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ARTICLE OPEN

Spectral quantum tomography
Jonas Helsen 1, Francesco Battistel1 and Barbara M. Terhal1,2

We introduce spectral quantum tomography, a simple method to extract the eigenvalues of a noisy few-qubit gate, represented by
a trace-preserving superoperator, in a SPAM-resistant fashion, using low resources in terms of gate sequence length. The
eigenvalues provide detailed gate information, supplementary to known gate-quality measures such as the gate fidelity, and can be
used as a gate diagnostic tool. We apply our method to one- and two-qubit gates on two different superconducting systems
available in the cloud, namely the QuTech Quantum Infinity and the IBM Quantum Experience. We discuss how cross-talk, leakage
and non-Markovian errors affect the eigenvalue data.

npj Quantum Information            (2019) 5:74 ; https://doi.org/10.1038/s41534-019-0189-0

INTRODUCTION
A central challenge on the path towards large-scale quantum
computing is the engineering of high-quality quantum gates. To
achieve this goal, many methods that accurately and reliably
characterize quantum gates have been developed. Some of these
methods are scalable, meaning that they require an effort which
scales polynomially in the number of qubits on which the gates
act. Scalable protocols, such as randomized benchmarking,1–8

necessarily give a partial characterization of the gate quality, for
example, an average gate fidelity. Other protocols such as robust
tomography9 or gate-set tomography10,11 trade scalability for a
more detailed characterization of the gate. A desirable feature of
all the above protocols is that they are resistant to state-
preparation and measurement (SPAM) errors. The price of using
SPAM-resistant (scalable) methods is that these protocols have
significant experimental complexity and/or require assumptions
on the underlying hardware to properly interpret their results.
In this work, we present spectral quantum tomography, a

simple non-scalable method that extracts spectral information
from noisy gates in a SPAM-resistant manner. To process the
tomographic data and obtain the spectrum of the noisy gate, we
rely on the matrix-pencil technique, a well-known classical signal
processing method. This technique has been advocated in ref. 8 in
the context of randomized benchmarking and has also been used
in ref. 12 for processing data in the algorithm of quantum phase
estimation. It has also been used, under the phrase “linear systems
identification,” in ref. 13 to predict the time evolution of quantum
systems. While the matrix pencil technique leads to explicitly
useful estimates of eigenvalues and their amplitudes, we note that
the same underlying idea is used in the method of “delayed
vectors,” which has been proposed in ref. 14 to assess the
dimensionality of a quantum system from its dynamics. This
“delayed vectors” approach has been applied to assess leakage in
superconducting devices in ref. 15

The spectral information of a noisy gate S, which approximates
some target unitary U, is given by the eigenvalues of the so-called
Pauli transfer matrix representing S. These eigenvalues, which are

of the form λ= exp(−γ)exp(iϕ), contain information about the
quality of the implemented gate. Intuitively, the parameter γ
captures how much the noisy gate deviates from unitarity due to
entanglement with an environment, while the angle ϕ can be
compared to the rotation angles of the targeted gate U. Hence ϕ
gives information about how much one over- or under-rotates.
The spectrum of S can also be related to familiar gate-quality
measures such as the average gate fidelity and the unitarity.
Moreover, in the case of a noisy process modeled by a Lindblad
equation, the spectrum can be easily related to the more familiar
notions of relaxation and dephasing times.
The main advantage of spectral quantum tomography is its

simplicity, requiring only the (repeated) application of a single
noisy gate S, as opposed to the application of a large set of gates
as in randomized benchmarking, gate-set tomography, and robust
tomography. Naturally, simplicity and low cost come with some
drawback, namely, the method does not give information about
the eigenvectors of the noisy gate, such as the axis around which
one is rotating. However, information about the eigenvectors is
intrinsically hard to extract in a SPAM-resistant fashion since SPAM
errors can lead to additional rotations.16 Another feature of
spectral quantum tomography is that it can be used to extract
signatures of non-Markovianity, namely, the phenomenon where
the noisy gate S depends on the context in which it is applied
(e.g., time of application, whether any gates have been applied
before it). As we show in this paper, our method can be used to
detect various types of non-Markovian effects, such as coherent
revivals, parameter drifts, and Gaussian-distributed time-corre-
lated noise. It is also possible to distinguish non-Markovian effects
from qubit leakage. For these reasons, we believe that spectral
quantum tomography adds a useful new tool to the gate-
characterization toolkit. The method could also have future
applications in assessing the performance of logical gates in a
manner that is free of logical state preparation and measurement
errors, see the “Discussion” section.

Received: 10 April 2019 Accepted: 1 August 2019

1QuTech, Delft University of Technology, P. O. Box 5046, 2600 GA Delft, the Netherlands and 2JARA Institute for Quantum Information, Forschungszentrum Juelich, 52425 Juelich,
Germany
Correspondence: Jonas Helsen (j.helsen@tudelft.nl)

www.nature.com/npjqi

Published in partnership with The University of New South Wales

http://orcid.org/0000-0001-7218-2585
http://orcid.org/0000-0001-7218-2585
http://orcid.org/0000-0001-7218-2585
http://orcid.org/0000-0001-7218-2585
http://orcid.org/0000-0001-7218-2585
https://doi.org/10.1038/s41534-019-0189-0
mailto:j.helsen@tudelft.nl
www.nature.com/npjqi


RESULTS
Eigenvalues of trace-preserving completely positive (TPCP) maps
Take a unitary gate U on a d-dimensional space with
U ψj

�� � ¼ eiϕj ψj

�� �. The corresponding TPCP map SUðρÞ ¼ UρUy
has one trace-full eigenvector, namely, I with eigenvalue 1, as
well as d2− 1 traceless eigenvectors. In particular, there are d2− d
traceless eigenvectors of the form |ψj〉〈ψl| for j ≠ l with eigenvalues
exp(i(ϕj− ϕl)) and d− 1 traceless eigenvectors of the form |ψ1〉
〈ψ1|− |ψj〉〈ψj| for j= 2, …, d with eigenvalue 1.
For general TPCP maps, it is convenient to use the Pauli transfer

matrix formalism. For an n-qubit system (d= 2n), consider
the normalized set of Pauli matrices Pμ for μ= 0, …, N with N+
1= 4n= d2, where P0 ¼ I=

ffiffiffiffiffi
2n

p
and the normalization is chosen

such that Tr[PμPν]= δμν. For a TPCP map S acting on n qubits, the
Pauli transfer matrix is then defined as

Sμν ¼ Tr PμSðPνÞ
� �

; μ; ν ¼ 0; ¼ ;N: (1)

The form of the Pauli transfer matrix S is17

S $ S ¼ 1 0

s TS

� �
; (2)

where TS is a real N × N matrix and s is a N-dimensional column
vector. The 1 and 0s in the top row of the Pauli transfer matrix are
due to the fact that S is trace-preserving. For a unital S that obeys
S(I)= I, the vector s= 0.
A few properties are known of the eigenvalue–eigenvector pairs

of S, i.e., the pairs ðλ; vÞ with Sv= λv:

● The eigenvalues of S, and thus the eigenvalues of TS are 1,
since the solutions of the equation det(S− λI)= 0 are the
solutions of the equation (1− λ)det(TS − λI)= 0.

● The eigenvalues of S, and thus the eigenvalues of TS , come in
complex–conjugate pairs. This is true because TS is a real
matrix.

