity assumption. Imposing the equivalent of
assumption A.POLS.1 is insufficient for consistency.1

Consistency

A.GLS.1 and A.GLS.2 do not imply that the GLS estimator is unbiased. However, they
do imply that the GLS estimator is consistent.

Theorem 4.1.2. Under A.GLS.1 and A.GLS.2, β̂GLS consistently estimates β. That
is,

as-lim
N→∞

β̂GLS = β (4.6)

1For consistency, the weaker assumption E[Xi ⊗ εi] = 0 is sufficient.
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Proof. Note that

as-lim
N→∞

β̂GLS =β + as-lim
N→∞

 1

N

N∑
i=1

XT
i Σ−1Xi

−1 1

N

N∑
i=1

XT
i Σ−1εi


=β + E[XT

i Σ−1Xi]
−1E[XT

i Σ−1εi]

LIE
= β + E[XT

i Σ−1Xi]
−1E[XT

i Σ−1
���

��:
0

(GLS.1)

E[εi|Xi]]

=β

Asymptotic normality and variance

The GLS estimator is asymptotic normally distributed.

Theorem 4.1.3. Under assumption A.GLS.1 and A.GLS.2, the GLS estimator is asymp-
totically normally distributed. That is,

√
N
(
β̂GLS − β

)
d→ N (0,V) (4.7)

where V = A−1BA−1, A = E[XT
i Σ−1Xi], B = Var

(
XT
i Σ−1εi

)
Proof.

d-lim
N→∞

√
N
(
β̂GLS − β

)
= d-lim

N→∞

 1

N

N∑
i=1

XT
i Σ−1Xi

 1√
N

N∑
i=1

XiΣ
−1εi


= d-lim

N→∞

1√
N

N∑
i=1

A−1XT
i Σ−1εi

= N

(
0,A−1 Var

(
XT
i Σ−1εi

)
A−1

)
.

Consequently,

Avar
(
β̂GLS

)
=

1

N
A−1BA−1 (4.8)

The need for assumption GLS.3 may now become apparent, as expression (4.8) does
not say anything about the asymptotic efficiency of the GLS estimator. However, with
assumption GLS.3, (4.8) reduces to (by the Law of Iterated Expectations)

Avar
(
β̂GLS

)
=

A−1

N
(4.9)

suggesting asymptotic efficiency.
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Asymptotic efficiency

In this paragraph, both the asymptotic efficiency of the GLS estimator will be proven
and a comparison will be made with the pooled OLS estimator. As in the Pooled OLS
case, the GLS estimator is relatively efficient among all other consistent linear estimators
that are asymptotically normally distributed.

Theorem 4.1.4. Assume assumptions A.GLS.1 - A.GLS.3 hold. Assume QT is a
positive definite transformation matrix pre-multiplied on the system (4.2), after which
Pooled OLS is applied on the transformed system, resulting in the estimator β̄. Then,

Avar
(
β̄
)
−Avar

(
β̂
)

(4.10)

is positive semi-definite.

Proof. This proof is analogous to the proof given for the pooled OLS estimator. That
is, the result follows from taking A1 = XT

i Σ−1εi and A2 = XT
i QTQΣ−1εi in the proof

of theorem 3.2.4.

It is easy to remark that the pooled OLS estimator is at best as efficient as the GLS
estimator. To obtain the pooled OLS estimator, pick transformation matrix Q = Σ1/2.
It is as efficient as GLS provided Σ = ITσ

2
ε and less efficient otherwise. This result is in

line with 3.2.4, since assumption A.POLS.3 was required to hold, which is the case iff
Σ = ITσ

2
ε .

4.1.4 Maximum Likelihood Estimation

The GLS estimator as derived in equation (4.3) is also the MLE estimator under the
following conditions

• Assumption MLE.GLS.1: εi
iid∼N (0,Σ)

• Assumption MLE.GLS.2: P[rank
(
XT
i Σ−1Xi

)
= K] = 1

and so
yi|Xi

iid∼N (Xiβ,Σ) (4.11)

for which the log likelihood function equals

log (π) =− NT

2
log (2π) +

1

2
log
(
det (Σ)

)
− 1

2

N∑
i=1

(yi −Xiβ)T Σ−1 (yi −Xiβ) .
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The estimator for β is obtained in the usual fashion (first order condition, assuming Σ
is known)

∂ log (π)

∂β
=

1

2

N∑
i=1

(yi −Xiβ)T Σ−1Xi = 0

⇐⇒ β =

 N∑
i=1

XT
i Σ−1Xi

−1 N∑
i=1

XT
i Σ−1yi


4.1.5 Simulation

We consider a panel data model with N = 50 cross-sectional units and T = 20 time
periods. The model is constructed such that the heavy heteroscedasticity and serial
dependence is present in the error term. More specifically,

• Assumption SS.GLS.1: εi,t = ρεi,t−1 + ηi,t where the true value of ρ = 0.9 and

ηi
iid∼N

(
0, σ2

i IT
)
. The true value of σ2

t = t2.

Pooled OLS

Under these assumptions, the pooled OLS estimator is not BLUE. This can obviously
be seen from the rejection rates of the pooled OLS estimator given in table 4.1. The
null hypothesis for the intercept was falsely not rejected in about 92% of the cases. At
the other hand, no type II errors were observed for the parameter β. The plot of the
residuals is given in figure 4.1. This plot clearly shows how the residuals are affected by
serial dependence. Figure 4.2, however, better captures how the residuals are affected
by heteroscedasticity.

Table 4.1: Pooled OLS (based on R=1000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

(Intercept) 1.011 2.6138 0.3938 0.4665 6.8% 91.5%
beta 1.995 0.3249 6.3519 1e-04 5.3% 0%
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Figure 4.1: Plot of residuals (showing serial dependence)

Figure 4.2: Plot of residuals (showing heteroscedasticity)

Generalised Least Squares

In this particular case, we have the luxury of knowing the variance-covariance matrix.
As expected, GLS performs considerably better than the pooled OLS estimator. The
null hypothesis was always rejected out of the 1000 simulations made. From figure 4.3
it can be observed that the residuals now follow some white noise process. They do in
particular not seem to be affected by serial correlation anymore.
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Table 4.2: GLS simulations (R=1000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

(Intercept) 0.9999 0.0044 226.0202 0 7.2% 0%
beta 1.9985 0.0289 71.2367 0 4.6% 0%

Figure 4.3: Plot of GLS residuals

4.1.6 Application: Weighted Least Squares

An important application of the GLS method is Weighted Least Squares (WLS). Weighted
Least Squares takes heteroscedasticity into account, but fails to repair the estimates for
serial correlation. In particular, the variance matrix in a WLS-regression for the model
problem (4.1) is given by

Σ = diag
(
w2
i

)
(4.12)

where w2
i = 1

σ2
i

is the weight of the particular observation.

4.2 Feasible Generalised Least Squares

The GLS estimator is often infeasible because the variance-covariance matrix Σ is usually
unknown. If Σ in the GLS analysis is replaced by a consistent estimator, denoted by
Σ̂, then we obtain the feasible GLS estimator (FGLS). That is, the feasible GLS
estimator is then given by

β̂FGLS =

 N∑
i=1

XiΣ̂
−1Xi

−1 N∑
i=1

XiΣ̂
−1Xi

 (4.13)

Example 4.2.1 (Unrestricted feasible GLS). To get a consistent estimator for Σ,
Wooldridge (2001) suggests fitting the model in two stages. First, pooled OLS is used
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to fit the model from which estimator β̂POLS is obtained. Under assumptions GLS.1
and GLS.2, this estimator consistently estimates β. Let now ε̂i denote the pooled OLS
residuals. The estimator

Σ̂ =
1

N

N∑
i=1

ε̂iε̂
T
i (4.14)

is consistent for Σ. This may seem like a great choice, but in reality it is not. This
unrestricted variance estimator requires the estimation of O

(
T 2
)

variance parameters.
This in particular requires N to be very large compared to T to obtain reliable estimates,
which is often not the case.

The feasible GLS estimator at the other hand is extremely useful to model more complex
serial dependence structures. Also, the classical random effects estimator is a special
case of a restricted feasible GLS estimator. We will first discuss the general properties
of the feasible GLS estimator, after which we propose some restricted estimators for the
variance-covariance matrix Σ.

4.2.1 Finite sample properties

Remarkably little is known about the finite sample properties of the FGLS estimator.
Assume we have a consistent estimator for Σ̂. The usual finite sample assumptions are
imposed, i.e.

• Assumption F.FGLS.1: E[εi|{Xj}Nj=1] = 0

• Assumption F.FGLS.2: P[rank
(
XT
i Σ̂Xi

)
= K] = 1, where E[εiε

T
i ] = Σ

• Assumption F.FGLS.3: E[εiε
T
i |{Xj}Nj=1] = E[εiε

T
i ]

Unbiased

In general, the feasible GLS estimator cannot be proven to be an unbiased estimator of
β. Assumption F.FGLS.1 is insufficient because the estimator Σ̂ is a random variable
itself. In some special cases, like Σ̂ = Σ, the feasible GLS estimator is unbiased under
assumption F.FGLS.1. This also shows that the GLS is a special case of feasible GLS.
So far, we did not impose any assumption on the distribution of the error term (other
than moment conditions). Kakwani (1967) proves, under some mild assumptions on the
distribution of the error term, that the feasible GLS is an unbiased estimator of β.

Theorem 4.2.1 (Kakwani, 1967). In addition to assumptions F.FGLS.1 and F.FGLS.2,
assume that (i) E[β̂FGLS ] <∞ and (ii) the distribution of εi follows a symmetric distri-
bution. Then

E[β̂FGLS ] = β (4.15)
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Note that these assumptions in particular hold when εi|Xi ∼ N (0,Σ). We will not
further eleborate on the finite sample properties of the feasible GLS estimator. There
is no general Gauss-Markov extension of the feasible GLS estimator. Even under the
normality of the error term, Σ̂ may show heavy non-linear behaviour. As a result, the
FGLS estimator is not guaranteed to be efficient in finite samples. If the feasible GLS
estimator reduces to the GLS estimator, then it does satisfy the Gauss-Markov theorem.

4.2.2 Asymptotic properties

As noted in the introduction, the feasible GLS estimator is mainly justified for its asymp-
totic properties. The assumptions imposed for the asymptotic results are exactely the
same as A.GLS.1 - A.GLS.3. The feasible GLS estimator can be proven to be

√
N -

equivalent to the GLS estimator. This means that it also satisfies the same asymptotic
properties as the GLS estimator. In particular, it is asymptotically efficient provided
A.GLS.3 also holds.

Consistency and efficiency

It is clear that the FGLS estimator is consistent, as the variance-covariance matrix is
also consistent. A more interesting result, also the result that justifies the use of the
FGLS estimator, is the fact that β̂FGLS and β̂GLS are

√
N equivalent.

Theorem 4.2.2. Assume assumptions A.FGLS.1 and A.FGLS.2 hold, then

as-lim
N→∞

(
β̂FGLS − β̂GLS

)
= 0 (4.16)

This statement is much stronger than just saying that both estimators are consistent
estimators for β. As we have seen, a large class of estimators satisfies this consistency
property but these estimators are in general not

√
N equivalent with the GLS estimator.

Proof. (Obtained from Wooldridge, 2001, p. 159) We start by noting that

√
N
(
β̂ − β

)
=

 1

N

N∑
i=1

XiΣ̂Xi

−1N−1/2
N∑
i=1

XiΣ̂εi

 (4.17)

Then the second term is given by (where vec (A) denotes the vectorisation of matrix A):

N−1/2

 N∑
i=1

XT
i Σ̂εi

−N−1/2

 N∑
i=1

XT
i Σεi

 = N−1/2

 N∑
i=1

εi ⊗Xi

T

vec
(
Σ̂−Σ

)
The central limit theorem implies (where ⊗ denotes the Kronecker product)

as-lim
N→∞

N−1/2
N∑
i=1

(εi ⊗Xi)
T = Z (4.18)

68



where Z is some normally distributed random variable. This follows from assumption
A.FGLS.1. At the other hand,

as-lim
N→∞

vec
(
Σ̂−1 −Σ−1

)
= 0 (4.19)

due to the consistency of Σ̂. So we can say that

N−1/2
N∑
i=1

XT
i Σ̂εi = N−1/2

N∑
i=1

XiΣ
−1εi + dN (4.20)

where dN
a.s.→ 0. Similary,

1

N

N∑
i=1

XT
i Σ̂−1Xi =

1

N

N∑
i=1

XiΣ
−1Xi + kn (4.21)

where kN
a.s.→ 0. We have now shown that

√
N
(
β̂FGLS − β

)
=
√
NβGLS + pN (4.22)

where pN
a.s.→ 0. This in particular implies

as-lim
N→∞

√
N
(
β̂FGLS − β̂GLS

)
= 0 (4.23)

as required.

To conclude this paragraph,

Theorem 4.2.3. The feasible GLS estimator is efficient relatively to any other trans-
formed pooled OLS estimator.

Proof. Direct consequence of the
√
N -equivalence with the β̂GLS estimator. That is,

√
N

equivalence implies that these estimators have the same limiting distribution including
the same asymptotic variance-covariance matrix.

4.2.3 Autocorrelation in error term

The GLS and unrestricted FGLS explicitely take serial dependence into account, yet
both methods are in practice never applied in their pure forms. However, as T grows
larger, there is also a bigger need to model serial dependence in the error term. The
first difference transformation provided a non-parametric method that explicitely takes
serial correlation into account, but this method only satisfied some efficiency properties
provided the error term follows a random walk. In this paragraph we will extend these
results to the case where the error term follows an ARMA (1, 1) process.
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Definition 4.2.1. εi,t is said to follow an ARMA (p, q) process when

εi,t =

p∑
s=1

ρsεi,t−s +

 q∑
j=1

φjηi,t−j

+ ηi,t (4.24)

where ηi,t is some white noise process.

In that case, the autocovariance function (ACF) is given by (Shumway and Stoffer, 2016)

cov
(
εi,t, εi,t−s

)
=

(1 + θρ) (ρ+ θ)

1− ρ2
ρs−1. (4.25)

We will not derive the transformation matrix Σ̂−1/2. MaCurdy (1982) derive the results
for general ARMA (p, q) matrices.

First order autoregressive errors (ARMA(1,0))

Assume that εi,t follows an AR (1) proces, i.e.

εi,t = ρεi,t−1 + ηi,t, |ρ < 1|. (4.26)

• Assumption AR1.FGLS.1: E[ηi|Xi] = 0

• Assumption AR1.FGLS.2: rank
(

[XT
i Σ−1Xi]

)
= K

• Assumption AR1.FGLS.3: E[ηiη
T
i |Xi] = σ2

ηIT

The variance-covariance matrix Σ is obtained by substituting θ = 0 in equation (4.25).

cov
(
εi,t, εi,t+s

)
=

ρs

1− ρ2
(4.27)

Prais and Winsten (1954) show that in this case the GLS transformation matrix yields

Σ−1/2 =



√
1− ρ2 0 0 · · · 0
−ρ 1 0 · · · 0
0 −ρ 1 · · · 0
...

. . .
. . .

