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Abstract 
 

Wind turbines are typically designed for an operational life of 20-25 years. The operation of the assets 
can be extended beyond their design life if structural components have sufficient reserves left. One 
approach is to monitor fatigue loads and compare these with design assumptions to determine the 
remaining useful lifetime of the assets. A major challenge is that sensors for measuring the stress 
history, such as strain gauges, only deliver local information. Monitoring of every hot spot is 
technically and financially not feasible due to cost and access restrictions. In addition, strain gauges 
only have a limited lifetime when compared to accelerometers.  

Several response estimation or extrapolation methods have been proposed in literature to tackle this 
problem. All of them are Kalman filter based methods, with the exception of the Modal Decomposition 
and Expansion Method. A new Kalman filter based method has been recently proposed in literature 
called Gaussian Process Latent Force Model. The aim of this work is to assess this new method with 
respect to existing ones both theoretically and numerically. 

Theoretically, the Kalman filter based methods always rely on white gaussian noise assumptions for 
the unknown loads, and the modal decomposition and expansion method disregard measurement 
imperfections. The new method improves upon these assumptions by providing a flexible stochastic 
definition for the unknown load, and by taking into account measurement imperfections.  

The numerical analysis is restricted to a comparison with respect to the modal decomposition and 
expansion method given the different theoretical backgrounds. The comparison is realised upon a 
simulation which illustrates and validates the methods, and upon a real-life onshore wind turbine 
equipped with accelerometers and strain gauges. Measured strains are compared with estimated 
strains. The accuracy of each method is quantified using the mean absolute error and by the 
correlation between measurement and estimation. The higher accuracy obtained shows that the new 
method is an improvement upon existing methods. This is further extended in the calculation of 
Damage Equivalent Loads. The result shows a relative error that, depending on operational conditions, 
ranges within 20-40[%] for the modal decomposition and expansion method and less than 10[%] for 
the new method. 

These results show that the novel Gaussian Process Latent Force Model method should be taken into 
account for response estimation when accuracy is relevant. Future works should aim on developing a 
mechanical model that better capture the real behaviour of the wind turbine, as the accuracy of the 
response estimation methods is mainly controlled by the validity of the underlying assumptions of the 
mechanical model. Furthermore, the strain estimations should be sought in the whole frequency 
range, this can be realised by including measurements that deliver this information: GPS sensors or 
inclinometers for example. 
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 Nomenclature 
 

General Notation 

Matrices, bold and capitalized:       𝑿 

Vectors, bold and lower case:       𝒙 

Scalars, lower case:        𝑥 

Time dependencies may be omitted for simplicity:    𝑥(𝑡) → 𝑥 

Time derivatives are expressed using Newton’s notation:   
d𝑥(𝑡)

d𝑡
= 𝑥̇ 

Discrete-time notation:        𝒙(𝑡 = 𝑘Δ𝑡) = 𝒙[𝑘] 

Estimations are, in general, denoted with a hat:     𝑥̂ 

 

Abbreviations 

GPLFM  Gaussian Process Latent Force Model 

MD&E  Modal Decomposition and Expansion 

MAE  Mean Absolute Error 

TRAC  Time Response Assurance Criterion 

MAC  Modal Assurance Criterion 

MDOF  Multi-Degree Of Freedom 

SSI-Cov  Covariance Driven Stochastic Subspace Identification 

pLSCF  poly-reference Least-Squares Complex Frequency-domain estimator 

OPTICS  Ordering Points To Identify the Clustering Structure 

RD  Reachability Distance 

CD  Core Distance 

MinObj  Minimum number of Objects 
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1 Introduction 
1.1 Motivation 

The energy sector has undergone a shift towards renewable energies in order to meet the Paris 
Agreement target of holding the increase in the global average temperature well below 2°C [1]. Wind 
Energy plays an important role in accomplishing this objective. More than one-third (35%) of the total 
electricity needs would be generated by both onshore and offshore wind turbines by 2050 [2]. 

Wind turbines are subject to a highly variable load: the wind. The loading cycles that this load produces 
on the structure brings considerable fatigue loads as a consequence. Typically, wind turbines are 
designed for a 20-year life with the fatigue loads governing the design [3]. The lifetime can be 
extended if the structural components have sufficient reserves left. This can be done by assessing the 
state of the system [4]. This assessment has to include the entire wind turbine, and in particular, all 
the load transferring components. One of these components is the tower, which is the element under 
analysis in this work.  

As indicated in [4], the assessment of the tower has to include the comparison of the original design 
conditions with the conditions on site. One approach is to measure the stresses that the tower has 
withstood over its lifetime. The stresses on a specific point of the tower can be measured by employing 
strain sensors. It is unpractical however to install strain sensors on all points of the structure, which 
means that the response has to be estimated from a discrete set of measurements. Furthermore, it 
has been observed that the use of strain sensors are less reliable and harder to maintain than 
accelerometers over long periods of time [5]. 

This motivation brings the main research question of this thesis: 

“Is it possible to obtain the strain response from a discrete set of acceleration measurements?” 

The problem of estimating the response at unmeasured locations from a set of discrete measurements 
will be referred to hereafter as “Response Estimation”. 

1.2 Literature Review 

1.2.1 Wind Turbines: preliminary understanding 

Some basic definitions and concepts regarding wind turbines are briefly presented in this section. The 
main components of the wind turbine are shown in Figure 1-1. 

Wind turbines have several moving parts. The most relevant to consider for this work, besides the 
rotor motion, are the motion of the nacelle, characterised by the yaw angle, and the motion of the 
blades, characterised by the pitch. The yaw angle refers to the rotation of the nacelle in order to 
orientate the rotor in the wind direction. The pitch refers to the rotation of the blades in order to 
control the angle of attack of the wind to the blades. 

The dynamic characterisation of the structure can be defined through the natural modes of vibrations. 
These may be divided in two sets: modes related to the tower, and modes related to the rotor. The 
rotor modes refer to those that are mainly related to the blades, while the tower modes refer to those 
that are mainly related to the tower vibrations. Coupled modes also exist. A description of these 
modes may be found in [3]. Furthermore, in [6] an experimental identification of these modes is 
presented. 
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Figure 1-1. Wind Turbine main components. 

Given the focus of this work on the tower response, only the tower modes will be sought to be 
represented by the mechanical model. It is noted however that the response of the tower will be also 
influenced by the rotor mode shapes, although to a lesser extent. The tower modes are often divided 
in three directions: the fore-aft (FA) direction, the side-side (SS) direction and the torsional direction. 
The FA and SS direction modes are sketched in Figure 1-2. The torsional direction refers to the 
torsional motion of the tower. 

 
Figure 1-2. Tower mode shapes. FA and SS directions. 

The modal parameters of the structure vary in time as a consequence of different operational 
conditions. Two conditions are highlighted: The rotor speed and the wind speed. As discussed in [7], 
the rotor speed affects mainly the rotor modes. The tower modes are not affected in a considerable 
manner. The wind speed brings as a consequence an effect known as aerodynamic damping [3]. In 
simple terms, the motion of the tower implies a change in both the relative velocity of the wind with 
respect to the blades, and also a change in the angle of attack of the blades. This results in a load 
which is a function of the response of the blades motion in terms of velocity. Consequently, a higher 
wind speed will yield a higher aerodynamic effect.  

Finally, the analysis of the system due to the wind load has to take into account the tower shadow 
effect [3]. The wind pressure is decreased locally in the presence of the tower, both down-wind and 
up-wind. This means that the wind pressure acting on the blades while passing through the tower is 
decreased. This brings as a consequence a harmonic load transferred to the tower every time a blade 
passes in front of it. In consequence, a harmonic load is expected to occur in the tower at multiples of 
3𝑓𝑟𝑜𝑡𝑜𝑟, with 𝑓𝑟𝑜𝑡𝑜𝑟  the rotor frequency (speed). Note that a harmonic load occurs also at the rotor 
frequency due to its rotation. 
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1.2.2 Overview on response estimation 

Several methods that address the problem of response estimation have been proposed in literature. 
The most relevant methods are briefly introduced as follows: 

Kalman Filter: First introduced in [8] provides an algorithm to solve problems that can be formulated 
by a discrete state space model in a recursive and optimal manner. In the context of this work, it can 
be applied considering a known load, or by assuming the load being part of the noise on the process 
and measurements [5]. 

Augmented Kalman Filter: Presented in the context of structural dynamics in [9]. It augments the state 
equation by including the load as part of the augmented state. The solution afterwards is obtained by 
means of applying the Kalman Filter to this augmented formulation. It has stability issues if measuring 
acceleration only [10]. 

Augmented Kalman Filter With dummy measurements Considers the inclusion of dummy 
measurements seeking to minimize the error produced from the stability issues. Proposed in [11]. 

Dual Kalman filter [12]. It seeks to solve the problem of estimation of the load by using two parallel 
Kalman Filters, one to estimate the load, and another to estimate the state considering the estimated 
load. As shown in [13], it is outperformed by the Joint input-response estimation. 

Joint input-response estimation: Based on [14], and presented in the context of structural dynamics 
in [15]. It includes the load estimation as part of a Kalman Filter approach. The stability issues when 
measuring accelerations only still prevail [10]. 

Extension on Joint input-response estimation: An extension of this approach is presented in [16] by 
considering that the noise between processes is non-zero, and furthermore providing a methodology 
to estimate the noise covariances. The stability issues when measuring accelerations only still prevail 
[10]. 

Modal Decomposition and Expansion (MD&E): Presented in [17]. It is based only on the mode shapes 
of a well calibrated finite element model. It is therefore a very simple yet effective approach for 
response estimation. 

Gaussian Process Latent Force Model (GPLFM): Recently introduced in [18] and extended in [19] for 
its implementation on joint input-state-parameter estimation. It assumes a stochastic description for 
the load that is not limited by a white gaussian assumption, in contrast to all other Kalman Filter based 
methods. It does not have stability issues when using only accelerations. It uses the Kalman filter in 
order to compute posterior distributions: this means that it yields not only the expected values 
(estimations) but also the variances (uncertainty). It has been shown in [18] that this method can be 
reduced to the Augmented Kalman Filter but without stability (drift) issues. 

1.2.3 Response estimation in the context of wind turbines 

Some case studies in the context of wind turbines are discussed in the following. 

A first approach towards the problem of fatigue estimation of wind turbines can be found in [20], 
where the need to separate between a low frequency content (quasi-static loads) and high frequency 
content (dynamic loads) is highlighted. This is a consequence of the nature of the loads that the 
structure is subject to. The response estimation problem is concerned with the higher frequency 
content. Though it provides a good framework for the problem of fatigue estimation, the mechanical 
model considered is an oversimplification of the real problem. Therefore, no relevant response 
estimation method is found. 

In [21], [17] and [22] the use of MD&E towards fatigue estimation can be found:[21] introduces MD&E 
for estimating accelerations at one point on the structure from measured accelerations at another 
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point, [17] employs both accelerations and strain measurements to estimate strains, and finally in [22] 
the last approach is combined with a low frequency (quasi-static load) estimation to estimate fatigue. 

In [5] a comparison is made between using Kalman Filter, Joint Input Response and MD&E to estimate 
strains. Two sets of measurements are evaluated: using only acceleration measurements, and using 
accelerations and strains measurements. The former, which is of interest for this work, is observed to 
be accurate in some defined frequency range when using Joint Input Response and MD&E approaches. 
It is highlighted however that offline displacement estimation is required for the stability of Joint Input 
Response estimation, and high-pass filtering is required for both joint input response and MD&E in 
order to avoid errors in the form of low frequency components. Other works such as [23] or [24] uses 
MD&E and Kalman Filtering approaches for the problem of estimating strains from acceleration 
measurements, with the MD&E approach being more accurate in comparison to Kalman Filtering. 

1.3 Scope 

Summarising the literature review, several methods exist that attempt to tackle the problem of 
Response Estimation. These methods can be divided in two approaches: Kalman Filter based 
approaches, and the Modal Decomposition and Expansion (MD&E) method. 

The novel GPLFM method has been recently proposed in the field of Structural Dynamics [18]. This 
method belongs to the set of Kalman Filter approaches, and it has not yet been employed in the 
context of wind turbines. 

In light of this novel approach, the scope of this thesis is reduced to answering the following question: 

“Does the novel GPLFM method improves upon existing methods?” 

This question is restricted to the context of wind turbines and focused towards the tower component. 

In order to apply any response estimation method, a mechanical model that is representative of the 
structure is required. 

1.4 Methodology 

 he term ‘improves’ stated in the resear h question implies the need to assess the GPL M against 
existing methods. The assessment is executed under two points of view: theoretical and numerical. 

The theoretical assessment is performed by exposing the underlying theory of the GPLFM method, 
and by taking into account the literature review presented in section 1.2. 

The numerical assessment is restricted to compare the GPLFM with the MD&E method given that it is 
the only response estimation method found that falls outside the Kalman Filter based methods, and 
also given that it has been successfully implemented on wind turbines. This assessment is performed 
upon a simulated response and upon real data obtained from an operating onshore wind turbine. 
Note that the simulated response will also be useful for illustrative purposes and for validation of both 
methods employed. 

The onshore wind turbine has been equipped with accelerometers and strain gauges, measuring 
between December 2020 and January 2021. The accelerometers will be used for the application of 
the response estimation methods, and the strain gauges will serve as a reference for the numerical 
results. The simulated response will replicate this configuration. The records used for the analysis will 
be chosen from the available data set so as to cover the most relevant operating conditions of the 
wind turbine. The mechanical model considered for the analysis of the onshore wind turbine is 
validated using system identification. 

This methodology brings as a consequence the structure of this thesis, outlined as follows: 
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Section II: Theoretical Background. This section presents the underlying theory for the mechanical 
model, system identification and response estimation methods employed. The error metrics 
considered for the analysis of the numerical results are also introduced. 

Section III: Simulation. The system identification and response estimation methods are validated and 
illustrated through a finite element model simulation. 

Section IV: Case Study: Onshore Wind turbine. Both response estimation methods are applied to 
measured data from an onshore wind turbine. 

Section V: Conclusion. The main results and recommendations for future works are presented. 
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2 Theoretical Framework 
2.1 Mechanical model 

This section briefly presents the required theoretical background considered for system identification 
and response estimation. 

2.1.1 Equation of Motion and Modal Analysis 

The formulation of the Equations of Motion and associated Modal Transformation are well covered in 
literature (e.g. [25], [26]). The following only presents the relations used by the system identification 
and response estimation methods. 

2.1.1.1 Equation of Motion 

The equation of motion for a Multi-Degree of Freedom (MDOF) system is given by: 

𝑴𝒖̈(𝑡) + 𝑪𝒖̇(𝑡) + 𝑲𝒖(𝑡) = 𝑺𝒑𝒑(𝑡) (Eq. 2-1) 

where the mass, damping and stiffness matrices are represented by, 𝑴,𝑪,𝑲 ∈ ℝ𝑛𝑢×𝑛𝑢  respectively, 
and the load locations are defined by 𝑺𝒑 ∈ ℝ

𝑛𝑢×𝑛𝑝 . The response of the system is defined by 

𝒖(𝑡) ∈ ℝ𝑛𝑢, and the loads in time are defined as 𝒑(𝑡) ∈ ℝ𝑛𝑝. 𝑛𝑢 refers to the total number of degrees 
of freedom, and 𝑛𝑝 refers to the total number of loads. 

2.1.1.2 Modal Transformation 

Classic modal analysis starts from the assumption that the damping matrix is proportional to the mass 
or stiffness matrix. Under this assumption, and considering the following modal transformation: 

𝒖(𝑡) = 𝚽𝒖𝒎(𝑡) (Eq. 2-2) 

The classical modal representation of the equation of motion is obtained: 

𝑰𝒖̈𝒎(𝑡) + 𝚪𝒖̇𝒎(𝑡) + 𝛀
2𝒖𝒎(𝑡) = 𝚽

T𝑺𝒑𝒑(𝑡) (Eq. 2-3) 

With 𝒖𝒎 ∈ ℝ
𝑛𝑢  the modal coordinates, 𝚽 ∈ ℝ𝑛𝑢×𝑛𝑢  the mass-normalised modal shape matrix (i.e., 

𝚽𝑇𝑴𝚽 = 𝑰), 𝚪 ∈ ℝ𝑛𝑢×𝑛𝑢  and 𝛀 ∈ ℝ𝑛𝑢×𝑛𝑢  diagonal matrices formed by the natural frequencies 𝜔𝑛 
and damping ratios 𝜁𝑛 so that 𝛀 = diag(𝜔𝑛) and 𝚪 = diag(2𝜁𝑛𝜔𝑛). 

