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Abstract

Microbial pathogens in urban floodwaters pose risks to human health, poten-

tially causing diseases such as diarrhea. However, the disease burden related to

urban traffic exposure from citizens passing through floodwaters is not easily

quantified and therefore not included in many studies. Notably, this problem

has received little attention in low-to-middle-income countries, with frequent

flood events and the heavy diarrheal disease burden. This article calculates the

infection risks and disease burden, considering traffic associated with exposure

to floodwater contaminated with rotavirus for the first time in Ninh Kieu Dis-

trict, Can Tho city. Can Tho city in the Vietnamese Mekong Delta is well

known to have many flood events every year, with many diarrheal cases during

the flood season. The methodology comprises two steps. First, we applied

quantitative microbial risk assessment that proposes the inclusion of exposure

to traffic due to rotavirus in floodwater. Second, the disease burden was

expressed in disability-adjusted life years (DALYs). The exposed groups are

child pedestrians, adult pedestrians, motorcyclists, and cyclists. We used video

footage to monitor the traffic. The results show that total DALYs per flood

event were 1.35 � 104 for 63,390 exposed people (i.e., 2129 DALYs per 10,000

cases). Motorcyclists are the strongest contributors to the DALYs (95%), fol-

lowed by cyclists (2.8%), adult pedestrians (2%), and child pedestrians (0.2%).

The population in Ninh Kieu District may suffer from waterborne diseases
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through traffic activities during flooding times. Our approach can be applied in

other areas worldwide and helps identify main risk groups and focus areas for

interventions.

KEYWORD S

health risk assessment, Mekong Delta, rotavirus A, traffic activity, urban floodwater,
waterborne disease burden

1 | INTRODUCTION

Microbial pathogens significantly impact human health,
as demonstrated by the coronavirus pandemic. Therefore,
identifying the health risks related to pathogens is essen-
tial. One of the most common hazards of exposure to
waterborne pathogens is flooding (Ahern et al., 2005;
Cann et al., 2013). Urban flooding trends to increase
caused by extreme rainfall events due to climate change
and high imperviousness areas due to the rapid growing
population (van Aalst, 2006). Microbial health impact
during the post-flooding period was linked to the flood
water diluted sewer water (Cook et al., 2008). It poses dis-
ease risk through direct or indirect contact such as water-
borne diseases (e.g., diarrhea), vector-borne diseases
(e.g., malaria and dengue fever), and rodent-borne dis-
eases (e.g., leptospirosis) (Lau et al., 2010). In developed
countries, such as England and the Netherlands, the
importance of health risk assessment (HRA) related to
waterborne pathogens in urban flood risk management
has been emphasized (Fewtrell, Kay, et al., 2008;
Hammond et al., 2013; WHO, 2017). The infection risks
caused by waterborne pathogens in floodwater help
urban authorities to understand the safety of floodwater
and develop risk mitigation strategies (Sales-Ortells &
Medema, 2014).

In low and middle-income countries (LMICs), the
urban floodwater quality is more significant due to fast-
growing urban populations and inadequate drainage sys-
tems (Luo et al., 2019). Various epidemiological studies
have indicated increased waterborne disease cases during
the flooding period (Phung et al., 2014; Phung
et al., 2017; Thompson et al., 2015). While direct exposure
to polluted urban floodwater, such as through traffic
activities or cleaning up inundated houses, seems
unavoidable, these activities may cause public health
issues related to waterborne disease (Few et al., 2013;
Few & Tran, 2010). Infectious diseases are one of the
most pressing health issues during flooding. For instance,
diarrhea is the second most common communicable dis-
ease associated with mortality in Vietnam (MOH, 2018).
It is also one of the most common diseases in the flood
season of Can Tho city (Vietnam) (Preventive Medical
Center in Can Tho, 2016b). Can Tho city is a major urban

center in the Vietnamese part of the Lower Mekong
Delta. This city is exposed to increased flooding due to
rapid urbanization, especially in the urban area called
Ninh Kieu District (Leloup et al., 2013; Pham
et al., 2010). In addition to flooding, water pollution is
also considered a severe problem in this area. For exam-
ple, Nguyen et al. (2017) identified total coliform concen-
trations in floodwaters comparable to those in sewage
concentrations. During flooding, total coliforms in sur-
face waters were up to 70 times higher than those sug-
gested by Vietnamese surface water standards (Salingay
et al., 2014). Notably, Escherichia coli and rotavirus A
were prevalent in floodwater in 2016 in Ninh Kieu
(Huynh et al., 2020). Nguyen et al. (2017) indicated that
direct exposure to floodwater is a potential cause of gas-
trointestinal infection due to E. coli and Salmonella. The
exposed people through traffic activity are the majority in
the case study. Like many other cities in Vietnam and
other LMICs, riding and walking through floodwater is
unavoidable for a large proportion of the citizens in Can
Tho City. Motorcycles are the primary mode of transpor-
tation on urban streets (Hung et al., 2010). Consequently,
the residents may have microbial health risks when
experiencing traffic through flooded streets.

The health risks of gastrointestinal infection have
been widely studied using quantitative microbial risk
assessment (QMRA) (Haas et al., 2014). However, the
health impacts specifically for traffic have thus far not
been fully quantified (Jalilov et al., 2018). First attempts
include Veldhuis et al. (2010), who evaluated the health
risks for pedestrians splashed by passing traffic in the
Netherlands, and Mark et al. (2015), who studied the
health risks for adults wading through floodwater to
work and (upper) middle-class children going to school
in Dhaka, Bangladesh. However, such analyses are diffi-
cult, because information on the behavior of people dur-
ing flooding is hardly ever reported. Veldhuis et al. (2010)
and Mark et al. (2015) quantified the health risks for dif-
ferent exposed groups. The infection probability can also
be combined with exposed population data to get a better
understanding of the disease burden (expressed in
disability-adjusted life years [DALYs]) that will help to
find focus areas for intervention (Gao et al., 2015). How-
ever, simulating the disease burden for traffic during
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floods has thus far not been the focus of research. In par-
ticular, in LMICs, this disease burden can be significant.
Therefore, this article aims to assess the health risks and
disease burden for traffic associated with exposure to
floodwater contaminated with enteric pathogens.

Understanding public health vulnerability and in partic-
ular, the relationship between health risk and waterborne
pathogens in floodwater is essential to healthy and resilient
cities. Our case study is in the Ninh Kieu District of Can
Tho City. This city is a Rockefeller Foundation's 100 Resil-
ient Cities Network (100R) member. The concentration of
rotavirus A in floodwater in the study area is high (Huynh

et al., 2020). In this study, we conducted a two-step
approach. First, we estimated infection and illness risk per
person exposed to floodwater using QMRA (Haas
et al., 2014; Medema & Ashbolt, 2006). Second, we calcu-
lated the health impact or disease burden per flood event
caused by microbial pathogens. We incorporated the popu-
lation directly exposed to floodwater through traffic activi-
ties, such as riding motorbikes, bicycles, and walking. To
the best of our knowledge, this study was the first to quan-
tify both the infection risk and the disease burden of water-
borne pathogens for those exposed to floodwater through
traffic activity in a developing country.

