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SHORT GENOME REPORT Open Access

Partial genome sequence of Thioalkalivibrio
thiocyanodenitrificans ARhD 1T, a
chemolithoautotrophic haloalkaliphilic
sulfur-oxidizing bacterium capable of
complete denitrification
Tom Berben1, Dimitry Y. Sorokin2,3, Natalia Ivanova4, Amrita Pati4, Nikos Kyrpides4, Lynne A. Goodwin4,
Tanja Woyke4 and Gerard Muyzer1*

Abstract

Thioalkalivibrio thiocyanodenitrificans strain ARhD 1T is a motile, Gram-negative bacterium isolated from soda lakes
that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of
sulfur compounds, most notably thiocyanate, and so is a chemolithoautotroph. It is capable of complete denitrification
under anaerobic conditions. The draft genome sequence consists of 3,746,647 bp in 3 scaffolds, containing 3558 protein-
coding and 121 RNA genes. T. thiocyanodenitrificans ARhD 1T was sequenced as part of the DOE Joint Genome Institute
Community Science Program.

Introduction
Soda lakes are formed in inland arid areas where ground
water, rich in CO2/bicarbonate, but poor in divalent cat-
ions (calcium and magnesium), accumulates in basins
and evaporates. The resulting system has a stable high
pH above 9 and up to 11, high soluble carbonate alkalinity
reaching molar concentrations and moderate to extremely
high salinity [1]. Despite these extreme characteristics, a
rich microbial community is found to thrive in such lakes,
driving highly active biogeochemical cycles. Thus far,
knowledge on the dynamics of and the connections be-
tween these cycles is limited [2]. A better understanding
of the biogeochemistry and the microbial species involved
will lead to clearer insights into the ecology of soda lakes.
Our research focuses on the species involved in the sulfur
cycling in hypersaline soda lakes. To learn more about the
community involved in the oxidizing part of the cycle, we
have sequenced a large number of strains of the dominant

cultivated haloalkaliphilic sulfur-oxidizing bacteria belong-
ing to the genus Thioalkalivibrio. Here we present the
partial genome sequence of Thioalkalivibrio thiocyanode-
nitrificans ARhD 1T.

Organism information
Classification and features
T. thiocyanodenitrificans ARhD 1T is a Gram-negative
bacterium belonging to the Gammaproteobacteria
(Fig. 1). It is a motile rod with dimensions 0.4–0.6 × 1.5–
5 μm (Fig. 2). Basic information about the organism is
summarized in Table 1. It is obligately chemolithoauto-
trophic and haloalkaliphilic. Energy is derived from the
oxidation of a variety of inorganic sulfur compounds in-
cluding sulfide, thiosulfate, thiocyanate, polysulfide,
elemental sulfur and tetrathionate. It is facultatively an-
aerobic, capable of growth with nitrate or nitrite as elec-
tron acceptor when thiosulfate or thiocyanate serves as
electron donor, although anaerobic growth with thio-
cyanate is extremely slow (0.006 h−1 compared to
0.032 h−1 in the presence of oxygen). At present, T.
thiocyanodenitrificans is the only sulfur-oxidizing bac-
terium for which anaerobic growth with thiocyanate
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has been proven. The final product of nitrite reduc-
tion is N2. Since nitrite cannot be assimilated, T. thio-
cyanodenitrificans can only use either external
ammonia or ammonia derived from thiocyanate as a
nitrogen source [3].

Genome sequencing information
Genome project history
This genome sequence is part of a large project aimed at
sequencing approximately 70 Thioalkalivibrio isolates.
T. thiocyanodenitrificans ARhD 1T was specifically se-
lected for its ability to grow on thiocyanate as its sole
electron donor, both in the presence and absence of oxy-
gen. This is interesting not only in terms of microbial
physiology, but also in biotechnology, where thiocyanate
is a waste product in mining effluents [4]. The permanent
draft genome presented here contains approximately 3.7
million basepairs in 3 scaffolds. It was sequenced at the
Joint Genome Institute as part of project 401911 and re-
leased in August 2012. A summary of important informa-
tion regarding the sequencing project is shown in Table 2.