...
0 · · · 0 −ρ 1

 (4.28)

That is, we have an expression of the GLS estimator. To obtain a feasible GLS estimator,
a consistent estimator for ρ is required. Wooldridge’s two stage procedure is also useful
to obtain a consistent estimator for ρ. We derive it using the method proposed by
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Cochrane and Orcutt (1949). In the first stage, the pooled OLS model is fitted and we
apply pooled OLS again on (where ε̂i,t are the pooled OLS residuals)

ε̂i,t on ε̂i,t−1. (4.29)

so that the estimator for ρ is given by

ρ̂ =

 N∑
i=1

T∑
t=1

ε̂2
i,t−1

−1 N∑
i=1

T∑
t=1

ε̂i,t−1ε̂i,t

 . (4.30)

ρ̂ consistently estimates ρ as N → ∞. Furthermore, Wooldridge (1991) shows that the
usual asymptotic properties hold for this estimator.

It is theoretically possible to extend this procedure to general AR (p) , p ≤ T processes,
but this gets increasingly complicated as p gets higher since we need to compute Σ−1/2.
Note that this is not very restrictive from a practical point of view, since in most econo-
metric applications ρ1 > ρ2 > · · · > ρp. For stationarity, |

∑P
j=1 ρj | < 1 and so the

influence of the higher order terms dies out quickly anyway. If we expect high order au-
tocorrelation, it may be more useful to use transformation matrix (4.28) and robustify
the standard errors for the remainder serial correlation rather than computing Σ−1/2 for
the small efficiency gain. Baltagi (2005, p. 87) derives a transformation matrix Σ−1/2

for a second order autoregressive process, which may be useful if ρ2 is expected to be
large. The model given in (4.29) can easily be extended for an estimate of the second
order correlation coefficient.

While correcting for autoregressive errors provides a asymptotic solution to the problem,
the estimates for ρ are biased. To see this,

E[ρ̂] = ρ+ E


 N∑
i=1

T∑
i=1

ε̂2
i,t−1

−1 N∑
i=1

T∑
i=1

ε̂i,t−1ηi,t


 (4.31)

For ρ to unbiased, ηi,t is mean independent of {ε̂i,t}N,Ti=1,t=1. But this fails, as

ε̂i,t+1 = ρε̂i,t + ηi,t+1. (4.32)

4.2.4 Simulations

This paragraph considers a few simulations for the feasible GLS estimator. In particular,
the performance between this estimator and the first difference estimator is compared.
We consider a panel with N = 50 cross-sectional units and T = 20 time periods. The
model is given by

yi = βXi + εi (4.33)

The true value of β = 2. The error term follows an ARMA (2, 1) process, i.e.

εi,t = ρ1εi,t−1 + ρ2εi,t−2 + θηi,t−1 + ηi,t (4.34)
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where ηi
iid∼ N (0, IT ). The true value of ρ1 = 0.8, ρ2 = 0.1, θ = 0.2. These numbers

are chosen such that they roughly correspond with the serial correlation dependence
structure in the 2001 and 2012 VAT studies. The aim of this simulation is to show that
first differencing performs very well in practical applications, even if the error term does
not follow a random walk. The first difference estimates are given in 4.3 and the feasible
GLS restricted to ARMA (1, 1) errors in table 4.4. ARMA (2, 2) posed convergence
problems due to ρ2 being small.

From the tables we can observe that the first difference estimator indeed does not un-
derform for the feasible GLS estimator. Only the type I errors produced by the FGLS
estimator is somehwat higher than the type I errors produced by the feasible GLS error.
This may be an indication that the robust standard errors underestimate the actual
standard errors. However, there is no reason to worry about this. The autocorrelation
function (ACF) plots of both the first difference and feasible GLS estimator indeed show
that serial correlation disappeared.

Table 4.3: First difference summary (R=3000 simulations)

Estimate Std. Error t value Pr(>|t|) Type I Type II

beta 2.0001 0.0088 230.8955 0 5.73% 0%

Table 4.4: Feasible GLS summary (R=3000 simulations)

Estimate Std. Error z value Pr(>|z|) Type I Type II

beta 2.0001 0.0089 226.0238 0 5.13% 0%

Figure 4.4: ACF plot of First Difference estimator
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Figure 4.5: ACF plot of Feasible Generalised Least Squares estimator

4.2.5 Maximum Likelihood Estimation

The feasible GLS estimator is also a maximum likelihood estimator. We do not impose
assumptions on the variance-covariance matrix Σ, meaning that the maximum likelihood
estimator in this case is also unrestricted. We impose the following assumptions:

• Assumption MLE.FGLS.1: εi|Xi
iid∼N (0,Σ)

• Assumption MLE.FGLS.2: P[rank
(∑N

i=1 XT
i Σ−1Xi

)
= K] = 1

This means
yi|Xi

iid∼N (Xiβ,Σ) (4.35)

and so the MLE estimators can be derived as

β̂MLE =

 N∑
i=1

XT
i Σ̂−1

MLEXi

−1 N∑
i=1

XT
i Σ̂−1

MLEXT
i


Σ̂MLE =

1

N

N∑
i=1

ε̂iε̂
T
i

where ε̂i =
(
yi −Xiβ̂MLE

)
.

The MLE estimator uses the residuals obtained by the FGLS estimator rather than the
OLS estimator. This is, given the nature of the MLE estimator, a more efficient proce-
dure. However, it is computationally more expensive than the GMM FGLS estimator
derived above. The GMM FGLS estimator does not require simultaneous estimation of
the parameters.
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The estimator for the variance matrix easily shows why a fully correct specification of the
variance matrix is also infeasible under a MLE setting: also the MLE variance-covariance
matrix requires the estimation of O

(
T 2
)

variance parameters. This usually only works
well provided N is much bigger than T . Furthermore, in many practical applications
such model formulation is overspecified.

4.3 Random Effects Estimator
The random effects estimator is a feasible GLS-based estimator, yet it shows much more
similarities with the fixed effect estimator. Recall that in fixed effects estimation, the
unobserved fixed effect µi was correlated with the design matrix Xi. The fixed effects
estimator made µi an estimand in the model. In the random effect models, µi is assumed
to be random, just like in the Pooled OLS case. However, the random effects estimators
allow µi to have a different variance, which is where the FGLS method kicks in. The
random effects estimator may have some efficiency gains over pooled OLS.

4.3.1 Asymptotic Properties

The Random Effects estimator is best described as an example of a restricted FGLS
method, since only two variance parameters need to be estimated. The Random Effects
estimator is justified by the following set of assumptions.

• Assumption A.RE.1: E
[
vi,t|Xi, µi

]
= 0, t = 1, . . . , T .

• Assumption A.RE.2: E
[
µi|Xi

]
= E [µi] = 0, indepentent in mean.

• Assumption A.RE.3: Rank
(
E
[
XΣ−1Xi

])
= K, with Σ = E[εiε

T
i ].

• Assumption A.RE.4: E
[
viv

t
i |Xi, µi

]
= σ2

vIt.

• Assumption A.RE.5: E
[
µ2
i |Xi

]
= σ2

µ

As usual, assumptions A.RE.1 - A.RE.3 are the key identification assumptions while
assumptions A.RE.4 - A.RE.5 are only needed for efficiency.

Lemma 4.3.1. Under REE.1-REE.5, we can write

Σ = σ2
vIT + σ2

µ
~1T~1

T
T (4.36)

Proof.

E[εiε
T ] = E[

(
µi~1T + vi

)(
µi~1T + vi

)T
]

= E[µ2
i
~1T~1

T ]︸ ︷︷ ︸
σ2
µ
~1~1T

(REE.5)

+E[µi~1T v
T
i ] + E[vi~1

T
Tµ

T
i ]︸ ︷︷ ︸

0
(LIE/A.RE.1)

+E[viv
T
i ]︸ ︷︷ ︸

σ2
vIT

(A.RE.4)
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Assume we have consistent estimators σ̂µ and σ̂v. Then Σ is consistently estimated by

Σ̂ = σ̂2
µ
~1T~1

T
T + σ̂2

vIT (4.37)

The random effects estimator is now defined as the feasible GLS estimator with the
restricted variance-covariance matrix Σ̂, i.e.

β̂RE =

 N∑
i=1

XT
i Σ̂−1Xi

−1 N∑
i=1

XT
i Σ̂−1yi

 (4.38)

Given the consistency of the feasible GLS estimator, we can also conclude that the
random effects estimator is consistent.

Asymptotic Variance

The random effects estimator is obviously normally distributed and has an asymptotic
variance given by (under A.RE.1 - A.RE.5)

β̂RE = E[XT
i Σ−1Xi]

−1 (4.39)

The main purpose of this paragraph is to derive consistent estimators for σ2
µ

Lemma 4.3.2. Assume A.RE.1 - A.RE.5 hold, then

E[ε2
i,t] = E[µ2

i ] + E[v2
i,t] (4.40)

Proof.

E[ε2
i,t]

RE.1
= E[

(
µ2
i

)
]−���

��2E[µivi,t] + E[v2
i,t]

RE.4/5
= σ2

µ + σ2
v

In the same way as the FGLS estimator, we use the pooled OLS residuals to obtain
consistent estimates for σ2

µ and σ2
v . Recall E[vi,tvi,s] = σ2

µ, t 6= s. Note that all possible
combinations are given by:

T−1∑
t=1

T∑
s=t+1

E[vi,tvi,s] =
T−1∑
t=1

T∑
s=t+1

σ2
µ

=
T (T − 1)

2
σ2
µ

⇐⇒ σ2
µ =

1

T (T − 1) /2

T−1∑
t=1

T∑
s=t+1

E[vi,tvi,s] (4.41)
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Equation (4.41) justifies the following proposed estimator.

Corollary 4.3.1. The estimator

σ̂2
µ =

1

NT (T − 1) /2

N∑
n=1

T−1∑
t=1

T∑
s=t+1

ε̂i,tε̂i,s (4.42)

consistently estimates σ2
µ.

Proof. This is a direct consequence of equation (4.42) and the strong law of large num-
bers.

That heteroscedastic and serial correlation robust asymptotic variance-covariance matrix
is obtained the usual way and given by

Avar
(
β̂RE

)
= A−1BA−1 (4.43)

where A = E[XT
i Σ−1Xi] and B = E[XT

i Σ−1εiεiΣ
−1Xi].

Efficiency

Given the fact that the feasible GLS estimator is relatively efficient in the class of
transformed pooled OLS estimators, it should not come as a surprise that the random
effects estimator is asymptotically efficient too. After all, the Random Effects estimator
is just a feasible GLS estimator. In particular, it is more efficient than the fixed effects
estimator. Wooldridge (2001) argues this fact with a unnecessarily complicated proof,
which we will not consider in detail. This proof, however, does show a very important
fact: the random effects estimator is in fact the pooled OLS estimator applied on a quasi
time demeaned system of equations. In particular, it is the pooled OLS estimator on

yi,t − λȳi =
(
xi,t − λx̄i

)
β + εi,t − λεi,t. (4.44)

where λ = 1−
√

1/[1 + T
(
σ̂2
µ/σ̂

2
v

)
]. Apart from the fact that this quasi-time demeaning

shows an obvious relationship between the random effects and fixed effects estimator, it
also shows that as T → ∞, the estimates for the random effects and fixed effects are
equal. This in particular suggests that for sufficiently big T , there is no real reason to
prefer the random effects estimator over the fixed effects estimator.

4.4 Summary

This chapter discussed several estimators that aim to improve efficiency in presence of
heteroscedasticity and serial correlation. We have seen that the generalised least squares
estimator preserves Gauss-Markov and asymptotic efficiency in presence of arbitrary
serial correlation and heteroscedasticity. At the other hand, it is almost always infeasible
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in practical applications because it requires knowing the variance-covariance matrix of
the error term up to a constant.

The GLS estimator was then extended to the feasible GLS estimator, which aims to
solve the infeasibility of the GLS estimator by replacing the variance-covariance matrix
of the error term by a consistent estimator. The feasible GLS estimator is an example of
a so-defined parametric transformation of the pooled OLS estimator. While the feasible
GLS estimator preserves the same asymptotic efficiency properties as the GLS estimator,
it may have poor finite sample properties compared to other consistent estimators. The
FGLS framework was then used to derive an estimator that is efficient in presence
of ARMA (p, q) serial correlation and in presence of exogenous individual specific fixed
effects. The latter captures inefficiencies in presence of exogeneous unobserved individual
specific fixed effects. The simulations showed that first differencing in presence of heavy
serial dependence hardly underpeforms compared to modelling the serial correlation in
the error term.
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Chapter 5

Model specification and causality

This chapter discusses issues related to model specifications. It starts by considering
solutions to endogeneity problems, where special emphasis is put on the method of
instrumental variables regression. The analysis then continues to considering some spec-
ification tests to determine which model is the most useful to apply in practice. Topics
include the determination of the presence of serial correlation in the error term and
endogeneity caused by unobserved individual specific fixed effects. This chapter is con-
cluded by discussing causal effects, where we especially consider the famous difference-in-
differences model. It appears that these models are heavily affected by serial correlation,
making the usual pooled OLS estimator inefficient.

5.1 Endogeneity

The previous chapters discussed panel data models where Xi was assumed to be exoge-
nous. This appeared to be the key assumption for the consistency of such models. The
fixed effects estimator provided a first relaxation. This estimator appeared to consis-
tently estimate β in presencde of an endogenous unobserved fixed effect µi, but the fixed
effects estimator still required E[vi|Xi] = 0.

These exogeneity assumptions may be appropriate for experimental studies, but often are
not for observational research. We will only very briefly discuss methods to circumvent
inconsistency caused by endogenous regressors. Later on in this thesis we actually do
observe endogenous regressors, but the methods in this paragraph will appear to be
infeasible to implement.

Consider the T -dimensional panel data model.

yi
T×1

= Xi
T×K

β
K×1

+ εi
T×1

(5.1)

Let Zi
T×L

the matrix with L observable instrumental variables. IV-based estimators com-

ply with the following set of assumptions.
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• Assumption IV.1: E[ZTi εi] = 0.

• Assumption IV.2: rank
(
E[ZTi Xi]

)
= K.

Since IV.1 does not imply that E[XT
i (yi −Xiβ)] = 0, it suggests replacing XT

i with ZTi
since E[ZTi (yi −Xiβ)] = 0. A consistent estimator for β is then given by

β̂IV =

 N∑
i=1

ZTi Xi

−1 N∑
i=1

ZTi yi

 (5.2)

Theorem 5.1.1. The estimator given by (5.2) consistently estimated β.