Often the response of a structure can be sufficiently represented by a subset of modes 𝑛𝑚 ≤ 𝑛𝑢. This 
is called a Modal Reduction. The response is then approximated by: 

𝒖(𝑡) ≈ 𝚽𝒓𝒖𝒎𝒓(𝑡) (Eq. 2-4) 

With the reduced mode shapes 𝚽𝑟 ∈ ℝ
𝑛𝑢×𝑛𝑚  and modal coordinates 𝒖𝒎𝒓 ∈ ℝ

𝑛𝑚 .  Furthermore, the 
reduced system matrices are written as 𝛀𝑟 ∈ ℝ

𝑛𝑚×𝑛𝑚  and 𝚪𝑟 ∈ ℝ
𝑛𝑚×𝑛𝑚 . 

2.1.2 Mechanical State Space Model 

This section presents the state space model derived from the modal reduction of the MDOF systems 
previously defined. 

The state space model is formed by the state equation, which is an equivalent formulation of the 
equation of motion, and the observation equation, which relates some set of observations with the 
state of the system. 

2.1.2.1 State Equation 

The state equation for the reduced modal formulation is defined as (for the derivation, see e.g. [15]): 



 

7 

 

𝒙̇𝒎(𝑡) = 𝑨𝒄𝒎𝒙𝒎(𝑡) + 𝑩𝒄𝒎𝒑(𝑡) (Eq. 2-5) 

𝒙𝒎 = {
𝒖𝒎𝒓
𝒖̇𝒎𝒓

} (Eq. 2-6) 

𝑨𝒄𝒎 = [
𝟎 𝑰
−𝛀𝑟

2 −𝚪r
] (Eq. 2-7) 

𝑩𝒄𝒎 = [
𝟎

𝚽𝑟
𝑇𝑺𝒑

] (Eq. 2-8) 

With 𝒙𝒎 ∈ ℝ
2𝑛𝑚 , 𝑨𝒄𝒎 ∈ ℝ

2𝑛𝑚×2𝑛𝑚 , 𝑩𝒄𝒎 ∈ ℝ
2𝑛𝑚×𝑛𝑝 . 

Note that the response can be transformed to the original coordinates by multiplying with the mode 
shapes: 

𝒙(𝑡) ≈ [
𝚽𝒓 𝟎
𝟎 𝚽𝒓

] 𝒙𝒎(𝑡) (Eq. 2-9) 

The approximation being a consequence of using a reduced number of modes. 

2.1.2.2 Observation Equation 

Let 𝒚(𝑡) ∈ ℝ𝑛𝑦  be a subset of the system response: 

𝒚(𝑡) = 𝑺𝒂𝒖̈(𝑡) + 𝑺𝒗𝒖̇(𝑡) + 𝑺𝒅𝒖(𝑡) (Eq. 2-10) 

The matrices 𝑺𝒂, 𝑺𝒗, 𝑺𝒅 ∈ ℝ
𝑛𝑦×𝑛𝑢  are the selection matrices for accelerations, velocities, and 

displacements respectively. These relate the observed (measured) response 𝒚(𝑡) of the structure with 
the mechanical model. Note that 𝑛𝑦 represent the total number of displacements, velocities or 

accelerations being measured. 

Considering the modal formulation, and the equation of motion, the observations 𝒚(𝑡) can be defined 
in terms of the state and load applied in the system (for the derivation, see e.g. [15]): 

𝒚(𝑡) = 𝑮𝒄𝒎𝒙𝒎(𝑡) + 𝑱𝒄𝒎𝒑(𝑡) (Eq. 2-11) 

𝑮𝒄𝒎 = [[−𝑺𝒂𝚽𝑟𝛀𝑟
2 + 𝑺𝒅𝚽𝒓] [−𝑺𝒂𝚽𝑟𝚪𝑟 + 𝑺𝒗𝚽𝒓]] (Eq. 2-12) 

𝑱𝒄𝒎 = 𝑺𝒂𝚽𝑟𝚽𝑟
T𝑺𝒑 (Eq. 2-13) 

With dimensions: 𝑮𝒄𝒎 ∈ ℝ
𝑛𝑦×2𝑛𝑚 , 𝑱𝒄𝒎 ∈ ℝ

𝑛𝑦×𝑛𝑝 . 

2.1.3 Finite Element Model 

The mechanical model is defined numerically through a finite element model. Only beam elements 
are considered in this work, based upon Euler-Bernoulli beam theory. The element cross section used 
is assumed to be circular and constant. The particular definition of the finite element is known, and 
can be found for example in [27]. The relevant expressions are summarised in the following, based 
upon the information shown in Figure 2-1. 
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Figure 2-1. Beam Finite Element. 

In accordance with Figure 2-1, the nodal displacement vector is defined by: 

𝒖𝒆 = [𝑣𝑖 𝜃𝑖 𝑣𝑗 𝜃𝑗]𝑇 (Eq. 2-14) 

The shape functions 𝑵, and spatial derivatives 𝑵′, 𝑵′′, are defined in terms of the local coordinate 𝜉: 

𝑵(𝜉) = [1 𝜉 𝜉2 𝜉3] 𝚵(𝑎) (Eq. 2-15) 

𝑵′(𝜉) = [0 1 2𝜉 3𝜉2]𝚵(𝑎) (Eq. 2-16) 

𝑵′′(𝜉) = [0 0 2 6𝜉]𝚵(𝑎) (Eq. 2-17) 

𝚵(𝑎) =
1

4
[

2 𝑎 2 −𝑎
−3 −𝑎 3 −𝑎
0 −𝑎 0 𝑎
1 𝑎 −1 𝑎

] (Eq. 2-18) 

The displacement or rotation at any point within the element is given by: 

𝑣(𝜉) = 𝑵(𝜉)𝒖𝒆 (Eq. 2-19) 

𝜃(𝜉) =
1

𝑎
𝑵′(𝜉)𝒖𝒆 (Eq. 2-20) 

The element stiffness and mass matrix are then defined as: 

𝑲𝑒 =
𝐸𝐼𝑒
2𝑎3

[

3 3𝑎 −3 3𝑎
3𝑎 4𝑎2 −3𝑎 2𝑎2

−3 −3𝑎 3 −3𝑎
3𝑎 2𝑎2 −3𝑎 4𝑎2

] (Eq. 2-21) 

𝐼𝑒 =
𝜋

64
(𝐷𝑒

4 − (𝐷𝑒 − 2𝑡𝑒̅)
4) (Eq. 2-22) 

𝑴𝑒 =
𝜌𝐴𝑒𝑎

105
[

78 22𝑎 27 −13𝑎
22𝑎 8𝑎2 13𝑎 −6𝑎2

27 13𝑎 78 −22𝑎
−13𝑎 −6𝑎2 −22𝑎 8𝑎2

] (Eq. 2-23) 

𝐴𝑒 =
𝜋

4
(𝐷𝑒

2 − (𝐷𝑒 − 2𝑡𝑒̅)
4) (Eq. 2-24) 

The strain for any point within the element is: 

𝜀𝑥𝑥 = −
𝑦𝜀
𝑎2
𝑵′′(𝜉)𝒖𝒆 (Eq. 2-25) 

With 𝑦𝜀  the distance from the neutral axis.  

   oung Modulus.

  Element outer diameter.

  Element thi  ness.

   ensit .

  Nodal displa ement.

  Nodal rota on.

  General  oordinates.

  Lo al  oordinates.

  Element half length.
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2.1.3.1 Selection matrices 

Selection matrices can be defined with the above relations. First note that the element vector can be 
related to the global vector through an element selection matrix 𝑺𝒆 ∈ ℝ

4×𝑛 : 

𝒖𝒆 = 𝑺𝒆𝒖 (Eq. 2-26) 

Defining the location at which the response is to be evaluated will define the selection matrix 𝑺𝒆, 
which indicates what element it corresponds to. The position within the element is controlled by 𝜉. 

Therefore, in the case of accelerations, the response at a given location (i.e., 𝑺𝒆 and 𝜉 known) can be 
expressed as: 

𝑢̈ = 𝑣̈(𝜉) = 𝑵(𝜉)𝒖̈𝒆 = 𝑵(𝜉)𝑺𝒆𝒖̈ = 𝑺𝒂𝒊𝒖̈ (Eq. 2-27) 

This defines the selection matrix for the acceleration 𝑺𝒂𝒊 ∈ ℝ
1×𝑛. 

The same can be done for the strains, assuming also a defined distance 𝑦𝜀  with respect to the neutral 
axis: 

𝜀𝑥𝑥 = −
𝑦𝜀
𝑎2
𝑵′′(𝜉)𝒖𝒆 = −

𝑦𝜀
𝑎2
𝑵′′(𝜉)𝑺𝒆𝒖 = 𝑺𝜺𝒖 (Eq. 2-28) 

This defines the selection matrix for the strain 𝑺𝜺 ∈ ℝ
1×𝑛. 

It is noted that the selection matrices defined here are for a single point in space. In the case that a 
set of points in space is required (as described in 2.1.2.2), each row can be defined following the above 
expressions. In particular, each row of 𝑺𝒂 is defined by 𝑺𝒂𝒊 as described in this section. 

Finally, note that for both cases the selection matrix can be developed for the modal response: 

𝑺𝒂𝒎 = 𝑺𝒂𝚽 (Eq. 2-29) 

𝑺𝜺𝒎 = 𝑺𝜺𝚽 (Eq. 2-30) 

2.2 System Identification 

2.2.1 Introduction 

System Identification involves the problem of estimating the dynamic properties of a structural 
system. This, in practice, reduces to the problem of estimating frequencies, damping ratios and mode 
shapes of an existing structure. 

In the context of wind turbines, system identification has been successfully applied in literature (see 
[28], [29]), where two methods in particular have been considered: covariance-driven stochastic 
subspace identification (SSI-Cov, [30]) and poly-reference least-squares complex frequency-domain 
estimator (pLSCF, [31]). Both methods have been observed to yield similar results. Only SSI-Cov is 
employed in this work. 

One of the most relevant drawbacks of using SSI-COV, which is also observed for pLSCF, is the need to 
define the model order of the system. In simple terms, the model order can be understood as the 
dimension of the system matrices (i.e., number of degrees of freedom) that are needed to represent 
the structure. A more detailed explanation can be found in section 2.2.2.1. The model order is not 
easily defined, and even the best estimation for the model order may yield spurious modes. In order 
to overcome this, the use of stabilisation diagrams is often employed in practice to distinguish physical 
and spurious modes [30]. A stabilisation diagram is a plot of the frequencies found for a wide range of 
model orders. Through the stabilisation diagram, the physical modes are detected as they are 
assumed to appear somewhat  onsistentl  a ross the diagram, in the form of ‘stable columns’. 
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Stabilisation diagrams must be interpreted to recover the physical modes. Several attempts have been 
proposed in literature in order to automatically interpret such diagrams (see e.g. [28], [32]). These 
methods rely on cluster analysis tools to distinguish the physical modes. It is observed also that the 
success of the methods found in literature are dependent on the measurement setup and the 
structure conditions. 

In this work, a cluster tool useful for both manual analysis and automatic analysis is employed, called 
OPTICS (Ordering Points To Identify the Clustering Structure, [33]). The use of this tool in the context 
of stabilisation diagrams for both manual and automatic analysis has been validated in [34]. In this 
work, only manual analysis of stabilisation diagrams is employed.  

This section aims to present the system identification method SSI-COV and the cluster analysis tool 
OPTICS.  

2.2.2 SSI-Cov 

The covariance-driven stochastic subspace identification method (SSI-Cov) can be found in [35], [30], 
[28], [36]. The following introduces the main assumptions and methodology followed for its 
implementation. 

The method starts from the state-space model similar to the one described in Section 2.1.2, but 
without considering modal reduction (i.e., the state equation as the equation of motion). The state 
equation is then defined by: 

𝒙̇(𝑡) = 𝑨𝒄𝒙(𝑡) + 𝑩𝒄𝒑(𝑡) (Eq. 2-31) 

𝒙 = {
𝒖
𝒖̇
} (Eq. 2-32) 

𝑨𝒄 = [
𝟎 𝑰

−𝑴−1𝑲 −𝑴−1𝑪
] (Eq. 2-33) 

𝑩𝒄 = [
𝟎
𝑺𝒑
] (Eq. 2-34) 

And the observation equation: 

𝒚(𝑡) = 𝑮𝒄𝒙(𝑡) + 𝑱𝒄𝒑(𝑡) (Eq. 2-35) 

𝑮𝒄 = [[−𝑺𝒂𝑴
−1𝑲+ 𝑺𝒅] [−𝑺𝒂𝑴

−1𝑪 + 𝑺𝒗]] (Eq. 2-36) 

𝑱𝒄 = 𝑺𝒂𝑴
−1𝑺𝒑 (Eq. 2-37) 

The load is neglected, and implicitly modelled by including noise in both the state and observation 
equation, therefore the state and observation equations are reduced to (in discrete notation, further 
details in [30]): 

𝒙[𝑘+1] = 𝑨𝒙[𝑘] +𝒘[𝑘] (Eq. 2-38) 

𝒚[𝑘] = 𝑮𝒄𝒙[𝑘] + 𝒗[𝑘] (Eq. 2-39) 

With 𝒙[𝑘] ∈ ℝ
𝑛𝑥  the state vector, 𝒚[𝑘] ∈ ℝ

𝑛𝑦  the observation vector, 𝑨 = exp(𝑨𝒄Δ𝑡) ∈ ℝ
𝑛𝑥×𝑛𝑥  the 

state matrix, 𝑮𝒄 ∈ ℝ
𝑛𝑦×𝑛𝑥  the output matrix, 𝒘[𝑘] ∈ ℝ

𝑛𝑥  the process noise and 𝒗[𝑘] ∈ ℝ
𝑛𝑦  the 

observation noise. 