● The eigenvalues of TS (or S for that matter) have modulus <1,
i.e. |λ| ≤ 1 (see, e.g., Proposition 6.1 in ref. 18).

If TS is diagonalizable as a matrix, it holds that TS = VDV−1

where D is a diagonal matrix and V a similarity transformation.
Generically, TS will be diagonalizable, in which case there are N
eigenvalue–eigenvector pairs for T. A sufficient condition for
diagonizability is, for example, that all the eigenvalues of TS are
distinct. In section “Single-qubit case with non-diagonalizable
matrix T,” we give examples and discuss what it means if TS is not
diagonalizable.
For some simple single-qubit channels, we can explicitly

compute the spectrum. For instance, for a single-qubit depolariz-
ing channel with depolarizing probability p, the eigenvalues of the
submatrix TS of the Pauli transfer matrix are {1− p, 1− p, 1− p}.
For a single-qubit amplitude-damping channel with damping rate
p, they are f ffiffiffiffiffiffiffiffiffiffiffi

1� p
p

;
ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
; 1� pg.11

Relation to gate-quality measures. The eigenvalues of the Pauli
transfer matrix of a noisy gate S can be related to several other
known measures of gate quality, such as the average gate fidelity
FðS;UÞ, the gate unitarity uðSÞ and, for a single qubit (n= 1), the
gate unitality.
The average gate fidelity is defined as FðS;UÞ ¼R
dϕ ϕh jUyS ϕj i ϕh jð ÞU ϕj i. This fidelity relates directly to the

entanglement fidelity F entðS;UÞ via F ¼ F entdþ1
dþ1 ,19 where the

entanglement fidelity is defined as

F entðS;UÞ ¼ Tr I � U Ψj i Ψh jI � UyðI � SÞ Ψj i Ψh jð Þ� �
;

where Ψj i ¼ 1ffiffi
d

p
Pd

i¼1 i; ij i is a maximally entangled state. Using

that Ψj i Ψh j ¼ 1
d

PN
μ¼0 Pμ � Pμ and UPμUy ¼Pκ T

Uy
μκ Pκ , we can write

F entðS;UÞ ¼ 1
d2
X
μ

Tr UPμU
ySðPμÞ

� � ¼ 1
d2

1þ Tr TUy
TS

h i	 

:

Thus, for the (entanglement) fidelity of a noisy gate S with respect
to the identity channel U= I, one has F entðS; IÞ ¼ 1

d2 1þPi λi
� �

,
implying a direct relation to the spectrum {λi} of TS . A more
interesting relation is how the eigenvalues of TS bound the fidelity
with respect to a targeted gate U. In section “Upper bound on the
entanglement fidelity with the targeted gate,” we prove that the
entanglement fidelity can be upper bounded as

F entðS;UÞ � 1
d2

1þ ðd2 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

P
j
jλjj2

d2 � 1

vuut
þ ξmax

0
BB@

1
CCA

2
664

3
775; (3)

where ξmax ¼ 1
d2�1 j

P
j λ

ideal
j λ�j j with λidealj the eigenvalues of TU

with U the targeted unitary, ordered such that the sum
jPj λ

ideal
j λ�j j is maximal.

This upper bound is not particularly tight, but for the case of a
single qubit we can make a much stronger numerical statement,
see section “Upper bound on the entanglement fidelity with the
targeted gate”.
Another measure of gate quality, namely, the unitarity or the

coherence of a channel5 on a d-dimensional system, is defined as

uðSÞ ¼ d
d � 1

Z
dϕ Tr S0 ϕj i ϕh jð Þ½ �yS0 ϕj i ϕh jð Þ

h i
; (4)

where S0ðρÞ :¼ SðρÞ � Tr½SðρÞ�I= ffiffiffi
d

p
. A more convenient but

equivalent definition is

uðSÞ ¼ 1
d2 � 1

Tr TSyTS� � ¼ 1
d2 � 1

X
i

σiðTSÞ2; (5)

where {σi} are the singular values of the matrix TS . The unitarity
captures how close the channel is to a unitary gate. A lower bound
on the unitarity is given by Proposition 2 in ref. 16:

uðSÞ �
1þ Pd2�1

i¼1
λij j2 � d

dðd � 1Þ ;
(6)

where {λi} are the eigenvalues of TS . For a single qubit, an upper
bound on the unitarity can also be given in terms of a non-convex
optimization problem, see section “Upper bound on the
entanglement fidelity with the targeted gate”.
The unitality of a TPCP map is defined as 1− ||s||2 with s in Eq.

(2). Specifically, for single-qubit channels, one can derive the
bound16

sj jj j2� 1� λ1j j2� λ2j j2� λ3j j2þ2λ1λ2λ3: (7)

Relation to relaxation and dephasing times. We consider the
eigenvalues of a superoperator induced by a simple Lindblad
equation modeling relaxation and decoherence of a driven qubit,
as an example. We have a Lindblad equation with time-
independent Lindbladian L:
_ρ ¼ LðρÞ: (8)

The formal solution of Eq. (8) is given by ρðtÞ ¼ etLðρðt ¼ 0ÞÞ,
where etL is a TPCP map for every t. We are interested in the total
evolution after a certain gate time τ and set Sτ ¼ eτL. We assume
a simple model in which a qubit evolves according to a
Hamiltonian H= (hxX+ hyY+ hzZ)/2 and is subject to relaxation
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and pure dephasing processes, according to the Lindbladian:

LðρÞ ¼ �i½H; ρ� þ 1
T1

ðσ�ρσþ � 1
2
fσþσ�; ρgÞ þ 1

2Tϕ
ðZρZ � ρÞ:

We define the relaxation, respectively, dephasing rates Γ1= 1/T1
and Γ2= 1/T2= 1/(2T1)+ 1/Tϕ. The Pauli transfer matrix LL of L
then takes the form

LL ¼

0 0 0 0

0 �Γ2 hz hy
0 �hz �Γ2 hx
Γ1 �hy �hx �Γ1

0
BBB@

1
CCCA: (9)

We will denote the eigenvalues of LL by Ωj for j∈ {0, …, 3} and the
eigenvalues of Sτ by λj for j∈ {0, …, 3}. As expected, Ω0= 0
implying that λ0= e0= 1 is an eigenvalue of Sτ . The other three
eigenvalues of LL can be found from the 3 × 3 submatrix in the
lower-right corner. Here we consider some simple cases.
Case 1: hx= hy= hz= 0. In this case, for j= 1, 2, 3 the three

eigenvalues of L and Sτ are clearly

Ωj 2 f�Γ2;�Γ2;�Γ1g;
λj 2 fe�Γ2τ ; e�Γ2τ ; e�Γ1τg;
thus relating directly to the relaxation and dephasing rates.
Case 2: hx= hy= 0. In this case, we have

Ωj 2 f�Γ2 þ ihz;�Γ2 � ihz;�Γ1g;
λj 2 fe�Γ2τeihzτ ; e�Γ2τe�ihzτ ; e�Γ1τg;
where we have separated the decaying part of the λj (correspond-
ing to the real part of the Ωj) and their phases (corresponding to
the imaginary part). If we work in the rotating frame of the qubit,
hz can be understood as an over-rotation along the z axis, which
would appear in the spectrum as an extra phase imparted to two
of the eigenvalues. Again we see that the decaying part of the
eigenvalues directly relates to the relaxation and dephasing rates.
Case 3: hy= hz= 0. This case shows that over-rotations can also

modify the decay strength of the eigenvalues. We analyze the
eigenvalues as a function of hx. From LL in Eq. (9), we see that
Ω1(hx)=−Γ2 for all hx. For the other eigenvalues, we have