FIGURE 1 Maps of

(a) Vietnam, Can Tho city, and case

study area (bounded by the black

line) within Ninh Kieu district

(b) Study area (bounded by the red

line) in Ninh Kieu district, and the

main rivers, canals (Background

Google™ satellite data).
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2 | CASE STUDY

Ninh Kieu District (Can Tho City, Vietnam) is located on
the western side of the Hau River, a Mekong tributary
(Figure 1). The monsoon season dominates this Lower
Mekong River Basin from June to November with heavy
rainfall. Besides, the high sea level and flows of upstream
areas (i.e., Myanmar, Thailand, Laos) affect the high river
water level on the Mekong River in the beginning and
middle of the lunar calendar. The high tide period occurs
twice a day, in the morning and afternoon. The average
maximum daily river water level in the period 1978–2018
was 0.7–1.75 m at high tide. River water is usually at its
highest level in September, October, and November
which can reach up to 2.25 m (Kingston et al., 2011). This
city faces pluvial and fluvial flooding, and sometimes
both. Pluvial floods occur due to inadequate drainage
networks during heavy rainfall events. The average
annual rainfall in the period 1985–2019 was about
1376.6—1792.6 mm which was 90% that occurred in
rainy season months (June–November). Rainfall peaked
in August–October with 15–25 rainy days per month with
an average monthly rainfall of about 140.8–240.5 mm
(Can Tho's People Committee, 2019). The fluvial floods
are caused by overtopping the river bank; the river water
enters the drainage systems at the outlets and then exits
on streets through sewer pipes. According to local
reports, inundation happens an average of four to five
times a year in the city. Flood usually occurs in the inner
city due to heavy rainfall, while the area near the river is
inundated due to the upstream flow and high tide twice a
day (Huong & Pathirana, 2013). Untreated wastewater in
the combined sewer system backs up and pollutes the
floodwater during the flooding period. During high tide
periods, the flooding period usually coincides with the
starting/closing time of offices and schools in the case
study areas (5:00–7:00 and 17:00–19:00) (Figure S4, Sup-
plement). Thus, exposure to polluted floodwater in the
streets is unavoidable. Ninh Kieu is the densest urban
center in Can Tho with 10,400 people/km2, while the
average population density for Can Tho is 859 people/
km2 (GSO, 2019). Many residents, therefore, face a risk of
infection and loss of health due to waterborne pathogens
in floodwater (Nguyen et al., 2017).

3 | MATERIALS AND METHODS

In this study, we first used the QMRA approach to assess
infection probability and illness probability for exposure
per person per flood event. Then, we evaluated the dis-
ease burden by DALYs. The data on floodwater was
based on our previous study (Huynh et al., 2020).

3.1 | Data description

Surface water (rivers/canals/lakes) and sewer water sam-
ples were available from the research work presented by
Huynh et al. (2020). This part summarizes the flood event
and sampling campaign on October 17, 2016. On this
day, high river water levels and rain were observed
(Figure S2, Supplement). However, the main cause of the
inundation was attributed to high river water levels of
2.03 m (Figure S1, Supplement). The inundation was
explained by the river water entering the combined sewer
systems through the pipes at the outlets and flowing later
out to the streets in the morning and afternoon/evening.
Therefore, the events were expected to carry a high con-
centration of pathogens. The sampling process aimed to
evaluate the different stages of the flood. During the
event, in one of the selected locations, three moments
were identified and used for the sampling, the rising
stage, the peak stage, and the receding stage of the flood-
water. We sampled floodwater at eight locations
(Figure 2). The sampling sites, sampling time, and micro-
bial concentration in the floodwater samples at the
flooded streets are shown in Table S1 (Supplement).

3.2 | Quantitative microbial risk
assessment

Haas et al. (2014) introduced the microbial risks based
quantitatively on a dose–response equation to assess
microbial hazards. This methodology uses measurements
of microbial pathogens to identify harm and estimate the
risk they pose to people. For example, QMRA has been
applied to determine the risk related to waterborne path-
ogens for domestic applications such as drinking water
sources (George et al., 2015; Lim et al., 2015; Yapo
et al., 2013) or agricultural uses (Kouamé et al., 2017),
recreation water (Schets et al., 2008; Sunger &
Haas, 2015), and floodwater (Nguyen et al., 2017; Sales-
Ortells & Medema, 2015; Veldhuis et al., 2010). QMRA
involves four steps: (i) hazard identification, (ii) dose–
response assessment, (iii) exposure assessment, and
(iv) risk characterization. This study applied the QMRA
approach to calculate two results: the infection rate and
the illness risk per person per flood event (Figure 3). We
explained in detail these steps in the following parts.

3.2.1 | Hazard identification

The flood-related water samples were analyzed in our
previous study. We considered several microbial patho-
gens, including E. coli, Salmonella, Campylobacter spp.,
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Shigella/EIEC, Giardia spp., Cryptosporidium spp., noro-
virus, and rotavirus (Huynh et al., 2020). However, only
E. coli and rotavirus A were detected in the floodwater
samples, while the other pathogens were not detected.
Since we analyzed total E. coli and not the pathogenic
E. coli, we only assessed human health risks related to

rotavirus A in this study. Rotavirus A is the primary
cause of viral gastroenteritis in humans, especially for
children and the elderly (Atmar & Estes, 2006; Sattar
et al., 2018). Over two decades in Vietnam, rotavirus has
been one of the predominant pathogens that cause diar-
rhea in children (Doan et al., 2003; Huyen et al., 2018;

FIGURE 2 Eight floodwater sampling sites in Ninh Kieu District on 11 September and 16–19 October 2016. The initials correspond to

the sampling sites in Table S1 (Supplement) (background Google Earth™ satellite data).

FIGURE 3 Methodology framework for health risk assessment and disease burden estimation due to microbial pathogens in urban

floodwater for traffic exposure.
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Man et al., 2005; Nguyen et al., 2001; Thompson
et al., 2015). The measurement procedure for rotavirus A,
the pathogen of interest and other pathogens, is described
by Huynh et al. (2020). From here, we use “rotavirus” to
mean “rotavirus A" in our study.