Proof. Recall E[ZTi (yi −Xiβ)]
IV.1
= 0, hence

E[ZTi (yi −Xiβ)] = E[ZTi yi − ZTi Xiβ]

SLLN
= as-lim

1

N

N∑
i=1

ZTi yi − ZTi Xiβ

IV.2⇐⇒ β = as-lim

 1

N

N∑
i=1

ZTi Xi

−1 1

N

N∑
i=1

ZTi yi


︸ ︷︷ ︸

β̂IV

5.1.1 Pooled Two-Stage Least Squares Estimator

The method discussed above only works when L = K. If L > K, then the β̂IV estimator
does not usually have a solution (over identification). One way to proceed is to choose
β̂ such that it satisfies

min
b

 N∑
i=1

ZTi (yi −Xib)

T  N∑
i=1

ZTi (yi −Xib)

 (5.3)

This fulfils the rank condition. More efficient, however, is the generalised method of
moments estimator. In addition to IV.1-IV.2, let Ŵ be a weighting matrix that is
positive, semi-definite. An important application of an GMM-estimator is the Two-
Stage Least Squares (2SLS) estimator. The 2SLS estimator follows from choosing

Ŵ =

 1

N

N∑
i=1

ZTi Zi

 (5.4)
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Obviously,
as-lim
N→∞

Ŵ = E[ZTi Zi]

The 2SLS estimator is given by

β̂2SLS =


 N∑
i=1

XT
i Zi

  N∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi Xi



−1

×


 N∑
i=1

XT
i Zi

 N∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi yi




(5.5)

To see why this estimator follows a two-stage procedure, we solve first the equation

Xi
T×K

= Zi
T×K

β1S
K×K

+ εi
T×K

. (5.6)

where estimator for β1S is given by

β̂1S =

 N∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi Xi

 (5.7)

The predicted values become

X̂i = Zi

 N∑
i=1

ZTi Zi

−1 N∑
i=1

ZiXi

 (5.8)

The second step,
yi = X̂iβ2S + εi (5.9)

Which leads to

Theorem 5.1.2 (Own work). Under the two-stage least squares procedure, we have

β̂2S =

 N∑
i=1

X̂T
i X̂i

−1 N∑
i=1

X̂T
i yi

 = β̂2SLS (5.10)
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Proof.

β̂2S =

 N∑
i=1

X̂T
i X̂i

−1 N∑
i=1

X̂T
i yi



=


 N∑
i=1

Zi

∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi Xi



T

×

Zi

 T∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi Xi




−1

×

 N∑
i=1

Zi

 N∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi Xi

T

yi



=


 N∑
i=1

XT
i Zi

∑
i=1

ZTi Zi

−1

×
XXXXXXXXXXXXXX

 N∑
i=1

ZTi Zi

 N∑
i=1

ZTi Zi

−1  N∑
i=1

ZTi Xi



−1

×


 N∑
i=1

XT
i Zi

 N∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi εi




=


 N∑
i=1

XT
i Zi

 T∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi Xi



−1

×


 N∑
i=1

XT
i Zi

 N∑
i=1

ZTi Zi

−1 N∑
i=1

ZTi εi




= β̂2SLS

As required.

It is not recommended to actually perform 2SLS regression under a two-stage procedure,
i.e. the standard errors are incorrect and may lead to improper inference (Wooldridge,
2001).
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5.2 Specification tests

5.2.1 Presence of Fixed Effects

In presence of an individual specific unobserved fixed effect, the Pooled OLS estimator
is either inefficient or inconsistent. Breusch and Pagan (1979) developed a test for the
presence of such effects, which to date is among the most commonly used. However,
this test relies on a full parametric specification of the model. Consequently, this test
is infeasible since no distributions have been specified so far. Wooldridge (2001, p. 265)
proposes a semi-parametric that tests

H0 : σ2
µ = 0

He proposes the following test statistic

H =

∑N
i=1

∑T−1
t=1

∑T
s=t+1 ε̂i,tε̂i,s[∑N

i=1

(∑T−1
t=1

∑T
s=t+1 ε̂i,tε̂i,s

)2
]1/2

d→
H0

N (0, 1) (5.11)

I believe the H0 of is poorly formulated, because this test in fact checks if the lower
diagonal of the variance-covariance matrix (excluding the diagonal itself) has non-zero
elements. While the variance-covariance matrix will have non-zero elements in presence
of individual specific fixed effects, it will also have non-zero entries in presence of serial
correlation. This means that H0 should also be rejected in presence of serial correlation.
Wooldridge (2001) acknowledges this fact and suggests that only a non-rejection of H0 is
evidence to the fact that σ2

µ = 0. In all other cases, other methods should be consulted
to get a decisive answer. In my opinion, a better formulation of the hypothesis test is
given by

H0 : No serial correlation and individual specific effects

H1 : Assumption A.POLS.3 fails.

In practice, this test only really matters if a fixed effects transformation or first difference
transformation is undesirable. For example when T is small, a variable of interest is
time-invariant or the amount of cross-sectional units N is very large (the latter causing
computational inefficiencies). If this is not a problem, fixed effects or first difference is
a safe option as it takes care of the individual specific fixed effect while still producing
consistent estimates.
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5.2.2 Hausman Test

The Hausman test is a test constructed to two different estimators against eachother.
The Hausman test in its purest form is hardly informative, because it tests

H0 : as-lim
N→∞

(
β̂ − β̃

)
= 0, but β̂ is more efficient than β̃

H1 : as-lim
N→∞

(
β̂ − β̃

)
6= 0

i.e., under the alternative hypothesis, at least one of the estimators is inconsistent. Under
additional assumptions, the Hausman test may lead to more useful hypothesis testing.
First, the most general form of the Hausman test will be derived and applied on specific
cases.

Under H0, √
N
(
β̂ − β̃

)
d→
H0

N (0,Ξ) (5.12)

where Ξ is a variance-covariance matrix. Hausman suggests using the test statistic

H =
(
β̂ − β̃

)T (
Ξ̂/N

)−1 (
β̂ − β̃

)
(5.13)

where Ξ̂ is a consistent estimator of the variance covariance matrix.

Also,

Ξ = Avar[β̂ − β̃] = Avar
(
β̂
)

+ Avar
(
β̃
)
− 2 Acov

(
β̂, β̃

)
(5.14)

Lemma 5.2.1. If β̂ is more efficient than β̃ (i.e. under H0), then Acov
(
β̂, β̃

)
=

Avar
(
β̂
)

.

Proof. Proof by contradiction.

Assume that
Acov

(
β̂, β̃

)
6= Avar

(
β̂
)

(5.15)

a contradiction can now be derived. As suggested by Amemiya (1985, p. 146), consider
the estimator

β̄ = β̂ +

(
Avar

(
β̂
)
−Acov

(
β̂, β̃

))(
Avar

(
β̂ − β̃

))−1 (
β̃ − β̂

)
(5.16)

Note that E[β̄] = β. Its asymptotic variance is given by

Avar
(
β̄
)

= Avar
(
β̂
)
−
(

Avar
(
β̂
)
−Acov

(
β̂, β̃

))
×Avar

(
β̂ − β̃

)−1
(

Avar
(
β̂
)
−Acov

(
β̂, β̃

))
This is a contradiction, because β̂ was more efficient.
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This lemma in particular implies that

Avar
(
β̃
)
−Avar

(
β̂
)

(5.17)

is positive definite and so

H
d→
H0

χ2
k (5.18)

In a similar fashion as shown in paragraph 1.4.2, H0 is rejected at signficance level α
when

H > Cα (5.19)

where Cα = F−1 (1− α), the inverse distribution function of χ2
k.

Random effects vs. fixed Effects

Consider the random effects estimator β̂RE and the fixed effects estimator β̂FE . Under
A.RE.1-A.RE.5, the Fixed Effects estimator is consistent but the Random Effects esti-
mator is consistent and BLUE. In particular, the Random Effects estimator will be more
efficient. The Haussman hypothesis for the comparison of Random Effects and Fixed
Effects estimators can so be formulated as

H0 : Assumptions A.RE.1 - A.RE.5 hold and so as-lim
N→∞

(
β̂FE − β̂RE

)
= 0

H1 : Assumption A.RE.2 fails and so β = as-lim
N→∞

β̂FE 6= as-lim
N→∞

β̂RE

Should A.RE.2 fail (endogeneity between the regressors and the individual specific ef-
fect), then the RE estimator is inconsistent while the FE estimator is consistent.

General endogeneity

Any OLS-based estimator can be compared with an Instrument Variable based estima-
tor. IV-based estimators are less efficient than OLS-based estimators under the usual
assumptions, so a Hauseman test can easily be formulated as

H0 : Usual OLS assumptions hold and as-lim
N→∞

(
β̂IV − β̂OLS

)
= 0

H1 : IV errors are uncorrelated β = as-lim
N→∞

β̂IV 6= as-lim
N→∞

β̂OLS

Are Hauseman Test result reliable?

The random effects estimator asymptotically efficient provided assumptions A.RE.1-
A.RE.5 hold. However, if either A.RE.4 or A.RE.5 fail, then the random effects model
loses this property. In particular, nothing guarantees that the difference between the
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fixed effects and random effects asymptotic variances constitutes in a positive semidefi-
nite matrix. Equation (5.14) provides an unrestricted form to perform Hauseman tests,

but it requires knowing Acov
(
β̂RE , β̂FE

)
. As shown in lemma 5.2.1, this equals the

asymptotic variance of the most efficient estimator and thus requires us to know (apri-
ori) which estimator is most efficient. In case of heteroscedasticity or autocorrelation,
this is something unknown and consequently the Hausman tests may lead to incorrect
inference.

5.2.3 Test for Serial Correlation

Serial correlation in the error term may cause estimates to be inefficient. Hence, it is a
useful to test for serial correlation. A proper test for serial correlation is usually tedious
and often requires large T asymptotics. Wooldridge (2001), on the contrary, proposes a
test for serial correlation that works without distributional assumptions. The test uses
an AR(1) model for the residuals as described in equation (5.20).

ε̂i,t = ρε̂i,t−1 + ηi,t (5.20)

The test applies pooled OLS on equation (5.20) to estimate ρ. The appropriate hypoth-
esis tests depend on the estimator that was used. For example, if a First Difference
estimator is used and the interest lies in the question whether the original error term is
serially uncorrelated, then

H0 : ρ 6= −1

2

H1 : ρ = −1

2

Under H0, the original error term is serially correlated while under H1 there is an
indication that the original error term is serially uncorrelated (see paragraph 3.4.1).

This test is easy to implement, yet it has some disadvantages. For example, in a Pooled
OLS setting it was required that E[εiε

T
i |Xi] = σ2

εIT , i.e. the error term is serially uncor-
related for all time periods (future and past), not just for one time period back. While
AR (1) dependence is usually among the most important, it does not rule out other types
of serial dependence. That is, this test captures potential efficiency problems caused by
serial correlation, but rejection of the null hypothesis does not mean that the error term
actually follows an AR (p) process, it may easily be some arbitrary ARIMA (p, r, q)
process.

5.3 Causal Treatment Effects

The basic justification behind causal inference is represented by the standard statistical
adagium that correlation does not imply causation. In particular, significant estimates
by any of the previously discussed estimators do not necessarily imply causation. This
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chapter will discuss methods to check for causal links. This chapter wil first discuss the
theory behind Average Treatment Effects (ATE) and then continue with the difference-
in-differences-estimator. The latter heavily relies on the ATE theory. In classical ATE
theory, the treatment assignment is assumed to be ignorable. However, in many cases
(in particular in this research), treatment assignment cannot be ignored.

5.3.1 Causal Effects

Let y0
i,t denote the outcome without treatment and y1

i,t the outcome with treatment. The

interest lies in estimating the difference y0
i,t − y1

i,t. The fact that both y0
i,t and y1

i,t are
random variables justifies the following definition of an average treatment effect.

Definition 5.3.1 (Average Treatment Effect - Rosenbaum and Rubin (1983)). The
Average Treatment Effect is defined as

ATE = E[y0
i,t − y0

i,t] (5.21)

If w denotes a variable indicating treatment (with w = 1 equalling treatment and w = 0
otherwise), then the concept of the Average Treatment Effect can be extended with the
following definition.

Definition 5.3.2 (Average Treatment Effect of the Treated — Wooldridge (2001, p. 605)).
The Average Treatment Effect on the Treated, denoted as ATT, is defined as

ATT = E[y1
i,t − y0

i,t|w = 1] (5.22)

Equation (5.22) has the advantage that it only takes into account those groups actually
eliagble for treatment.

Define the observable outcome as

yi,t =
(
1− wi,t

)
y0
i,t + wi,ty

1
i,t (5.23)

Following Wooldridge (2001), it is convinient to write

y1
i,t = µ1

i + v1
i,t

y0
i,t = µ0

i + v0
i,t

Where µ1 = E[y1
i,t] and µ1

i,t = E[y1
i,t] and v1

i,t and v0
i,t the stochastic parts of y1

i,t and y0
i,t,

respectively. And so, equation (5.23) can be rewritten as

yi,t = µ0
i + w

(
µ1
i − µ0

i

)
+ v0

i,t + w
(
v1
i,t − v0

i,t

)
(5.24)
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5.3.2 Estimator for Average Treatment Effect

In this section, Average Treatment Effect estimators will be proposed.

• Assumption ATE.1: E[ε1
i |wi] = 0 and E[ε0

i |wi] = 0.

To derive an estimator, note that under ATE.1 and ATE.2

E[y0
i,t] = µ0

i,t +��
��*

0
E[v0

i,t]

E[y1
i,t] = E[y0

i,t] +ATE

=⇒ ATE = µ1
i,t − µ0

i,t

The corresponding regression framework becomes1

E[yi,t|w] = µ0
i +ATE · wi,t + E[v0

i,t|w] + wi,tE[v1
i,t − v0

i,t|w]

ATE.1
= µ0

i +ATE · wi,t (5.25)

that is to say, εi,t = v0
i,t + w

(
v1
i,t − v0

i,t

)
is a random variables with mean zero, which

also justifies the use of εi,t

yi,t = µ0
i +ATE · wi,t + εi,t (5.26)

This regression model may, with a superficial view, automatically suggest a fixed effect
model. However, recall from the fixed effect analysis in paragraph 3.3 that the fixed
effects estimate for equals µ0

i = α0 + γ0
i . And so, if E[γ0

i |wi,t] = E[γ0
i ] = 0, a random

effect model may as well be appropriate.

Generalising this estimator to allow for exogenous control variables xi,t is trivial by
changing the ATE assumptions to

• Assumption ATE.1: E[v1
i |w,Xi] = E[v1

i |Xi] = 0 and E[v0
i |w,Xi] = E[v0

i |Xi] = 0

The corresponding regression model becomes

yi,t = µ0
i +ATE · wi,t + xi,tβ + εi,t (5.27)

5.3.3 Estimator for the Average Treatment Effect on the Treated

Before deriving an estimator for the ATT, it is important to note that the ATT and
ATE are related through the following identity

ATT = ATE + E[v1
i,t − v0

i,t|w = 1] (5.28)

1Own work
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• Assumption ATT.1: E[v1
i |w] = E[v1

i ] and E[v0
i |w] = E[v0

i ]

Assumption ATT.1 implies assumption ATE.1. Indeed, under ATT.1, E[v1
i,t|w] = E[v0

i,t|w] =
0. As a consequence, the same regression framework to estimate ATT becomes

yi,t = µ0
i,t +ATT · wi,t + εi,t (5.29)

5.3.4 Application: Difference-in-differences estimation

The Difference-in-Differences estimator is one of the most popular causal estimators,
but consequently also one of the most misunderstood estimators. Usually data is only
available for (i) a treatment group before and after a treatment and (ii) for a group
that does not receive treatment. This section deals with a slight generalisation and a
formalisation of the Difference-in-Differences estimator proposed by Wooldridge, 2001,
p. 130. Firstly, a model will be constructed for difference-in-differences estimation. Let
i = 1, · · · , N denote the amount of cross sections, t indicates the treatment period,
where t = 0 indicates pre-treatment and t = 1 treatment. Furthermore, let si indicate
treatment status, where si = 1 means treatment and si = 0 means no treatment. Note
that the treatment indicator is now defined as wi,t = t · si
The difference-in-differences model is given by

yi,t = α+ λt+ γsi + δwi,t + εi,t (5.30)

The following assumption is imposed to get consistent estimates

• Assumption DID.1: E[εi|wi] = 0.