Ω2;3ðhxÞ ¼ � 1
2
ðΓ1 þ Γ2 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ1 � Γ2Þ2 � 4h2x

q
Þ: (10)

We see that if jhx j < jΓ1 � Γ2j=2 � hcrx , only the moduli of λ2 and λ3
are affected as compared to Case 1, in other words, λ2 and λ3 only
decay with no extra phases. On the contrary, the phases of these
eigenvalues become non-zero when the driving is sufficiently
strong: jhx j> hcrx . It implies that, if we look at the dynamics induced
by the Lindblad equation, real oscillations, not only decay, will be
present as a function of τ. Hence, these two scenarios represent,
respectively, the overdamped (jhx j < hcrx ) and underdamped
regime (jhxj> hcrx ), similar to the dynamics of a vacuum-damped
qubit-oscillator system, see, e.g., ref. 20 At jhx j ¼ hcrx , the system is
critically damped and LL does not have four linearly independent
eigenvectors, meaning that the Pauli transfer matrix of Sτ is not
diagonalizable. In this case, the dynamics also has a linear
dependence on t besides the exponential decay with t, see the
discussion in section “Single-qubit case with non-diagonalizable
matrix T”.

Spectral tomography
In this section, we describe the spectral tomography method,
which estimates the eigenvalues of S, where S is a TPCP
implementation of a targeted unitary gate.

We model state-preparation errors as a perfect preparation step
followed by an unknown TPCP map N prep. Similarly, measurement
errors are modeled by a perfect measurement preceded by an
unknown TPCP map Nmeas. We assume that, when we apply the
targeted gate k times, an accurate model of the resulting noisy
dynamics is Sk . The spectral tomography method can be applied
without this assumption but the interpretation of its results is
more difficult, see section “Leakage and non-Markovian noise” for
a discussion. The method works by constructing the following
signal function, for k= 0, 1, …, K for some fixed K:

gðkÞ ¼
XN
μ¼1

Tr PμNmeas 	 Sk 	 N prepðPμÞ
� �

: (11)

Gathering the data to estimate g(k) requires (1) picking a traceless
n-qubit Pauli Pμ, (2) preparing an n-qubit input state in one of the
2n basis states corresponding to this chosen Pauli, (3) applying the
gate k times and measuring in the same chosen Pauli basis, and
(4) repeating (1–3) over different Paulis, basis states, and
experiments to get good statistics. As in standard process
tomography,21 one takes linear combinations of the estimated
probabilities for the outcomes to construct an estimator of a Pauli
operator on a Pauli input. This gives an estimate of g(k) for a fixed
k. Repeating this process for k∈ {0, …, K}, we reconstruct the
entire signal function. In section “Resources to relaxation and
dephasing times,” we discuss the cost of doing these experiments
as compared to randomized benchmarking.
Let us now examine how g(k) depends on the eigenvalues of

the matrix T. When there are no SPAM errors, that is, Nmeas and
N prep are identity channels, we have

gNO SPAMðkÞ ¼
XN
μ¼1

ðTkÞμμ ¼ Tr½Tk � ¼
XN
j¼1

λkj ; (12)

where {λj} are the eigenvalues of T. The last step in this equality
follows directly when T is diagonalizable, but it can alternatively
be proved using the so-called Schur triangular form of T (we give
this proof in section “Single-qubit case with non-diagonalizable
matrix T”).
When Nmeas and N prep are not identity channels, we have

gðkÞ ¼ Tr TmeasT
kTprep

� � ¼ Tr ASPAMD
k

� � ¼XN
j¼1

Ajλ
k
j ; (13)

where Tmeas and Tprep are, respectively, the T-submatrices of the
Pauli transfer matrix ofNmeas andN prep. Here we assume that T=
VDV−1 is diagonalizable and the matrix ASPAM= V−1TprepTmeasV
captures the SPAM errors. One may expect that ASPAM is close to
the identity matrix in the typical case of low SPAM errors, in
particular one may expect that Aj ≠ 0 for all j so that all eigenvalues
of T are present in the signal g(k).
In principle, one could take more tomographic data and

consider a full matrix-valued signal cμνðkÞ ¼ Tr½PμNmeas 	 Sk 	
N prepðPνÞ� instead of only Eq. (11). This requires doing many more
experiments and there is no clear advantage in terms of the ability
to determine the spectrum.

Signal analysis or matrix-pencil method for extracting eigenvalues.
In this section, we review the classical signal-processing method
that reconstructs, from the (noisy) signal gðkÞ ¼PN

j¼1 Ajλ
k
j for k=

0, …, K, an estimate for the eigenvalues λj and the amplitudes Aj.
Note that we have gðkÞ 2 R due to Eq. (11). Not surprisingly, this
signal-processing method has been employed and reinvented in a
variety of scientific fields. We implement the so-called ESPRIT
analysis described in ref. 22 but see also ref. 23. In the context of
spectral tomography, we know that the signal g(k) will in principle
contain N eigenvalues (which are possibly degenerate). However,
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we can vary the number of eigenvalues we use to fit the signal to
see whether a different choice than N gives a significantly better
fit. This is relevant in particular when the implemented gate
contains leakage or non-Markovian dynamics, see section
“Leakage and non-Markovian noise”.
We require at least K ≥ 2N− 2 in order to determine the

eigenvalues accurately. This implies that, for a single-qubit gate
with N= 3, we need at least K= 4, and for a two-qubit gate with
N= 15, we need at least K= 28. However, the signal g(k) has
sampling noise due to a bounded Nsamples and in practice it is
good to choose K larger than strictly necessary to make the
reconstruction more robust against noise. We study the effect of
varying K in Fig. 1 (left panel).
The method goes as follows and relies on picking a so-called

pencil parameter L.
Let us assume for now that each g(k) is learned without

sampling noise. One constructs a (K− L+ 1) × (L+ 1)-dimensional
data matrix Y as

Y ¼

gð0Þ gð1Þ ¼ gðLÞ
gð1Þ gð2Þ ¼ gðLþ 1Þ
gð2Þ ..

. ..
.

..

. ..
.

gðK � LÞ ¼ ¼ gðKÞ

0
BBBBBBBB@

1
CCCCCCCCA

¼PN
j¼1

Aj

1 λj ¼ λLj

λj λ2j ¼ λLþ1
j

λ2j
..
. ..

.

..

. ..
.

λK�L
j ¼ ¼ λKj

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(14)

Note that rank(Y) ≤ N since Y is a sum of at most N rank− 1
matrices when there are N eigenvalues. Consider two submatrices
of Y: the matrix G0 is obtained from Y by deleting the last column
of Y, while the matrix G1 is obtained by deleting the first column of
Y. When L ¼ K

2, the matrices G0 and G1 are square matrices of
dimension M ¼ K

2 þ 1. For this choice of L, the smallest value of K
so that M= N is 2N− 2. We seek a time-shift matrix T such that
TG0 ¼ G1. When M ≥ N, there certainly exists a matrix T such that

for all j∈ {1, …, N}:

T

1

λj

..