Growth conditions and genomic DNA preparation
T. thiocyanodenitrificans ARhD 1T (DSM 16954) was
grown under aerobic conditions in a standard sodium
carbonate-bicarbonate buffer at pH 10 and 0.6 M Na+

with 40 mM thiosulfate as an energy source [5]. The
cells were stored at −80 °C after harvesting by centrifu-
gation. Genomic DNA was extracted using a phenol-
chloroform-isoamylalcohol approach. The cell pellet was
suspended in Tris-EDTA (pH 8) and lysed using SDS and
proteinase K. DNA was extracted using the phenol-
chloroform-isoamylalcohol mixture and precipitated with
ethanol. The resulting pellet was dried and dissolved in

Fig. 1 16S rRNA phylogenetic tree of the described Thioalkalivibrio species, as well as various organisms belonging to the family of Ectothiorhodospiraceae.
Nodes with a bootstrap value between 90-100 % are marked with black dots. The outgroup, members of the Alphaproteobacteria, are pruned from the
tree. The tree was constructed in ARB [15] and the bootstrap values calculated using MEGA6 [16]
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Fig. 2 Electron microscopy photographs of strain ARhD1 grown with
thiocyanate. (a) cell with a polar flagellum positively stained by uranyl
acetate; (b) thin section showing Gram-negative cell ultrastructure and
extended nucleoid (N)
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water. Extraction yield and quality were measured using
the DNA Mass Standard Kit provided by the JGI.

Genome sequencing and assembly
The draft genome of Thioalkalivibrio thiocyanodenitrifi-
cans ARhD 1T was generated at the DOE Joint Genome
Institute (JGI) using Illumina sequencing [6]. For this

genome, we constructed and sequenced an Illumina
short-insert paired-end library with an average insert
size of 270 bp which generated 41,681,874 reads and an
Illumina long-insert paired-end library with an average
insert size of 8291 +/− 2700 bp which generated
18,699,268 reads totaling 9,057 Mbp of Illumina data.
All general aspects of library construction and sequen-
cing performed are available at the JGI web site. The ini-
tial draft assembly contained 42 contigs in 12 scaffold(s)
and was assembled with ALLPATHS, version 39,750 [7],
and the consensus was computationally shredded into
10 kbp overlapping fake reads (shreds). The Illumina
draft data was also assembled with Velvet, version 1.1.05
[8], and the consensus sequences were computationally
shredded into 1.5 Kbp overlapping fake reads (shreds).
The Illumina draft data was assembled again with Velvet
using the shreds from the first Velvet assembly to guide
the next assembly. The consensus from the second Vel-
vet assembly was shredded into 1.5 Kbp overlapping fake
reads. The fake reads from the ALLPATHS assembly
and both Velvet assemblies and a subset of the Illumina
CLIP paired-end reads were assembled using parallel
phrap, version 4.24 (High Performance Software, LLC).
Possible mis-assemblies were corrected with manual
editing in Consed [9–11]. Gap closure was accomplished
using repeat resolution software (Wei Gu, unpublished),
and sequencing of bridging PCR fragments with Sanger
and/or PacBio (unpublished, Cliff Han) technologies. A
total of 18 PCR PacBio consensus sequences were com-
pleted to close gaps and to raise the quality of the final
sequence. The total estimated size of the genome is
3.7 Mb and the final assembly is based on 9,057 Mbp of

Table 1 Classification and general features of Thioalkalivibrio
thiocyanodenitrificans ARhD 1T [17]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [18]

Phylum Proteobacteria TAS [19, 20]

Class Gammaproteobacteria TAS [20, 21]

Order Chromatiales TAS [20, 22]