3.2.2 | Exposure assessment

The exposure analysis presented here is evaluated at the
individual (person) level. These involve the exposure
pathway, duration, and ingested volume (Fewtrell, Smith,
et al., 2008). Besides, the number of exposed people was
estimated.

a. Exposure pathways and exposure groups

The QMRA only considered accidental ingestion of
contaminated flood water through traffic activities as the
exposure pathway in this study. Ingesting water by hand-
to-mouth contact and splashing from other vehicles were
common exposure pathways of these groups. We did not
consider bathing in floodwater or washing/cooking/
drinking contaminated water since they are unusual
activities in this local area. Child and adult pedestrians,
motorcyclists, and cyclists are often observed in flooded
streets and directly exposed to floodwater in the streets
(Figure S4, Supplement). Therefore, we selected these
four groups of exposed people. The motorbike and bike
groups included pillion riders.

In this study, the intake volume (mL) of floodwater
for an individual per flood event is defined by the intake
rate and exposure duration. The intake rate (units of
mass/time) is the amount of contaminated food/water
ingested by an individual during a specific period
(EPA, 2011b). The exposure duration is when a person is
in contact with the hazard.

i. Intake rate
� Child pedestrians and adult pedestrians: These can

ingest water when wading through floodwater on
their way to and from schools/offices. No esti-
mates for ingestion during wading existed. Intake
volumes from the literature included 30–50 mL
and 01–30 mL for children and adults, respec-
tively, per incident, such as playing and bathing
(Donovan et al., 2008; Veldhuis et al., 2010). How-
ever, these studies did not incorporate exposure
duration per incident. Besides, bathing and play-
ing in floodwater are uncommon in urban settings
in Vietnam. Dorevitch et al. (2011) showed the
average intake volumes were 3.5 mL for walking/
splashing in pool water for 60 min. We, therefore,

used 3.5 mL/h as the intake rate for children and
adult pedestrians with lognormal (3.5, 3.6)
(mL) distribution.

� Motorcyclists and cyclists: No intake rates or intake
volumes have been reported in the literature for
motorcyclists or cyclists through floodwater. How-
ever, Dorevitch et al. (2011) identified that motor-
boat drivers ingested 3.7 mL in 1 h. Therefore, we
assumed the ingested volume for these two groups
was 3.7 mL/h.

ii. Exposure duration

Since we considered the exposure through traffic
activity, the exposure duration (i.e., the time spent in
inundated areas) depends on the length of the flooded
street and the speed of vehicles. Thus, we expressed the
exposure duration (te) on the flooded road as:

te ¼ l=v ð1Þ

where l (m) is the length of the flooded street and v (m/h)
is the velocity of the individual. l in the flood event in the
afternoon of October 17, 2016 ranged from 85 to 925m.
We used the average length of all the flooded streets to
calculate the average exposure duration (Table 2). We
assumed that the individual kept the same speed when
traveling through a flooded street. Tang et al. (2020) iden-
tified the traffic flow speeds (i.e., motorcycles, cars, and
buses) in an arterial road in Hanoi (Vietnam) to be 9–
14 km/h during the rush hour in the morning (7:00–9:00)
and afternoon (17:00–19:00), increasing to more than
30 km/h during the non-rush hours. Therefore, we
assumed that the velocity was 14 km/h as the study took
place during rush hour. Several studies have determined
that the average speeds of cyclists were 10 km/h in China
(Cherry & He, 2009) and 13.5 km/h in France (Jensen
et al., 2010). We assumed a speed of 10 km/h for our case
study, which seemed more suitable for Vietnamese peo-
ple. For pedestrians, the average speeds were 70 and
80m/min for children and adults, respectively (Waters e
al. 1983).

Additionally, the difference in flood inundation
depths of the streets in the study area was small (0.2–
0.4 m, SD = 0.06) (Table S2, Supplement). Besides, there
is a lack of reliable information about the association
between flood depth, intake rate, and exposure duration.
Thus, we assumed that the variability of flood depth did
not affect the intake rate or the exposure duration.

b. Number of exposed people in a flood event

Since it was difficult to count all the exposed people
in the flooded streets, we recorded video and counted for
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one street, then extrapolated for the other flooded streets.
We assumed that the total number of exposed people in
all the flooded streets was the multiple of the exposed
people density (exposed people per square meter) and the
total inundated areas of flooded streets (square meters).

First, to estimate the exposed population density, we
recorded a video of an inundated street segment. We used
the manual counting method to count the number of
people passing through that street segment. This manual
counting method is used in transportation studies to ana-
lyze traffic flow (Iowa State University, 2002; Pande &
Wolshon, 2003). We chose Chau Van Liem Street to
record the video covering 30 min of inundation
(Figure S3, Supplement). We then calculated the exposed
people density (de, people/m

2) based on the number of
exposed people that we recorded (nstr, people) and inun-
dation area that we observed (astr, 10m� 100m) at Chau
Van Liem Street (Equation 2). The description and the
recording at Chau Van Liem Street are shown in the Sup-
plement section:

de¼ nstr
astr

ð2Þ

Second, we calculated the total flooded areas in all
the flooded streets as Equation (3):

Ne ¼ de�A� sf ð3Þ

where A(m2) is the sum of the inundated area of all the
flooded streets and sf is the scale factor to correct the traf-
fic density in each flooded street. A (36,880m2) was cal-
culated based on the widths and the lengths of the
inundated roads (Table S2, Supplement). Since there was
a lack of information about the flooded streets in the
morning of October 17, 2016, we referenced data for
the flooded streets in the afternoon of this day reported
by the Can Tho Drainage and Sewage Company. The
flooded streets, inundated duration, floodwater level, and
lengths and widths of the inundated areas were shown in
Table S2 (Supplement) (CanThoWassco, 2017). We
focused on the flooded streets with inundated areas
exceeding 200 m2 and flood depths higher than 0.2m and
ignored small inundations.

The scale factor sfð Þ is included because larger streets
may be more crowded than small streets. We determined
the scale factor based on the widths of the streets. Chau
Van Liem Street, which is 10m wide, was considered the
“base” street with a scale factor of 1.0. Scale factors were
0.8 and 1.2 for those streets with smaller (<10m) and
larger (>10m) widths, respectively (Table S1,
Supplement).

In reality, the number of exposed people and inun-
dated areas in each street are variable during floods.
However, we assumed that the traffic density and traffic
flow velocity were constant during the flood to simplify
the calculation. Since the flood duration was variable
among flooded streets (from 1 to 2 h), we assumed an
average of 1 h for the flood event in the case study.
Besides, we did not observe the variation of the inun-
dated area during the flooding period. Thus, we assumed
that the extent and depth of the inundated area did not
change during the 1-h flood event.