.

λMj

0
BBBBB@

1
CCCCCA ¼ λj

1

λj

..

.

λMj

0
BBBBB@

1
CCCCCA: (15)

Furthermore, if G�1
0 exists, which is the case when rank(G0)=M,

this matrix T will be uniquely given as G1G�1
0 . Hence, in this case

there is a unique matrix T, obtained by constructing G1G�1
0 from

the data, which is guaranteed to have {λj} as eigenvalues. When
the pencil parameter L> K

2, one needs to ensure that there are at
least N rows of the matrix Y: if not, T would be of dimension <N,
not giving N eigenvalues. This implies K ≥ N+ L− 1.
The general method for a non-square Y, which includes an

additional sampling-noise reduction step, then goes as follows.
The choice for N in the procedure can be varied from its minimal
value equal to d2− 1 to a larger value, depending on a goodness-
of-fit.

1. Construct a singular-value decomposition of the matrix Y,
i.e., Y ¼ R1ΣRT2 and replace the diagonal matrix Σ by a
diagonal matrix Σclean with only the largest N singular values.
Let Yclean ¼ R1ΣcleanRT2 . This step is to reduce sampling noise.

2. Take the submatrices G0 and G1 of Yclean.
3. Compute T ¼ G1Gþ

0 , where Gþ
0 is the Moore–Penrose

pseudo-inverse of the matrix G0 so that T is a matrix with
at most N non-zero eigenvalues.

4. Compute the eigenvalues of T: these will be the estimates
λestj of λj for all j∈ {1, …, N}. Formally, the linear matrix pencil
is G0− λG1 and the eigenvalues of this matrix pencil, i.e., the
values where det(G0− λG1)= 0, are the λestj .

We have first applied this method on the signal g(k) of a
randomly chosen single-qubit channel: by varying K and L we
want to understand the role of the matrix-pencil parameter L and
the choice for a larger K. The results are shown in Fig. 1 (left panel).
Note that the chosen Ks are quite far above the bound K ≥ N+ L
− 1 to effectively suppress sampling noise. For each K, there is a
flat region in L where Δ2 is roughly constant. In the remainder, we
will choose L= K/2, putting ourselves in the middle of this region.
Figure 1 (right panel) shows how increasing Nsamples lowers the
total variance of the estimated eigenvalues.

Fig. 1 Preliminary study of the numerical accuracy of the matrix-pencil method as a function of L, K and Nsamples. (Left) We use the matrix-
pencil method with different Ls and Ks to estimate the eigenvalues of a random single-qubit channel, for Nsamples= 1000. On the vertical axis,
we give the variance in the estimate of the eigenvalues: Δ2 ¼ 1

3 ð
PN¼3

j¼1 jλj � λestj j2Þ. We see that, as long as the matrix-pencil parameter L is
chosen away from 0 or K, the accuracy of the reconstructed signal is nearly independent of L. Furthermore, we see that higher K’s can achieve
a lower Δ2. (Right) We generate a random single-qubit channel and set L= K/2. We plot Δ2 as a function of K for two different values of
Nsamples= 1000 and Nsamples= 5000, showing how a larger Nsamples suppresses the total variance. We see that for constant Nsamples the
accuracy of the method increases rapidly at first when K is increased, but it increases more slowly if K is already large. This can be explained by
the fact that the signal decreases exponentially in K and so data points for large K have much lower signal-to-noise ratio. For both figures,
random channels were generated using QuTip’s random TPCP map functionality, and measurement noise was approximated by additive
Gaussian noise with standard deviation equal to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsamples

p
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An additional processing step is the determination of the
(complex) amplitudes {Aj}. Viewing g(k) as a set of K+ 1 inner
products between the vector (A1, …, AN) and the linearly-
independent vectors ðλk1; λk2; ¼ ; λkNÞ, it is clear that, given perfect
knowledge of g(k), the {Aj} are uniquely determined when K+ 1 ≥
N. Since g(k) is known with sampling noise, the {Aj} can be found
by solving the least-squares minimization problem
minAj

P
k jgðkÞ �

P
j Ajðλestj Þk j2. The optimal values in this mini-

mization Aest
j and λestj together form the reconstructed signal

gest(k) and the error is given by

ϵrms
N ¼ 1

K þ 1

XK
k¼0

jgðkÞ � gestN ðkÞj2
 !1=2

: (16)

Resources. It is interesting to consider the amount of experi-
ments that must be done to perform spectral quantum
tomography. One must estimate the function g(k) defined in Eq.
(13). This reconstruction process requires running 2n × N × (K+ 1)
different experiments and repeating each experiment Nsamples

times. For a single-qubit gate, we need 6(K+ 1). Note that, while
the number of experiments scales exponentially with qubit
number (not surprising for a tomographic protocol), the number
of experiments needed for performing spectral tomography on
single- and two-qubit gates is comparable to the number of
experiments that must be performed in randomized benchmark-
ing on one or two qubits (which provides only average gate
information). In randomized benchmarking, one must sample M
random sequences for each sequence length k∈ [0 : K], yielding
M × (K+ 1) experiments. This M is independent of the number of
qubits.24 In experiments, M is often chosen between M ≈ 4025,26 at
the low end and M ≈ 150 at the higher end.27 Values of K reported
in randomized benchmarking experiments are also comparable to
(or even higher than, see ref. 25 where K ≈ 300 is considered) the
values of K used for single- and two-qubit spectral tomography
(section “Spectral tomography on two superconducting chips”).

Spectral tomography on two superconducting chips
We have executed the spectral tomography method on a single-
qubit π/4 rotation around the x axis: Rx(π/4)= exp(−iπX/8). For this
gate, the ideal matrix TRxðπ=4Þ should have eigenvalues 1, exp(iπ/4),
and exp(−iπ/4). We execute this gate on two different systems

available in the cloud: the two-qubit Quantum Infinity provided by
the DiCarlo group at QuTech (for internal QuTech use) and the
ibmqx4 (IBM Q5 Tenerife) available at https://quantumexperience.
ng.bluemix.net/qx/editor. The results of this experiment are shown
in Fig. 2 (left panel) in a polar plot, which we refer to as the
“spectral footprint” of the gate. For clarity, in Fig. 2 (right panel) we
have also plotted the phase deviation from ideal for the
implemented gates.
On the two-qubit (q0 and q1) Quantum Infinity chip, we perform

the single-qubit gate experiment on q0 twice to study cross-talk: in
one case, the undriven qubit q1 on the chip is in state |0〉, in the
other case q1 is in state |1〉. Since the residual off-resonant qubit
coupling, mediated through a common resonator, is non-zero, we
observe a small difference between these two scenarios, see Fig. 2.
For the Quantum Infinity chip, when q1 is |0〉 we estimate
λestj 2 f0:691þ 0:719i; 0:691� 0:719i; 0:997g, while λestj 2
f0:687þ 0:7239i; 0:687� 0:724i; 0:998g when q1 is |1〉. Using
the single-qubit fidelity bound given in section “Upper bound on
the entanglement fidelity with the targeted gate”, we can
compute that the fidelity with respect to the targeted gate Rx(π/
4) can be no more than 0.999 regardless of the state of q1. We can
also compute upper and lower bounds on the unitarity (see
sections “Eigenvalues of Trace-Preserving Completely Positive
(TPCP) maps” and “Upper bound on the entanglement fidelity
with the targeted gate”) which yields 0.994 ≤ u ≤ 0.996 regardless
of the state of q1.
Regarding the ibmqx4 chip, the data are taken when all other

qubits are in state |0〉. The reconstructed eigenvalues λestj 2
f0:735þ 0:671i; 0:735� 0:671i; 0:996g turn out to be lower in
magnitude. From these numbers, we can conclude that the fidelity
to the target gate is no higher than 0.998 and the unitarity lies
between 0.988 and 0.991.
For all these numbers, a two-way 95% confidence interval (for

both real and imaginary parts) deviates by <0.005 from the
quoted values. The confidence intervals are obtained through a
Wild resampling bootstrap with Gaussian kernel.28