Let y0
i,t denote the outcome of the model without treatment and y1

i,t denote the outcome
with treatment. Note that they do not need to be actually observed.

Corollary 5.3.1 (Own work). The difference-in-differences estimator estimates the Av-
erage Treatment Effect of the Treated, i.e.

δ = ATT (5.31)

Proof. Observe that

E[y0
i,t] = α+ λt+ γsi

E[y1
i,t] = α+ λt+ γsi + δwi,t

Now, from the definition of ATT

ATT = E[y1
i,t − y0

i,t|wi,t = 1]

= (α+ λ+ γ + δ)− (α+ λ+ γ) = δ

As required.
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5.3.5 Reliability of Difference-in-Difference Estimates

The Difference-in-Differences estimator is very commonly used in econometric research.
However, Bertrand et al. (2004) argued that its implementation in practice leaves much
to be desired. They suggested that Difference-in-Differneces models are, apart from
heteroscedasticity, often prone to serial correlation. Consequently, pooled OLS and the
fixed effects estimator are inefficient and the standard errors reported in most statistical
packages are wrong.

Bertrand et al. (2004) suggest that inference should at least be made using robust stan-
dard errors. However, estimators that are efficient in presence of serial correlation are
not thoroughly discussed. They shortly consider modelling the serial correlation in the
error term, but they advice against that for small samples due to estimation biases.
They do not consider first differencing at all. It could be argued that the first difference
estimator is not identified because of the inclusion of a time invariant variable, but this
is obviously an incorrect interpretation.

To understand this point, recall that the first difference estimator is consistent in pres-
ence of an unobserved individual specific fixed effect. If no dummy variable for the
control group was included, it would have been qualified as an omitted individual spe-
cific fixed effect. That is, the first difference estimator still consistently estimates the
causal treatment effect.

5.4 Summary

This chapter started by discussing econometric methods to circumvent endogeneity.
These methods provide consistent estimates from a mathematical perspective, but the
application in practice is very difficult. The second paragraph dealt with specification
tests. It appeared that the formulation of such tests is difficult due to the semi-parametric
nature of the estimators discussed in this thesis. However, some specification tests were
derived that did not require distributional assumptions, in particular tests that capture
the presence of serial correlation.

The analysis was then turned to the estimation of causal treatment effects. The notion
of Average Treatment Effect was introduced and some causal estimators were derived.
An important application was the Difference-in-Differences model, a causal estimation
technique that is usually robust to endogeneity. Special attention was paid to the paper
of Bertrand et al. (2004). They argue that DD estimation is in many pratical applications
heavily affected by serial correlation, reducing the accuracy of the conventional estimator.
Given the simulations made in the previous chapters, first differencing is expected to give
accurate and reliable results.

89



Part II

Application on VAT-increases
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Chapter 6

Economics of Tax Incidence

This chapter focuses on the development of the theory that is required to properly
understand the mechanisms of Value Added Taxation. We start by reviewing basic
regulations of the European VAT system, which will prove to complicate capturing the
incidence of VAT increases. This theory will be used to develop an economic model.
This model is able to give theoretical predictions on how companies pass-through VAT
to customers under some general equilibrium conditions. These results will be used to
examine the reliability and performance of the estimators that are used to capture the
causal treatment effect of the VAT-increases.

6.1 Summary of Value Added Taxation

The VAT aims to tax the consumption of goods and services of end consumers (business-
to-customer transactions). This is achieved by taxing the company’s revenue. More
specifically, on every transaction between an entrepreneur and a customer, VAT is added
on the transaction price and paid to the company. The company pays the collected tax
to the tax authorities. Note that the tax collection is effectively outsourced to the
enterprise, i.e. reducing the administrative burden of tax authorities.

Transactions made between two companies (business-to-business transactions) are de
facto not taxed. While the supplying company needs to charge the price including VAT
to the recipient company and pay this to the tax authorities, the recipient company is
allowed to claim back the tax paid from the tax authorities. The following example gives
some insight in how the system works in practice.
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Consider a VAT-rate of 21% for a certain good A. Good A is produced by manufac-
turer X and sold to retailer Y (both companies):

Transaction X → Y Price (e)

Good A (excl. VAT) 100.00
Value Added Tax 21.00

Total 121.00

This is a business-to-business transaction. Retailer Y pays the full amount (that
is, e121) to manufacturer X. Manufacturer X pays the VAT he collects to the tax
authorities. But, retailer Y is eligible to a refund of the e21 tax he paid. That is,
he can claim back the e21 VAT he paid from the tax authorities. So in the end the
VAT does not burden on retailer Y.

Retailer Y sells good A to customer Z:

Transaction Y → Z Price (e)

Good A (excl. VAT) 200.00
Value Added Tax 42.00

Total 242.00

This is a business to customer transaction. The customer ends up paying e42 VAT
and retailer Y has to transfer this to the tax authorities.

The VAT described above is applied in many countries around the world (notably not
in the United States). However, this thesis shall only review the European VAT-system.
The VAT is one of the few European harmonised taxes. All member states have to codify
their VAT-systems in compliance with the EU VAT-directive. For example, the Nether-
lands has the Wet op de Omzetbelasting, Germany the Umsatzsteuergesetz and France
the Code de la Taxe sur la Valeur Ajoutée. These laws are consequently essentially the
same, because the EU VAT-directive basically dictates them.

6.1.1 VAT-Rates

The VAT-directive outlines that every Member State has to choose a reference VAT-rate
against which goods and services should be taxed. The Netherlands’ reference rate is
21% and Germany’s 19%. In addition to the reference rates, every Member State has the
right to incorporate a maximum of two reduced tax rates for certain goods and services
transactions named in the directive. The Netherlands has one reduced rate of 6%,
Belgium two of 6% and 12% and Denmark has none at all. Goods and services that may
be taxed against a lower rate include (but not limited to): food, non-alcoholic beverages,
public transport, books, cultural activities and painting houses by a professional painter
(the paint itself, however, is taxed against the reference rate). To latter leads to a
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remarkable result, which shall be illustrated by an example.

Y is a professional house painter, residing in the Netherlands. In order to perform
his activities, he buys the paint from manufacturer X. The following transaction was
made:

Transaction X → Y Price (e)

Paint(excl. VAT) 200.00
Value Added Tax (21%) 42.00

Total 242.00

Just like before, Y pays the full amount to entrepreneur X and claims the VAT
paid to X from the tax authorities. Customer Z hires Y to paint his house. The
Netherlands taxes painting activities against a reduced rate of 6%. The following
transaction was made:

Transaction Y → Z Price (e)

Painting house of Z (excl. VAT) 500.00
Value Added Tax (6%) 30.00

Total 530.00

Note that the amount of VAT Y can claim from the tax authorities (e42) is actually
higher than the VAT he actually has to pay for the service he preformed (e30).

This previous example leads to the formulation of the first VAT-paradox: Companies
expecting to be liable to VAT, might in fact not be taxed at all.

6.1.2 VAT-exemptions

Some companies have been awarded a VAT-exempt due to their specific characteristics.
These entrepreneurs do not have to charge VAT for their goods and services, but they are
neither allowed to deduct the VAT paid in business-to-business transactions. The VAT-
exemptions are mandatory, that is, the EU VAT-directive dictates that VAT-exemptions
should be incorporated in national law. VAT-exempt goods and services include (but
not limited to) education, rent, hospitals, financial services and freelance journalism.

X is a Dutch freelance journalist and hence exempted from VAT (that is, he does
not charge VAT for his services). He wrote a story for newspaper Z. He can assign
the following costs to writing the story for Z.
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Administration X → Z Costs (incl. VAT) VAT

Costs (reference tax rate) 250.00 52.50
Costs (reduced tax rate) 50.00 8.50
Revenue 100.00 =5.5% tax burden

The tax burden is still lower than the reduced VAT-rate, but this example clearly
illustrates that his service still has a VAT-component. Examples can be extended to
situations where the tax-burden actually increases to over 21% (the Dutch reference
rate), but these are not meaningful for the purpose of this introduction.

The previous example leads to the formulation of the second VAT-paradox: goods and
services from companies that are exempted from this tax, still have a VAT-
component.

Little research has been done on how big the VAT-component of exempted goods and
services actually is. The Dutch governmental institution Statistics Netherlands (heri-
nafter referred to as: CBS) simply assume the tax burden to be 0. Also, while the Bureau
for Economic Policy and Analysis (herinafter referred to as: CPB) often discusses the
VAT-exemption, their economic reviews usually assumes this burden is 0 too. This is
an unfortunate assumption, because about 40% to 30% of household’s spending is on
exempted goods and services, i.e. a very important factor.

Inefficiencies in the Production Process

A second problem that arrises for VAT-exempted companies is that they might be encour-
aged to make inefficient decisions. In particular, they might take activities in-company
because in-company transactions are not subject to VAT, while outsourced activities
are. The latter is illustrated by the following example.

Consider a university that wishes to outsource its cleaning activities. If outsourced,
the costs (excl. VAT) would be e1.000 a month. If they would opt to keep these
activities in-company, it would cost e1.100. The most optimal solution would be
to outsource these activities. However, due to the fact that e210 VAT is added,
it ends up opting to keep the cleaning in-company. That is, the company ends up
selecting a suboptimal solution (i.e. wasting public money).

VAT-exempted companies might also have a distinct advantage over their taxed coun-
terparts.

Waste treatment performed by public bodies like municipalities are exempted from
VAT, while their private counterparts are subject to VAT.

VAT-Cumulation

Taxed companies also use services of their exempted counterparts. As mentioned before,
such services have a VAT-component. The taxed company is unable to claim a refund for
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this VAT-component and it will hence, so it will continue to burden in the production
process. This also results in the fact that it will be included in the consumer prices,
i.e. VAT will be charged on the VAT-component. This phenomenon is called VAT-
cumulation.

6.2 Measures of Inflation

There are many measures of inflation, but the two main inflation measures are the Gross
Domestic Product deflator (GDP-deflator) and the Consumer Price Index (CPI).

6.2.1 GDP-deflator

The GDP-deflator is among the easier to understand concepts of inflation. The GDP is
a measure for the total size of the economy in a country. It equals the sum of all final
goods and services produced within a certain year, i.e.

Y = C + I +G+ (X −M) (6.1)

Where

Y = GDP-value

C = Household final expenditue on final goods

I = Investments on final goods

G = Government expenditure on final goods

X = Export

M = Import

The performance of the economy of a country can be measured in both real and nominal
terms. The nominal GDP at time t (denoted as Y nom

t ) measures the current sales times
current prices, whereas the real GDP at time t measures (denoted as Y R

t ) the current
sales times prices of a certain index year t0. The latter is hence robust to inflation and
hence generally considered a better measure for the performance of an economy. These
concepts justify the first measure of inflation.

Definition 6.2.1. 1. The GDP-deflator at time t is defined as

GDP deflatort =
Y nom
t

Y R
t

(6.2)

2. The GDP-deflator inflation rate on an annual basis at time t (in months) is
defined as

πDt =
GDP deflatort −GDP deflatort−12

GDP deflatort
(6.3)
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6.2.2 Consumer Price Index

The consumer price index is a measure of inflation that merely relies on changes in
consumer prices. For a certain index year t0, a basket of household goods and services
is composed and kept fixed for a long time period (i.e. each product group i is assigned
a weight wi, t0).

Definition 6.2.2. The CPI index at time t is defined as

CPIt =

∑n
i=1 pi,t × wi,t0∑n

i=1wi,t0
(6.4)

For the purpose of this thesis, the CPI is the preffered way to measure the influence of
VAT-increases on inflation over the GDP-deflator. Note that the GDP-deflator, unlike
the CPI, captures many factors that are not subject to VAT-increases1. While not
every product group in the CPI gets the same VAT-treatment2, it is easy to distinguish
different VAT-product groups. In fact, they can even be used as control groups.

Within the European Union, the Harmonised Index of Consumer Prices (HICP) is used.
That is, all EU countries have the same basket of consumer prices, but the CPI-weights
may differ across the different member states. The HICP hence makes the use of other
EU member states as control groups much easier, given they all measure the CPI in
compliance with the HICP.

6.3 Theoretical Analysis

In this section, a micro-economic model will be proposed in order to determine the
tax incidence. Firstly, the theoretical analysis will focus on partial equilibrium models.
These are relatively straight-forward models that are able to capture most important
characteristics of tax incidence. Partial equilibirum models can loosely be described
as economic models that only take a few economic variables into account and hence
produce clear and easily interpretable results (Jhingan (2014)). At the other hand,
partial equilibrium models ignore the effect a certain policy change may have on the rest
of the economy. In theory, better results are obtained using general equilibrium models.
Such models take much more economic variables into account and hence provide more
accurate results. However, general equilibrium models often do not provide easy to
interpret results.

Consider a Value Added Tax of 6% is imposed on train rides from Amsterdam to
Paris, while flights are exempt from this tax.a In practice, this would lead to a
shift from train travel to flights. Partial equilibrium models, however, ignore this

1Like investments by companies, which are de facto not subject to VAT
2Cf. differences in VAT-rates, exemptions.
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substitution effect while general equilibrium models do take this into account.

aIn pratice, international flights are taxed against 0% (this can be interpreted as a VAT-
exemption with the right of deduction of input-VAT), while VAT-rates on train travel range from
6% to 19% (the latter in Germany).

General equilibrium models will not be considered, since the partial equilibrium model
proves to provide the information needed to continue the practical analysis.

6.3.1 Competative Economy

Competitive markets are characterised by the fact that the producer price q equals the
consumer price p, i.e. q = p. We use a slightly reformulation of the model derived in
Myles (1995, p. 236) that only takes VAT increases into account. Assume a value added
tax of τ is imposed on a certain good or service, so the consumer price now equals

p (τ) = q (τ) (1 + τ) (6.5)

In the equilibrium condition (demand equals supply),

D
(
(1 + τ) q (τ)

)
= S

(
q (τ)

)
,

The goal is to determine dq
dτ . Using implicit derivatives

dD

dτ
=
dD

dp

dp

dτ

=
dD

dp

[
(1 + τ)

dq

dτ
+ q (τ)

]
dS

dτ
=
dS

dq

dq

dτ

equating both derivates and solving them for dq
dτ results in

dq

dτ
= −

dD
dp q (τ)

(1 + τ) dDdp −
dS
dq

(6.6)

This equation can be rewritten in terms of elasticity of both demand and supply.

Definition 6.3.1. (Elasticities)

1. The price elasticity of demand is defined as

εD = − p
D

dD

dp
(6.7)
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2. The price elasticity of supply is defined as

εS =
q

S

dS

dq
(6.8)

Some little algebra results in

dq

dτ
=

q(τ)
1+τ εD

−εD + εS
(6.9)

or, equivalently,

1

q (τ)

dq

dτ
=

1
1+τ εD

−εD + εS
(6.10)

It is also possible to derive dp
dτ in a similar fashion by noting that q (τ) = p(τ)

1+τ .

1

p (τ)

dp

dτ
=

dS
dq

1
1+τ

dD
dp −

1
1+τ

dS
dq

=
1

1+τ εS

−εD + εS

Some points of interest include

1. The tax incidence is never more than the actual tax (note εD < 0).

2. If the price elasticity of demand is highly elastic, then

lim
εD→∞

1
1+τ εS

−εD + εS
= 0 (6.11)

i.e. the VAT will not be passed through on the consumers.