3.2.3 | Risk assessment

In the final step, the steps mentioned above are combined
to estimate the risk probability per person per exposure
(i.e., exposure to floodwater). To show the health risk
with the best available data, we quantified the infection
risk and disease burden for one street (i.e., Chau Van
Liem Street) based on the measured concentrations and
exposed people on this street. Then, we extrapolated the
risk assessment of all the flooded roads. The equations
for the intake dose, infection probability, illness probabil-
ity, and the DALYs are described below. Table 1 shows
the critical input for the QMRA approach.

Intake dose
The intake dose μð Þ is the dose of pathogens that exposed
people ingested when they contacted floodwater
(Equation 4) (EPA, 2011a):

μ¼ c� IR� te ð4Þ

where c is the concentration of the microbial pathogens;
in this study, the pathogen is rotavirus A (genome of cop-
ies/mL). We detected rotavirus A in 21/37 (57%) of the
floodwater samples, and it ranged from 2.27 � 103 to
2.96 � 106 genome copies/mL (Huynh et al., 2020).

IR is the intake rate (mL/h), which is the ingested
volume per hour of exposure; and teis the exposure dura-
tion (hour), which is the exposure time in the flood
event.

Dose–response relationships
A dose–response model describes the risk response
(infection, illness, or death) for a given dose of a specific
pathogen. The recommended dose–response model for
rotavirus is hypergeometric (Teunis & Havelaar, 2000;
Ward et al., 1986). This study used a simplified version,
the beta-Poison model (Equation 5). This model is used
regularly in the literature to estimate the infection
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probability Pinfð Þ for rotavirus (Gerba et al., 1996;
Machdar et al., 2013; Mcbride et al., 2013):

P inf ¼ 1� 1þμ

β

� ��α

ð5Þ

where αand β have been estimated as 0.253 and 0.422,
respectively (Haas et al., 2014); μ is the ingested dose of
rotavirus in genome copies (gc), which was calculated by
Equation (4).

The probability of developing illness after infection
Pillð Þ was estimated by Equation (6):

Pill ¼ P inf �Pillj inf ð6Þ

where Pillj inf is the risk of illness given infection (the like-
lihood that an infected person develops symptoms of
acute illness), which is 0.5 for rotavirus A (WHO, 2016).
Other studies also applied this value to the community
exposed to wastewater (Fuhrimann et al., 2017), and
water supply (Machdar et al., 2013).

The distribution of infection probability was simu-
lated using Monte Carlo simulations with a random sam-
pling of 10,000 iterations from the distributions of intake
rate, flood length, and rotavirus concentration (Table 1).
We used RiskAMP software version 5.4.1, an add-in pack-
age in Microsoft Excel, to simulate the distribution
(Structured Data LLC, 2005).

3.3 | Disease burden

We calculated the disease burden by DALY metrics for
the exposed people. DALY consists of the years of life lost
(YLL) and years lived with disability (YLD) (Fewtrell &
Bartram, 2001; Machdar et al., 2013). For rotavirus A, the
standard DALY value of low-income countries is
482 DALYs per 1000 cases (YLL = 480, YLD = 2.2). The
YLL is based on life expectancy at the age of death
(WHO, 2016). Since the life expectancy at birth to calcu-
late YLL is dependent on age at the time of death, we cal-
culated a new value for YLL, using the average life

TABLE 1 Input data for the QMRA model to calculate the infection probability and illness probability per person per event.

Inputs Units Values and/(or) distribution References

α (rotavirus) 0.253 (Haas et al., 1999)

β (rotavirus) 0.4220

Concentrations

The average value for all floodwater samples (gc/mL)a 5.89 � 105 (mean, 95% CI 2.3 � 105–9.5 � 105)
Lognormal (11.9, 2.11, 0)

(Huynh et al., 2020)

95th percentile concentration for all
floodwater samples

2.56 � 106

The average value for floodwater samples at
Chau Van Liem Street

1.02 � 106

Intake rates

Child pedestrians (mL/h) 3.7 Lognormal (3.7, 3.8) (Dorevitch et al., 2011)

Adult pedestrians 3.5 Lognormal (3.6, 3.7)

Motorcyclists

Cyclists

Speeds

Child pedestrians m/h 4200 (Waters et al., 1983)

Adult pedestrians 4800

Motorcyclists 14,000 (Tang et al., 2020)

Cyclists 10,000 (Cherry & He, 2009)

Flooded lengths m 300 (mean, 95% CI 0–1488)
Lognormal (5.4, 0.787, 0)

This article

Risk of illness given infection of rotavirus
P(illjinf)

0.5 (WHO, 2016)

Abbreviation: QMRA, quantitative microbial risk assessment.
agc/mL: genome of copies per milliliter.
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expectancy at birth of Vietnamese people (73.6 years)
(GOPFP, 2019). The average age at death of 1 due to rota-
virus was assumed (Havelaar & Melse, 2003), which
means the loss is 72.6 years. We considered the YLD due
to rotavirus A with mild and severe diarrhea symptoms
(Table 2). The disease burden of each illness case (DALYs
per case, DALYpc) for rotavirus (Equation 7) involves the
YLL and YLD with the probability (%) of developing a
negative health outcome (disease symptoms) given by an
illness (Poutcomejill); the severity of symptoms (s); and the
duration of symptoms (d, year):

DALYpc ¼ Poutcomejill� s�d ð7Þ

Then, from Equation (9), the disease burden per flood
event was determined for each exposure group based on
DALYs per illness case DALYpc

� �
and the number of ill-

ness cases in each group (N illÞ. N ill (Equation 8) was the
product of exposed people in each group (Ne, from Equa-
tion 3) and Pill (from Equation 6). Finally, the total DALYs
provided the disease burden due to rotavirus for the four
exposure groups through traffic activities (Equation 10).

The number of illness cases in each exposure group
per flood event is

N ill ¼Ne�Pill ð8Þ

The disease burden for each exposure group per flood
event is

DALYspe ¼DALYpc�N ill ð9Þ

The total DALYs of all exposure groups per flood
event is

Total DALYs¼
X
i

DALYspe
� �

i ð10Þ

3.4 | Sensitivity analysis and uncertainty
analysis for parameters

3.4.1 | Sensitivity analysis

Sensitivity analysis is used to measure the uncertainty of
the proposed parameters since they are taken from the