We have considered whether the data can be better fitted with
>N= 3 eigenvalues. For each experiment, we fit the data using N
eigenvalues with N∈ {4, …, 15} and we test whether there is a
significant increase in goodness-of-fit using a standard F-test
[ref. 29, section 2.1.5]. For no experiment and value of N does the
resultant p value drop <0.05, leading us to conclude that
increasing the number of eigenvalues does not significantly
increase the accuracy of the fit.

Fig. 2 (Left) Spectral footprints for single-qubit Rx(π/4) gates on the ibmqx4 (IBMQ) and the Quantum Infinity (QI) chips at K= 50, L= 30, and
Nsamples= 8192. The modulus of the eigenvalues is plotted in the radial direction, and in particular, it decreases from the center to the outside
and it is equal to 1 on the (most inner) black circumference. The angular coordinate corresponds to the phase of the eigenvalues. (Right)
Precise value of the deviation of the phases of the three eigenvalues from the ideal ones
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We have also executed a two-qubit CNOT gate on ibmqx4 (Fig.
3). The T matrix of the ideal CNOT gate has 15 eigenvalues and a
very degenerate spectrum: 6 eigenvalues are equal to −1 and 9
eigenvalues are equal to 1, but our data, taking K= 50, show that
a best fit is obtained using 4 instead of 2 eigenvalues. Using an F-
test shows that the goodness-of-fit is significantly improved using
4 eigenvalues rather than 2 or 3, whereas adding more
eigenvalues beyond 4 does not significantly improve the
goodness-of-fit (p > 0.05). We have not tried using larger K (which
may lead to a resolution of more eigenvalues) since this would
break the requirement that our experiments are executed as a
single job performed in a short amount of time on the IBM
Quantum Experience. The eigenvalues are λestj ∈
f0:939þ 0:059i; 0:938� 0:059i;�0:961þ 0:067i;�0:961� 0:067ig
, all with a 95% confidence interval <±3 × 10−3 for both real and
imaginary parts. It is important to note that these 4 eigenvalues,
coming in 2 complex–conjugate pairs, cannot be the spectrum of a
two-qubit TPCP map S, for the following reasons. As observed in
section “Eigenvalues of Trace-Preserving Completely Positive
(TPCP) maps,” the submatrix TS of the Pauli transfer matrix of S
is a real matrix of odd (42− 1= 15) dimension. Since any complex
eigenvalues of a real matrix come in conjugate pairs, TS must have
at least one real eigenvalue. Moreover, the data cannot be
explained by allowing for leakage, as any eigenvalues associated
with a small amount of leakage must have small associated
amplitude, as we discuss in section “Leakage and non-Markovian
noise”. This is not the case for the eigenvalues plotted in Fig. 3 as
all their amplitudes have comparable magnitude Aest∈ {3.34−
1.70i, 3.34+ 1.70i, 1.57+ 0.91i, 1.57− 0.91i}. In section “Frame
mismatch accumulation,” we propose a simple model based on a
frame mismatch accumulation that qualitatively reproduces these
eigenvalues. This model is not stochastic but coherent, and it
violates the assumption that the applied CNOT gate can be fully
modeled as a TPCP map. A possible physical mechanism
producing a frame mismatch accumulation can be a drift in an
experimental parameter.
We do not compute bounds on the fidelity or unitarity of the

CNOT gate since the bounds in section “Relation to gate-quality
measures” do not apply when the evolution is non-Markovian.

Leakage and non-Markovian noise
In this section, we consider how spectral tomography behaves
under error models that violate the assumptions that go into
Eq. (13).
Three common mechanisms for gate inaccuracy are (1) cross-

talk, meaning the gate depends on or affects the state of other
“spectator” qubits; (2) leakage, meaning that the dynamics of the
gate acts outside of the computational qubit subspace and (3)
non-Markovian dynamics, meaning that the assumption that k
applications of the noisy gate are equal to Sk for some TPCP map
S is incorrect. Characterizing gates with respect to these features
is important for assessing their use in multi-gate/multi-qubit
devices for the purpose of quantum error correction or plainly
reliable quantum computing.4,30

One can see that all three scenarios are due to the dynamics
taking place in a larger Hilbert space than the targeted
computational qubit space. In the case of leakage, the larger
space is an extension of the computational space, while in the
other cases the larger space is the tensor product of the
computational space with the state space of spectator qubits
(1), as explored in section “Spectral tomography on two super-
conducting chips,” or other quantum or classical degrees of
freedom in the environment (3).

Leakage. Let us consider how gate leakage affects the signal g(k),
making the analysis for one or two qutrits. One can choose an
operator basis for the qutrit space such as the basis of the 8

traceless (normalized) Gell–Mann matrices σGMμ for μ= 1, …, 8,
together with the normalized identity σGM

0 ¼ 1ffiffi
3

p I3. For a single
qutrit, we can consider the “Pauli” transfer matrix in this
Gell–Mann basis, i.e., SGMμν ¼ Tr½σGMμ SðσGM

ν Þ� and its submatrix TGM.
For a single qutrit, the signal gNO SPAM (k) in Eq. (12) then equals

Trcomp[(T
GM)k] where Trcomp[A] represents the trace over a 3 ×

3 submatrix of A, corresponding to the Gell–Mann matrices, which
act like X, Y, and Z in the two-dimensional computational space. In
other words, we can see the matrix TGM as being composed of
blocks:

TGM ¼ Tcomp Tseep
Tleak Tbeyond

� �
; (17)

where the upper-left block is the submatrix whose trace we take in
gNO SPAM(k). In the absence of other noise sources, TGM

corresponds to the evolution of a unitary gate and (assuming it
is diagonalizable) it can be diagonalized by a rotation V as TGM=
VDV−1, where D is a diagonal matrix with all the eigenvalues {λj}. If
we assume that leakage is low, meaning that Tleak and Tseep have
small norm of OðϵÞ, then at lowest order in ϵ the diagonalizing
transformation V will be block-diagonal, i.e., V ≈ Vcomp ⊕ Vbeyond.