3. If the price elasticity of demand tends to be inelastic, then

lim
εD↓0

1
1+τ εS

−εD + εS
=

1

1 + τ
(6.12)

i.e. the tax is fully passed through.3

3This is easy to (albeit not necessary) see when τ → 0
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6.3.2 Monopolistic Economy

This paragraph extends the tax incidence model for goods and services characterised by
a monopoly developed by Fang (2004).

Let π denote the profit of a monopolistic firm. Then the monopolist maximises

max
p∈R+

{
p

1 + τ
D (p)− C

(
D (p)

)}
︸ ︷︷ ︸

π

(6.13)

In order to obtain the maximum, derivate π w.r.t. p, i.e.

dπ

dp
=

1

1 + τ

(
D (p) + p

dD

dp

)
− dC

dD

dD

dp

=
p

1 + τ

(
1

p
D (p) +

dD

dp

)
− dC

dD

dD

dp
= 0

⇐⇒ p

1 + τ
=

dC
dD

dD
dp

1
pD (p) + dD

dp

=

dC
dp

− 1
εD

+ 1

To derive a useful expression for dp
dτ , some extra assumptions must be imposed.

1. C
(
D (p)

)
= cD (p) + a is a linear function of demand s.t. dC

dD = c

2. D (p) = b− p (τ)

In that case,

p (τ)

1 + τ
=

c

2− b
p(τ)

=
cp

2p (τ)− b

⇐⇒ 1

1 + τ
=

c

2p (τ)− b

⇐⇒ p (τ) =
1

2

[
c (1 + τ) + b

]
and so,

1

p (τ)

dp

dτ
=

c

c (1 + τ) + b
. (6.14)

It is important to note that 1
p(τ)

dp
dτ < 1, i.e. in this framework a monopolist will never

increase its prices by more than the tax imposed.
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Full VAT-incidence analysis

In this section, an analysis will be made of the influence on the CPI if the VAT is fully
passed through on consumers. Recall that, in the general model, p (τ) = (1 + τ) q (τ).
However, due to the fact that VAT is fully passed through, q (τ) is invariant under τ .
So dp = q · dτ . The relative price change will then be given by

dp

p (τ)
=

dτ

(1 + τ)
(6.15)

The most important property of equation (6.15) is that an increase of the VAT by ∆τ
does not result in consumer prices to increase by ∆τ (provided τ 6= 0 initially).

100



Chapter 7

Causal Effects of the VAT
increases

This chapter is the finale of this thesis. Before applying the statistical methods derived
in this thesis on the causal effects of VAT increases on inflation, we will first consider two
more theoretical sections. First, earlier statistical research on the causal effects of VAT
changes on customer prices is discussed. Particular emphasis is placed on the paper of
Vrijburg et al. (2014), which also investigates the causal effects of the 2001 and 2012 VAT
increases on inflation. The resulting insights are used to develop a statistical model that
improves existing estimates for the causal effects of the pass through of VAT increases,
which are then applied on the causal effects of the 2001 and 2012 VAT increases.

7.1 Earlier research
A substantial amount of research has been done on the question whether VAT increases
are fully passed through to consumer prices. This thesis focusses on the question whether
the 2001 and 2012 VAT increases were fully passed through, so we will thoroughly
consider the Dutch Bureau of Economic Policy Analysis (CPB) conducted by Vrijburg
et al. (2014) since they also consider the 2001 and 2012 VAT increases. However, before
turning to their analysis, we shortly summarise some of the results derived in other
countries.

7.1.1 Evidence from other countries

The Deutsche Bundesbank (2008) considers the 2007 VAT-increase in Germany. In that
year, the standard rate was increased by 3 percentage points from 16% to 19%. The
Deutsche Bundesbank concludes that the VAT was largely passed through to consumer
prices, but almost never by the full amount. In fact, some suppliers did not even make
a change at all. Given the theoretical framework developed in this thesis, this is an
indication that these are suppliers of commodities with a highly elastic demand func-
tion. Deutsche Bundesbank (2008) conducted the research on a micro level (i.e. per
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commodity group), while we consider the VAT increases on a macro level (i.e. all com-
modity groups combined). Consequently, caution must be exercised while comparing
these results.

Chirakijja, Crossley, and Lührmann (2009) consider the temporary United Kingdom
2008 VAT cut. They conclude that this VAT cut was only passed through for 75% in
consumer prices, suggesting that the remainder was used to increase profit levels. While
this analysis is on a related note, we must be aware that the passing through behaviour
of VAT cuts may be different from VAT increases. This conjencture is especially justified
by the fact that only labour intensive commodity groups were subject to the temporary
VAT cut, while the 2001 and 2012 VAT increases affected a much broader range of
commodity groups. Jongen, Lejour, and Massenz (2017) and Harju and Kosonen (2014)
suggest that the VAT cuts for hairdressers and the restaurant industry were hardly
passed through on consumer prices, further justifying this conjencture.

7.1.2 VAT increases 2001 and 2012

In this paragraph we will extensively consider the research done by Vrijburg et al. (2014)
from both a legal and statistical perspective. Shortly summarised, they conclude that the
hypothesis that the VAT increase was fully passed through on consumer prices cannot be
rejected. Some mistakes were however made in their analysis, comprising the reliability
of their findings.

Methodology

Vrijburg et al. (2014) consider a causal effect model that does not include dummies
for the treatment period and control group specific effects. We have seen that the first
difference estimator (and by extension also fixed effects estimators) consistently estimate
a difference-in-differences model without including the control group specific effect. An
alternative formulation of the fixed effects model is also able to consistently estimate the
causal effect without the inclusion of treatment time period specific effects. We have not
discussed this alternative formulation since it is not needed for this thesis. An indicator
variable that controls for the treatment time period specific effect proves to suffice. They
in particular consider the model

yi,s,t = Xi,sβ + Wi,sγ + εi,s (7.1)

where yi,s,t denotes the inflation rate for commodity i at time t for country s, where s =
{Belgium, the Netherlands}. Obviously, Belgium is the control group in the model. The
matrix Xi,s is a vector of several treatment dummies, to capture the effect of the VAT-
increase on consumer prices at several points in time. The most important treatment
dummy is the one that equals 1 at the actual time of treatment - we will ignore the other
two for the moment.1

1Vrijburg et al. (2014) also included a dummy for pre and post treatment, but these were almost
never significantly different from 0.
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Vrijburg et al. (2014) compare the fixed effects and the so-called ’Common Correlated
Effects’ (CCE) estimator for the treatment effects. The latter has not been discussed
in this thesis. It is enough to remember that the CCE estimator only has a meaningful
interpretation in presence of time specific unobserved fixed effects. Vrijburg et al. (2014)
conclude that the fixed effects estimator does not produce significant treatment effects
(which is likely an indication for a type II error). The CCE estimator produces a
significant treatment effect, but it does not reject the hypothesis that the VAT was fully
passed through on consumer prices.

Legal perspective

The list of included goods and services as high taxed gives reason to doubt the reliability
of the study. Firstly, they classify CP0442 refuse collection as a high taxed commodity.
In reality, refuse collection for households is usually exempted from VAT due to the fact
that this is an exclusive power of the public sector (in particular municipalities). The
European Court of Justice (supreme court of the EU) ruled in the Carpaneto Piacentino
case that public bodies are exempted from VAT.2 Given the fact that exempted goods
and services still bear a VAT component, we may reasonably expect a treatment effect.
At the other hand, the objective of the research of Vrijburg et al. (2014) was to capture
the pass through of the 2001 and 2012 VAT increases on goods that are taxed against
the standard rate. Inclusion of exempted goods and services is consequently unwanted
noise and possibly resulting in lower causal treatment effect than they actually are.

Furthermore, they have included hairdressing salons and personal grooming establish-
ments (CP1211) as a high taxed service. However, this is a mistake as these are mostly
taxed against a reduced rate as per Table I item b.7 pertaining to the Dutch VAT act.
Furthermore, they omitted alcohol and tabacco from the analysis. These goods are sub-
ject to additional excise taxes (’accijnzen’), but in the period of research, the excise tax
on alcohol was never increased more than the actual inflation rate. At the other hand,
the exclusion of tabacco is justified given the fact that during the treatment period,
the increase in excise duty was higher than inflation, potentially causing upward biased
estimates. While not a legal comment per se, it must be noted that they failed to include
CP082 083 Telephone and Telefax Equipment and services as a high taxed service. Their
paper does not mention why it has been excluded, but in my model it proved to be an
outlier causing the estimates of the of the pooled OLS, fixed effects and random effects
estimator to be much higher.

Statistical perspective

Vrijburg et al. (2014) note in a footnote that the presence serial correlation causes
the non-robust standard errors to be invalid. Following Bertrand et al. (2004), they
control for this using serial correlation robust standard errors. As noted before, this is
a sufficient control for type I errors, but insufficient for type II errors. According to the

2ECJ 17 October 1989 (Carpaneto Piacentino), case 231/87
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authors, the fixed effects estimator produces an insignificant treatment effect while the
CCE does produce a significant treatment effect. Whether the CCE estimator really
generates significant estimates is debatable, since the treatment effect captured by the
CCE estimator is often only significant at a 10% level. Most academic literature consider
5% as upper bound. This upper bound is also adhered in this thesis. This in particular
means that the CCE estimator in the paper of Vrijburg et al. (2014) did not actually
produce a significant treatment effect.

Furthermore, they claim that the fixed effects estimator produces insignificant treatment
effects due to the fact that it does not properly take the dependence between the unob-
served individual fixed effect and the unobserved time specific effect into account, while
the CCE estimator does. Firstly, they do not consider the argument that fixed effect
is inefficient due to the presence serial correlation. They argue that serial correlation
robust standard errors are sufficient control for serial correlation, but these only suffi-
ciently control for type I but not for type II errors. This could also be observed from
the DD simulation in this thesis. Moreover, it is not entirely trivial that there actually
exists an unobserved time specific effect (other than the treatment time period specific
dummy variable) that causes endogeneity. They do not further eleborate on that specific
fact.

7.2 Methodology and data

The general statistical model is written as

yi,t,s = timed1[t0 ≤ t ≤ t1] + countrd1[s = NL]

+ treat1[t0 ≤ t ≤ t1]1[s = NL]

+ inflt + gdps,t + εi,s,t

(7.2)

where i = 1, . . . , N and t = 1, . . . , t0, . . . , t1, . . . , T denote the amount of commodity
groups and the amount of time periods, respectively. Let s ∈ {Control group,Netherlands}
denote the different countries. yi,t,s represents the inflation rate for commodity i at time t
for country s. The parameters timed, countrd and treat are analogously interpretable as
their counterparts in the general DD model. The variable inflt controls for the euroarea
wide inflation trend and gdps,t controls for differences in economic growth rates between
the countries. Benedek et al. (2015) argue that these variables provide sufficient control
for potential endogneity issues. Following Bertrand et al. (2004), the standard errors
accompanying the estimates are robustified for serial correlation and heteroscedasticity.
We regress the model using pooled OLS, random and fixed effects, first difference and
the feasible GLS estimator restricted to ARMA (1, 1) correlation. These estimators will
be compared to see their performance.

Both Germany and Belgium are seperately used as control groups to infer the causal
treatment effect parameter (treat). Using two seperate control groups allows for better
comparison of the results, meaning that divergence between causal treatment results is
an indication of potential endogeneity. This also gives more flexibility in deriving the
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causal treatment effect, since we can exploit dependence structures in the data much
better. This in particular proves to be useful when it comes to serial dependence. If
such flexibility is used, it will always be argued why this is appropriate.

The data sources that are used for the causal inference are given in table 7.1. Shortly
summarised, we use the EU Harmonised Index of Consumer Prices (HICP). This is an
EU standardised method for measuring CPI inflation. This in particular suggests that
the data used in this thesis is comparable. Eurostat also provides commodity weights at a
country level, which can be interpreted as consumption weights. Weights are included the
same manner as Weighted Least Squares, but its interpretation is different. If weights are
included in the regression, the estimate for the treat parameter represents the weighted
mean effect of the VAT increase on consumer prices. They do not necessarily reduce
heteroscedasticity.

Most literature only document weighted estimates, which can be defended from the fact
that unweighted estimates are affected by the level of subcategorisation in the HICP
framework. To see this point, note that CP0451 Electricity does not have any subcato-
gory, while CP31 Clothing materials is further subcatagorised up to CP314 Cleaning,
repair and hire of clothing. That is, the pass through of the VAT-increase of the former
has a much bigger impact for consumers than the latter. Unweighted results do not
capture this. Ideally though, both unweighted estimates and weighted estimates should
not differ significantly. This thesis reports both weighted and unweighted estimates,
although the final conclusions are based on the weighted results.

For each regression three central hypotheses are tested

1. Did the estimator produce a significant treatment effect?

2. Is autocorrelation present in the error term?

3. Is the estimator significantly different from the theoretical maximum pass through
rate?

The first hypothesis translates to testing

H0 : treat = 0

H1 : treat > 0

in particular suggesting that we do not consider negative values.

The second hypothesis is tested with an AR (1) fit of the residuals. This is a relatively
easy procedure and usually sufficiently captures inefficiencies caused by autocorrelation.
This in particular means we consider the regression

ε̂i,t = ρε̂i,t−1 + ηi,t (7.3)
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where ηi,t is some white noise term and ε̂i,t the residuals produced by the appropriate
estimator. The corresponding hypothesis test is then statistically equivalent to testing

H0 : ρ = 0

H0 : ρ 6= 0

Rejection of H0 does not mean that the residuals actually follow an AR (1) process. It
is merely an easy test to capture inefficiencies caused by autocorrelation.

The third test is important for answering the research question. The theoretical bound
is calculated by considering

Percentual change =
pi,t0 − pi,t0−1

pi,t0−1
(7.4)

if the VAT is fully passed through, then pi,t0 = (1 + τ + ∆τ) qi,t0−1 and pi,t0−1 =
(1 + τ) qi,t0−1. And so equation (7.4) equals

Percentual change =
∆τ

1 + τ
(7.5)

This means that the last hypothesis statistically turns into testing (cf. equation (6.15))

H0 : treat ≥ ∆τ

1 + τ

H1 : treat <
∆τ

1 + τ

Note beforehand: Eurostat provides weights for each product group category. The
plm package offers methods to implement these weights in the regression. I strongly
recommend against the use of the built-in weighting function, as the standard errors
reported with weights included are not invariant under multiplying them with a constant.
Weighting should be done manually in the same way as the Weighted Least Squares
procedure is implemented.

Table 7.1: Data sources

Parameters(s) Data Source Data Description

timed, countrd Eurostat Harmonised Index of Consumer Prices (HICP)
treat, infl - monthly data (annual rate of change)

gdp OECD Quarterly National Accounts - GDP Growth

7.3 VAT Increase 2001

On January 1st 2001, VAT rate from 17.5% to 19%. The central hypothesis in this
chapter is the question whether or not the VAT was fully passed through into consumer
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prices. Given the theory developed in chapter 6, we can already derive a theoretical
upper bound for the tax incidence. In particular, the maximum VAT pass through onto
consumer prices equals

0.015

1.175
= 0.01277 (7.6)

or 1.277%. This means we expect

treat ∈ [0, 1.277] (7.7)

Treatment starts at time period t0 = 01-01-2001 and ends at t1 = 31-01-2001. The
panel consists of T = 36 time units, ranging from 01-01-1999 to 31-12-2001. N = 39
commodities are included in the regression.