literature. The nominal range sensitivity analysis (NRSA)
method was used to assess the sensitivity of the result
due to the variability in the input parameters and vari-
ables (Cullen & Christopher Frey, 1999). It is used to
evaluate the sensitivity of the model by changing the var-
iables one at a time while maintaining other parameters.
These changes are made across a range of plausible
values with base, low, and high values (Table 3). We
called the DALYs calculating with these values baseline,
scenario 1, and scenario 2, respectively. We considered
the influence of exposure duration, intake rate, and con-
centration on the infection probability and disease bur-
den. The exposure duration depends on the speed of the
exposed people and the lengths of flooded streets
(Equation 1). The mean speeds of the motorcycle were
estimated as 9 km/h in the rush hours (7:00–9:00 and
17:00–19:00) and 30 km/h in the non-rush hours (Tang
et al., 2020). We used these data as the low and high
values of the motorcycle speed. In contrast, during non-
rush hours, the pedestrians tended to walk 4% slower
than during rush hours. Hence, this percentage was used
to calculate the low value for the speed of pedestrians
(Bosina & Weidmann, 2017). The base value for the speed
of pedestrians was 1.34 and 1.16 m/s for adults and chil-
dren, respectively (Waters et al., 1983). We did not con-
sider the high value of speed for pedestrians due to a lack
of data. We assumed 9 km/h (Cherry & He, 2009) and
13.5 km/h (Langford et al., 2015) for the low value and
high value of cyclist speeds, respectively. For the intake
rates, the high values for child pedestrians and adult
pedestrians/motorcyclists/cyclists by wading through sur-
face water were 50 and 10 mL/h, respectively
(EPA, 2011b). The low value was 1.4 mL/h, applied to all
the exposed groups (Dorevitch et al., 2011). We fixed the
low and high lengths of the inundated streets and mea-
sured rotavirus concentration at its 25th and 95th percen-
tiles, respectively. Besides, we evaluated the sensitivity of
the rotavirus concentration by using the ratio between
the indicator E. coli and the rotavirus (E. coli:
rotavirus = 105:1) to calculate the low value of the rotavi-
rus concentration. Some recent studies have assumed the
association between E. coli and rotavirus by this ratio to
calculate the rotavirus concentration in drinking water
and floodwater (Fuhrimann et al., 2016; Labite
et al., 2010). Our previous study used the E. coli concen-
tration in floodwater (average concentration 7.17 � 103

CFU/mL) analysis (Huynh et al., 2020) to estimate the

TABLE 2 Probability of developing

negative outcome (PoutcomejillÞ, severity
(s), and duration of symptoms (d) to

calculate DALYs per case caused by

rotavirus (Havelaar & Melse, 2003).

Symptoms Probability (%) Severity Duration (year)

Mild diarrhea 88 0.1 0.02

Severe diarrhea 11.4 0.23 0.02

Death 0.6 1 72.6

HUYNH ET AL. 9 of 20
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rotavirus concentration. The ratio concentration of rota-
virus (3.9 � 10�2 CFU/mL) was 7 log10 lower than the
average measured concentration (5.9 � 105 gc/mL).

Additionally, we evaluated the number of exposed
people by considering the density of the exposed people.
The people density during rush hours (base value) was
2.5 times higher than during non-rush hours (low value)
(Tang et al., 2020). Therefore, the low value of the
exposed people density was 2.5 times lower than the base
value shown in Table 3. For the low value of DALYs per
case, we assumed the standard DALYs due to rotavirus
(0.014) were used for developed countries (Havelaar &
Melse, 2003). Furthermore, we considered the influence
of flooded areas (m2) on disease burden. In 5 years
(2013–2017), the Ninh Kieu districts experienced 24 flood
events (CanThoWassco, 2017) (Table S2, Supplement).
The flooded areas of these events ranged from 6400 to
252,000 m2 (SD = 55,288, 95%CI mean 29,647–73,885). In
our sensitivity analysis, we used the 25th and 95th per-
centiles of flood areas as low and high values. There were
limited available Pilljinf, α, and β parameters in the beta-
Poison model to study; thus, we did not include these in
the sensitivity analysis.

3.4.2 | Uncertainty analysis

To determine the uncertainty of which parameter is more
important than the others, we used the Spearman test to

find the correlation coefficient (rho) between the input
and the output (i.e., infection risk) (Gurian, 2015; Haas
et al., 2014). We simulated the distributions of intake vol-
ume, concentration, flood length (Table 1), and infection
risk by Monte Carlo with 10,000 iterations in the software
RiskAMP Monte Carlo Add-In Library version 5.4.1. Per-
sonal & Learning Edition.

4 | RESULTS

4.1 | QMRA and disease burden in a
flood event

The number of exposed people in Chau Van Liem Street
during a 1-h flood event was assumed to be twice as
many as the exposed people counted in the video cover-
ing 30 min of inundation. Motorcycles were prevalent on
the roads (95%). Of these, a quarter was shared motorcy-
cles with two persons. Cyclists, adult pedestrians, and
child pedestrians were the minority with 2.8%, 2%,
and 0.1%, respectively. The gastroenteritis cases caused
by rotavirus A in a flood event were 30,831 among the
63,390 exposed people in the four groups (Table 4).

The average infection risk per person per exposure
(pppe) (i.e., exposure to floodwater) in Chau Van Liem
Street and all the flooded streets were highest for child
pedestrians at 9.6 � 10�1 and 9.7 � 10�1, respectively.
The infection probability of adult pedestrians,

TABLE 3 Inputs of sensitivity analysis for QMRA and disease burdens with low values, high values, base values, and percentage

changes compared to base values. A negative (�) indicates a decrease.

Inputs Units

Low High Base

Values Changes (%) Values Changes (%) Values

Rotavirus A concentration (measured) gc/mL 5.3 � 103 �35% 2.6 � 106 11% 5.9 � 105

Rotavirus A concentration (ratio) 7.17 � 10�2 �120% —

Intake rate

Child pedestrians mL/h 1.4 �60% 50 1329% 3.5

Adult pedestrians �60% 10 186% 3.5

Motorcyclists �62% 10 170% 3.7

Cyclists �62% 10 170% 3.7

Lengths of flooded streets m 85 �254% 689 130% 300

Flooded areas on streets m2 16,700 143,000 36,880

Speed

Child pedestrians m/h 4000 �4% 4800 14% 4200

Adult pedestrians 4600 �4% 5200 8% 4800

Motorcyclists 9000 �36% 30,000 114% 14,000

Cyclists 9000 �10% 13,500 35% 10,000

Abbreviation: QMRA, quantitative microbial risk assessment.
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motorcyclists, and cyclists was correspondingly
9.6 � 10�1–9.7 � 10�1 (Table 4). Figure 4 indicates a sim-
ilar percentile distribution among the four groups. The
infection risk distribution in Figure 5 showed that pedes-
trians had highest likely to be infected than other groups.
This means that the infection risk of pedestrians is high-
est and that value had the highest probability to happen
than other groups. For all exposure groups, the high
values of infection risk had a higher probability to hap-
pen. For example, at an infection risk of 0.96, the proba-
bility to happen is 31%, 26%, 15%, and 18% for child
pedestrians, adult pedestrians, cyclists, and motorcyclists.
At an infection risk of 0.98, the probability to happen is
53%, 37%, 36%, and 30% for child pedestrians, adult
pedestrians, cyclists, and motorcyclists, respectively.