This means that gNO SPAMðkÞ= Trcomp TGM
� �kh i

= Trcomp VDkV�1
� �


P3
j¼1 λ

k
j þ OðϵÞ. Thus, at lowest order, the signal will have large

amplitude on three relevant eigenvalues of the spectrum of TGM

and these eigenvalues could have been perturbatively shifted
from their ideal location by low leakage. If the leakage is stronger,
we can more generally write

gNOSPAM;LEAK ðkÞ ¼
X8
j¼1

~Ajλ
k
j ;

~Aj ¼ σj

 ��V�1ΠcompV σj

�� �: (18)

Here |σj〉 is a vector notation for one of the eight Gell–Mann
matrices σj and Πcomp is the projector onto the basis spanned by
the three Gell–Mann matrices, which are the Paulis in the
computational space. From this expression, we see that the effect

Fig. 3 Spectral footprint of the CNOT gate for K= 50 and Nsamples=
8192. Even though the CNOT gate has only two (degenerate)
eigenvalues, we find that the spectrum of the noisy gate can be best
described using four distinct eigenvalues. The fact that none of
them are real suggests that the data cannot be due to the repeated
execution of the same noisy gate. In section “Frame mismatch
accumulation,” we propose a simple coherent non-Markovian model
that offers a possible mechanism for the absence of real eigenvalues
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of leakage is the contribution of more eigenvalues to the signal g
(k). For low leakage, we may expect three dominant eigenvalues
with relatively large amplitude ~Aj and five eigenvalues with small
amplitude.
For a gate on two qutrits, identical remarks apply, except that

an additional basis transformation is required from the orthogonal
Gell–Mann basis to the computational qubit Pauli basis in order to
keep the same division of TGM as in Eq. (17). If we have two qutrits,
the 80-dimensional traceless subspace is spanned by the matrices
σGMμ � σGM

ν for μ, ν= 0, …, 8 except μ= ν= 0. The issue is related
to terms such as σGM

0 � σGM
ν≠0 since the normalization of the qutrit

identity σGM0 ¼ 1ffiffi
3

p I3
	 


is different from the normalization of the

qubit identity (P0 ¼ 1ffiffi
2

p I2). This suggests that for two qutrits it is
better to write TGM in a basis that includes the Pauli matrices in the
computational subspace (Pμ ⊗ Pν for μ, ν= 0, …, 3 except μ= ν=
0) as a sub-basis. For two qutrits, the signal may then contain up
to 80 eigenvalues of which all but 15 are expected to have small
amplitude in case of low leakage.

Non-Markovianity: time-correlated noise. Non-Markovian behavior
of a gate can be due to temporal correlations in the classical or
quantum environment of the driven qubit(s). Abstractly, we can
include the environment in the gate action so that the evolution
for each gate application is a unitary given by some Utotal acting
on system and environment. We can expand the Pauli transfer
matrix of Utotal in a Pauli basis for system and environment and
view Tcomp as a sub-block of Ttotal, similar as in the case of leakage.
Diagonalizing Ttotal and taking the trace over the computational
space will result in an expression such as Eq. (18). For example, an
additional spectator or environment qubit can lead to a signal g(k)
of a single-qubit gate having contributions from 15 eigenvalues.
Choosing a sufficiently large K may allow one to resolve these
eigenvalues, even those with small amplitude.
A more malicious, but physically reasonable,30 form of classical

non-Markovian noise makes gate-parameters temporally corre-
lated. In order to numerically study the effect of non-Markovian
noise, we consider a toy example in which a perfect CZ gate is
followed by a rotation around the x axis on one qubit. For a series
of k repetitions of a perfect CZ gate, we assume that each one is
followed by the same rotation Rx(ϕ) acting always on the same
qubit. We assume that the angle ϕ is Gaussian-distributed with
mean 0 and standard deviation σ: PσðϕÞ ¼ expð�ϕ2=2σ2Þ= ffiffiffiffiffiffi

2π
p

σ.
The time evolution for k repetitions is then given by

SkðρÞ ¼
Zþ1

�1
dϕPσðϕÞðRxðϕÞCZÞkρðCZRxðϕÞyÞk : (19)

Note that Sk ≠ ðS1Þk since this noise is correlated across multiple
repetitions of the gate. Furthermore, we assume perfect state
preparation and measurement. In this case, one can represent the
noisy gate by some unitary Utotal acting on the two qubits and on
a classical state in a Gaussian stochastic mixture of angles ϕ. The
continuous nature of this classical environment state leads to a
lack of a hard cut-off on the number of eigenvalues in g(k).
We apply the matrix-pencil method to the corresponding signal

gNO SPAM(k) and we use an F-test to determine the optimal number
of eigenvalues for each σ (Fig. 4). For σ= 22.9° and K= 50, we find
eigenvalues with modulus clearly >1. Those are unphysical but not
excluded by the matrix-pencil method. We expect that such |λest|
> 1 disappear when considering a longer signal, since g(k) does
not increase exponentially in k. In other words, this is a sign that
the signal contains more spectral content than can be resolved
from the time scale set by K. Indeed, for σ= 22.9° we have made
the same analysis for larger Ks up to K= 200 and we find that
those eigenvalues get closer and closer to 1. If instead we fix K=
50 and consider different σs, we find that for a low σ (e.g., 5.7°)
unphysical eigenvalues are not present (Fig. 4), whereas for σ >
22.9° (e.g. 40.1°) they get again closer and closer to 1. This latter
fact can be understood by noting that increasing σ is analogous to
enlarging the time scale set by K, as the characteristic time scale of
dephasing gets shorter for a fixed K. Based on these observations,
we conclude that there is a certain intermediate time scale at
which eigenvalues >1 are extrapolated from the data in the
presence of sufficiently strong non-Markovian noise of the kind
described in this section. Section “Frame mismatch accumulation”
discusses a model with a different kind of time correlation leading
to a spectral footprint which is incompatible with that of a TPCP
map.

Non-Markovianity: coherent revivals. In order to better under-
stand the occurrence of eigenvalue estimates |λest| > 1, we apply
the matrix-pencil method on a signal (of a somewhat different
physical origin), which has a revival over the time period set by K.
It is well known that, in the exchange of energy between a two-

level atom with a bosonic mode, the Rabi oscillations of the two-
level atom are subject to temporal revivals. These revivals are due
to the fact that the bosonic driving field is not purely classical but
rather gets entangled with the state of the qubit via the
Jaynes–Cummings interaction. In particular, for a coherent driving
field with coherent amplitude α with average photon number
n ¼ jαj2, the probability for the atom to be excited equals (see
section 3.4.3 in ref. 20):

PeðtÞ ¼ 1
2
þ 1
2

X1
n¼0

pαðnÞcosðΩt
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þ; (20)

with pαðnÞ ¼ expð�jαj2Þ jαj2nn! . We consider n ¼ 5 and sample the
damped oscillatory function PeðtÞ � 1

2 at regular intervals kΩδt
with Ωδt= 0.05 and k= 0, …, K= 900. The signal function gðtÞ ¼
PeðtÞ � 1

2 contains eigenvalues equal to λn ¼ expð± i0:05
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þ
with amplitudes according to the Poisson distribution pα(n) with

Fig. 4 Spectral footprint of a simulated CZ gate affected by non-
Markovian noise quantified by σ, see Eq. (19). For each σ, we use an
F-test (p value 0.01) to find the number of eigenvalues that best fit
the simulated gNO SPAM(k) with K= 50. We find, respectively 7, 12,
and 11 eigenvalues for σ= 5.7°, 22.9°, and 40.1° (here we show only
the eigenvalues with modulus >0.9). We observe eigenvalues with
modulus >1 if σ is sufficiently large. These results are qualitatively
stable if we add a small amount of sampling noise

J. Helsen et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2019)    74 



mean photon number n.
We observe that the matrix-pencil method finds eigenvalues >1,

see Fig. 5, which contribute significantly (p < 0.01 via F-test) to the
reconstructed signal. We can understand this feature of eigenva-
lues >1 as a way in which the matrix-pencil method handles
revivals: the signal has more spectral content than what can be
resolved from the window of time given by K, in particular there is
no hard cut-off on the number of eigenvalues that contribute. We
have observed that an analysis of the signal over a longer period
of time, that is, a larger K up to K= 5000, gives eigenvalues whose
norm converges to at most 1.