It is assumed that the noises are white gaussian processes: 

𝔼[𝒘[𝑘]] = 𝟎 (Eq. 2-40) 

 𝔼[𝒗[𝑘]] = 𝟎 (Eq. 2-41) 

 𝔼 [(
𝒘[𝑝]
𝒗[𝑝]

) (𝒘[𝑞]
𝑇 𝒗[𝑞]

𝑇 )] = (
𝑸 𝑺

𝑺𝑇 𝑹
)𝛿[𝑝][𝑞] (Eq. 2-42) 
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With 𝛿[𝑝][𝑞] the Delta dirac function in discrete notation: 𝛿[𝑝][𝑞] = 𝛿(𝑝Δ𝑡 − 𝑞Δ𝑡). Furthermore, the 

stochastic process 𝒙[𝑘] is assumed to be stationary and independent of the noise: 

𝔼[𝒙[𝑘]] = 𝟎 (Eq. 2-43) 

𝔼[𝒙[𝑘]𝒙[𝑘]
𝑇 ] = 𝚺 (Eq. 2-44) 

𝔼[𝒙[𝑘]𝒘[𝑘]
𝑇 ] = 𝟎 (Eq. 2-45) 

𝔼[𝒙[𝑘]𝒗[𝑘]
𝑇 ] = 𝟎 (Eq. 2-46) 

Finally, the output covariance matrices 𝜦𝑖 ∈ ℝ
𝑛𝑦×𝑛𝑦  and the next state – output covariance matrix 

𝓒 ∈ ℝ𝑛𝑥×𝑛𝑦  are defined as: 

𝜦𝑖 = 𝔼[𝒚[𝑘+𝑖]𝒚[𝑘]
𝑇 ] (Eq. 2-47) 

𝓒 = 𝔼[𝒙[𝑘+𝑖]𝒚[𝑘]
𝑇 ] (Eq. 2-48) 

Given these definitions, it can be shown (see e.g. [35], [36]) that the output covariance matrices can 
be written as: 

𝜦𝑖 = 𝑮𝒄𝑨
𝑖−1𝓒 (Eq. 2-49) 

As mentioned in [30], this last relationship implicitly states that the output covariances can be 
considered as impulse responses of the system. In order to use this relationship for estimating the 

system matrix 𝑨, and in consequence the dynamic properties, a Toeplitz matrix 𝑻1|𝑖 ∈ ℝ
𝑖𝑛𝑦×𝑖𝑛𝑦  is 

built: 

𝑻1|𝑖 = [

𝜦𝑖 𝜦𝑖−1 ⋯ 𝜦1
𝜦𝑖+1 𝜦𝑖 ⋯ 𝜦2
⋮ ⋮ ⋱ ⋮

𝜦2𝑖−1 𝜦2𝑖−2 ⋯ 𝜦𝑖

] (Eq. 2-50) 

Note that a Toeplitz matrix is characterised by repeated diagonal terms. This matrix can be expressed 
as: 

𝑻1|𝑖 = (

𝑮𝒄
𝑮𝒄𝑨
⋮

𝑮𝒄𝑨
𝑖−1

)(𝑨𝑖−1𝓒 𝑨𝑖−2𝓒 ⋯ 𝑨𝓒 𝓒) (Eq. 2-51) 

𝓞0|𝑖 = (

𝑮𝒄
𝑮𝒄𝑨
⋮

𝑮𝒄𝑨
𝑖−1

) (Eq. 2-52) 

With 𝓞0|𝑖 ∈ ℝ
𝑖𝑛𝑦×𝑛𝑥  the extended observability matrix, which can be estimated by a singular value 

decomposition of the Toeplitz matrix (see [35], [30], [36]): 

𝑻1|𝑖 = (𝑼1 𝑼2) (
𝑺1 0
0 0

) (
𝑽1
𝑇

𝑽2
𝑇) = 𝑼1𝑺1𝑽1

𝑇 ⇒ 𝓞0|𝑖 = 𝑼1𝑺1
1/2 (Eq. 2-53) 

With 𝑺1 ∈ ℝ
𝑛𝑥×𝑛𝑥  a diagonal matrix containing the positive singular values in descending order. 

The state matrix 𝑨 and the output matrix 𝑮𝒄 can then be obtained by using the pseudoinverse ( )† 
and submatrices of the extended observability matrix: 

𝑨 = 𝓞0|𝑖−1
† 𝓞1|𝑖 (Eq. 2-54) 

𝑮𝒄 = 𝓞0 (Eq. 2-55) 
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Finally, the system properties can be obtained by the eigenvalues of the system matrix 𝑨, and the 
modal shapes can be obtained considering the output matrix 𝑮𝒄: 

𝑨 = 𝚿𝚲𝐝𝚿 (Eq. 2-56) 

𝚽 = 𝑮𝒄𝚿 (Eq. 2-57) 

With 𝚽 ∈ ℂ𝑛𝑦×𝑛𝑥  the mode shapes referred to the observed points of the structure, and 𝚲𝒅 
containing the singular values 𝜆𝑑𝑞, from which the frequency and damping ratio can be defined (see 

[30], [28], [36]): 

𝜆𝑐𝑞 =
ln (𝜆𝑑𝑞)

Δ𝑡
(Eq. 2-58) 

𝜔𝑞 = |λc𝑞| (Eq. 2-59) 

𝜁𝑞 = −
𝑅𝑒 {𝜆𝑐𝑞}

|λc𝑞|
(Eq. 2-60) 

The following subsections discusses some relevant remarks regarding the application of this method. 

2.2.2.1 Stabilisation Diagrams 

In the above derivation, a number of singular values 𝑛𝑥 was assumed implicitly by the dimension of 
the system matrix 𝑨. In practice however, the dimension of the system matrix is not known, and in 
consequence, the number of singular values is not known a priori.  

It is known that the system matrix 𝑨 has a dimension twice as large as the number of degrees of 
freedom. Let the model order 𝑛𝑜 be defined as the number of degrees of freedom, which in turn 
means that 𝑛𝑥 = 2𝑛𝑜. Note that this ensures that the number of eigenvalues of the system matrix is 
an even number. 

In practice, defining a unique model order 𝑛𝑜 for the method is likely to yield several modes that 
should not be considered as physical modes: spurious modes. The solution that is often adopted is to 
use several model orders, from which the physical modes can be observed to be present on most of 
these model orders. To observe this, the stabilisation diagram is used. 

The stabilisation diagram is a plot of the frequencies obtained for each model order 𝑛𝑜. The name 
‘stabilisation’  omes from the fa t that the ph si al modes would appear as stable  olumns in this 
diagram. Therefore, the physical modes can be recovered by interpreting the results observed from 
the stabilisation diagram. 

2.2.2.2 Covariance Estimation 

In order to efficiently compute the Toeplitz matrix 𝑻1|𝑖, the following Hankel matrix is built by 

rearranging the outputs: 

1

√𝑗

(

 
 
 
 
 

𝒚[𝟎] 𝒚[𝟏] ⋯ 𝒚[𝒋−𝟏]
𝒚[𝟏] 𝒚[𝟐] ⋯ 𝒚[𝒋]
⋮ ⋮ ⋱ ⋮

𝒚[𝒊−𝟏] 𝒚[𝒊] ⋯ 𝒚[𝒊+𝒋−𝟐]
𝒚[𝒊] 𝒚[𝒊+𝟏] ⋯ 𝒚[𝒊+𝒋]
𝒚[𝒊+𝟏] 𝒚[𝒊+𝟐] ⋯ 𝒚[𝒊+𝒋]
⋮ ⋮ ⋱ ⋮

𝒚[𝟐𝒊−𝟏] 𝒚[𝟐𝒊] ⋯ 𝒚[𝟐𝒊+𝒋−𝟐])

 
 
 
 
 

= (
𝒀[𝟎|𝒊−𝟏]
𝒀[𝒊|𝟐𝒊−𝟏]

) (Eq. 2-61) 
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With 𝒀[0|𝑖−1], 𝒀[𝑖|2𝑖−1] ∈ ℝ
𝑖𝑛𝑦×𝑗. Note that a Hankel matrix is a matrix where the antidiagonal terms 

repeat. The Toeplitz matrix is then obtained as: 

𝑻[1|𝑖] = 𝒀[𝑖|2𝑖−1]𝒀[0|𝑖−1]
𝑇 (Eq. 2-62) 

It is observed that, by using these expressions, the covariance matrices are estimated as: 

𝜦𝑖 =
1

𝑗
∑𝒚[𝑘+𝑖]𝒚[𝑘]

𝑇

𝑗−1

𝑘=0

(Eq. 2-63) 

Which holds under the assumption that 𝑗 → ∞. Furthermore, the number of lags 𝑖 considered will 
control the number of singular values that can be obtained from the Toeplitz matrix. As discussed in 
[28], the Hankel matrix is defined by setting 𝑖 as the minimum number of lags to find the desired model 
order 𝑛𝑜, and thus maximizing 𝑗 in order to have the best estimation for the covariance matrices from 
the available observations 𝒚[𝑘]. 

2.2.3 Cluster Analysis 

As discussed in section 2.2.2.1, the physical modes are to be interpreted from the stabilisation 
diagram. The present section shows the methodology employed in order to efficiently interpret it. 
This methodology is heavily influenced by what is proposed in [34]. 

The methodology uses two stages: the first stage aims to clear the stabilization diagram by removing 
spurious modes from it. The second stage aims to identify the clusters that refer to physical modes 
(i.e., the stable columns). 

2.2.3.1 First Stage: Clearing the stabilisation diagram 

In order to clear the stabilisation diagram from (definitely) spurious modes, the following rules are 
implemented: 

1) Valid frequency range: 𝑓 ∈ [0, 𝑓𝑚𝑎𝑥] 

2) Valid damping range: 𝜁 ∈ [0, 𝜁𝑚𝑎𝑥] 

3) Presence of conjugates for the poles and mode shapes 

 herefore, the modes that don’t  ompl  with either of the three rules defined above are  onsidered 
as spurious modes and removed from the analysis. 

2.2.3.2 Second Stage: OPTICS 

In order to identify the clusters (stable columns), OPTICS is used. The details of its implementation can 
be found in [33]. The following procedure is a simplified approach of what has been proposed in [34]. 

In order to implement OPTICS, the Reachability Distance (𝑅𝐷) needs to be defined. To do so, two 
distance measures are introduced: Distance between objects 𝑑(𝑖, 𝑗), and core distance (𝐶𝐷): 

2.2.3.2.1 Distance between objects: 

The distance between objects is defined as: 

𝑑(𝑖, 𝑗) =
|𝑓𝑖 − 𝑓𝑗|

𝑓𝑚𝑎𝑥
+ 1 −𝑀𝐴𝐶(𝝓𝑖 , 𝝓𝑗) + 𝑑𝑜(𝑖, 𝑗) (Eq. 2-64) 

With 𝑓𝑖 , 𝑓𝑗 representing the frequency identified (obtained after clearing the stabilisation diagram) for 

any two pair of frequencies. 𝑓𝑚𝑎𝑥  the maximum frequency allowed (defined in the previous 
subsection). 𝝓𝑖 , 𝝓j the associated complex mode shapes and 𝑀𝐴𝐶 refers to the Modal Assurance 

Criterion (see e.g. [37]) defined as: 
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𝑀𝐴𝐶(𝝓𝑖 , 𝝓𝑗) =
|𝝓𝑖
𝐻𝝓𝑗|

2

(𝝓𝑖
𝐻𝝓𝑖)(𝝓𝑗

𝐻𝝓𝑗)
(Eq. 2-65) 

With ( )𝐻 representing the Hermitian of the vector. The 𝑀𝐴𝐶 takes values from 0 (when there is no 
consistent correspondence) to 1 (when there is perfect correspondence). The distance between 
frequencies is normalized to obtain comparable values with the 𝑀𝐴𝐶. 

Finally, 𝑑𝑜(𝑖, 𝑗) is a measure of distance in terms of the model order. If the two objects have the same 
model order it takes a value of 1, otherwise it takes a value of 0. This helps in avoiding clustering 
objects in the same model order. 

2.2.3.2.2 Core Distance: 

The core distance (𝐶𝐷) depends on a parameter called 𝑀𝑖𝑛𝑂𝑏𝑗, which indicates the minimum number 
of objects that a cluster should have. The core distance is the distance (measured by 𝑑(𝑖, 𝑗)) at which 
𝑀𝑖𝑛𝑂𝑏𝑗 objects can be found. The computation is illustrated in Figure 2-2. A formal expression for it 
can be found in [34]. 

 
Figure 2-2. Reachability Distance (RD) and Core Distance (CD) illustration.  

(a) considering 𝑴𝒊𝒏𝑶𝒃𝒋 = 𝟒, (b) considering 𝑴𝒊𝒏𝑶𝒃𝒋 = 𝟖. Ref.: [34]. 

2.2.3.2.3 Reachability Distance and Reachability Plot: 

The Reachability Distance (𝑅𝐷) is defined as the maximum between the core distance and the distance 
between objects: 

𝑅𝐷(𝑖, 𝑗) = max{𝐶𝐷(𝑗), 𝑑(𝑖, 𝑗)} (Eq. 2-66) 

OPTICS uses this definition to build a reachability plot. The reachability plot is defined iteratively. In 
simple words it is defined by computing the 𝑅𝐷 between the (remaining) objects, selecting the object 
with the minimum 𝑅𝐷 and excluding it from the next step in the iteration. This defines an order for 
the objects. The specific algorithm used can be found in [34], [33].  

The Reachability plot is the result of using OPTICS. Clusters are identified by low 𝑅𝐷 value regions. The 
lower the 𝑅𝐷 the denser the cluster is (in terms of the distance previously defined).  

2.2.3.2.4 Cluster detection from reachability plots 

In order to efficiently detect low 𝑅𝐷 value regions, a simplified version of what is proposed in [34] is 
implemented. First, steep objects need to be defined. Let 𝑠𝑖 denote the difference between 

consecutive objects in the reachability plot. Let 𝜉𝑠 =
𝑚𝑒𝑎𝑛(|𝑠𝑖|)

2
. Downwards steep objects are defined 

as the objects for which 𝑠𝑖 < −𝜉𝑠, and conversely, upwards steep objects are defined as the objects 
for which 𝑠𝑖 > 𝜉𝑠.  

Clusters can then be defined as the elements between a downwards steep object and an upwards 
steep object, as long as the number of elements that the formed cluster has at least 𝑀𝑖𝑛𝑂𝑏𝑗 objects.  
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2.2.3.2.5 Remarks 

The main parameter to be defined to implement OPTICS is 𝑀𝑖𝑛𝑂𝑏𝑗. Following the recommendations 
in [34], this parameter can be defined by the number of model orders that the stable columns should 
be present at. Let the range of model orders be 𝑛𝑜,𝑟 = max(𝑛𝑜) − min(𝑛𝑜). Then, 𝑀𝑖𝑛𝑂𝑏𝑗 can be 

defined as: 

𝑀𝑖𝑛𝑂𝑏𝑗 = 𝛼𝑀𝑖𝑛𝑂𝑏𝑗𝑛𝑜,𝑟 (Eq. 2-67) 

Where 𝛼𝑀𝑖𝑛𝑂𝑏𝑗  should take at most a value of 𝛼𝑀𝑖𝑛𝑂𝑏𝑗 = 1 when the stable columns are expected to 

be present across the whole range of model orders, and a lower value when the stable columns are 
expected to be present only partially across the model orders.  

2.2.3.3 Third Stage: Representative element 

The final step of this methodology is to define a representative element from the clusters identified 
in the second stage. The representative element is chosen as the median values in frequency, damping 
ratio and mode shape. 

2.3 Modal Decomposition and Expansion 

The MD&E can be found in [17]. The method starts by noticing that the observed accelerations can be 
related to the modal coordinates of a mechanical model (see section 2.1.2.2 and 2.1.3.1): 

𝒚(𝑡) = 𝑺𝒂𝒎𝒖̈𝒎(𝑡) (Eq. 2-68) 

It is therefore possible to estimate the acceleration modal coordinates at any point in time by 
computing the pseudo-inverse: 

𝒖̈𝒎(𝑡) = 𝑺𝒂𝒎
†𝒚(𝑡) = (𝑺𝒂𝒎

T𝑺𝒂𝒎)
−𝟏
𝑺𝒂𝒎

𝑇𝒚(𝑡) (Eq. 2-69) 

Note that this requires that the number of modes 𝑛𝑚 considered to be less than or equal to the 
number of observations 𝑛𝑦: 𝑛𝑚 ≤ 𝑛𝑦 so as to avoid defining an underdetermined system (less 

equations than unknowns). 

The displacement modal coordinate is required to define the strains. This can be computed, as 
proposed in [5], by integration in the frequency domain: 

𝒖𝒎(𝑡) = ℱ
−1 {

1

−𝜔2
ℱ{𝒖̈𝒎(𝑡)}} (Eq. 2-70) 

From which the strains can be obtained: 

𝜀(𝑡) = 𝑺𝜺𝒎𝒖𝒎(𝑡) (Eq. 2-71) 

With 𝑺𝜺𝒎 the modal selection matrix as defined in 2.1.3.1. 

There are three points that should be considered in the implementation of this method: 

1) The error (noise) of the observation 𝒚 is not taken into account. This will yield errors in the 
estimation of the modal coordinate depending on the amount of noise. To minimise this error, 
the system is sought to be solved in a least-square sense (overdetermined system: 𝑛𝑚 < 𝑛𝑦). 

2) Integration in the frequency domain will amplify low frequencies. To avoid this, the signal is 
filtered after integrating. 