Before beginning the regression analysis, we first discuss some 2001 specific policy
changes that may cause endogeneity in estimating the treatment parameter.

7.3.1 Policy analysis

Treatment started on the first of january 2001, meaning that it coincided with the start
of the new fiscal year. Apart from the change in VAT rate, some goods and services are
subject to additional taxes. These taxes are commonly called ’excise taxes’. Usually,
excise taxes are increased by the expected inflation every year. However, according to
the belastingplan 2001, the following goods were subject to an increase of excise taxes
that was higher than the expected inflation:

• Tabacco

• Fuel

We do not have proper instruments to control for the extra increase in excise taxes.
These goods have been removed from the analysis, since including them would cause
endogeneity in the treatment parameter. In particular, the treatment parameter would
have had an upward bias.

7.3.2 Estimates

Pooled OLS

Table A.1 (’A’ refers to appendix A) shows the estimates and AR (1) fits for the un-
weighted and weighted pooled OLS estimator. There is no point deeply discussing the
estimates, as the large standard errors in combination with the AR (1) correlation coef-
ficients suggest that the estimates are inefficient.

Belgium Only the unweighted pooled OLS estimator produced significant estimates
for the treatment effect, i.e. the weighted treatment effect is not significantly different
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from 0. The weighted estimator is considerably although not significantly different from
the unweighted estimate. The unweighted estimate suggests a treatment effect that is
higher than the theoretical maximum bound, but note that

CI95% (treatUnw) = [0.683, 3.804] (7.8)

which suggests that the estimate is certainly not significantly different from a wide range
of values that lie within the theoretical bound.

On the contrary, the weighted pooled OLS estimator obviously produces a type II error.
This estimator should consequently be rejected as a reliable estimator for the weighted
model.

Turning to the question whether the pooled OLS is efficient, we test for

H0 : σ2
µ = 0 and no serial correlation in the error term

H1 : Assumption A.POLS.3 fails

using the test formulated in paragraph 5.2.1. This was originally meant to only test for
the presence of unobserved individual specific fixed effects, but this test unwillingly also
checks for the presence of serial correlation. Both the unweighted and weighted estimates
reject H0. This also means that the null hypothesis that pooled OLS is efficient must
be rejected. The AR (1) fit of the residuals confirms this - the AR (1) fits suggest
autocorrelation coefficients around 0.9 for both the weighted and unweighted model, i.e.
the efficiency of this estimator is highly affected by serial correlation.

Figure 7.1: ACF plot of weighted pooled OLS residuals (Belgium)
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Figure 7.2: Plot of residuals

Diagnostic plots are usually very difficult to give for panel data analysis because of the
multiple cross-sectional units. Plot 7.1 is the autocorrelation function (ACF) of the first
cross sectional unit. While the plots are not at all representative for the full data set,
they do provide useful insight on how the transformation changes the behaviour of serial
correlation. For more deceicive results for the full data set, we would need to rely on
the statistics reported in the tables. Figure 7.2 provides a plot for the residuals, that
also shows strong serial dependence. The main results of pooled OLS regression are
presented in table 7.2.

Table 7.2: Pooled OLS summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (**) Not rejected
Residuals AR(1) serially uncorrelated Rejected (***) Rejected (***)
Full pass through of VAT Not rejected Not rejected

1 ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Germany Both the unweighted and weighted pooled OLS estimators produce signifi-
cant treatment effects, yet they also do not reject the hypothesis that the VAT was fully
passed through to consumer prices. While the pooled OLS estimtor does not produce
a type II error when Germany is used as the control group, the large standard errors
still suggest that this estimator is inefficient. Note that the unweighted estimator for
the treatment effect suggests

CI95% (treatUnw) = [1.488, 3.167] (7.9)

and so rejects all values that are within the theoretical boundary. This may be an
indication that the unweighted pooled OLS estimator is producing a type I error. While
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the standard errors are robustified for serial correlation, Angrist and Pischke (2009)
argues that robust standard errors can still underestimate actual standard errors. This
potentially results in higher type I errors compared to efficient estimators. On the
contrary, the weighted pooled OLS estimator does not reject a wide range of values that
lie within the theoretical boundaries.

Figure 7.3: ACF plot of weighted pooled OLS residuals (Germany)

Figure 7.4: Plot of residuals

When Germany is used as the control group, the pooled OLS estimator seems to be
inefficient. An AR (1) fit of the residuals shows serial dependence that is close to a
random walk. Both diagnostic plots suggest do not suggest differently, they both show
very strong serial dependence. However, we do not yet exclude other types of serial
dependence. The main results of the regression are summarised in table 7.3.
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Table 7.3: Pooled OLS summary (Germany)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (**)
AR(1) serially uncorrelated Rejected (***) Rejected (***)
Full pass through of VAT Not rejected (Type I?) Not rejected

Random Effects and Fixed Effects

We will discuss the random effects and fixed effects together, as T is reasonably large
and so the random effects estimates should approach the fixed effects estimates. The
results of the random effects estimator are presented in table A.2 and the fixed effects
in table A.3.

Belgium The analysis for the random and fixed effects estimator is roughly the same as
the one made for the pooled OLS estimator. Only the unweighted pooled OLS estimator
produces a significant treatment effect and it does not reject a large range of values
within the theoretical bounds. While the point estimates are roughly on par with the
pooled OLS estimator (certainly not significantly different), the AR(1) fit of the residuals
reveals some odd behaviour in the serial correlation. The estimates are considerably (and
significantly) lower than the estimates produced by the pooled OLS estimator. While
this apparently did not lead to inconsistent estimates, it is an indication that there
actually exists an unobserved individual specific effect.

The fixed effects estimates are almost equal to the random effects estimator. We are
unable to make useful inference on the question whether the random effects estimator is
preferred over the fixed effects estimator. Paragraph 5.2.2 discussed the Hausmann test,
but it was argued that this test is only reliable provided assumptions A.RE.1 - A.RE.5
hold. Given the significant estimates for the first order autoregressive serial correlation
in the residuals, this hypothesis is rejected. That is, assumption A.RE.5 is rejected. In
this particular case this question is mostly theoretic anyway, since both the random and
fixed effects estimator lead to the same inference and T is sufficiently large.
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Figure 7.5: ACF plot of weighted fixed effects residuals

Figure 7.6: Plot of residuals

The diagnostic plots for the weighted fixed effects estimator have been included. The
ACF plot indeed suggests somewhat lower serial dependence. It is more difficult to note
the reduction in serial dependence from the residual plot. The results from regression
are summarised in table 7.4. Note that the random effects and fixed effects estimators
lead to exactely the same inference.

Table 7.4: FE and RE summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (**) Not rejected
Full pass through of VAT Not rejected Not rejected
AR(1) serially uncorrelated Rejected (***) Rejected (***)

112



Germany The same analysis approximately applies when Germany is used as a control
group. It should be noted that the point estimates for the correlation coefficients are
significantly different from their Belgian counterparts. For the weighted model we can
even infer that the AR (1) correlation of the residuals is significantly higher than the
fixed effect residuals produced when Belgium is used as the control group.

Figure 7.7: ACF plot of weighted fixed effects residuals

Figure 7.8: Plot of weighted fixed effects residuals

The plots again only show the results for the fixed effects estimator. The ACF plot also
shows a slight reduction in serial correlation, although serial dependence is still high.
This is also confirmed by a plot of the residuals. The main results from regression are
presented in table 7.5
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Table 7.5: FE and RE summary (Germany)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated Rejected (***) Rejected (***)
Full pass through of VAT Not rejected (Type I?) Not rejected

First Difference

Given the analysis made above, the first difference estimator is expected to produce much
more reliable estimates than the other estimators discussed before. From a theoretical
perspective this estimator should perform better provided the residuals follow a random
walk, although the simulations also revealed that the FD estimator may outperform the
other estimators in presence of other types of strong serial dependence in the error term.
The results are presented in table A.4 and indeed suggest that all treatment effects are
significant, i.e. the FD estimator does not seem to make type II errors while producing
reasonably low standard errors.

Belgium The first difference estimator seems to increase the accuracy of the estimates
considerably. Both the weighted and unweighted point estimates are within the theo-
retical bound, but they are not significantly different from values that are outside this
bound. The unweighted first difference estimator has significant serial correlation in the
residuals, while the weighted estimate is not significantly different from 0. The stan-
dard errors for the weighted and unweighted estimates are, however, about the same.
Note that the standard errors are again robustified for arbitrary serial correlation and
heteroscedasticity. From a theoretical perspective, the first difference estimator so far
seems to outperform any other estimator discussed in this paragraph.

Figure 7.9: ACF plot of weighted first difference residuals (Belgium)
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Figure 7.10: Plot of residuals

The ACF plot clearly shows a big change in serial dependence, i.e. the FD transformation
considerably reduced serial dependence. The plots of the residuals also show more white
noise behaviour, although it must be noted that this does not mean that the residuals
actually follow a white noise process. The results from regression are sumarised in table
7.6.

Table 7.6: First difference summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated Rejected (***) Not rejected
Full pass through of VAT Not rejected Not rejected

Germany The use of the first difference estimator seems to be fully justified when
Germany is used as the control group. The AR (1) correlation estimate of the residuals
is not significantly different from 0, which is again an indication that the original errors
follow a random walk. Also when Germany is used as the control group, the point
estimates are never significantly different from full pass through. In fact, the weighted
point estimate is slightly above the theoretical bound although it does not reject a wide
range of values that are within the theoretical bound.
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Figure 7.11: ACF plot of weighted first difference residuals (Germany)

Figure 7.12: Plot of residuals

The ACF plot indeed suggests that the first difference transformation drastically reduced
serial dependence. In fact, the result for the first order lag is lower than when Belgium
is used as the control group. This can be explained from the fact that when Germany
is used as the control group, the AR(1) correlation was not significantly different from
0. The main results from regression are presented in table 7.7.

Table 7.7: FD Summary (Germany)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (**)
AR(1) serially uncorrelated Not rejected Not rejected
Full pass through of VAT Not rejected Not rejected
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Feasible Generalised Least Squares

This paragraph discusses the feasible GLS estimates for this model. We will only imple-
ment a restricted form of this estimator that captures serial dependence. The standard
errors are robustified for the remainder heteroscedasticity. We consider an error term
that follows an ARMA (1, 1) process, i.e.

εi,t = ρεi,t−1 + θηi,t−1 + ηi,t (7.10)

where ηi,t is some white noise process. Higher order ARMA processes are an option,
but in this particular case that would have lead to an overfit. The estimates are given
in A.5. Modelling the autocorrelation structure with an ARMA (1, 1) process does not
increase the accuracy of the estimates in comparison with the first difference estimator.

Belgium The point estimates of the generalised least squares estimator are almost
identical to the estimates for the first difference estimator. However, the standard errors
produced by the GLS estimator are somewhat higher than the first difference estimates.
This is a remarkable result, given the fact that the ACF plots reveal that the first order
autocorrelation for the first difference estimator is considerably larger than the Gener-
alised Least Squares estimator. This could be an indication that the robust standard
errors for the first difference underestimate the actual standard errors. At the other
hand, we should not worry about this too much since the differences are marginal. In
particular, both the GLS and first difference estimator lead to the same inference. On
the contrary, the generalised least squares produces significant results for most control
variables. This is often not the case for the first difference estimator.

Figure 7.13: ACF plot of weighted first difference residuals (Belgium)
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Figure 7.14: Plot of residuals

The ACF plot shows a big decrease in serial correlation. The white noise behaviour of
the restricted feasible GLS estimator is also clearer from the plot of the residuals. Table
7.8 shows the main results of the regression.

Table 7.8: Feasible GLS summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated Not rejected Not rejected
Full pass through of VAT Not rejected Not rejected

Germany The feasible GLS estimator again does not perform better than the first
difference estimator. We already conjenctured that the error term may follow a random
walk and the GLS estimator does not quite change that conjencture. This in particular
means there is no real reason to prefer feasible GLS over the first differencing.
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Figure 7.15: ACF plot of weighted feasible GLS residuals (Germany)

Figure 7.16: Plot of residuals

The ACF and residual plots do not give any interesting new insight compared to the
restricted feasible GLS analysis made when Belgium is used as control group. The main
results from regression are presented in 7.9.

Table 7.9: Feasible GLS summary (Germany)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated Not rejected Not rejected
Full pass through of VAT Not rejected Not rejected
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7.3.3 Summary and conclusion

This paragraph considered the causal effects of the 2001 VAT increase on consumer
prices. The final conclusions for the 2001 VAT increase are

1. There has been a significant causal treatment effect as a result of the
VAT increase.

2. The null hypothesis that the VAT increase was fully passed through is
not rejected.

The results are derived from the following observations.

Analysis of estimators Several estimators have been discussed, and we conclude
that the pooled OLS, random effects and fixed effects estimators should be rejected as
reliable estimators. Explicitely taking serial correlation into account leads to a dra-
matic improvement of the accuracy of the estimates. However, first differencing (non-
parametric transformation) did not seem to underperform for feasible GLS restricted to
ARMA (1, 1) errors. In fact, there was never real evidence that feasible GLS was to be
preferred over first differencing.

Comparison with CPB analysis The CPB analysis of Vrijburg et al. (2014) never
obtained significant treatment effects at a 5% level. At best they got treatment effects
that were significant at a 10% level, which is insignificant to the standards used in this
thesis. Recall that they only used Belgium as a control group, for which this thesis
neither obtained significant treatment effects using the pooled OLS, fixed effects and
random effects estimator. On the contrary, the first difference and generalised least
squares estimators always produced significant treatment effects at a 0.1% significance
level. This is a clear improvement from the CPB policy analysis of the 2001 VAT increase.

There is not enough evidence to reject the null hypothesis that the VAT increase was fully
passed through on consumer prices. Vrijburg et al. (2014) did not reject this hypothesis
either. At the other hand, this analysis obtained considerably more accurate estimates
by explicitely taking serial correlation into account. The estimates produced by the
efficient estimators in this thesis are arguably more accurate than the estimates of the
CPB report. They are especially suitable for further tax policy analyses.

7.4 VAT increase 2012

In October 2012 the Dutch government increased the VAT rate from 19% to 21%. We
again consider the theoretical maximum VAT-pass through rate. For the 2012 VAT-
increase, this equals

1.21− 1.19

1.19
= 0.01681 (7.11)
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or 1.681%. This means that the theoretical models suggests

treat ∈ [0, 1.681]. (7.12)

Before starting the estimation procedure, some 2012 specific policy changes that may
cause endogeneity in the treatment parameter are discussed.

7.4.1 Policy analysis

There have been some policy changes that may cause endogeneity if we do not appro-
priate measures. Firstly, alcohol has been excluded from the analysis because Belgium
considerably increased the excise tax on alcoholic drinks in 2013 (Federale Overheidsdi-
enst Financiën, 2013). As per the belastingplan 2013, the Dutch government increased
excise taxes on fuel and natural gas.