DISCUSSION
We have introduced spectral quantum tomography, a simple
method that uses tomographic data of the repeated application of
a noisy quantum gate to reconstruct the spectrum of this
quantum gate in a manner resistant to SPAM errors. We have
experimentally validated our method on one- and two-qubit gates
and have also numerically investigated its behavior in the
presence of temporally correlated non-trivial error models.

The effective upshot of leakage and non-Markovian noise is that
the signal will have more spectral content than what can be
resolved given a chosen sequence length K, leading to unphysical
features in the spectrum such as an eigenvalue estimate >1, or the
absence of a real eigenvalue. Even though we have seen in our
examples that a physical spectrum can be regained by going to
larger K, depending on the noise model, this convergence may be
very slow requiring much data-taking time. Hence, these
unphysical features are useful markers for deviations from our
model of repeated TPCP qubit maps Sk . We view it as an open
question how well one can reliably distinguish different sources of
deviations.
An interesting application of the spectral tomography method

could be the assessment of logical gates on encoded quantum
information in a SPAM-resistant fashion. In this logical scenario
(for, say, a single logical qubit), one first prepares the eigenstates
of the logical Pauli operators X; Y , and Z. One then applies a unit
of error-correction k= 0, …, K times: a single unit could be, say,
the repeated error correction for L rounds of a distance-L surface
code. Or a unit is the application of a fault-tolerant logical gate,
e.g., by means of code-deformed error correction or a transversal
logical gate followed by a unit of error correction. After k units,
one measures the logical Pauli operators fault-tolerantly and
repeats experiments to obtain the logical signal gðkÞ. Studying the
spectral features of such logical channel will give information
about the efficacy of the quantum error correction unit and/or the
applied logical gate while departures from the code space or a
need to time-correlate syndrome data beyond the given QEC unit
can show up as leakage and non-Markovian errors.

METHODS
Single-qubit case with non-diagonalizable matrix T
In general, a matrix T can be brought to Jordan normal form by a similarity
transformation, i.e., T= VJV−1 with J=⊕i Ji where each Jordan block Ji is of
the form

Ji ¼

λi 1

λi
. .
.

. .
.

1

λi

0
BBBBB@

1
CCCCCA; (21)

see, e.g., Theorem 3.1.11 in ref. 31. T is diagonalizable when each Jordan
block is fully diagonal.
An example of a non-diagonalizable Lindblad superoperator on a single

qubit has been constructed in ref. 32. Using this, one can easily get a single-
qubit superoperator S for which the traceless block of the Pauli transfer
matrix is a non-diagonalizable matrix T as follows. Let SðρÞ ¼
expðLϵÞðρÞ 
 ρþ ϵLðρÞ þ Oðϵ2Þ with LðρÞ ¼ �i½yZ2 ; ρ� þD½ð2xÞ1=2σ��ðρÞ þ D½y1=2X�ðρÞ with D½A�ðρÞ ¼ AρAy � 1

2 fAyA; ρg and real
parameters x, y ≥ 0. This implies that S has the 4 × 4 Pauli transfer matrix

S ¼

1 0 0 0

0 1� ϵx �ϵy 0

0 ϵy 1� ϵðx þ 2yÞ 0

2ϵx 0 0 1� 2ϵðx þ yÞ

0
BBB@

1
CCCAþ Oðϵ2Þ:

Taking some small ϵ and x ≠ 0, one can check that the submatrix T does
not have 3 eigenvectors and it has a pair of degenerate eigenvalues, so T is
not diagonalizable. When we take x= 0, S is unital, that is, S(I)= I, and the
submatrix T is not diagonalizable either.
Even though a matrix T is not always diagonalizable, there still exists the

so-called Schur triangular form for any matrix T.31 This form says that
T ¼ WðDþ EÞWy , with W a unitary matrix, D a diagonal matrix with the
eigenvalues of T, and E a strictly upper-triangular “nilpotent” matrix with
non-zero entries only above the diagonal. Since the N × N matrix E is
strictly upper-triangular, one has Tr[DiEj]= 0 for all j ≠ 0. If we use this form
in Eq. (12), one obtains for any k

gNOSPAMðkÞ ¼ Tr Tk
� � ¼ Tr ðDþ EÞk

h i
¼ Tr Dk

� �
; (22)

Fig. 5 Study of the reviving signal given in Eq. (20) for k ⋅Ωδt= k ⋅
0.05, n ¼ 5, and K= 900. We find that the reviving signal is well
reconstructed by a fit with 15 eigenvalues, some of which are
distinctly separated as can be seen in the spectral footprint. Some of
the eigenvalues are estimated to be >1. This is another example in
which the matrix-pencil method gives unphysical eigenvalues in the
presence of non-Markovian behavior (revivals here, time-correlated
parameters in Fig. 4)
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since any product of the form Dl1El2Dl3 ¼ Elm with some non-zero li > 0 is a
matrix with zeros on the diagonal. In case of SPAM errors and non-
diagonalizable T, we consider

gðkÞ ¼ Tr½WyTprepTmeasWðDþ EÞk �; (23)

where WyTprepTmeasW is not the identity matrix due SPAM errors, implying
that g(k) can depend on E and have a non-exponential dependence on k.
Thus, in the special case of a non-diagonalizable matrix T, the signal g(k)
would not have the dependence on the eigenvalues as in Eq. (13).
In particular, we can examine the physically interesting non-

diagonalizable Case 3 in section “Relation to relaxation and dephasing
times” in this light, taking hy= hz= 0 and a critical hcrx ¼ Γ1�Γ2

2 . The
dynamics of the Lindblad equation after time t induces a superoperator St,
which will have the following action on the Pauli operators:

StðXÞ ¼ expð�Γ2tÞX;
StðYÞ ¼ expð�ðΓ1 þ Γ2Þt=2Þ ð1þ thcrx ÞY � hcrx Z

� �
;

StðZÞ ¼ expð�ðΓ1 þ Γ2Þt=2Þ hcrx tY þ ð1� hcrx tÞZ
� �

:

Here we can note the linear dependence on t due to the system being
critically damped. If we consider the signal gðtÞ ¼Pμ Tr½PμStðPμÞ�, we see
that this linear dependence on t drops out in accordance with Eq. (22), i.e.,
this trace only depends on the eigenvalues and has an exponential
dependence on t. In the presence of SPAM errors, some of the linear
dependence could still be observable for such critically damped system. In
addition, coefficients such as cμνðtÞ ¼ Tr½PμStðPνÞ� can depend linearly on
t, making such tomographic data less suitable to extract eigenvalue
information.