3) Ill-conditioning of the matrix 𝑺𝒂𝒎 may amplify the noise in the results. 
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2.4 Gaussian Process Latent Force Model 

2.4.1 Introduction 

The GPLFM is a model that combines a mechanical model of the structure with a stochastic 
characterisation of the unknown input. A flowchart representing the main considerations for the 
GPLFM is presented in Figure 2-3. The mechanical model represents the structure, and the equation 
is as defined in section 2.1. The stochastic model represents the load, and it is written in state space 
form (see section 2.4.3). The augmented model is a combination of both the mechanical and stochastic 
model (see section 2.4.4). The augmented model is a stochastic differential equation for the 
augmented state vector 𝒛𝒂 which contains the modal displacements, modal velocities, and the state 
vector for the load. The augmented state vector is a stochastic variable, and in consequence the 
expected value and the covariance are of relevance. The prior refers to the marginal distribution 
obtained for the augmented vector at any point in time, and the posterior refers to the conditional 
distribution of the state vector upon some information regarding the system. The posterior 
distribution is computed by employing Kalman Filter and Smoothing algorithms. The result of the 
GPLFM is therefore the new marginal distribution obtained through the posterior distribution. 

 
Figure 2-3. GPLFM flowchart. 

The present section aims to present the GPLFM method in detail. Taking into account that the amount 
of theoretical background required is considerable, an outline is indicated below: 

1) Gaussian Process: Gaussian processes are introduced in a simplistic manner, along with 
recalling some relevant properties of the Multivariate Normal distribution. Furthermore, two 
particular gaussian processes are presented: The white gaussian noise and a process driven 
by a Matérn covariance function. Finally, the concept of prior and posterior is introduced. 

2) Stochastic State Space Model: The state space model representation of a stochastic process 
is presented. The prior and posterior are revisited in this context. 

3) Augmented State Space Model: The augmentation of the mechanical and stochastic state 
space models is presented. This is the core of the GPLFM method. The prior and posterior is 
again revisited for this model. 

4) Parameter estimation: The hyperparameters of the stochastic load and the noise levels must 
be defined. Two methodologies to estimate these parameters are presented. The first falls in 
line with what has been proposed in literature, and the second is a novel proposed 
methodology considered in this work. 

Me hani al Model

 ugmented Model

Prior Posterior

 alman 
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2.4.2 Gaussian Process 

The aim of this section is to provide a sufficient understanding of gaussian processes. 

Let 𝓅(𝒙) denote the probability distribution of a random variable 𝒙. 

The distribution of interest in the context of this work is the Multivariate Gaussian probability 
distribution (or joint normal distribution) of a random variable 𝒙 ∈ ℝ𝑛 given by: 

𝓅(𝒙) = 𝒩(𝒙̂, 𝚼) =
1

√2𝜋 det(𝚱)
exp (−

1

2
(𝒙 − 𝒙̂)𝑇𝚼−1(𝒙 − 𝒙̂)) (Eq. 2-72) 

Where 𝒙̂ ∈ ℝ𝑛 is the mean and 𝚼 ∈ ℝ𝑛×𝑛 is the covariance matrix, formally defined as: 

𝒙̂ = 𝔼[𝒙] (Eq. 2-73) 

𝚼 = 𝔼[(𝒙 − 𝒙̂)(𝒙 − 𝒙̂)𝑇] (Eq. 2-74) 

Where 𝔼[ ] corresponds to the expected value operator. 

A gaussian process 𝑥(𝑡) can be roughly understood by considering a vector with infinitely many 
elements [38], corresponding to the values that it takes in time: 𝑥(𝑡) → 𝒙 ∈ ℝ∞. A gaussian process 
can therefore be characterised by a mean value 𝑥̂(𝑡) → 𝒙̂ ∈ ℝ∞ and a covariance function  
𝜅(𝑡, 𝑡′) → 𝚼 ∈ ℝ∞×∞. The covariance function will define the correlation between time 𝑡 and 𝑡′. This 
notion is recovered by using the following notation: 

𝑥(𝑡)~𝒢𝒫(𝑥̂(𝑡), 𝜅(𝑡, 𝑡′)) (Eq. 2-75) 

Using infinite vectors is, of course, not feasible in practice. However, considering a discrete subset of 
time, it can be reduced to a multivariate gaussian distribution. 

Furthermore, it is noted that when the statistics (mean and covariance) of the gaussian process do not 
vary in time it is called stationary. This implies that the mean has a constant value for all points in time: 
𝑥̂(𝑡) = 𝑥̂ and that the covariance function will depend only on the time lag 𝜏 = |𝑡 − 𝑡′| regardless at 
which point in time it is evaluated: 𝜅(𝑡, 𝑡′) = 𝜅(𝜏). Then, a stationary gaussian process can be written 
as: 

𝑥(𝑡)~𝒢𝒫(𝑥̂, 𝜅(𝜏)) (Eq. 2-76) 

Note that all gaussian process used in this work are stationary. 

2.4.2.1 Multivariate Normal Distribution 

Given the relevance of the Multivariate Gaussian distribution for Gaussian Processes, some basic 
properties are recalled. To do so, a simpler version of the Multivariate Gaussian distribution is 
considered: 

𝓅 ([
𝑎
𝑏
]) = 𝒩 ([

𝑎̂
𝑏̂
] , [

κ𝑎 κ𝑎𝑏
κ𝑎𝑏

𝑇 κ𝑏
]) (Eq. 2-77) 

Note that 𝑎 and 𝑏 can be considered as vectors or as scalars. 

2.4.2.1.1 Marginal Distribution 

The marginal distribution can be understood as the distribution of a variable independent of other 
events. For each variable, the marginal distribution can be obtained directly from the joint 
distribution: 

𝓅(𝑎) = 𝒩(𝑎̂, 𝜅𝑎) (Eq. 2-78) 

 𝓅(𝑏) = 𝒩(𝑏̂, 𝜅𝑏) (Eq. 2-79) 
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2.4.2.1.2 Conditional distribution 

The conditional distribution can be understood as an update of the probability distribution when 
information is known for dependant variables. Considering the simpler version above, the distribution 
of the variable 𝑎 can be updated if the variable 𝑏 is known: 

 𝓅(𝑎|𝑏) = 𝒩(𝑎̂ + 𝜅𝑎𝑏𝜅𝑏
−1(𝑏 − 𝑏̂), 𝜅𝑎 − 𝜅𝑎𝑏𝜅𝑏

−1𝜅𝑎𝑏
𝑇 ) (Eq. 2-80) 

2.4.2.2 White Gaussian Noise 

A frequently used Gaussian Process is the White Gaussian Process. It is defined by a zero mean 𝑥̂(𝑡) =
0 with a covariance function given by 𝜅(𝜏) = 𝜎𝑤

2𝛿(𝜏). 

Therefore, white noise is defined as: 𝑤(𝑡)~𝒢𝒫(0, 𝜅(𝜏) = 𝜎𝑤
2𝛿(𝜏)). With 𝛿( ) refers to the Dirac 

delta function. 

if a discrete subset of time is considered: {𝑡1, 𝑡2} → {𝑤1 = 𝑤(𝑡1), 𝑤2 = 𝑤(𝑡2)}, the multivariate 
probability distribution can be expressed as: 

 𝓅 ([
𝑤1
𝑤2
]) = 𝒩 ([

0
0
] , 𝜎𝑤

2 [
1 0
0 1

]) (Eq. 2-81) 

Considering the expressions defined for the marginal distribution: 

 𝓅(𝑤𝑘) = 𝒩(0, 𝜎𝑤
2) (Eq. 2-82) 

Furthermore, the conditional distribution is given by:  

 𝓅(𝑤𝑘|𝑤𝑗) = 𝓅(𝑤𝑘)   (𝑘 ≠ 𝑗) (Eq. 2-83) 

These results indicate that at any point in time the probability distribution is the same, regardless of 
the information known at any other point in time. 

For simplicity, a White Gaussian Process is denoted as: 

 𝑤(𝑡)~𝒩(0, 𝜎𝑤
2) (Eq. 2-84) 

It is highlighted that 𝜎𝑤
2  does not refer to the variance directly. It refers to the spectral density. The 

variance is obtained from integration of the spectral density over all frequencies, which in this case 
would be infinite. In the discrete case however, the spectral density can be considered as the variance 
of the marginal distribution as illustrated above: 

 𝑤[𝑘]~𝒩(0, 𝜎𝑤
2) (Eq. 2-85) 

2.4.2.3 Matern32 Covariance Function 

A particular covariance function is considered in this work, named the Matern32 covariance function. 
The use of this covariance function rise from the fact that it offers great flexibility in modelling 
different types of random processes (See [18], [19]).  

The Matern32 covariance function is a specific function belonging to the Matérn family of covariance 
functions. The general expression for the family of functions can be found in [38]. The specific function 
is defined as: 

 𝜅𝑀32(𝜏; 𝜎, 𝑙𝑠𝑐) = 𝜎
2 {1 +

√3|𝜏|

𝑙𝑠𝑐
} 𝑒

(−
√3|𝜏|
𝑙𝑠𝑐

)
(Eq. 2-86) 

And the spectral density is given by [39]: 

 𝑆𝑀32(𝑓; 𝜎
2, 𝑙𝑠𝑐) = 𝜎

2
12√3

𝑙𝑠𝑐
3 (

3

𝑙𝑠𝑐
2 + (2𝜋𝑓)

2)

−2

(Eq. 2-87) 
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This covariance function is defined not only by the time lag 𝜏, but also by two hyperparameters: 𝜎 and 
𝑙𝑠𝑐. These hyperparameters are described as follows: 

- 𝜎: known as the magnitude. It controls the amplitude of the covariance function. Notice that 
𝜅𝑀32(0) = 𝜎

2, which means that the marginal distribution of the stochastic process 𝑝(𝑡) 

defined by this covariance function has a variance of 𝜎2: 𝓅(𝑝(𝑡)) = 𝒩(0, 𝜎2). 

- 𝑙𝑠𝑐: known as the length scale, controls the extent of the correlation. Note that, from the 

covariance function, it can be observed that for a given 𝑙𝑠𝑐  a significant correlation may be 

found up to 5𝑙𝑠𝑐. Furthermore, from the spectral density, the expected frequency content 

may be considered significant up to 𝑓~1/5𝑙𝑠𝑐, which is below the half-power point. 

 

Figure 2-4 illustrates the Matern32 covariance function in terms of the covariance function, spectral 

density, and some samples to illustrate the behaviour of a process described by this covariance 

function. 

 

 

Figure 2-4. Matern32 covariance function, spectral density and samples. 
 𝝈 = 𝟏[𝑵], 𝒍𝒔𝒄 = 𝟏[𝒔]. 

2.4.2.4 Prior and Posterior 

Consider a stochastic process 𝑝(𝑡)~𝒢𝒫(0, 𝜅(𝜏)). This characterisation of the process can be 

understood as setting some ‘prior belief’ for the fun tion: it is expected to have a zero-mean and a 

covariance given by 𝜅(𝜏). The marginal distribution: 𝓅(𝑝(𝑡)) = 𝒩(0, 𝜅(0)) is referred to hereafter 

as the ‘prior’. It is highlighted that this definition provides onl  partial information regarding the ‘prior 
belief’, as it provides no information regarding the  orrelation in time (i.e., regarding the  ovarian e 
function for 𝜏 ≠ 0). Figure 2-5 shows the prior through the mean value and the 3𝜎 interval of 
confidence for the Matern32 covariance function with unitary values for 𝜎 and 𝑙𝑠𝑐. 

 

Figure 2-5. Prior. Matern32 covariance function. 
 𝝈 = 𝟏[𝑵] and 𝒍𝒔𝒄 = 𝟏[𝒔]. 
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Any two points in time have a joint distribution given by: 

𝓅 ([
𝑝(𝑡1)

𝑝(𝑡2)
]) = 𝒩 ([

0
0
] , [

𝜅0 = 𝜅(0) 𝜅𝜏 = 𝜅(𝜏 = |𝑡1 − 𝑡2|)

𝜅𝜏 = 𝜅(𝜏 = |𝑡1 − 𝑡2|) 𝜅0 = 𝜅(0)
]) (Eq. 2-88) 

If the stochastic process is measured at some point in time, it is reasonable to think that the ‘prior 
belief’ should be updated, because there is more information regarding the process. Updating beliefs 
with the new information is the same as computing the conditional distribution on the observations. 
This would update the values for the mean and covariance at any point in time. To illustrate this, let 
𝑝(𝑡1) = 𝑝1 be known, or in words: let the stochastic process be measured at time 𝑡1. Furthermore, 
let 𝑝(𝑡2) refer to any point in time: 𝑝(𝑡2) = 𝑝(𝑡), then, using the conditional distribution: 

𝓅(𝑝(𝑡)|𝑝1) = 𝒩(𝑝̂(𝑡) = 𝜅𝜏𝜅0
−1𝑝1, κ(𝑡) =  𝜅0 − 𝜅𝜏𝜅0

−1𝜅𝜏) (Eq. 2-89) 

The updated distribution has a mean 𝑝̂(𝑡) and a covariance κ(𝑡) that varies in time. in particular, it 
varies as a function of the time lag: 𝜏 = |𝑡1 − 𝑡|. 

This conditional distribution is referred to hereafter as the ‘posterior’. Figure 2-6 shows the posterior 
for the Matern32 covariance function with unitary values and considering a single observation. Note 
that the closer to the observation, the less uncertainty there is (to the extreme of zero uncertainty at 
the observed point) and the farther from the observation the more uncertainty there is (to the 
extreme of recovering the prior). 

 

Figure 2-6. Posterior. Matern32 covariance function. 
𝝈 = 𝟏[𝑵] and 𝒍𝒔𝒄 = 𝟏[𝒔]. 

2.4.3 Stochastic State Space Model 

The main motivation for formulating a stochastic state space model is to be able to combine it 
(augment it) mathematically with the mechanical state space model. The reason why it was developed 
however is because the computational effort required to compute the posterior increases rapidly with 
the number of measurements. This representation reduces the computational cost from 𝒪(𝑛3) to 
𝒪(𝑛) [39], with 𝑛 referring to the number of measurements. 

In order to construct the stochastic state space model, it is required to first define the gaussian process 

𝑝(𝑡)~𝒢𝒫(0, 𝜅(𝜏)) as the output of a Linear Time Invariant Stochastic Differential Equation. A 

methodology to do so is presented in [39]. The following focuses on the Matern32 covariance 
function. 

2.4.3.1 Continuous-Time Stochastic State Space Model 

A gaussian process with a Matern32 covariance function can be expressed as the output of the 
following Linear Time Invariant Stochastic Differential Equation [39]: 

𝑝̈(𝑡) + (2
√3

𝑙𝑠𝑐
) 𝑝̇(𝑡) + (

3

𝑙𝑠𝑐
2 )𝑝(𝑡) = 𝑤(𝑡) (Eq. 2-90) 
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Note that it is a stochastic differential equation as it is driven by a white gaussian noise 𝑤(𝑡) with a 
known spectral density: 

𝑤(𝑡)~𝒩 (0, 𝜎𝑤
2 =

12√3𝜎2

𝑙𝑠𝑐
3 ) (Eq. 2-91) 

This can be written as a continuous-time state space model: 

𝒛̇(𝑡) = 𝑭𝒄𝒛(𝑡) + 𝑳𝒄𝑤(𝑡) (Eq. 2-92) 

𝑝(𝑡) = 𝑯𝒄𝒛(𝑡) (Eq. 2-93) 

With: 

𝒛(𝑡) = [
𝑝(𝑡)

𝑝̇(𝑡)
] (Eq. 2-94) 

𝑭𝒄 = [

0 1

−
3

𝑙𝑠𝑐
2 −2

√3

𝑙𝑠𝑐

] (Eq. 2-95) 

𝑳𝒄 = [
0
1
] (Eq. 2-96) 

𝑯𝒄 = [1 0] (Eq. 2-97) 

2.4.3.2 Prior: Stationary solution 

It is not direct how the prior can be recovered from the state space representation of the stochastic 
process. Therefore, the prior is revisited in this context. 