Family Ectothiorhodospiraceae TAS [23]

Genus Thioalkalivibrio TAS [24]

Species Thioalkalivibrio
thiocyanodenitrificans

TAS [3, 25]

Type strain: ARhD 1T

(DSM 16954)

Gram stain Negative TAS [3, 24]

Cell shape Rod TAS [3]

Motility Motile TAS [3]

Sporulation Non-sporulating NAS

Temperature
range

Mesophilic TAS [3]

Optimum
temperature

33–35 °C TAS [3]

pH range;
Optimum

8.0–10.3 TAS [3]

Carbon
source

Inorganic carbon TAS [3]

MIGS-6 Habitat Soda lakes TAS [3]

MIGS-6.3 Salinity 0.3–2 M Na+ TAS [3]

MIGS-22 Oxygen
requirement

Facultative anaerobe TAS [3]

MIGS-15 Biotic
relationship

Free-living NAS

MIGS-14 Pathogenicity Non-pathogenic NAS

MIGS-4 Geographic
location

Wadi Natrun, Egypt TAS [3]

MIGS-5 Sample
collection

2002 TAS [3]

MIGS-4.1 Latitude Not reported

MIGS-4.2 Longitude Not reported

MIGS-4.4 Altitude Not reported
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample, but
based on a generally accepted property for the species, or anecdotal evidence).
These evidence codes are from the Gene Ontology project [26]

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Improved high-quality draft

MIGS-28 Libraries used Illumina short and long insert
paired-end

MIGS 29 Sequencing platforms Illumina HiSeq 2000

MIGS 31.2 Fold coverage 2322

MIGS 30 Assemblers ALLPATHS R39750 [7], Velvet
1.1.05 [8], PHRAP 4.24

MIGS 32 Gene calling method Prodigal [12], GenePRIMP [13]

Locus Tag THITHI

Genbank ID AQZO00000000

GenBank Date of
Release

2012-08-13

GOLD ID Ga0025308

BIOPROJECT PRJNA81091

IMG submission ID 10076

MIGS 13 Source Material Identifier DSM 16954

Project relevance Biotechnology
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Illumina draft data, which provides an average 2,322X
coverage of the genome. The Genbank record for this
genome contains three annotated scaffolds (accessions
NZ_KB900536-8) and eight, redundant, unannotated
(accessions AQZO01000001-8) scaffolds. The eight unan-
notated scaffolds have been merged into three, which were
subsequently annotated and described in this report.

Genome annotation
Genes were predicted using Prodigal [12], followed by
pseudogene detection using GenePRIMP [13]. The pre-
dicted genes were translated and annotated using the
NCBI’s NR database in combination with the UniProt,
TIGRFam, Pfam, KEGG, COG and InterPro databases and
tRNAScanSE [14] for tRNA prediction. Ribosomal RNAs
were detected using models built from SILVA. Further an-
notation was performed using the Integrated Microbial Ge-
nomes (IMG) platform. The annotation is publicly available
within IMG, using submission ID 10076.

Genome properties
The high-quality draft sequence comprises 3,746,647 bp
divided in 3 scaffolds with a total GC-content of 64.8 %.
Gene prediction yields 3558 protein-coding genes and 121
RNA-coding genes (Table 3). A total of 66.2 % of the pro-
tein coding genes could be assigned to COGs, with 79 %
of these assigned to functional categories (Table 4).

Conclusions
This genome sequence of Thioalkalivibrio thiocyanode-
nitrificans provides valuable insight into the carbon and
nitrogen metabolism, and into the genes that are in-
volved in energy conservation. Furthermore, we hope to

understand the mechanism by which this organism
adapts to the extreme conditions present in soda lakes.
Finally, insight in the genome sequence might be helpful
in improving the biotechnological application of this or-
ganism in the removal of sulfur compounds from waste
streams and the bioremediation of cyanide-containing
mining tailings.
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