The DALYs from all the exposure groups in a flood
event at Chau Van Liem Street were 3.62 � 102. The total

DALYs for all the roads were 1.35 � 104. Motorcyclists
are the main contributor to the total DALYs, followed by
cyclists, adult pedestrians, and child pedestrians
(Table 4).

4.2 | Sensitivity analysis and uncertainty
analysis

According to the NRSA results (Figure S5 and Table S4,
Supplement), the most influential variable in health out-
comes was flooded areas (337%) followed by the (mea-
sured) concentration of rotavirus (11%–15%). Increasing
the flooded areas by 290% (i.e., four times higher than the
base value) resulted in the most significant change in dis-
ease burden (approximately 282% higher). For concentra-
tion, increasing the (measured) rotavirus concentrations

TABLE 4 Exposed people density, ingested dose, average infection probability per person per exposure (pppe), illness cases, and disease

burden for the four exposure groups due to rotavirus infection in a flood event in Chau Van Liem Street and all the flooded streets.

Units

Exposure groups

Child
pedestrians

Adult
pedestrians Motorcyclists Cyclists Total

Exposed people
density

People/1000 m2 2 34 1632 48

Number of exposed
people

People per (1 h)
flood event

Chau Van
Liem Street

2 34 1632 48 1716

All the
flooded
streets

75 1274 61,143 899 63,390

Ingested doses gc/pppe Chau Van
Liem Street

3.65 � 106 6.39 � 105 2.19 � 105 3.07 � 105

All the
flooded
streets

2.1 � 106 3.68 � 105 1.26 � 105 1.76 � 105

(Average) infection
probability

pppe Chau Van
Liem Street

9.8 � 10�1 9.7 � 10�1 9.6 � 10�1 9.7 � 10�1

All the
flooded
streets

9.8 � 10�1 9.7 � 10�1 9.6 � 10�1 9.6 � 10�1

Illness cases Illness people/
event

Chau Van
Liem Street

1.0 17 787 23 828

All the
flooded
streets

37 617 29,312 865 30,831

Disease burden DALYs/event Chau Van
Liem Street

0.4 7 345 10 3.62 � 102

All the
flooded
streets

16 270 12,835 379 1.35 � 104

Abbreviation: DALYs, disability-adjusted life years.
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by 1 log (i.e., 11% higher than the base value) increased
the infection risk and DALYs by 0.6%, 1.0%, 1.3%, and
1.2% for child pedestrians, adult pedestrians, motorcy-
clists, and cyclists, respectively. With a reduction of two
log10 in the rotavirus concentration (i.e., 35% lower than
the base value), these health outcomes were reduced by
4.7%, 7.4%, 9.9%, and 9% for these exposure groups,
respectively. Notably, using the ratio between E. coli and
rotavirus, the rotavirus concentration was seven log10
lower than the base value (i.e., 120% lower than the base
value). This caused a significant reduction in the infec-
tion risk and disease burden of child pedestrians, cyclists,
and motorcyclists/adult pedestrians by 88%, 97%, and
99%, respectively.

Besides, the reduction of DALYs per case and density
resulted in a considerable decrease in negative health
outcomes. If the exposed people density was 2.5 times
less crowded on roads, the DALYs decreased by 61%
(i.e., 2.5 times less than the DALYs calculated by the base
value). Decreasing the DALYs per case by 32 times
(i.e., 97%) reduced the disease burden by 97%. Since the
plausible high values of the concentration (ratio), DALYs
per case, and people density were not available, we did
not consider the NRSA of these parameters in the health
outcomes.

The speed, flooded street lengths, and intake rate only
contributed to the outcome by less than 3%, except for
the speed of pedestrians by 9%. Reducing the velocity of
child and adult pedestrians, motorcyclists, and riders by
4%, 36%, and 10%, respectively, caused an increase of
0.02%, 1.11%, 0.45%, and 0.1% in the health outcomes.
However, increasing the speed by double and one-third
for motorcyclists and cyclists reduced the infection risk
and disease burden by 1% and 0.3%, respectively. When
the length of the inundation area increased by two times
longer than the base value, the health outcomes
increased by 0.4%, 0.6%, 0.8%, and 0.7% for child pedes-
trians, adult pedestrians, motorcyclists, and cyclists,
respectively. By traveling along an inundated street that
was 3.5 times shorter, the health risk and disease burden
were reduced by 0.8%, 1.2%, 1.6%, and 1.5% for the four
groups, respectively. Changing the water intake (Table 3)
had a limited effect on the health outcome (1.1%–1.4%
lower or 1%–2% higher).

The uncertainty of the input had a weak impact on
the infection risk (rho <0.3). The correlation coefficient
of flood length and infection risk of the four exposure
groups was 0.24–0.27, followed by concentration (0.14–
0.22) and intake rate (0.08–0.14) (Table S5, Supplement).

5 | DISCUSSION

5.1 | Quantitative microbial risk
assessment

This study demonstrates the health risk of enteric patho-
gens due to exposure to urban floodwater through traffic
activities in developing countries. In terms of average
infection risk, the result confirms the findings of previous
similar studies that children have the highest potential
risk of infection, followed by adults (Man et al., 2014;
Sterk et al., 2008; Veldhuis et al., 2010). However, the
infection risk distribution showed that children had low-
est likely to be infected than motorcyclists, cyclists, and
adult pedestrians. The infection probability in our study
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probability of infection from Monte Carlo simulation for four traffic
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was 1–4 orders of magnitude higher than those in previ-
ous studies. For example, according to Veldhuis et al.
(2010), the infection probabilities for adult and child
pedestrians were 5 � 10�5–0.2 and 10�4–0.3, respectively.
Man et al. (2014) identified infection risks for children to
be 0.33, 0.23, and 0.035, while the infection risks for
adults were 0.039, 5.8 � 10�3, and 3.9 � 10�4 in the
Netherlands. In the case study Dhaka (Bangladesh),
Mark et al. (2015) indicated infection risks caused by Vib-
rio cholera in floodwater for children and adults in low-
and middle-class areas were 52 � 10�5–5.6 � 10�3 and
1.5 � 10�6–5.5 � 10�4, respectively. The reason is that
the concentration of rotavirus in our case was 2–7 log10
higher than the pathogen concentrations in the other
studies. When we used the ratio between E. coli and rota-
virus (1:10�5) to calculate the rotavirus concentration
(Table 3), the estimated concentration of rotavirus was
seven log10 smaller than the base value (i.e., the mea-
sured concentration). It resulted in the infection risks cal-
culated for child pedestrians, adult pedestrians,
motorcyclists, and cyclists in the same range as other pre-
vious studies with 0.1, 0.03, 8.9 � 10�3, and 0.013,
respectively.