Notice first that 𝒛(𝑡) is also a stochastic process, it therefore has a mean 𝒛̂(𝑡) = 𝔼[𝒛(𝑡)] and 
covariance 𝑷(𝑡) = 𝔼[𝒛(𝑡)𝒛(𝑡)𝑇]. Expressions that define these statistics can be found through the 
stochastic state space model [40]: 

𝒛̇̂(𝑡) = 𝑭𝒄𝒛̂(𝑡) (Eq. 2-98) 

𝑷̇(𝑡) = 𝑭𝒄𝑷(𝑡) + 𝑷(𝑡)𝑭𝒄
𝑇 + 𝑳𝒄𝜎𝑤

2𝑳𝒄
𝑇 (Eq. 2-99) 

The prior can be recovered from the stationary solutions of these expressions [40]. The stationary 
solutions, noted by 𝒛̂∞ and 𝑷∞, are obtained by imposing that the rate of change is zero, yielding the 
following expressions: 

𝑭𝒄𝒛̂∞ = 𝟎 (Eq. 2-100) 

𝑭𝒄𝑷∞ + 𝑷∞𝑭𝒄
𝑇 + 𝑳𝒄𝜎𝑤

2𝑳𝒄
𝑇 = 𝟎 (Eq. 2-101) 

By observing the first equation, it is direct that the stationary solution for the expected value is zero 
𝒛̂∞ = 𝟎, which relates directly with the stationary solution of the stochastic process:  
𝑝̂∞ = 𝑯𝒄𝒛̂∞ = 0. The second equation provides an expression that can be used to find the stationary 
covariance. This equation is known as the continuous-time Lyapunov equation and can be solved 
numerically. It is highlighted that the covariance of the stochastic process can therefore be obtained 

as: 𝔼[𝑝(𝑡)𝑝(𝑡)𝑇] = 𝑯𝒄𝑷∞𝑯𝒄
𝑻 = 𝜎2. In other words, the prior is regained: 𝓅(𝑝(𝑡)) = 𝒩(0, 𝜎2). 

2.4.3.3 Posterior: Kalman Filter and Smoother 

Computing the posterior through the stochastic state space model requires defining the discrete 
version of the stochastic model, and an observation equation which will provide the information of 
the system to compute the posterior. Subsequently, the posterior can be computed recursively by 
employing Kalman Filter and Smoothing. 

The expressions found for the statistics can be solved, as they are ordinary differential equations. The 
solution can be expressed as [40]: 
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𝒛̂(𝑡) = 𝒆𝑭𝒄(𝑡−𝑡0)𝒛̂(𝑡0) (Eq. 2-102) 

𝑷(𝑡) = 𝒆𝑭𝒄(𝑡−𝑡0)𝑷(𝑡0)𝒆
𝑭𝒄(𝑡−𝑡0)

𝑇
+∫ 𝒆𝑭𝒄(𝑡−𝜏)𝑳𝒄𝜎𝑤

2𝑳𝒄
𝑇𝒆𝑭𝒄(𝑡−𝜏)

𝑇
𝑑𝜏

𝑡

𝑡0

(Eq. 2-103) 

Using discrete notation, and evaluating between time steps: 

𝒛̂[𝑘+1] = 𝑭𝒛̂[𝑘] (Eq. 2-104) 

𝑷[𝑘+1] = 𝑭𝑷[𝑘]𝑭
𝑇 + 𝑸𝒅 (Eq. 2-105) 

With: 

𝑭 = 𝒆𝑭𝒄Δ𝑡 (Eq. 2-106) 

𝑸𝒅 = ∫ 𝒆𝑭𝒄((𝑘+1)Δ𝑡−𝜏)𝑳𝒄𝜎𝑤
2𝑳𝒄
𝑇𝒆𝑭𝒄((𝑘+1)Δ𝑡−𝜏)

𝑇
𝑑𝜏

(𝑘+1)Δ𝑡

𝑘Δ𝑡

(Eq. 2-107) 

The expressions obtained for the statistics define an equivalent discrete version of the system: 

𝒛[𝑘+1] = 𝑭𝒛[𝑘] +𝒘[𝑘] (Eq. 2-108) 

With 𝒘[𝑘]~𝒩(0,𝑸𝒅), uncorrelated from the states. 

In order to compute the posterior, an observation equation is defined. Let some discrete set of 
observations be defined as: 

𝑦[𝑘] = 𝑯𝒄𝒛[𝑘] + 𝑟[𝑘] (Eq. 2-109) 

With 𝑟[𝑘]~𝒩(0, 𝑅) a white gaussian noise to represent some error in the observations.  

As mentioned in [39], the posterior can be computed by employing Kalman Filtering and Smoothing 
upon the discrete model and observation equation using the stationary solutions as initial values. 
Table 2-1 summarises the relevant equations (the derivation of them can be found in [39]). 

Table 2-1. Kalman filter and smoother equations. Stochastic model. 

Time Update: Measurement Update: Smoothing: 

𝓅(𝒛[𝑘]|𝑦[1:𝑘−1]) = 𝒩(𝒛̂[𝑘]
− , 𝑷[𝑘]

− ) 
𝓅(𝒛[𝑘]|𝑦[1:𝑘]) = 𝒩(𝒛̂[𝑘]

+ , 𝑷[𝑘]
+ ) 

𝓅(𝑦[1:𝑘]|𝑦[1:𝑘−1]) = 𝒩(𝑯𝒄𝒛̂[𝑘]
− , 𝑆[𝑘]) 

𝓅(𝒛[𝑘]|𝑦[1:𝑁]) = 𝒩(𝒛̂[𝑘], 𝑷[𝑘]) 

𝒛̂[𝑘]
− = 𝑭𝒛̂[𝑘−1]

+  

𝑷[𝑘]
− = 𝑭𝑷[𝑘−1]

+ 𝑭𝑇 +𝑸𝒅 

𝑟[𝑘] = 𝑦[𝑘] −𝑯𝒄𝒛̂[𝑘]
−  

𝑆[𝑘] = 𝑯𝒄𝑷[𝑘]
− 𝑯𝒄

𝑇 + 𝑅 

𝑲[𝑘] = 𝑷[𝑘]
− 𝑯𝒄

𝑇(𝑆[𝑘])
−1

 

 
𝒛̂[𝑘]
+ = 𝒛̂[𝑘]

− +𝑲[𝑘]𝑟[𝑘] 

𝑷[𝑘]
+ = 𝑷[𝑘]

− −𝑲[𝑘]𝑆[𝑘]𝑲[𝑘]
𝑇  

𝑪[𝑘] = 𝑷[𝑘]
+ 𝑭𝑇(𝑷[𝑘+1]

− )
−1

 

 

𝒛̂[𝑘] = 𝒛̂[𝑘]
+ + 𝑪[𝑘](𝒛̂[𝑘+1] − 𝒛̂[𝑘+1]

− ) 

𝑷[𝑘] = 𝑷[𝑘]
+ + 𝑪[𝑘](𝑷[𝑘+1] − 𝑷[𝑘+1]

− )𝑪[𝑘]
𝑇  

In words, the Time Update step computes the mean and covariance of the distribution conditional on 

all past observations: 𝓅(𝒛[𝑘]|𝑦[1:𝑘−1]) = 𝒩(𝒛̂[𝑘]
− , 𝑷[𝑘]

− ). The Measurement Update step computes the 

mean and covariance of the distribution conditional on all past observations, including the observation 

in the current step: 𝓅(𝒛[𝑘]|𝑦[1:𝑘]) = 𝒩(𝒛̂[𝑘]
+ , 𝑷[𝑘]

+ ). Note that if there are no observation this step is 

omitted: 𝒛̂[𝑘]
+ = 𝒛̂[𝑘]

− , 𝑷[𝑘]
+ = 𝑷[𝑘]

− . Finally, the Smoothing step computes the mean and covariance of 

the distribution conditional on all observations: 𝓅(𝒛[𝑘]|𝑦[1:𝑁]) = 𝒩(𝒛̂[𝑘], 𝑷[𝑘]). The result from the 

Smoothing step is therefore the posterior as defined in 2.4.2.4, but written in discrete notation. 

The regression process is illustrated in Figure 2-7. An unknown function is first shown in black, and a 

prior belief is set by 𝑝(𝑡)~𝒢𝒫(0, 𝜅𝑀32(𝜏; 𝜎 = 1[𝑁], 𝑙𝑠𝑐 = 1[𝑠])). A point is observed, and the Kalman 

Filter is applied, updating points in time after the observation. Finally, the smoother is applied to 
update points in time before the observation.  



 

23 

 

 

Figure 2-7. Posterior defined through Kalman Filter and Smoother. 

2.4.4 Augmented State Space Model 

The main model that drives the GPLFM is the augmented state space model. This is a combination of 
the mechanical model that represents the structure, and a stochastic model that represents the load. 
It is relevant to notice that the result will also be a stochastic model. In consequence a prior and a 
posterior can be computed. The augmented model is described in the following. 

2.4.4.1 Continuous-time Augmented State Space Model 

Starting from the continuous-time state space representation of the mechanical model: 

𝒙̇(𝑡) = 𝑨𝒄𝒙(𝑡) + 𝑩𝒄𝑝(𝑡) (Eq. 2-110) 

Considering only one load. The stochastic state space model is defined by: 

𝒛̇(𝑡) = 𝑭𝒄𝒛(𝑡) + 𝑳𝒄𝑤(𝑡) (Eq. 2-111) 

𝑝(𝑡) = 𝑯𝒄𝒛(𝑡) (Eq. 2-112) 

Both state space models can be combined into an augmented version: 

[
𝒙̇(𝑡)
𝒛̇(𝑡)

] = [
𝑨𝒄 𝑩𝒄𝑯𝒄
0 𝑭𝒄

] [
𝒙(𝑡)
𝒛(𝑡)

] + [
𝟎

𝑳𝒄𝑤(𝑡)
] (Eq. 2-113) 

In short notation: 

𝒛̇𝒂(𝑡) = 𝑭𝒄
𝒂𝒛𝒂(𝑡) + 𝒘𝒂(𝑡) (Eq. 2-114) 

With 𝒘𝒂(𝑡)~𝒩(0,𝑸𝒄
𝒂) 

𝑸𝒄
𝒂 = [

0 0
0 𝐿𝑐𝜎𝑤

2𝐿𝑐
𝑇] (Eq. 2-115) 

It is highlighted that the structure of this expression is completely analogous to the stochastic state 
space model presented for the load. Note that the augmented state 𝒛𝒂(𝑡) is a stochastic variable 
which contains not only the stochastic description of the load, but also a stochastic description of the 
response (in terms of modal displacements and velocities). The stochastic description of the response 
is defined taking into account the mechanical model and the stochastic description of the load. In 
other words: through the augmented model. 

Furthermore, it is noted that only one load has been defined for the augmented model. More loads 
may be considered by further augmentation (see [18]). The simulation and real case structure are 
modelled by considering only one load, so the increased augmentation is omitted for simplicity. 

2.4.4.2 Prior: Stationary solution 

Similar to what was exposed in Section 2.4.3.2, expressions for the statistics are found through the 
augmented model: 

𝒛̇̂𝑎(𝑡) = 𝑭𝒄
𝒂𝒛̂𝑎(𝑡) (Eq. 2-116) 
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𝑷̇𝑎(𝑡) = 𝑭𝒄
𝒂𝑷𝒂(𝑡) + 𝑷𝒂(𝑡)𝑭𝒄

𝒂𝑇 +𝑸𝒄
𝒂 (Eq. 2-117) 

The stationary solutions can then be defined by setting the first derivative to zero: 

𝑭𝒄
𝒂𝒛̂∞
𝑎 = 𝟎 (Eq. 2-118) 

𝑭𝒄
𝑎𝑷∞

𝑎 + 𝑷∞
𝑎 𝑭𝒄

𝑎𝑇 +𝑸𝒄
𝑎 = 𝟎 (Eq. 2-119) 

From which is easy to conclude that the stationary expected value is zero 𝒛̂∞
𝑎 = 𝟎, and the stationary 

covariance 𝑷∞
𝑎  can be found numerically by solving the continuous-time Lyapunov equation. 

The prior is then defined as 𝓅(𝒛𝑎(𝑡)) = 𝒩(𝟎, 𝑷∞
𝑎 ). It is highlighted that this is a prior for the 

augmented state. The augmented state has information regarding the response of the system and the 
load. Therefore, defining a prior for the load defines a prior for the response. 

To further illustrate this last point, note that any response of the system can be described from the 
augmented state by means of a selection matrix. For example, the strain can be described using the 
selection matrix defined in 2.1.3.1: 

𝜀(𝑡) = 𝑺𝜀𝑚𝒖𝑚(𝑡) = [𝑺𝜀𝑚 𝟎 𝟎] [

𝒖𝑚(𝑡)

𝒖̇𝑚(𝑡)

𝒛(𝑡)
] = 𝑯𝜀𝑚𝒛

𝑎(𝑡) (Eq. 2-120) 

The response description depends on the stochastic variable 𝒛𝑎(𝑡). Therefore, it is a stochastic 
description of the response. As such, the statistics may be computed. In particular, the marginal 
distribution, or prior, may be computed. This is illustrated by using the strain: 

𝜀̂(𝑡) = 𝔼[𝜀(𝑡)] = 𝔼[𝑯𝜀𝑚𝒛
𝑎(𝑡)] = 𝑯𝜀𝑚𝔼[𝒛

𝑎(𝑡)] = 𝑯𝜀𝑚𝒛̂∞
𝑎 = 0 (Eq. 2-121) 

𝑃𝜀,∞ = 𝔼[𝜀(𝑡)𝜀(𝑡)
𝑇] = 𝔼[𝑯𝜀𝑚𝒛

𝑎(𝑡)𝒛𝑎(𝑡)𝑇𝑯𝜀𝑚
𝑇 ] = 𝑯𝜀𝑚𝑷∞

𝑎 𝑯𝜀𝑚
𝑇  (Eq. 2-122) 

In consequence, the prior of the strain is obtained: 𝓅(𝜀(𝑡)) = 𝒩(0, 𝑃𝜀,∞). 

Note that it can be easily observed that, in general, all responses of the mechanical system loaded by 
a zero-mean stationary process will also be zero mean and stationary. 

2.4.4.3 Posterior: Kalman Filter and Smoother 

The approach is completely analogous to what is presented in Section 2.4.3.3. First the discrete version 
of the stochastic model is presented, and the observation equation that will provide the information 
of the system. Subsequently, the prior can be computed recursively by using the Kalman Filter and 
Smoothing equations. 

The expressions found for the statistics can be solved, as these are ordinary differential equations. 
The solution can be expressed as: 

𝒛̂𝑎(𝑡) = 𝒆𝑭𝒄(𝑡−𝑡0)𝒛̂𝑎(𝑡0) (Eq. 2-123) 

𝑷𝒂(𝑡) = 𝒆𝑭𝒄
𝒂(𝑡−𝑡0)𝑷𝒂(𝑡0)𝒆

𝑭𝒄
𝒂(𝑡−𝑡0)

𝑇
+∫ 𝒆𝑭𝒄

𝑎(𝑡−𝜏)𝑸𝒄
𝑎𝒆𝑭𝒄

𝑎(𝑡−𝜏)𝑇𝑑𝜏
𝑡

𝑡0

(Eq. 2-124) 

Using discrete notation, and evaluating between time steps: 

𝒛̂[𝑘+1]
𝑎 = 𝑭𝑎𝒛̂[𝑘]

𝑎 (Eq. 2-125) 

𝑷[𝑘+1]
𝑎 = 𝑭𝑎𝑷[𝑘]

𝑎 𝑭𝑎
𝑇
+ 𝑸𝒅

𝑎 (Eq. 2-126) 

With: 

𝑭𝑎 = 𝒆𝑭𝒄
𝑎Δ𝑡 (Eq. 2-127) 
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𝑸𝒅
𝑎 = ∫ 𝒆𝑭𝒄

𝒂((𝑘+1)Δ𝑡−𝜏)𝑸𝒄
𝒂𝒆𝑭𝒄

𝒂((𝑘+1)Δ𝑡−𝜏)
𝑇
𝑑𝜏

(𝑘+1)Δ𝑡

𝑘Δ𝑡

(Eq. 2-128) 

The expressions obtained for the statistics define an equivalent discrete version of the system: 

𝒛[𝑘+1]
𝑎 = 𝑭𝒂𝒛[𝑘]

𝑎 +𝒘[𝑘]
𝑎 (Eq. 2-129) 

With 𝒘[𝑘]
𝑎 ~𝒩(0,𝑸𝒅

𝒂). 