Upper bound on the entanglement fidelity with the targeted gate
In this section, we show how to relate the eigenvalues of the Pauli transfer
matrix of a TPCP map S to an upper bound on the entanglement fidelity
(and hence the average gate fidelity) with the targeted unitary gate U.
Naturally, one can only expect to obtain an upper bound on the gate
fidelity, since the eigenvalues do not provide information about the
eigenvectors of S. If the actual eigenvectors deviate a lot from ideal, the
actual gate fidelity could be very low, so one can certainly not derive a
lower bound on the fidelity based on the eigenvalues.

Lemma 1. Let the eigenvalues of the N × N matrix TS be fλigNi¼1 with N=
d2− 1 for a d-dimensional system. Let U be the targeted gate with
eigenvalues fλideali gNi¼1 and let there be permutation π of ith eigenvalue λi,
which maximizes jPi λ

�
πðiÞλ

ideal
i j so that 0 � ξmax ¼ maxπ 1

N j
P

i λ
�
πðiÞλ

ideal
i j

� 1. The entanglement fidelity F entðU;SÞ ¼ 1
Nþ1 1þ Tr TU

y
TS

h i	 

is upper

bounded as

F entðU;SÞ � 1
N þ 1

1þ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðSÞ �

P
j
jλj j2

N

vuut
þ Nξmax

0
BB@

1
CCA; (24)

where uðSÞ is the unitarity of S.

Proof. We write TS in Schur triangular form as TS ¼ WðDS þ EÞWy with
W a unitary matrix, DS a diagonal matrix with the eigenvalues of TS , and E
a strictly upper-triangular “error” matrix with non-zero entries only above
the diagonal.31 Using the Cauchy-Schwartz inequality, one has

Tr½TUyTS� � Tr½TUyWDSWy� þ ðTr½EyE�Þ1=2ðTr½TUyTU�Þ1=2: (25)

Note that for a unitary gate U, TU
y ¼ ðTUÞT ¼ ðTUÞy and TU

y
TU ¼ I implying

that T is an orthogonal matrix with unit singular values. We thus have
ðTr½TUyTU�Þ1=2 ¼ ffiffiffiffi

N
p

. One has Tr½TSyTS�= Tr½ðDS þ EÞyðDS þ EÞ�=
Tr½ðDSyDS þ EyEÞ�, using the strict upper-triangularity of E. In other words,
Tr½EyE� ¼ Tr½TSyTS� �Pi jλi j2 where λi are the eigenvalues of TS .
Recognizing that 1

N Tr T
SyTS

� � ¼ uðSÞ, we obtain an upper bound on the
second term in Eq. (25).
Now let us upper bound the first term in Eq. (25) for unknown unitaryW.

Assume w.l.o.g. that TU and DS are diagonal in the same basis (the
additional rotation between these eigenbases can be absorbed intoW). Let
TU ¼Pi λ

ideal
i Pi and DS ¼Pi λiPi with orthogonal projectors Pi andP

i Pi ¼ I. Define the matrix M with entries Mij ¼ Tr½PiWPjWy�. The matrix
M is doubly stochastic, since

P
i Mij ¼ 1 ¼Pj Mij , which implies that M ¼

P
m qmπm with qm � 0;

P
m qm ¼ 1 (Birkhoff–von Neumann theorem31)

with permutation matrix πm. With these facts and the convention
ijλS
 � ¼ λi , we can bound

jTr½TUyWDSWy�j �
X
m

qmjλidealπmλSj � Nξmax:

These bounds together then lead to Eq. (24).
An immediate corollary of Lemma 1 is

F entðU;SÞ � 1
N þ 1

1þ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

P
j
jλj j2

N

vuut
þ Nξmax

0
BB@

1
CCA; (26)

since uðSÞ � 1 for TPCP maps. However, this is in general not a very strong
upper bound on the fidelity.
We can do better in the single-qubit case by realizing that there are

strong relations between the singular values σi of TS and the absolute
values of the eigenvalues |λi| of TS . Ordering both the singular values and
the eigenvalue magnitudes in descending order, we have the following
(weak majorization) inequalities for arbitrary matrices

YN
i¼1

σi ¼
YN
i¼1

jλi j; (27)

XF
i¼1

σi �
XF
i¼1

jλi j; F 2 f1; ¼ ;N � 1g: (28)

For single-qubit channels, we can also impose TPCP constraints to the
singular values of the channel. In particular, we have [ref. 33, Eq. (4)]

σi � 1; 8i 2 f0; 1; 2; 3g; (29)

σ1 þ σ2 � 1þ σ3: (30)

Using these relations, we can upper bound the unitarity of a single-qubit

Fig. 6 Spectral footprint of a simulated CNOT gate affected by
frame mismatch accumulation, for K= 50. The shown eigenvalues
are {0.9636+ 0.03276i, 0.9636− 0.0327i, −0.9804+ 0.0495i,
−0.9804− 0.0495i}, qualitatively matching the experimentally mea-
sured eigenvalues shown in Fig. 3 and critically matching the lack of
real eigenvalues observed in Fig. 3
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channel S, given its eigenvalues, using the optimization:

minimize
σ1 ;σ2 ;σ3

uðSÞ ¼ 1
3 ðσ21 þ σ22 þ σ23Þ

subject to σ1σ2σ3 ¼ jλ1jjλ2jjλ3j;
1 � σ1 � σ2 � σ3 � 0;

σ1 þ σ2 � 1þ σ3;

σ1 þ σ2 � jλ1j þ jλ2j;
σ1 þ σ2 þ σ3 � jλ1j þ jλ2j þ jλ3j:

This is a non-convex optimization problem in three variables, for which a
global minimum can be numerically computed given λ1, λ2, λ3. This gives
an upper bound on the unitarity of S and hence on the entanglement
fidelity of S to the target unitary U. In the main text, we use this
optimization to give non-trivial upper bounds on the fidelities of single-
qubit gates realized on superconducting chips and analyzed using the
spectral tomographic method.

Frame mismatch accumulation
In section “Spectral tomography on two superconducting chips,” we noted
that the data gathered for the CNOT gate cannot be explained by a model
of a noisy TPCP map S repeated k times. Here we propose a simple
coherent model that qualitatively reproduces the features observed in Fig.
3 and we call this the frame mismatch accumulation model. Let S0 be a
TPCP map that is a good approximation of the targeted gate applied
exactly once (in the main text, this was the CNOT) and let V be some
unitary. In the frame mismatch accumulation model, we assume that k
consecutive applications of the gate are equal to:

Sk ¼
Yk
i¼0

Vy� �iS0V
i ¼ ðVyÞkþ1ðVS0Þk : (31)

Intuitively, this can be interpreted as an increasing mismatch between the
frame in which S0 was defined and the frame in which the gate was
implemented at the ith repetition, up to i= k.
We apply this model to a CNOT gate, choosing S0 to be an ideal CNOT

gate and choosing V ¼ expð�i θ2 I � YÞ with θ= 0.05 deg. In the case of the
cross-resonance CNOT gate performed on ibmqx4, this may correspond to
an imperfect cancellation of the I ⊗ Y term.34 In Fig. 6, we see that this
example closely reproduces the eigenvalues shown in Fig. 3. At the same
time, we note that the qualitative features observed in Fig. 6 do not
depend on the choice of the rotation axis of V (for either qubit), as long as
the rotation does not commute with S0 (which would leave the gate
unaffected by the frame mismatch).
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