Furthermore, there is a potential endogeneity danger from the fact that the Netherlands
followed a totally different budgetting pattern during the economic crisis than Belgium.
That is, the Netherlands followed the nothern European approach of cutting spendings
and increasing taxes while Belgium did the opposite. This also means that the economic
growth in the Netherlands was lower compared to Belgium, which may have influence on
inflation levels. To control for this endogeneity, we strongly rely on the gdp parameter.
This parameter controls for the impact of the differences in economic growth on the
inflation levels. We expect this parameter to be significant for most estimators (as
opposed to the 2001 VAT increase).

7.4.2 Estimates

The estimates presented in this section are based on the analysis made above. When
Belgium is used as the control group, the amount of commodity groups for which the
HICP inflation was measured is considerably bigger than the amount of product groups
considered in the 2001 VAT increase (N = 84). This may increase the accuracy of the
estimators used in this thesis, leading to more reliable inference. Vrijburg et al. (2014)
did not use the extra availability in data. There was no extra data available when
Germany is used as the control group (N = 36). That is, the standard errors may be
higher for the German estimates. Treatment start at time period t0 = 01-10-2012 and
ends at t1 = 31-09-2013. The panel consists T = 36 time units, starting from 01-01-2011
up to 31-12-2013.

Pooled OLS

The estimates for the pooled OLS estimator are given in table B.1 (’B’ refers to appendix
B). The pooled OLS in general seems very inaccurate, which is on-par with the analysis
of the 2001 VAT-increase.
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Belgium We again observe that the unweighted estimates are significantly different
from 0, while the weighted estimates do not reject that hypothesis. This was also ob-
served for the 2012 VAT increase. There seems to be a rather big difference in unweighted
and weighted estimates, but these differences are never significantly different from each
other. The standard errors produced by both the weighted and unweighted estimators
are reason to believe that the pooled OLS estimator is inefficient. We can immediately
observe that from the AR (1) fit of the residuals, but it is also confirmed by a specification
test:

H0 : No unobserved fixed effects or serial correlation in the error term

H1 : Assumption A.POLS.3 fails

H0 is rejected at a 0.1% significance level.

Figure 7.17: ACF plot of weighted pooled OLS residuals (Belgium)

Figure 7.18: Plot of residuals
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The rejection of H0 can clearly be observed from the plots of the residuals and the
ACF. The serial dependence seems very strong for the pooled OLS estimator, indeed
suggesting that the estimates are inaccurate. A summary of the regression is given in
7.10.

Table 7.10: First difference summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (**) Not rejected
AR(1) serially uncorrelated Not rejected Not rejected
Full pass through of VAT Not rejected Not rejected

Germany Both the unweighted and weighted pooled OLS estimator give significant
treatment effects at a 0.1% significance level. The point estimates for the weighted
and unweighted pooled OLS estimator are very close and in particular not significantly
different from each other. While the standard errors suggest that the estimates are
slightly more accurate, the pooled OLS estimator is still an inefficient estimator. This
is also confirmed by the same hypothesis test used for Belgium; H0 is rejected at a 0.1%
significance level.

Figure 7.19: ACF plot of weighted pooled OLS residuals (Germany)
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Figure 7.20: Plot of residuals

The plots do not give any new insights compared to the previous analysis. A summary
of the regression results is given in table 7.11.

Table 7.11: Pooled OLS summary (Germany)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated Not rejected Not rejected
Full pass through of VAT Not rejected Not rejected

Random effects and fixed effects

The estimates of the random effects and fixed effects estimators are given in tables B.2
and B.3, respectively. The results for the random effects and fixed effects estimator are
on par and do not provide any new insights. The results are consequently only shortly
summarised.

It may be interesting to note that when Germany is used as the control group, the
estimates for the AR (1) correlation significantly decrease compared to their pooled OLS
counterparts. This may be a potential sign of the existence of an unobserved individual
specific fixed effect. No significant decrease in serial correlation is observed when Belgium
is used as the control group. Table 7.12 presents a summary of the regression results.

Table 7.12: Fixed effects summary (Belgium and Germany)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated N/A N/A
Full pass through of VAT Not rejected Not rejected
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First difference

The estimates are given in table B.4. The first difference estimates seem to show a
dramatic improvement in the accuracy of the estimates. Due to some special results
obtained for Belgium, we will first discuss the case where Germany is used as the control
group.

Germany Both weighted and unweighted results show significant treatment effects,
yet they both do not reject the null hypothesis that the VAT increase was fully passed
through to consumer prices. The first difference transformation did not fully remove
serial correlation, suggesting that the feasible GLS estimator may give more accurate
results. The confidence interval for the first difference estimator is given by

CI95%

(
treatWeighted

)
= [0.7725, 1.7676] (7.13)

The upper bound of this interval is just a little above the full pass-through rate.

Figure 7.21: ACF plot of weighted first difference residuals (Belgium)
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Figure 7.22: Plot of residuals

Table 7.13: First difference summary (Germany)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated N/A N/A
Full pass through of VAT Not rejected Not rejected

Belgium The weighted and unweighted results both show significant treatment effects
at a 0.1% level. But there is more than that - the weighted results reject the null
hypothesis that the 2012 VAT increase was fully passed through on consumer prices at
a 1% significance level. That is,

CI99%

(
treatWeighted

)
= [0.7354, 1.592] (7.14)

which is the first time this hypothesis is rejected in this thesis. A fair question to ask
is whether this justifies the conclusion that the 2012 VAT increase was not fully passed
through. First note that the standard errors have been robustified for the remainder
serial correlation that was not captured by the first difference estimator. Also, the
estimates when Belgium is used as the control group rely on a much bigger sample
than the German estimates. This may easily have resulted in an increase of accuracy,
suggesting that we actually may rely on these estimates.
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Figure 7.23: ACF plot of weighted first difference residuals (Germany)

Figure 7.24: Plot of residuals

The plots of the residuals are almost identical to the first difference residual plot for
Germany. Again, some white noise behaviour can be observed, suggesting that first
differencing is an efficient method. We will first consider the estimates given by the
feasible GLS estimator before making inference. The main results of this first difference
regression are presented in table 7.14.

Table 7.14: First difference summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated Rejected Rejected
Full pass through of VAT Not rejected Rejected (**)
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Generalised Least Squares

The feasible Generalised Least Squares estimator is restricted for errors that follow an
ARMA (1, 1) process. An ARMA (2, 2) may be used (i.e. it is not an overfit), but the
estimates are almost identical and certainly do not lead to different inference. More
generally, modelling error structures does not seem to improve accuracy compared to
first differencing at all.

Belgium It not surprising that the feasible GLS estimator produces significant treat-
ment effects for both the unweighted and weighted estimates. In particular, the feasible
GLS estimator rejects the null hypothesis of full pass-through at a 1% significance level,
i.e.

CI99%

(
treatWeighted

)
= [0.745, 1.647]. (7.15)

It is insignificant at a 99.9% level. The estimates again do not reject this null hypothesis.
Note that the inference is exactely the same as for the first difference estimator.

Figure 7.25: ACF plot of weighted feasible GLS residuals (Belgium)
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Figure 7.26: Plot of residuals

Table 7.15: Feasible GLS summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated N/A N/A
Full pass through of VAT Not rejected Rejected (**)

Germany Both the weighted and unweighted estimates show significant treatment
effects. However, they do not reject the null hypothesis of full pass-through. While the
point estimates are roughly comparable with the Belgian estimates, it does not reject
the null hypothesis. Yet they do not reject the hypothesis that the VAT was fully passed
through to consumer prices. This is again due to the considerably higher standard errors
when Germany is used as the control group. Again, this could easily be the result of
the fact that the German estimates are based on fewer observations than their Belgian
counterparts.

129



Figure 7.27: ACF plot of weighted feasible GLS residuals (Germany)

Figure 7.28: Plot of residuals

Table 7.16: Feasible GLS summary (Belgium)

Null hypothesis Unweighted Weighted

Insignificant treatment effect Rejected (***) Rejected (***)
AR(1) serially uncorrelated N/A N/A
Full pass through of VAT Not rejected Not rejected

Bayesian first differencing

When Belgium is used as the control group, a Bayesian weighted first differencing pro-
cedure proves to be suitable as an alternative for its frequentist counterpart. The robust
standard errors are only marginally larger than the non-robust standard errors. We
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assume that the likelihood ratio is given by

yi|Xi, β, σ
iid∼N

(
Xiβ, σ

2
εIT

)
. (7.16)

The analysis will be performed using both uniform and informative priors.

Uniform prior The results are presented in table B.6. As expected, the inference does
not change compared to the frequentist analysis. In particular, the credible interval for
the parameter treat suggests that the null hypothesis of full incidence of VAT is rejected.
Credible intervals have a different interpretation than confidence intervals. Since the true
parameter is assumed to be a random variable, credible intervals capture the posterior
uncertainty of the parameter location. A plot of the posterior density is given in figure
7.29. The treatment parameter seems a posteriori normally distributed, which is not
surprising given the flat prior.

Figure 7.29: Plot of posterior density (treat)

Table 7.17: FD Summary (Belgium)

Null hypothesis Weighted

Insignificant treatment effect Rejected (***)
AR(1) serially uncorrelated N/A
Full pass through of VAT Rejected (*)

Informative prior The results can be found in table B.7. The information for the
informative prior is obtained from the analysis of the Deutsche Bundesbank (2008). As
mentioned in the introduction, they suggest that most entrepreneurs fully pass-through
the VAT to consumer prices. At the other hand, some entrepreneurs did not change prices
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at all. This prior can loosely be modelled using a beta distribution, although the support
of this distribution is [0, 1] while treat ∈ [0, 1.681]. To circumvent this restriction, let

˜treat = treat
1.681 ∈ [0, 1] denote the rescaled parameter. The prior distribution for the

treatment parameter is ˜treat ∼ beta (0.7, 0.45). This allows for some mass around
no pass-through (i.e. 0), while placing most mass close to values indicating full pass-
through. A plot of the prior distribution of the treatment parameter is given in figure
7.30.

Figure 7.30: Plot of prior distribution

Naturally, this is a very simplified model of the prior distribution, but it is able to
capture the most important findings of Deutsche Bundesbank (2008). Figure 7.31 shows
the posterior density of the treatment parameter. The prior distribution seems to have
a slight influence on the posterior distribution, which is now somewhat skewed to the
right. At the other hand, the influence of the prior seems mostly neglectable. This is also
observable from the tables, the posterior mean hardly changes. The credible intervals
neither show much change. The null hypothesis of full pass-through is still rejected under
this prior.
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Figure 7.31: Plot of posterior distribution (treat)

Figure 7.32: Plot of posterior distribution (σ2
ε)

Table 7.18: FD Summary (Belgium)

Null hypothesis Weighted

Insignificant treatment effect Rejected (***)
AR(1) serially uncorrelated N/A
Full pass through of VAT Rejected (*)
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7.4.3 Summary and conclusion

This paragraph discussed the causal treatment effects of the 2012 VAT increase. The
following observations have been made

• There has been a significant causal treatment effect

• The 2012 VAT increase was not fully passed through to consumer prices

The results are based on the following observations:

Analysis of estimators

Several estimators were considered. Pooled OLS, fixed effects and random effects again
provide too inaccurate estimates to be useful. Rather, we prefer a first differencing or a
restricted feasible GLS procedure. The choice between either of them does not matter,
they approximately have the same point estimates and standard errors. In particular,
they do not lead to different inference. Both the first difference and restricted feasible
GLS estimators lead to the rejection of the null hypothesis of full pass through when
Belgium is used as the control group. When Germany is used as the control group, this
hypothesis is not rejected. This is likely due to the fact that the Belgian estimates rely
on much more observations than the German estimates. It is hence defendable to accept
the first difference or the restricted feasible GLS estimator using Belgian as control group
for the final inference for the 2012 VAT increase.

Comparison of the CPB results

Vrijburg et al. (2014) also concluded there had been a causal treatment effect at a 1%
significance level. However, they did not reject the null hypothesis that the VAT was
fully passed through in consumer prices. This means that the second conclusion in this
thesis is to rejects this result from the CPB analysis. Again, the difference in inference is
due to the fact that the estimators considered in this thesis provide much more accurate
estimates than the estimators used by Vrijburg et al. (2014). Furthermore, they did not
use the extra availability of data and sticked to the same commodity groups as in the
2001 regression.
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Chapter 8

Conclusion

This thesis evualuated the tax incidence of the 2001 and 2012 Dutch Value Added Tax
hikes. The research question of this thesis was whether the null hypothesis of full pass
through could be rejected for both tax hikes. Based on the results of the weighted
estimators, this question is answered as follows:

• The hypothesis of full pass through is not rejected for the 2001 VAT
increase

• The hypothesis of full pass through is rejected for the 2012 VAT increase

Furthermore, for both VAT hikes a causal treatment effect was observed at a 0.1%
significance level. This is a clear improvement over the findings in the CPB paper of
Vrijburg et al. (2014). The results in this thesis also suggest that the first difference
estimator should be included as one of the standard methods for estimating difference-
in-differences models. These findings are based on the following observations

Theoretical analysis

This thesis considered linear regression models in which the error term is was heavily
affected by serial correlation. While the classical panel data estimators may provide con-
sistent and unbiased estimates, they are not efficient. For small and mid-sized samples,
this may lead to inaccurate estimates and high standard errors. There is consequently
a clear need to come up with estimators that are (more) efficient in presence of serial
correlation.

The first difference estimator was the first that took serial correlation explicitely into
account. This estimator is obtained by a non-parametric transformation of the model
and is efficient provided the original errors follow a random walk. In that case, this
estimator can even be proven to be the Best Unbiased Linear Estimator. However, this
estimator also proved to perform well for other types of serial dependence.
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Another estimator that took serial correlation into account was a restricted variant of
the feasible GLS estimator. This is a parametric transformation and allows for the
modelling of more complex serial dependence structures. While this estimator is not
BLUE, it can be proven to be asymptotically efficient relatively to a large class of other
linear estimators under appropriate assumptions. In many pratical applications however,
there is no real reason to prefer this estimator over first differencing.

Applications on VAT increases

These insights were applied on the analysis of the 2001 and 2012 Dutch VAT increases.
An economic model was derived that theoretically captures the influence of a VAT in-
crease on customer prices. This model was used to derive some hypotheses for the sta-
tistical analysis of the 2001 and 2012 VAT increases. This analysis relied on a difference-
in-differences model accompanied by two control variables. This model appeared to be
heavily affected by serial correlation, resulting in the fact that estimators that do not
properly capture serial correlation produce inaccurate estimates.

The CPB analysis of Vrijburg et al. (2014) used such inaccurate estimators, resulting
in poor estimates. In particular, even the estimates provided by what they called an
efficient estimator were often insignificant at a 5% level (i.e. not significantly different
from 0). Using the theory gathered and developed in this thesis, a first differencing and
a feasible GLS estimator restricted for ARMA (1, 1) errors were used. Both estimators
dramatically improve existing estimates, with treatment effects that are significant at a
0.1% level. None of the estimators however rejected the null hypothesis of full VAT pass
through to customer prices for the 2001 VAT increase.

For the 2012 VAT increase, the null hypothesis of full VAT pass-through were rejected
at a 1% significance level when Belgium was used as a control group. When Germany
was used as a control group, this hypothesis was not rejected. The point estimates were
close to eachother and the non-rejection of the null hypothesis in the German case was
mainly due to the fact that the standard errors were higher. The choice for appropriate
control group was settled in favour for Belgium, since these relied on a considerably
bigger sample than in the case Germany was used as control group. It is therefore in
line with expectations that the Belgian estimates are more accurate, resulting in lower
standard errors.