To compute the posterior, an observation equation needs to be defined. Note that only part of the 
augmented state is observed (accelerations). Starting from the observation equation defined in 
2.1.2.2 

𝒚(𝑡) = 𝑮𝒄𝒎𝒙𝒎(𝑡) + 𝑱𝒄𝒎𝒑(𝑡) (Eq. 2-130) 

Using the state space representation of the load, this can be written in terms of the augmented state: 

𝒚(𝑡) = 𝑯𝒄
𝒂𝒛𝒂(𝑡) (Eq. 2-131) 

With: 

𝑯𝒄
𝒂 = [𝑮𝒄𝒎 𝑱𝒄𝒎𝑯𝒄 ] (Eq. 2-132) 

 

Furthermore, noticing that the observations are measured at discrete points in time, and that they 
are not perfect, the following discrete form of the observation is employed: 

𝒚[𝑘] = 𝑯𝒄
𝒂𝒛[𝑘]
𝑎 + 𝒓[𝑘] (Eq. 2-133) 

With 𝒓[𝑘] a stochastic variable representing the error of the measurement. This is assumed to be a 

white gaussian noise: 𝒓[𝑘]~𝒩(0, 𝑹). With 𝑹 ∈ ℝ𝑛𝑦×𝑛𝑦  a diagonal matrix with the variances for each 

signal noise in its diagonals: 𝜎𝑅𝑖
2 . 

As discussed in 2.4.3.3, the posterior can be computed by using the Kalman Filter and Smoother using 
the discrete form of the augmented model and the discrete form including noise of the observation 
equation. The Kalman Filter and Smoother expressions are shown below for the augmented version. 
Note that the initial values has to be the stationary solutions in order to properly compute the 
posterior. 

Table 2-2. Kalman filter and smoother equations. Augmented model. 

Time Update: Measurement Update: Smoothing: 

𝓅(𝒛[𝑘]
𝑎 |𝒚[1:𝑘−1]) = 𝒩(𝒛̂[𝑘]

𝑎−, 𝑷[𝑘]
𝑎−) 

𝓅(𝒛[𝑘]
𝑎 |𝒚[1:𝑘]) = 𝒩(𝒛̂[𝑘]

𝑎+, 𝑷[𝑘]
𝑎+) 

𝓅(𝒚[1:𝑘]|𝒚[1:𝑘−1]) = 𝒩(𝑯𝒄
𝑎𝒛̂[𝑘]
𝑎−, 𝑺[𝑘]) 

𝓅(𝒛[𝑘]
𝑎 |𝒚[1:𝑁]) = 𝒩(𝒛̂[𝑘]

𝑎 , 𝑷[𝑘]
𝑎 ) 

𝒛̂[𝑘]
𝑎− = 𝑭𝑎𝒛̂[𝑘−1]

𝑎+  

𝑷[𝑘]
𝑎− = 𝑭𝑎𝑷[𝑘−1]

𝑎+ 𝑭𝑎𝑇 +𝑸𝒅
𝑎 

𝒓[𝑘] = 𝒚[𝑘] −𝑯𝒄
𝑎𝒛̂[𝑘]
𝑎− 

𝑺[𝑘] = 𝑯𝒄
𝑎𝑷[𝑘]

𝑎−𝑯𝒄
𝑎𝑇 + 𝑹 

𝑲[𝑘] = 𝑷[𝑘]
𝑎−𝑯𝒄

𝑎(𝑺[𝑘])
−1

 

 
𝒛̂[𝑘]
𝑎+ = 𝒛̂[𝑘]

𝑎− +𝑲[𝑘]𝒓[𝑘] 

𝑷[𝑘]
𝑎+ = 𝑷[𝑘]

𝑎− −𝑲[𝑘]𝑺[𝑘]𝑲[𝑘]
𝑇  

𝑪[𝑘] = 𝑷[𝑘]
𝑎+𝑭𝑎𝑇(𝑷[𝑘+1]

𝑎− )
−1

 

 

𝒛̂[𝑘]
𝑎 = 𝒛̂[𝑘]

𝑎+ + 𝑪[𝑘](𝒛̂[𝑘+1]
𝑎 − 𝒛̂[𝑘+1]

𝑎− ) 

𝑷[𝑘]
𝑎 = 𝑷[𝑘]

𝑎+ + 𝑪[𝑘](𝑷[𝑘+1]
𝑎 − 𝑷[𝑘+1]

𝑎− )𝑪[𝑘]
𝑇  

 

The description of this process is analogous to what was presented in 2.4.3.3. It is recalled that the 
result from the smoothing step is the posterior, written in discrete notation:  

𝓅(𝒛[𝑘]
𝑎 |𝒚[1:𝑁]) = 𝒩(𝒛̂[𝑘]

𝑎 , 𝑷[𝑘]
𝑎 ). Note that the main difference with respect to what is described in 

2.4.3.3 is that the posterior is computed only on partial information of the system. This means that 
the prior belief of the response of the system (e.g., strains) can be updated by any information of the 
system (e.g., accelerations). 
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It is highlighted that defining the discrete version of the noise covariance 𝑸𝒅
𝑎 through the integral is 

difficult and unpractical. An alternative method of computing is by using the solution for the 
covariance in discrete version: 

𝑷[𝑘+1]
𝑎 = 𝑭𝑎𝑷[𝑘]

𝑎 𝑭𝑎
𝑇
+ 𝑸𝒅

𝑎 (Eq. 2-134) 

Noticing that the stationary solution also applies for this expression: 

𝑷∞
𝑎 = 𝑭𝑎𝑷∞

𝑎 𝑭𝑎
𝑇
+ 𝑸𝒅

𝑎 (Eq. 2-135) 

And further noticing that the stationary covariance has been already computed by the prior (see 
2.4.4.2), a more practical way to define the noise covariance is obtained: 

𝑸𝒅
𝑎 = 𝑭𝑎𝑷∞

𝑎 𝑭𝑎
𝑇
− 𝑷∞

𝑎 (Eq. 2-136) 

2.4.5 Parameter Estimation 

So far it has been assumed that the hyperparameters 𝜎, 𝑙𝑠𝑐 of the Matern32 covariance function that 
represents the load are defined. However, given that the load is unknown, so is the covariance 
function that could define it stochastically. Furthermore, the noise levels defined through 𝑹 for the 
measurements are also unknown. 

This section provides two frameworks to estimate these unknown parameters. The first one will be 
referred to as Maximum A Posteriori, and it is the method suggested by [18], [19], [40]. The second 
method, referred as ‘ itting the Prior and Posterior’, is a novel methodology that aims to solve the 
parameter estimation in a more intuitive and efficient manner. 

2.4.5.1 Maximum A Posteriori 

Let the unknown parameters be defined as the hyperparameters 𝜽 = {𝜎2, 𝑙𝑠𝑐 , 𝑹}. 

The Bayesian way of treating these unknown hyperparameters is by looking at the posterior 
distribution [41]: 

𝓅(𝒛[1:𝑁]
𝑎 , 𝜽|𝑦[1:𝑁]) (Eq. 2-137) 

Only the marginal posterior distribution of the hyperparameters is of interest. This is given by [41]: 

𝓅(𝜽|𝑦[1:𝑁]) = ∫𝓅(𝒛[1:𝑁]
𝑎 , 𝜽|𝑦[1:𝑁])𝑑𝒛[1:𝑁]

𝑎 (Eq. 2-138) 

In words, this is the conditional distribution of the hyperparameters given some set of observations. 
The distribution will vary depending on the hyperparameters chosen. Higher values would be obtained 
if the hyperparameters chosen yield a higher likelihood for this posterior distribution. This in turn 
means, at least in a probabilistic sense, that the hyperparameters yield a good representation of the 
stochastic process. The objective therefore is to find the hyperparameters that maximize this 
conditional distribution: 

𝜽̂ = max
𝜽
𝓅(𝜽|𝑦[1:𝑁]) (Eq. 2-139) 

This is known as a Maximum A Posteriori estimate [41]. As mentioned in the same reference, 
computing the full posterior distribution is computationally very expensive. An alternative definition 
using bayes rule is considered: 

𝓅(𝜽|𝑦[1:𝑁]) =
𝓅(𝑦[1:𝑁]|𝜽)𝓅(𝜽)

𝓅(𝑦[1:𝑁])
∝ 𝓅(𝑦[1:𝑁]|𝜽)𝓅(𝜽) (Eq. 2-140) 

Therefore, the Maximum A Posteriori estimate can be obtained maximizing this function: 

𝜽̂ = max
𝜽
(𝓅(𝑦[1:𝑁]|𝜽)𝓅(𝜽)) (Eq. 2-141) 
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In order to efficiently compute this distribution (and therefore maximize it to obtain the estimates), 
the following function is used: 

𝜑[𝑁](𝜽) = − log (𝓅(𝑦[1:𝑁]|𝜽)) − log(𝓅(𝜽)) (Eq. 2-142) 

This is called the energy function. Then, it is easy to observe that minimizing this function would yield 
the Maximum A Posteriori estimates: 

𝜽̂ = min
𝜽
(𝜑[𝑁](𝜽)) (Eq. 2-143) 

The advantage of using this definition, is that the energy function can be computed iteratively directly 
from the Measurement Update step of the Kalman Filter. This has been shown in [41]: 

𝜑[𝑘](𝜽) = 𝜑[𝑘−1](𝜽) +
1

2
log(2𝜋 𝑑𝑒𝑡(𝑺[𝑘])) +

1

2
𝒓[𝑘]

𝑇𝑺[𝑘]
−1𝒓[𝑘] (Eq. 2-144) 

Which shows how the energy function is computed from the Kalman Filter (see Table 2-2). Note that 
the smoothing step is not required to compute it. 

Note that the initial step 𝜑[0](𝜽) is defined by: 

𝜑[0](𝜽) = − log(𝓅(𝜽)) (Eq. 2-145) 

In words, this means that the starting value for the energy function is the negative log-likelihood of 
the hyperparameters. This is directly related to the prior of the hyperparameters. If no prior 
knowledge is available, the distribution may be assumed to be uniform over all possible values of 𝜽, 
which in practice can be implemented by starting with 𝜑[0](𝜽) = 0. 

2.4.5.1.1 Remarks 

The Maximum A Posteriori method presented here has two drawbacks. First, given the large number 
of undefined parameters (five in total, considering three accelerometers), it is difficult to have a 
representation of the behaviour of the energy function. Second, as discussed in [18], attempting to 
minimise this function through optimisation may yield a local minima instead of a global minima. 
Taking into account both drawbacks, this method can be characterised as being unintuitive and 
unpractical given the difficulty in the optimisation process. This motivates the need to develop an 
alternative method for parameter estimation. 

2.4.5.2 Fitting the Prior and Posterior 

This method aims to define the Matern32 hyperparameters and the noise levels separately. The 
Matern32 hyperparameters 𝜎, 𝑙𝑠𝑐 will be defined by ensuring that the prior belief obtained for the 
measured accelerations fit well with the observations. Whereas the noise levels 𝑹 will be defined by 

ensuring that the error estimated from the posterior 𝑹̂ fits well with the error defined for the 
computation of the posterior 𝑹.  

2.4.5.2.1 Fitting the prior 

The prior of the accelerations can be easily computed from the prior of the augmented state through 
the observation equation defined in Section 2.4.4.2: 

𝒚(𝑡) = 𝑯𝒄
𝒂𝒛𝒂(𝑡) (Eq. 2-146) 

𝒚̂∞ = 𝑯𝑐
𝑎𝒛∞
𝑎 = 𝟎 (Eq. 2-147) 

𝑷𝑦,∞ = 𝔼[𝒚(𝑡)𝒚(𝑡)
𝑇] = 𝑯𝑐

𝑎𝑷∞
𝑎 𝑯𝑐

𝑎𝑇 (Eq. 2-148) 

In words: the expected value of the accelerations is zero, and the covariance is given by 𝑷𝑦,∞. In 

particular, the variance for each channel (accelerometer) 𝜎𝑦
2 will be defined by the diagonal elements 
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of this covariance matrix. It is highlighted that the correlation between the observed points is defined 
through the elements outside the diagonal. 

Note that this is the prior of the accelerations. This is part of the augmented model. No information 
of the measurements has been used other than their location within the mechanical model. 

Now, taking into consideration that there are measurements available, it is possible to estimate the 
variance of the observations by directly computing it from the records. This will yield a variance for 

each channel: 𝜎∗𝑦
2 . 

The key of this method is to realise that the prior belief of the augmented model can be educated 
through the observations. This can be realised by matching the variance obtained from the model 

(prior) with the variance that can be computed from the measurements: 𝜎𝑦
2 ≈ 𝜎∗𝑦

2 . In other words: 

the prior belief should fit the data available. 

It is important to realise that an exact match may not be possible. This may be due to the mechanical 
model not being sufficiently representative of the structure, or due to an inaccurate estimation of the 
variance from the records, amongst other reasons. 

This observation motivates the fit of the prior as a maximum likelihood estimation. 

For each signal, a log-normal distribution is built with the mode (peak of the distribution) being 

defined by the computed variance 𝜎∗𝑦
2 . The spread of the distribution is defined arbitrarily by the 

95[%] interval of confidence. The lower bound is defined by approximately half this value, and the 
higher bound is defined by approximately double this value. The exact computation of the distribution 
is illustrated in Figure 2-8. Note that it uses commonly known properties of the log-normal 
distribution: 𝜇𝑚𝑜𝑑𝑒  referring to the mode (which is the peak of the distribution), and 𝜇𝑚𝑒𝑑. referring 
to the median, from which the interval of confidence bounds can be defined. 

 

Figure 2-8. Log-normal distribution definition. 

For each signal, the best prior would be the one that maximises the associated log-normal distribution. 

Given that the goal is to fit the prior to all the observations, what is sought is to maximise all the log-
normal distributions associated to all the channels. An efficient way to do so is by using the joint 
distribution. The joint distribution can be computed by assuming that the distributions are 
independent, which means that the joint distribution is just the multiplication of the distributions. The 
assumption of independence follows from the independent definition of the distribution on each 
signal. 

Therefore, the 𝜎 and 𝑙𝑠𝑐  hyperparameters are estimated by maximising the likelihood of this joint 
distribution. This will ensure that the prior belief is a good match for the observations. 
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2.4.5.2.2 Fitting the posterior 

Now that the prior for the load is defined, the noise levels for each signal, contained in 𝑹, are required 
to be defined. This will be realised by studying the posterior of the measured accelerations. 

The acceleration measurements are related to the model through the observation equation which 
includes noise: 

𝒚[𝑘] = 𝑯𝒄
𝒂𝒛[𝑘]
𝑎 + 𝒓[𝑘] (Eq. 2-149) 

An estimation for the noise process can therefore be obtained by using the expected value for the 
augmented state, obtained from the posterior: 

𝒓̂[𝑘] = 𝒚[𝑘] −𝑯𝒄
𝒂𝒛̂[𝑘]
𝑎 (Eq. 2-150) 

Note that the measurements 𝒚[𝑘] are deterministic, as the values are directly obtained from the 

accelerometers. 

An estimation of the variance of the noise can be obtained by the associated noise estimations. 
Therefore, an estimation of the noise matrix is obtained:  

𝑹̂ = var(𝒓̂[𝑘]) (Eq. 2-151) 

The key aspect in this method is to acknowledge that the posterior provides an estimation of the noise 
covariance. Fitting the posterior translates therefore into matching the defined noise level 𝑹 with the 

estimated noise level 𝑹̂.  

The methodology employed to do so is iterative, illustrated in Figure 2-9, and described as follows: 

1) An arbitrary amount of noise is defined for the signals. A starting point may be taken equal to 

the variance of the signal 𝑹 = var(𝒚[𝑘]). Note that, unless the signal is purely noise, the real 

amount of noise should be lower. 