Some uncertainties may affect the infection probabil-
ity. The first is whether it is appropriate to use dose–
response models undertaken with adults in developed
countries for case studies in developing countries (Mills
et al., 2018). The dose–response relationship of rotavirus
was formed for male volunteers ranging from 18 to
45 years old (Teunis et al., 1996). Hence, it does not rep-
resent children. Moreover, it may not accurately reflect
the actual dose–response relationship of the case study,
which may have different degrees of immunity. Second,
in our research, rotavirus was analyzed by qPCR, which
only detected the genetic material, not the active status of
the virus. To the best of our knowledge, there is a lack of
research mentioning the rotavirus concentration in sam-
pling floodwater. Only one study detected rotavirus in
floodwater (9%, 9/100 samples) in Thailand but did not
analyze the concentration (Ngaosuwankul et al., 2013).
Fuhrimann et al. (2017) estimated the rotavirus concen-
tration based on E. coli concentration and the ratio
between E. coli and rotavirus. Rotavirus concentrations
in the river and sewer water in the Netherlands were 57–
5386 PDU/L (PCR-detectable units) and 339–55,000
PDU/L (Lodder & de Roda Husman, 2005). These results
were much lower than our study, by between 3 and
6 orders of magnitude. Since the water quality in devel-
oped countries may be better than in developing coun-
tries, analyzing enteric pathogens such as rotavirus in
floodwater in developing countries needs to consider
other similar research in the future. Moreover, for future
research, it may be helpful to test the virus's live

(or infective) nature in floodwater, for example, by cul-
tures (Arnold et al., 2012).

5.2 | Disease burden

Our study conducted an experiment to identify the num-
ber of people exposed to traffic during flooding. Motorcy-
clists were prevalent in the streets during this time. This
result was similar to previous studies about the high pre-
dominance of personal transport vehicles, such as motor-
cycles, in Vietnam's urban streets. For example, the
number of motorcycles per hour contributed 93.4%–
96.5% (i.e., 13,600 ± 3170) in arterial roads in Hanoi and
Ho Chi Minh City (Hung et al., 2010; Kim et al., 2012;
Tang et al., 2020). However, the number of vehicles in
our study was less than in the previous study since Can
Tho city is less crowded than these other two cities. Also,
the estimated illness cases per flood event in our study
(Table 4) was 20 times higher than the gastrointestinal
cases reported by the local preventive medical center.
According to epidemiological data in Ninh Kieu, there
were 1550 diarrhea cases in 2014, 774 cases in 2015, and
757 cases in 2016 (Preventive Medical Center in Can
Tho, 2016a). One reason might be ill people buy medicine
at a pharmacy store without visiting doctors or hospitals,
which is a common habit (Preventive Medical Center in
Can Tho, 2016b). Therefore, the epidemiological data
may not cover all real illness cases in Ninh Kieu. Another
reason was that we might have overestimated the illness
cases due to the high infection probability based on the
high rotavirus concentration. The third reason was that
the risk of illness given infection usually comes from
indirect sources since it is ethically inconceivable to con-
duct human trials to establish this. Therefore, the risk of
illness given infection (Pinfjill) may have been under/
overestimated when it was studied for volunteers in
developed countries (Teunis & Schijven, 2017). The Pinfjill
value should receive more attention for people in devel-
oping countries, especially for adults who have a better
immune system. Besides, we suggested a further study on
collecting information about self-medication patients at
local pharmacies, for example by a questionnaire survey,
to overcome the under-reporting data (Brata et al., 2013;
Astrid Mukemo et al., 2020).

We compared our DALY values with DALYs in other
daily life activities to assess the severity of health risks
related to the waterborne pathogen. The motorcyclists
contributed the highest disease burdens to total DALYs
(12,835, 95%), followed by adult pedestrians, cyclists, and
child pedestrians. In our study, the total DALYs per flood
event (with one exposure per flood event) were 13,500
DALYs for 63,390 exposed people (i.e., 2129
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DALYs/10,000 cases). This result was much greater than
DALYs caused by rotavirus in river water in Germany
through one-off swimming events (6.4 DALYs/10,000
cases in seven exposures per year) (Timm et al., 2016).
Our disease burden is respectively two and three times
lower than the disease burden due to microbial patho-
gens in drinking water in Ghana (5000 DALYs/10,000
cases per year) (Machdar et al., 2013) and Uganda
(10,172 DALYs for 15,015 people, 6775 DALYs/10,000
cases) (Katukiza et al., 2013). Our result exceeded by four
to five log10 of the tolerable burden of disease related to
the drinking water according to WHO (0.1–0.01
DALY/10,000 per year) (WHO, 2003). Since we calculated
the DALYs per flood event, the DALYs for people
exposed to floodwater more than once per year could be
higher than this standard.

5.3 | Sensitivity analysis

Our sensitivity analysis first highlights the influence of
flooded areas on disease burden. Investing in reducing
inundation can reduce the disease burden and infection
risk for local people. Second, the infection risk and dis-
ease burden were sensitive to the concentration of rotavi-
rus. Sales-Ortells and Medema (2015) reported a similar
result about the more significant influence of concentra-
tion on infection risk than other input parameters. Addi-
tionally, in our study, when applying the ratio (i.e., ratio
between E. coli and rotavirus) to calculate the rotavirus
concentration, the infection risk and disease burden
showed a noticeable difference compared to the base
value (i.e., measured concentration). Our previous study
observed a weak association between E. coli and rotavirus
in flood-related waters (Huynh et al., 2020). Another
study indicated the rare correlation of fecal indicators
such as E. coli with other pathogens in sewer and surface
water (Payment & Locas, 2011). Therefore, in future stud-
ies, care should be exercised using the ratio of E. coli and
rotavirus in specific case studies to assess the health risk
since it may underestimate the health risk.

Since decreasing the exposed people density caused a
significant reduction in health outcomes, we indicated
the importance of controlling the number of people in
the streets during flooding. Moreover, we stated the
importance of DALYs per case since reducing DALYs per
case resulted in a significant decrease in disease burden.
Besides, more awareness is needed when applying an
appropriate standard from case to case. For example,
using standard DALYs per case due to rotavirus in water
was inconsistent in Kampala City, Uganda. Katukiza
et al. (2013) applied the standard DALY value due to the

rotavirus for developing countries (3.69 � 10�1 DALYs
per case) (Katukiza et al., 2013). In contrast, for the same
area, Fuhrimann et al. (2017) used a much lower DALY
(3.22 � 10�3 DALYs per case) referencing a study esti-
mating for all Australians. These two different DALYs
led to significant differences in assessing the disease bur-
den for the community. More research into standard
DALYs may be needed to have a plausible range, espe-
cially LMICs. In contrast, the intake rates, the length of
flooded streets, and the speed of exposed people mostly
had a minimal effect on health outcome change.
Limaheluw et al. (2019) also indicated less impact of
ingesting volume to disease burden for consuming pol-
luted surface water in sub-Saharan Africa (Limaheluw
et al., 2019). In addition, the uncertainty of concentration
and the length of flooded streets showed more impor-
tance to the infection risk than intake rates, although the
correlations were weak.