When Belgium was used as a control group for the 2012 VAT increase, a fully parametric
Bayesian first differencing approach seemed plausible. Both a non-informative uniform
and informative prior were used. The informative prior was based on earlier research of
the Deutsche Bundesbank (2008). It did not matter for inference whether an uninforma-
tive or informative prior was used - both Bayesian methods rejected the null hypothesis
of full pass-through.
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Difference-in-differences analysis

Difference-in-differences models are prone to heavy serial correlation in the error term.
Bertrand et al. (2004) proposed some solutions to take the inefficiencies caused by serial
correlation into account, among which the use of robust standard errors is the most
commonly applied. While robust standard errors provide sufficient control for type I
errors, they may cause a big increase in type II errors. We propose the use of the
feasible GLS estimator and first difference estimator. If the serial correlation is very
high, inference for the first difference and feasible GLS estimators is rarely different.
That is, complex modeling of error structures does not prove to perform better than
first difference estimation. At the other hand, first differencing clearly underperforms
compared to other estimators when the serial correlation is weak. As noted by Bertrand
et al. (2004), this is rarely the case in DD estimation. Consequently, the first differencing
estimator is in many pratical applications far superior over pooled OLS accompanied
with robust standard errors.

Future research

Apart from a special case, Bayesian methods appeared to be very difficult to imple-
ment. This is due to the fact that fully parametric Bayesian regression frameworks do
not offer the same flexibility as the class of frequentist generalised method of moments
estimator. In particular, the lack of heteroscedastic and serial correlation robust stan-
dard errors in a Bayesian regression framework made it often infeasible to use it for this
VAT pass-through study. While serial dependence structures were properly modelled,
heteroscedasticity structures were not. That is, the inefficiency caused by heteroscedas-
ticity was taken for granted and corrected for by using robust standard errors. Fully
parametric Bayesian estimation would be feasible for this study provided heteroscedas-
ticity is properly modelled. This is left for future research.
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Appendix A

2001 VAT increase estimates
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Table A.1: Pooled OLS

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

(1) (2) (3) (4)

treat 2.243∗∗ 1.575 2.327∗∗∗ 1.846∗∗

(0.796) (1.194) (0.428) (0.611)

timed 0.389 0.562 0.195 0.758
(0.537) (0.888) (0.307) (0.466)

countrd 0.397 1.677 1.643 2.224∗

(0.937) (0.881) (0.874) (0.982)

gdp −0.257∗∗∗ −0.326∗∗ −0.315∗∗∗ −0.176∗

(0.069) (0.107) (0.063) (0.074)

infl 0.345 0.589 0.038 −0.322
(0.401) (0.568) (0.231) (0.207)

Constant 1.203 0.931 0.427 0.362
(1.063) (0.874) (0.448) (0.773)

F Statistic 42.201∗∗∗ 122.240∗∗∗ 68.331∗∗∗ 111.616∗∗∗

Residuals AR (1) fit

Belgium Germany
Unweighted Weighted Weighted Unweighted

AR1 0.906∗∗∗ 0.891∗∗∗ 0.961∗∗∗ 0.964∗∗∗

(0.022) (0.044) (0.009) (0.012)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table A.2: Random Effects

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 2.243∗∗ 1.575 2.327∗∗∗ 1.846∗∗

(0.796) (1.194) (0.428) (0.611)

timed 0.389 0.562 0.195 0.758
(0.537) (0.888) (0.307) (0.466)

countrd 0.397 1.677 1.643 2.224∗

(0.937) (0.881) (0.874) (0.982)

gdp −0.257∗∗∗ −0.326∗∗ −0.315∗∗∗ −0.176∗

(0.069) (0.107) (0.063) (0.074)

infl 0.345 0.589 0.038 −0.322
(0.401) (0.568) (0.231) (0.207)

Constant 1.203 0.931 0.427 0.362
(1.063) (0.874) (0.448) (0.773)

F Statistic 42.201∗∗∗ 73.318∗∗∗ 68.331∗∗∗ 104.001∗∗∗

Residuals AR (1) fit

Belgium Germany
Unweighted Weighted Unweighted Weighted

AR1 0.793∗∗∗ 0.769∗∗∗ 0.845∗∗∗ 0.835∗∗∗

(0.042) (0.075) (0.031) (0.034)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table A.3: Fixed Effects

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 2.243∗ 1.575 2.327∗∗∗ 1.846∗∗

(0.796) (1.194) (0.428) (0.611)

timed 0.389 0.562 0.195 0.758
(0.537) (0.888) (0.307) (0.466)

gdp −0.257 −0.326∗∗ −0.315∗∗∗ −0.176∗

(0.069) (0.107) (0.063) (0.074)

infl 0.345 0.589 0.038 −0.322
(0.401) (0.568) (0.231) (0.207)

Residuals AR (1) fit

Belgium Germany
Unweighted Weighted Unweighted Weighted

AR1 0.790∗∗∗ 0.760∗∗∗ 0.842∗∗∗ 0.830∗∗∗

(0.042) (0.076) (0.031) (0.036)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table A.4: First Difference

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 1.048∗∗∗ 1.225∗∗∗ 1.045∗∗∗ 1.305∗∗∗

(0.274) (0.294) (0.273) (0.294)

timed 0.297∗ 0.144 0.221∗∗∗ 0.151∗

(0.125) (0.161) (0.063) (0.068)

gdp 0.255 0.272 −0.056 0.029
(0.134) (0.324) (0.043) (0.068)

infl 0.063 −0.026 0.206∗ 0.287∗∗∗

(0.163) (0.295) (0.081) (0.083)

F Statistic 5.362∗∗ 5.708∗∗∗ 15.893∗∗∗ 24.580∗∗∗

Residuals AR (1) fit

Belgium Germany
Unweighted Weighted Unweighted Weighted

AR1 −0.298∗∗∗ −0.339 −0.086 −0.067
(0.086) (0.186) (0.048) (0.085)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table A.5: Generalised Least Squares

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 1.103∗∗∗ 1.258∗∗∗ 1.126∗∗∗ 1.341∗∗∗

(0.270) (0.347) (0.264) (0.309)

countrd 0.234 1.558 1.432 2.025∗∗

(0.909) (1.112) (0.897) (0.767)

timed 0.529∗∗∗ 0.556∗ 0.292∗∗∗ 0.196∗∗

(0.150) (0.237) (0.064) (0.075)

infl 0.277 0.284 0.241∗∗ 0.272∗∗∗

(0.169) (0.268) (0.089) (0.072)

gdp 0.050 0.948 −0.095∗ 0.007
(0.091) (1.932) (0.042) (0.472)

Constant 0.786 0.022 −0.048 −0.053
(0.641) (0.046) (0.545) (0.051)

OLS estimates for variance parameters

Belgium Germany
Unweighted Weighted Unweighted Weighted

AR1 0.885 0.896 0.885 0.896

MA1 0.061 0.039 0.061 0.039

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Appendix B

2012 VAT increase estimates
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Table B.1: Pooled OLS Estimates

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 1.821∗∗ 1.212 1.936∗∗∗ 2.076∗∗∗

(0.564) (0.779) (0.505) (0.541)

timed −0.107 −0.148 −0.293 −0.465∗

(0.224) (0.432) (0.182) (0.234)

countrd −0.395 −0.643 −0.199 −0.397
(0.555) (0.652) (0.726) (0.633)

gdp −0.114 −0.005 −0.150∗∗ −0.159∗

(0.109) (0.150) (0.056) (0.065)

infl 0.105 0.312 0.058 0.033
(0.193) (0.295) (0.152) (0.248)

Constant 0.859 1.103 0.918 1.529∗

(0.531) (0.692) (0.514) (0.694)

F Statistic 23.408∗∗∗ 10.444∗∗∗ 24.374∗∗∗ 29.982∗∗∗

Residuals AR (1) fit

Belgium Germany

AR1 0.900∗∗∗ 0.900∗∗∗ 0.942∗∗∗ 0.945∗∗∗

(0.015) (0.013) (0.010) (0.010)

Constant −0.006 −0.002 −0.009 −0.002
(0.025) (0.002) (0.023) (0.002)
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Table B.2: Random Effects estimates

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 1.821∗∗ 1.212 1.936∗∗∗ 2.076∗∗∗

(0.564) (0.782) (0.505) (0.571)

timed −0.107 −0.148 −0.293 −0.465∗

(0.224) (0.437) (0.182) (0.194)

countrd −0.395 −0.183 −0.199 −0.269
(0.555) (0.724) (0.726) (0.753)

gdp −0.114 −0.005 −0.150∗∗ −0.159∗∗∗

(0.109) (0.151) (0.056) (0.044)

infl 0.105 0.312 0.058 0.033
(0.193) (0.276) (0.152) (0.207)

Constant 0.859 0.409∗∗∗ 0.918 1.048∗∗∗

(0.531) (0.028) (0.514) (0.039)

Residuals AR (1) fit

Belgium Germany

AR1 0.816∗∗∗ 0.809∗∗∗ 0.825∗∗∗ 0.855∗∗∗

(0.026) (0.021) (0.027) (0.026)

Constant −0.006 −0.001 −0.018 −0.0004
(0.023) (0.001) (0.023) (0.002)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table B.3: Fixed effects estimator

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 1.821∗∗ 1.212 1.936∗∗∗ 2.076∗∗∗

(0.564) (0.782) (0.505) (0.576)

timed −0.107 −0.148 −0.293 −0.465∗

(0.224) (0.445) (0.182) (0.208)

gdp −0.114 −0.005 −0.150∗∗ −0.159∗∗∗

(0.109) (0.156) (0.056) (0.044)

infl 0.105 0.312 0.058 0.033
(0.193) (0.294) (0.152) (0.216)

F Statistic 55.441∗∗∗ 23.924∗∗∗ 80.770∗∗∗ 99.261∗∗∗

Residuals AR (1) fit

Residuals
Unweighted Weighted Unweighted Weighted

AR1 0.901∗∗∗ 0.802∗∗∗ 0.943∗∗∗ 0.855∗∗∗

(0.015) (0.022) (0.010) (0.027)

Constant −0.002 −0.0002 −0.000 0.0001
(0.025) (0.001) (0.023) (0.002)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

147



Table B.4: First Differences

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 1.232∗∗∗ 1.164∗∗∗ 1.448∗∗∗ 1.270∗∗∗

(0.329) (0.166) (0.269) (0.254)

timed −0.019 0.030 −0.149 −0.076
(0.069) (0.085) (0.098) (0.109)

gdp −0.100 0.042 −0.010 0.007
(0.074) (0.104) (0.047) (0.078)

infl −0.082 0.002 0.047 0.252
(0.137) (0.141) (0.157) (0.237)

F Statistic 27.651∗∗∗ 29.098∗∗∗ 33.732∗∗∗ 35.103∗∗∗

Residuals AR (1) fit

Residuals
Unweighted Weighted Weighted Unweighted

AR1 −0.185∗∗∗ −0.194∗∗∗ −0.158∗∗∗ −0.145∗∗

(0.053) (0.048) (0.038) (0.046)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table B.5: Generalised Least Squares

Point Estimates

Belgium Germany
Unweighted Weighted Unweighted Weighted

treat 1.330∗∗∗ 1.196∗∗∗ 1.559∗∗∗ 1.360∗∗∗

(0.327) (0.159) (0.272) (0.247)

countrd −0.406 −0.410 −0.007 0.026
(0.492) (0.548) (0.660) (0.655)

timed −0.028 0.031 −0.188∗ −0.115
(0.073) (0.092) (0.094) (0.103)

infl −0.067 0.039 0.026 0.164
(0.129) (0.143) (0.131) (0.217)

gdp −0.106 0.033 −0.050 −0.056
(0.069) (0.104) (0.039) (0.056)

Constant 1.186∗∗ 1.186∗ 0.749 0.548
(0.425) (0.529) (0.498) (0.678)

First stage fit

Estimates for feasible GLS
Unweighted Weighted Unweighted WeightedFEGLS

AR1 0.778 0.767 0.781 0.791

MA1 0.150 0.167 0.099 0.076

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table B.6: Bayesian first difference with uninformative prior

mean se mean sd 2.5% 97.5% n eff Rhat

treat 1.2416 0.0021 0.1763 0.9029 1.5835 7177.6814 1.0001
timed 0.0107 0.0016 0.1325 -0.2489 0.2723 7021.8111 1.0002

infl 0.1200 0.0011 0.1066 -0.0891 0.3283 10000.0000 1.0002
gdp 0.2314 0.0008 0.0830 0.0659 0.3957 10000.0000 1.0000

sigma 0.0111 0.0000 0.0001 0.0109 0.0113 10000.0000 0.9999
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Table B.7: Bayesian first difference with informative prior

mean se mean sd 2.5% 97.5% n eff Rhat

treat 1.2831 0.0031 0.1834 0.9230 1.6322 3502.3567 1.0003
timed -0.0114 0.0021 0.1349 -0.2724 0.2546 3987.3857 1.0002

infl 0.1182 0.0013 0.1088 -0.0955 0.3298 7036.9671 0.9999
gdp 0.2333 0.0010 0.0828 0.0696 0.3970 6808.3819 1.0001

sigma 0.2300 0.0010 0.0841 0.0648 0.3960 7476.5947 0.9999
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Appendix C

Commodities included in
regression
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Table C.1: Standard rate taxed goods (both Germany and Belgium)

HICP Description

CP021 Alcoholic beverages
CP022 Tobacco

CP0311 Clothing materials
CP0312 Garments
CP0313 Other articles of clothing and clothing accessories
CP0314 Cleaning, repair and hire of clothing
CP032 Footwear

CP0431 Materials for the maintenance and repair of the dwelling
CP0451 Electricity
CP0452 Gas
CP0511 Furniture and furnishings
CP0512 Carpets and other floor coverings
CP052 Household textiles

CP0531 0532 Major household appliances whether electric (...)
CP0533 Repair of household appliances
CP054 Glassware, tableware and household utensils
CP055 Tools and equipment for house and garden

CP0561 Non-durable household goods
CP0562 Domestic services and household services
CP0711 Motor cars

CP0712-714 Motor cycles, bicycles and animal drawn vehicles
CP0721 Spare parts and accessories for personal transport equipment
CP0723 Maintenance and repair of personal transport equipment
CP0724 Other services in respect of personal transport equipment

CP082 083 Telephone and telefax equipment and services
CP0911 Equipment for the reception, recording and reproduction (...)
CP0912 Photographic and cinematographic equipment and (...)
CP0913 Information processing equipment
CP0914 Recording media
CP0915 Repair of audio-visual, photographic and information (...)

CP0921 0922 Major durables for indoor and outdoor recreation (...)
CP0931 Games, toys and hobbies
CP0932 Equipment for sport, camping and open-air recreation
CP0933 Gardens, plants and flowers

CP0934 0935 Pets and related products; veterinary and (...)
CP0953 0954 Miscellaneous printed matter; stationery (...)

CP1211 Hairdressing salons and personal grooming establishments
CP1212 1213 Electrical appliances for personal care; other appliances, (...)

CP1231 Jewellery, clocks and watches
CP1232 Other personal effects
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