2) The posterior is computed, from which an estimation for the noise is obtained: 𝑹̂ 

3) The noise is defined as the estimated noise 𝑹 = 𝑹̂ 

4) Steps two and three are repeated until the maximum relative difference between the 

variances is less than a user-defined tolerance: max (diag {
|𝑹̂−𝑹|

𝑹
}) < tol  

 

 
Figure 2-9. Fitting the posterior. Iterative process. 
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2.5 Error Metrics 

The numerical assessment is performed by three measures of accuracy. Namely, the Mean Absolute 
Error (𝑀𝐴𝐸), Time Response Assurance Criterion (𝑇𝑅𝐴𝐶), and the relative error. The 𝑀𝐴𝐸 and 𝑇𝑅𝐴𝐶 
are defined below using a reference signal 𝒙 and associated estimation 𝒙̂:  

𝑀𝐴𝐸(𝒙, 𝒙̂) =
1

𝑁
∑|𝑥̂[𝑘] − 𝑥[𝑘]|

𝑘

(Eq. 2-152) 

𝑇𝑅𝐴𝐶(𝒙, 𝒙̂) =
(𝒙̂𝒙𝑇)2

(𝒙̂𝒙̂𝑇)(𝒙𝒙𝑇)
(Eq. 2-153) 

The 𝑀𝐴𝐸 will yield the error on average of the estimated time signal, and the 𝑇𝑅𝐴𝐶 yields a measure 
of correlation of the time signals. A 𝑇𝑅𝐴𝐶 value closer to one indicates strong correlation, and a value 
closer to zero indicates no correlation. 

The relative error will be used as a measure of accuracy for parameter estimations. Considering an 
estimation 𝑥̂ and a reference value 𝑥, the relative error of the variable is defined as: 

𝑒𝑥 =
𝑥̂ − 𝑥

𝑥
(Eq. 2-154) 
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3 Simulation 
3.1 Mechanical Model 

The simulation is defined as a mechanical model of the wind turbine through a finite element model. 
The aim of this simulation is to provide a known system from which the system identification and 
response estimation can be illustrated and validated. The finite element model is built considering a 
set of beam elements (see section 2.1.3). The nacelle, rotor and blades are greatly simplified by 
considering them as an additional mass on top. The foundation is assumed to clamp the tower in the 
bottom. The geometry of the tower varies in height. To capture this geometry, 𝑛 = 100 uniform beam 
elements are used. Each element has a different geometry defined from the average diameter and 
thickness that the element is capturing. Figure 3-1 summarises the properties of the mechanical model 
considered. The modal properties, loads, observations, and responses are defined in the following 
subsections. 

 
Figure 3-1. Mechanical model assumptions summary. Simulation. 

3.1.1 Modal properties 

The definition shown above for the mechanical model does not take into account damping. For 
simplicity, a damping ratio of 𝜁𝑛 = 1[%] is considered for all modes. The damping matrix for the 
system is then defined as: 

𝑪 = 𝑴𝚽𝚪𝚽T𝑴𝑇 (Eq. 3-1) 

𝚪 = diag(2𝜁𝑛𝜔𝑛) (Eq. 3-2) 

The first three mode shapes and frequencies are shown in Figure 3-2. 
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Figure 3-2. Simulation first three modes. Mode shapes and frequencies. 
Damping ratio: 𝜻 = 𝟏% for all modes. Sensor locations are marked with ‘x’. 

3.1.2 Load and response 

A stochastic load is applied on top of the tower and the response is measured at three points: 1/2 of 
the height, 2/3 of the height and at the top. The aim for the response estimation will be to estimate 
the strain at the bottom. The set-up is illustrated in Figure 3-3. 

The simulation is run for 700[s] sampling at 1000[Hz]. The response is obtained using Newmark 𝛽-
method, in particular the average acceleration variant, as it is unconditionally stable [26]. The first 
100[s] are discarded to avoid transient effects from the start of the simulation. Consequently, the 
simulation covers 10[mins.] worth of data. 

 
Figure 3-3. Simulation measurement and response set-up. 

The stochastic load is defined by a realisation of a zero mean gaussian process with a Matern32 
covariance function with a length scale of 𝑙𝑠𝑐 = 0.5[𝑠] and a magnitude of 𝜎 = 10[𝑘𝑁]. The load is 
shown in the time and frequency domain in Figure 3-4. The acceleration response is observed for the 
three locations as shown in Figure 3-3. Figure 3-5 to Figure 3-7 shows the acceleration response for 
the three locations. Finally, Figure 3-8 shows the strain response at the bottom. 
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Figure 3-4. Applied load. Time-History (left) and Power Spectral Density (right). Simulation. 

 

Figure 3-5. Acceleration at L/2. Time-History (left) and Power Spectral Density (right). Simulation. 

 

Figure 3-6. Acceleration at 2L/3. Time-History (left) and Power Spectral Density (right). Simulation. 

 

Figure 3-7. Acceleration at the top. Time-History (left) and Power Spectral Density (right). Simulation. 

 

Figure 3-8. Strain at the bottom. Time History (left) and Power Spectral Density (right). Simulation. 
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3.1.3 Observations 

The observations resample the acceleration response at 𝑓𝑠 = 20[𝐻𝑧] and consider an added noise 
with a signal-to-noise ratio (𝑆𝑁𝑅) of 1: (0.5[%]). The noise for each channel is then defined by a zero 

mean normal distribution with a variance 𝜎𝑅
2 defined through the variance of the acceleration 𝜎𝑢̈

2: 

𝑆𝑁𝑅 =
𝜎𝑢̈
2

𝜎𝑅
2 =

1

0.5[%]
⇒ 𝜎𝑅

2 = 0.5[%]𝜎𝑢̈
2 (Eq. 3-3) 

In consequence, the noise covariance matrix is defined by: 

𝑹 = [

𝜎𝑅
2 (𝑢̈1/2) 0 0

0 𝜎𝑅
2 (𝑢̈2/3) 0

0 0 𝜎𝑅
2 (𝑢̈𝑡𝑜𝑝)

] = [
20.65 0 0
0 49.85 0
0 0 196.21

] × 10−6  [
𝑚

𝑠2
]
2

(Eq. 3-4) 

Figure 3-9 to Figure 3-11 illustrate the observations. Note that the defined noise level is higher than 
the amplitude of the response for frequencies higher than 5[Hz]. 

Note that, as discussed in Section 1.2.3, the quasi-static part cannot be estimated from acceleration 
measurements. Therefore, when using response estimation methods (sections 3.3 and 3.4), a high-
pass Butterworth filter of order 4 with cut-off frequency 𝑓 = 0.1[𝐻𝑧] is applied to the simulated 
measurements (accelerations and strains). 

Further noise levels are used for assessing the response estimation methods (section 3.4). The noise 
levels are defined with 𝑆𝑁𝑅 = {1: (1[%]), 1: (5[%]), 1: (10[%])}. The exact noise levels are 
summarised in Table 3-1. 

Table 3-1. Noise variance definition. Simulation. 

𝑆𝑁𝑅 𝜎𝑅  (𝑢̈1/2) [
𝑚

𝑠2
] 𝜎𝑅  (𝑢̈2/3) [

𝑚

𝑠2
] 𝜎𝑅  (𝑢̈𝑡𝑜𝑝) [

𝑚

𝑠2
] 

1: (0.5[%]) 4.54 × 10−3 7.06 × 10−3 14.01 × 10−3 

1: (1[%]) 6.43 × 10−3 9.98 × 10−3 19.81 × 10−3 

1: (5[%]) 14.37 × 10−3 22.33 × 10−3 44.30 × 10−3 

1: (10[%]) 20.32 × 10−3 31.57 × 10−3 62.64 × 10−3 

 

 

Figure 3-9. Observation at L/2. Time History (left) and Power Spectral Density (right). Simulation. 
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Figure 3-10. Observation at 2L/3. Time History (left) and Power Spectral Density (right). Simulation. 

 

Figure 3-11. Observation at the top. Time History (left) and Power Spectral Density (right). Simulation. 

3.2 System Identification 

3.2.1 SSI-Cov 

The result of implementing SSI-Cov on the simulation is presented through the stabilisation diagram 
shown in Figure 3-12. Model orders 𝑛𝑜 in the range of 10 to 75 were used. From this stabilisation 
diagram, stable columns can be observed close to the first three natural frequencies of the structure: 
0.17[Hz], 1.21[Hz], 3.50[Hz]. These stable columns are sought to be detected through cluster analysis. 

 

Figure 3-12. Stabilisation Diagram. Simulation. 

3.2.2 First Stage: Clearing the stabilisation diagram 

The stabilisation diagram is cleared considering a maximum frequency of 𝑓𝑚𝑎𝑥 = 5[𝐻𝑧] and a 
maximum damping ratio of 𝜁𝑚𝑎𝑥 = 20[%]. The result is shown in Figure 3-13 along with the frequency 
content of the three sensors. From this cleared stabilisation diagram, the stable columns are easier to 
identify. 
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Figure 3-13. Cleared Stabilisation diagram. Simulation. 

3.2.3 Second Stage: Optics 

In consistency with section 2.2.3.2.5, the 𝑀𝑖𝑛𝑂𝑏𝑗 parameter is defined by imposing that the stable 
columns should cover at least half of the diagram. Therefore: 𝛼𝑀𝑖𝑛𝑂𝑏𝑗 = 0.5 → 𝑀𝑖𝑛𝑂𝑏𝑗 = 32. The 

construction of the reachability plot is shown in Figure 3-14. The subsequent definition of the steep 
objects is shown in  Figure 3-15. The clusters are then defined from the set of objects between a 
downwards and an upwards steep object, as shown in Figure 3-16. The resulting clusters are shown 
in the stabilisation diagram in Figure 3-17. Note that these clusters accurately cover the expected 
stable columns. 

 

 

Figure 3-14. Reachability Plot. Simulation. 

 

 

Figure 3-15. Reachability Plot, steep objects. Simulation. 
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Figure 3-16. Reachability Plot, clusters. Simulation.  

 

 

Figure 3-17. Stabilisation Diagram, clusters. Simulation. 

3.2.4 Third Stage: Representative element 

The representative element is defined by the median value. The results are shown in Figure 3-18 for 
the frequencies and damping ratios identified, and Figure 3-19 for the mode shapes. Note that the 
mode shape amplitude and associated phase are normalised to the range [-1,1]. A summary is 
presented in Table 3-2, where the error between the identified properties and the real properties is 
presented. 

 

Figure 3-18. Representative elements: Frequencies and damping ratios. Simulation. 

 

Figure 3-19. Representative elements: Mode shape. Simulation. 
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Table 3-2. System Identification summary. Simulation. 

Mode 𝑓 [𝐻𝑧]  𝑓[𝐻𝑧] 𝑒𝑓[%] 𝜁 [%] 𝜁[%] 𝑒𝜁[%] 𝑀𝐴𝐶[%] 

1 0.171 0.171 −0.266 1.000 1.553 +55.273 100.000 

2 1.214 1.216 +0.179 1.000 0.838 −16.154 99.997 

3 3.495 3.507 +0.353 1.000 1.038 +3.758 99.961 

3.3 GPLFM – Parameter Estimation 

This section focuses on assessing the parameter estimation methods within the GPLFM, as described 
in Section 2.4.5. The two methods, Maximum A Posteriori and Fitting the Prior and Posterior are 
applied to the simulation results. Note that only three modes are considered for the mechanical model 
used in GPLFM. 

3.3.1 Maximum A Posteriori 

The drawbacks of this method have been discussed in 2.4.5.1.1. To minimise these drawbacks, only 
the stochastic hyperparameters 𝜎 and 𝑙𝑠𝑐  are sought to be defined. The noise levels are taken as the 
exact values exposed in 3.1.3. Therefore, the noise matrix 𝑹 is well defined. 

The resulting surface for the energy function is shown in Figure 3-20. From the provided zoomed 
version of the energy function, the minimum might become clearer, and it may be found for the exact 
values of 𝜎 and 𝑙𝑠𝑐. Exact values for the minimum are not provided however, as the analysis presented 
through Figure 3-20 yields enough information to discuss and compare with the other parameter 
estimation method: Fitting of the prior and posterior. 

  

  

Figure 3-20. Energy function surface. Simulation. 

3.3.2 Fitting of the prior and posterior 

As discussed in 2.4.4.2, fitting the prior will yield the hyperparameters that will define the stochastic 
description of the load: 𝜎 and 𝑙𝑠𝑐. The way that these will be defined is by ensuring that the resulting 
prior for the accelerations is a good match with the distribution obtained from the observations. The 
first step is defining the log-normal distributions for each measurement which will yield the likelihood 
that the prior is a good match with the observations. The log-normal distributions defined for each 
measurement are shown in Figure 3-21. 
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Figure 3-21. Log-normal distributions definition from measurement variance. Simulation. 

The joint distribution surface is shown in Figure 3-22. The peak is clear and the resulting values and 
relative error are summarised in Table 3-3. The prior fit is illustrated in Figure 3-23 to Figure 3-25. 

 

Figure 3-22. Joint distribution. 

The posterior defines the noise levels in 𝑹. The iterative process is illustrated in Figure 3-26. A 
tolerance of 1% is chosen. The results are summarised in Table 3-3. The posterior fit is illustrated in 
Figure 3-27 to Figure 3-29 by showing the distribution of the difference between the acceleration 
estimation and measurement: 𝑟 = 𝑦̂ − 𝑦. 

 

Figure 3-23. Prior fit. Acceleration at L/2. 

 

Figure 3-24. Prior fit. Acceleration at 2L/3. 
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Figure 3-25. Prior fit. Acceleration at top. 

 

Figure 3-26. Posterior fit. Iterations. Tolerance: 1[%]. 

 

 

Figure 3-27. Posterior fit. Estimated noise on acceleration at L/2. 

 

Figure 3-28. Posterior fit. Estimated noise on acceleration at 2L/3. 
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Figure 3-29. Posterior fit. Estimated noise on acceleration at top. 

Table 3-3. Parameter estimation: Fitting the prior and posterior. 

Parameter 
Exact 

𝑥 

Estimation 

𝑥̂ 
Relative error 
𝑒𝑥  [%]  

𝜎 [𝑁] 10 000 9 326 −6.74 

𝑙𝑠𝑐  [𝑠] 0.500 0.435 −12.92 

𝜎𝑅  (𝑢̈1/2) [
𝑚

𝑠2
] 4.54 × 10−3 4.38 × 10−3 −3.56 

𝜎𝑅  (𝑢̈2/3) [
𝑚

𝑠2
] 7.06 × 10−3 6.91 × 10−3 −2.12 

𝜎𝑅  (𝑢̈𝑡𝑜𝑝) [
𝑚

𝑠2
] 14.01 × 10−3 13.68 × 10−3 −2.33 

 

3.4 Response Estimation 

The response estimation methods are compared in this section. Several noise levels are considered in 
the analysis, as introduced in 3.1.3. 

3.4.1 MD&E 

The methodology described in Section 2.3 is employed. Two modes are considered. The same filter 
described in section 3.1.3 Is applied after integration in the frequency domain. The estimated strain is 
shown in Figure 3-30 for the case with a 𝑆𝑁𝑅 of 1: (0.5[%]). The 𝑀𝐴𝐸 and 𝑇𝑅𝐴𝐶 (see section 2.5) 
are summarised in Table 3-6 for all noise cases. 

 

Figure 3-30. Strain estimation. MD&E. Simulation. 
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3.4.2 GPLFM 

The same considerations as defined in 3.3 are employed. The parameter estimation results are 
summarised in Table 3-4 for all noise levels, and in Table 3-5 for the associated relative errors. 
Subsequently, Figure 3-31 shows the strain estimation for the case with a 𝑆𝑁𝑅 of 1: (0.5[%]). The 
𝑀𝐴𝐸 and 𝑇𝑅𝐴𝐶 (see section 1.4) are summarised in Table 3-6 for all noise cases. 

Table 3-4. Parameter estimation. All noise levels. Simulation. 