According to the best of our knowledge, this is the
first study that calculates the disease burden caused by
microbial pathogens in urban floodwater with sampling
data for exposure through traffic activities. Although
infection risk and disease burden may over/
underestimate the risk due to uncertainties, we highlight
the risk from microbial pathogens through traffic activity
during a flood event. Our study provides quantitative evi-
dence that may help manage the health impacts. With
the support of the hydrodynamic model, applying the
appropriate mitigation measures can reduce microbial
health risk, for example, low-impact development or
natural-based solutions (Ishaq et al., 2022; Oral
et al., 2020). While improving floodwater quality and
reducing inundation play an essential role in reducing
the risk, actions could also reduce the exposure. For
example, the local authorities could give an early warn-
ing of flooding. Alternative routes/means could be pro-
vided to reduce the number of people wading through
floodwaters. Awareness programs on the infection risk of
floodwaters can also help. In urban areas of LMICs coun-
tries like Vietnam, besides taking care of children, riders,
especially motorcyclists, should have more awareness
during flooding. Riders were the most exposed popula-
tion to traffic activities. If they knew about the reality of
the likelihood of infection and health loss, they might
avoid highly flooded streets, delay traveling in periods of
high floods or use public transport on flooding days.
Moreover, after exposure to floodwater, people should be
aware of washing their hands and clothes. Recently,
some studies show the positive of coronavirus 2 (SARS-
CoV-2 virus) in untreated wastewater (Elsamadony
et al., 2021; Ihsanullah et al., 2021) and cause health risks
(Dada & Gyawali, 2021). Sewage overflows in flooding
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can transmit the virus into floodwater and spread it on
streets and households (Han & He, 2021). Therefore,
avoiding exposure to floodwater and keeping hygiene is
necessary to protect residents from infectious diseases,
especially during the COVID-19 pandemic.

The proposed framework and methods in this study
can be applied to other similar case studies that have the
potential to be affected by post-flooding health impacts.
Although the study is reported over a typical case study,
urban flooding and polluted floodwater issues increase in
other cities in Vietnam (Bangalore et al., 2016; Nguyen
et al., 2021) and other developing countries (Nkwunonwo
et al., 2020). We propose the QMRA and disease burden
approach which have both practical and theoretical
advantages to assess the microbial health risk (Howard
et al., 2006; Murray & Acharya, 1997). They may choose
to add more microbial pathogens or create a new method
to analyze the new exposure groups of the framework, if
necessary.

Further studies can improve the findings: first, we
referenced exposure behaviors such as intake rate from
other similar studies, primarily taken in developed coun-
tries. Therefore, it may not accurately transfer the situa-
tion in this case study. Questionnaire surveys could be
used to determine these data. Second, this study only
takes into account exposed people on the streets. How-
ever, this is not the whole picture of exposure in a case
study during flooding. People who live in flooded houses
may contact floodwater by many other means, for exam-
ple, by cleaning up their houses. The infection risk due to
such exposure should also be considered. Third, infection
risk and total DALYs could be updated to reduce the
uncertainties when new knowledge about these input
variables is available for people in developing countries
such as the illness given infection (Pinfjill) and the severity
and duration of symptoms.

Additionally, increasing urban flooding and its
impacts in the future due to urbanization processes and
climate change is one of Can Tho's significant challenges
(Borris et al., 2013; Huong & Pathirana, 2013; Leloup
et al., 2013). In 2050, the Ninh Kieu district could be one
of the most vulnerable areas to flooding (Balica
et al., 2013). The socio-economic changes in the future
can affect the estimate of microbial health risk. Accord-
ing to the UN (i.e., United Nations), two-thirds of the
world's population is expected to live in urban areas by
2050, with the most rapid urbanization in LMICs
(UN, 2018). Rapid population growth and poor urban
planning reduce the perviousness areas which increases
the frequency of flooding (Rahman et al., 2021). Besides,
the sewer systems may receive more wastewater and
increase the pollution in floodwater. Therefore, exposed
people to floodwater and microbial health risks are

expected to increase in future scenarios. Combining the
hydrodynamic model and HRA may help assess the vul-
nerability of exposed groups in future scenarios of socio-
economic change and climate change.

6 | CONCLUSION

For the first time, this study revealed the disease burden
per flood event due to rotavirus A in floodwater through
traffic activities. All exposure groups showed a high infec-
tion probability due to rotavirus A per person per expo-
sure (0.96–0.98). We estimated the illness cases were 20–
30 times higher than local epidemiological reports.
Motorcyclists showed the highest exposure to contami-
nated floodwaters on flooded streets in Ninh Kieu Dis-
trict, which contributed to the highest disease burden
expressed as total DALYs per flood event (12,835 DALYs
per event, 95%). The disease burden of cyclists, adult
pedestrians, and child pedestrians was 379, 270, and
16 DALYs, respectively. The infection risk was most sen-
sitive to the rotavirus concentration. The disease burden
showed high sensitivity to flooded areas and concentra-
tion. Besides, exposed people density and standard
DALYs significantly reduced the disease burden. In con-
trast, the length of flooded streets and the speeds of
exposed people had a much lower effect on health out-
comes. These differences in sensitivity and associated
uncertainties of input data should be acknowledged to
assess the health risk results presented in this study.

This study used a combination of the estimated
infection risks with population data to understand bet-
ter the disease burden caused by enteric pathogens
(i.e., rotavirus A) through contact with floodwater. The
total DALYs were calculated to quantify how many
healthy life years people may lose when exposed to con-
taminated floodwaters. These results emphasize the
need to raise community awareness about the health
risk associated with urban flooding. The Mekong Delta
residents are familiar with the slogan “Living with a
flood,” which is usually beneficial for rural areas during
the “floating water season.” However, in urban areas,
contact with floodwater may have a significant health
risk that people are largely unaware of. Urban flooding,
crowded people, and polluted floodwater can lead to dis-
ease burden caused by microbial pathogens. The infec-
tious disease cases have been predicted to increase in
future climate change (Nichols et al., 2018; Portier
et al., 2010). Therefore, more understanding of the envi-
ronmental drivers and spatial health risk mapping can
help to estimate the future change of disease burden
and apply appropriate mitigation measures to reduce
adverse health impacts.
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