𝑆𝑁𝑅 𝜎̂ [𝑁] 𝑙𝑠𝑐  [𝑠] 𝜎̂𝑅  (𝑢̈1/2) [
𝑚

𝑠2
] 𝜎̂𝑅 (𝑢̈2/3) [

𝑚

𝑠2
] 𝜎̂𝑅  (𝑢̈𝑡𝑜𝑝) [

𝑚

𝑠2
] 

1: (0.5[%]) 9326 0.435 4.38 × 10−3 6.91 × 10−3 13.68 × 10−3 
1: (1[%]) 9345 0.435 5.90 × 10−3 9.72 × 10−3 19.32 × 10−3 
1: (5[%]) 9547 0.436 13.35 × 10−3 21.41 × 10−3 43.36 × 10−3 
1: (10[%]) 9761 0.434 18.90 × 10−3 30.51 × 10−3 60.59 × 10−3 

 

Table 3-5. Parameter estimation. All noise levels. Relative error. Simulation. 

𝑆𝑁𝑅 𝑒𝜎  [%] 𝑒𝑙𝑠𝑐  [%] 𝑒𝜎(𝑢̈1/2) [%] 𝑒𝜎(𝑢̈2/3) [%] 𝑒𝜎(𝑢̈𝑡𝑜𝑝) [%] 

1: (0.5[%]) −6.74 −12.92 −3.56 −2.12 −2.33 

1: (1[%]) −6.55 −13.00 −8.16 −2.67 −2.46 

1: (5[%]) −4.53 −12.81 −7.06 −4.12 −2.11 

1: (10[%]) −2.39 −13.29 −7.01 −3.37 −3.28 

 

 

Figure 3-31. Strain estimation. GPLFM. Simulation. 

3.4.3 Summary of results 

Table 3-6 shows the summary of the error metrics obtained using both methods. 

Table 3-6. Error Metrics. Strain estimation. Simulation. 

 𝐺𝑃𝐿𝐹𝑀 𝑀𝐷&𝐸 

𝑆𝑁𝑅 𝑀𝐴𝐸(𝜀, 𝜀̂) [
𝑚

𝑚
] 𝑇𝑅𝐴𝐶(𝜀, 𝜀̂) [%] 𝑀𝐴𝐸(𝜀, 𝜀̂) [

𝑚

𝑚
] 𝑇𝑅𝐴𝐶(𝜀, 𝜀̂) [%] 

1: (0.5[%]) 0.503 × 10−6 99.66 1.575 × 10−6 98.56 

1: (1[%]) 0.636 × 10−6 99.62 1.765 × 10−6 98.49 

1: (5[%]) 0.856 × 10−6 99.76 2.612 × 10−6 98.43 

1: (10[%]) 1.111 × 10−6 99.76 3.943 × 10−6 97.72 
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3.5 Discussion 

The system identification results, summarised in Table 3-2, validates and illustrates the methodology 
employed. Both frequencies and mode shapes are accurately obtained even for the third mode, 
characterised by a high amount of noise (see Figure 3-5 to Figure 3-7). The estimation for the damping 
ratio is observed to have noticeably lower accuracy, which is a well-known issue for system 
identification methods. 

The parameter estimation results presented in section 3.3 illustrates additional drawbacks than the 
ones exposed in section 2.4.5.1.1 for the Maximum A Posteriori method. First, the computational cost 
of calculating the energy function was observed to be considerably higher in comparison with the 
alternative method (Fitting the prior and posterior). Second, the surface obtained for the energy 
function shown in Figure 3-20 illustrates the difficulty to distinguish the minima, this translates into 
the need to realise a robust optimisation process which adds to the computational cost of using this 
procedure. It is highlighted that this methodology is able to provide a solution for parameter 
estimation, the problem lies in the complexity associated with finding the solution. 

The Fitting of the Prior and Posterior method for parameter estimation has been illustrated and 
validated through the simulation results in section 3.3.2 and section 3.4.2. Reasonable results were 
obtained for all noise levels considered for the simulation, as summarised in Table 3-5. Note that even 
though the results obtained are not exact, they are shown to be accurate enough to yield good results 
for response estimation (section 3.4). 

As a consequence of the results obtained for parameter estimation, only the Fitting of the Prior and 
Posterior method is considered for the case study presented in section 4. 

Finally, the response estimation methods are compared numerically, with the results summarised in 
Table 3-6. Both methodologies yield good results, but the obtained results are observed to be 
improved when using the GPLFM method for all cases. 
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4 Case Study: Onshore Wind 
Turbine 

4.1 Measurement campaign 

4.1.1 Structure description and sensor location 

The structure under analysis is a three bladed horizontal axis wind turbine. The sensor locations and 
local axes are illustrated in Figure 4-1. All sensors are mounted on the inner surface of the tower. The 
acceleration sensors are bidirectional, and as shown in Figure 4-1, the local 𝑥 direction will include a 
torsional component. Four unidirectional strain gauges are mounted at the bottom to obtain bending 
strains. All sensors measure at a sampling frequency of 20[Hz] (Δ𝑡 = 0.05[𝑠]). 

The wind turbine is equipped with a Supervisory Control And Data Acquisition (SCADA) system. This 
system provides 10[mins.] average values of different operational conditions. The operational 
conditions are exposed in Section 4.1.2. 

The records considered are from 09/12/2020 to 30/01/2021. Both accelerations and strain 
measurements are divided into 10[mins.] records for analysis. 

 
Figure 4-1. Sensor location and local axes. 

Exact sensor location relative to the height 𝑳 of the tower. 

 



 

45 

 

4.1.2 Operational Conditions: SCADA data 

The following plots present the operational conditions associated to the available acceleration and 
strain measurements. Specifically, 10[min.] average values of: wind speed at hub height, rotor speed, 
output power, seconds in operation counter, wind direction, yaw angle and blade pitch (for each 
blade).  

 

Figure 4-2. Wind Speed. 

 

Figure 4-3. Rotor Speed. 

 

 

Figure 4-4. Output Power. 

 

Figure 4-5. Seconds in operation counter. 
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Figure 4-6. Wind Direction. 

 

Figure 4-7. Yaw angle. 

 

Figure 4-8. Blade pitch. Three blades: A, B, C. 

4.1.3 Record Selection 

Records are selected so as to cover the design situations for fatigue as defined in [42]. The design 
situations depend upon the cut-in and cut-out wind speed. For the wind turbine in analysis the cut-in 

wind speed is 𝑉𝑖𝑛 = 3 [
𝑚

𝑠
] and the cut-out wind speed 𝑉𝑜𝑢𝑡 = 25 [

𝑚

𝑠
]. Table 4-1 summarises the 

specific records considered for analysis. 

Table 4-1. Selected Records. 

ID Design Situation Record ID Design Situation Record 

OP1 Power Production (v=4 [m/s]) 2020-12-12 07:10:00 SU2 Start-up 2021-01-19 05:30:00 

OP2 Power Production (v=6 [m/s]) 2021-01-15 21:40:00 SU3 Start-up 2021-01-14 16:20:00 

OP3 Power Production (v=8 [m/s]) 2021-01-20 10:20:00 SD1 Normal Shut-Down 2021-01-16 08:50:00 

OP4 Power Production (v=10 [m/s]) 2020-12-22 06:50:00 SD2 Normal Shut-Down 2021-01-16 19:00:00 

OP5 Power Production (v=12 [m/s]) 2021-01-21 10:40:00 SD3 Normal Shut-Down 2021-01-17 00:10:00 

OP6 Power Production (v=14 [m/s]) 2021-01-24 13:00:00 PK1 Idling 2020-12-27 19:10:00 

OP7 Power Production (v=16 [m/s]) 2020-12-29 07:30:00 PK2 Idling 2020-12-20 11:30:00 

SU1 Start-up 2021-01-19 10:30:00 PK3 Idling 2021-01-01 18:50:00 
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4.2 System Identification and Mechanical Model 

4.2.1 System Identification 

The procedure defined in section 2.2, and illustrated in section 3.2, is applied for the record PK1. Note 
that idling conditions are used for identification in order to best comply with the white gaussian noise 
assumptions present in SSI-Cov, as operational conditions will always have a harmonic load due to the 
tower shadow effect (see 1.2.1). 

Figure 4-9 and Figure 4-10 shows the acceleration records and their frequency content. No pre-
processing is applied. Subsequently, Figure 4-11 and Figure 4-12 shows the identification and 
clustering process for the FA and SS direction. The transformation into the FA and SS direction is 
realised taking into account a yaw angle of 158.3[°] with respect to the north (see Figure 4-1). The yaw 
angle is provided from the operational conditions (see Figure 4-7).  

Model orders 𝑛𝑜 in the range of 10 to 75 were used. The stabilisation diagram is cleared considering 
a maximum frequency of 𝑓𝑚𝑎𝑥 = 5[𝐻𝑧] and a maximum damping ratio of 𝜁𝑚𝑎𝑥 = 20[%]. The 
clustering process is applied using clusters that appear consistently at least for a third of the 

stabilisation diagram: 𝛼𝑀𝑖𝑛𝑂𝑏𝑗 =
1

3
→ 𝑀𝑖𝑛𝑂𝑏𝑗 = 21. 

 

Figure 4-9. Acceleration measurements. FA direction. Time-History (left) and Power Spectral Density (right). 

 

Figure 4-10. Acceleration measurements. SS direction. Time-History (left) and Power Spectral Density (right). 

 

Figure 4-11. Stabilisation diagram, clusters. FA direction. 
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Figure 4-12. Stabilisation diagram, cluster. SS direction. 

4.2.2 Mechanical Model 

The mechanical model is initially considered to be the same model described in section 3.1. The only 
difference is the use of 𝑛 = 300 elements to ensure that the variable geometry of the tower is well 
captured. Figure 4-13 shows the first three modes, along with the sensor locations. Note that the 
location of the load on the top of the tower (see Figure 3-3) is part of the mechanical model when 
applying the GPLFM method. 

The frequencies and mode shapes are compared with the identification results in Table 4-2 and Table 
4-3 for FA and SS directions, respectively. The identified modes are highlighted in the tables. Note that 
the identification of the third mode is not conclusive. This is discussed in section 4.5. Finally, taking 
into account the high error that can be expected in the damping estimation, as illustrated in section 
3.2, a damping ratio of 0.75[%] is arbitrarily used for all modes.  

 

Figure 4-13. Mechanical model first three modes. Mode shapes and frequencies. 
Damping ratio: 𝜻 = 𝟎. 𝟕𝟓% for all modes. Sensor locations are marked with ‘x’. 

 

Table 4-2. System Identification vs Mechanical Model. FA direction. 

𝑓[𝐻𝑧] 𝜁[%] 
𝑀𝐴𝐶 [%]  

(𝒇𝟏 = 𝟎. 𝟏𝟕[𝐻𝑧]) 
𝑀𝐴𝐶 [%] 

(𝒇𝟐 = 𝟏. 𝟐𝟏[𝐻𝑧]) 
𝑀𝐴𝐶 [%] 

(𝒇𝟑 = 𝟑. 𝟓𝟎[𝐻𝑧]) 

𝟎. 𝟏𝟕 𝟎. 𝟑𝟔 𝟗𝟗. 𝟗𝟕 21.30 35.82 

0.80 1.43 45.59 91.93 70.31 

1.07 2.65 69.20 75.52 61.64 

𝟏. 𝟐𝟑 𝟏. 𝟎𝟒 16.68 𝟗𝟗. 𝟕𝟒 51.15 

2.53 0.41 48.84 3.48 58.02 

3.14 0.59 69.69 38.51 86.65 

𝟑. 𝟐𝟏 𝟎. 𝟖𝟖 41.69 53.83 𝟗𝟗. 𝟓𝟗 

𝟑. 𝟓𝟕 𝟏. 𝟔𝟓 29.02 71.42 𝟗𝟔. 𝟕𝟔 

4.58 0.68 4.94 94.26 40.99 
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Table 4-3. System Identification vs Mechanical Model. SS direction. 

𝑓[𝐻𝑧] 𝜁[%] 
𝑀𝐴𝐶 [%]  

(𝒇𝟏 = 𝟎. 𝟏𝟕[𝐻𝑧]) 
𝑀𝐴𝐶 [%] 

(𝒇𝟐 = 𝟏. 𝟐𝟏[𝐻𝑧]) 
𝑀𝐴𝐶 [%] 

(𝒇𝟑 = 𝟑. 𝟓𝟎[𝐻𝑧]) 

𝟎. 𝟏𝟕 𝟏. 𝟏𝟗 𝟗𝟗. 𝟗𝟐 22.45 37.51 

𝟏. 𝟏𝟕 𝟎. 𝟔𝟎 22.63 𝟗𝟗. 𝟗𝟏 56.62 

1.76 2.57 85.89 0.88 18.05 

2.19 0.45 99.98 20.60 37.00 

2.55 1.56 57.38 5.11 58.99 

𝟑. 𝟏𝟖 𝟎. 𝟕𝟗 42.94 42.78 𝟗𝟕. 𝟖𝟐 

𝟑. 𝟐𝟖 𝟎. 𝟒𝟔 51.23 52.48 𝟗𝟕. 𝟒𝟖 

𝟑. 𝟔𝟓 𝟎. 𝟔𝟏 30.58 77.91 𝟗𝟒. 𝟎𝟗 

4.3 Response Estimation 

The results of applying the two response estimation methods to the selected records (see Table 4-1) 
is presented in this section. The process is illustrated by record OP6 in both directions. A high-pass 
Butterworth filter of order 4 with cut-off frequency 𝑓 = 0.1[𝐻𝑧] is applied to the simulated 
measurements (accelerations and strains), as quasi-static information cannot be retrieved from 
acceleration measurements. Figure 4-14 to Figure 4-21 shows the unfiltered and filtered records, 
accelerations, and strains, for both directions. 

 

 

Figure 4-14. Acceleration records OP6-x. Unfiltered. Time-History (left) and Power Spectral Density (right). 

 

Figure 4-15. Strain record OP6-x. Unfiltered. Time-History (left) and Power Spectral Density (right). 
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Figure 4-16. Acceleration records OP6-x. Filtered. Time-History (left) and Power Spectral Density (right). 

 

 

Figure 4-17. Strain record OP6-x. Filtered. Time-History (left) and Power Spectral Density (right). 

 

Figure 4-18. Acceleration records OP6-y. Unfiltered. Time-History (left) and Power Spectral Density (right). 

 

Figure 4-19. Strain record OP6-y. Unfiltered. Time-History (left) and Power Spectral Density (right). 
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Figure 4-20. Acceleration records OP6-y. Filtered. Time-History (left) and Power Spectral Density (right). 

 

Figure 4-21. Strain record OP6-y. Filtered. Time-History (left) and Power Spectral Density (right). 

4.3.1 GPLFM 

The GPLFM considers three modes and, as a consequence of the simulation results discussed in section 
3.5, only the Fitting of the Prior and Posterior method is used for parameter estimation.  

The fitting of the prior is applied considering an upper bound for 𝑙𝑠𝑐. The upper bound is defined by 
imposing that the expected frequency content of the load should be higher than the quasi-static limit. 
In consistency with section 2.4.2.3, this translates into imposing that the relevant frequencies be 

higher than the quasi-static frequency of 𝑓 = 0.1[𝐻𝑧]: 
1

5𝑙𝑠𝑐
> 0.1[𝐻𝑧] ⇒ 𝑙𝑠𝑐 < 2[𝑠]. An upper bound 

is considered for 𝜎 from a preliminary analysis of high wind operational conditions: 𝜎 < 5 × 104 [𝑁]. 
The maximisation of the joint distribution is computed using python built-in optimisation tools with 
bound constraints. The initial guess is defined by first computing the surface and finding the maximum. 
The process is illustrated by record OP6. The joint distribution surface is shown in Figure 4-22, for both 
directions, and the prior fit is shown in Figure 4-26 to Figure 4-28 for each acceleration measurement. 
A summary of the parameter estimation for all records analysed is shown in Table 4-4 and Table 4-5 
for local directions x and y respectively. Note that the prior is not a perfect match. This is discussed in 
section 4.5. 

The fitting of the posterior considers a tolerance of 1[%] (see section 2.4.5.2.2). This method was 
observed to diverge in approximately 30[%] of the records. In order to ensure convergence, the 
iteration is stopped if the relative difference (see section 2.4.5.2.2) stops decreasing. Figure 4-29 and 
Figure 4-30 shows the noise levels found for each iteration, for local direction x and y respectively. 
Note that direction x is one of the records for which the iteration was stopped. It is observed that if 
the iteration is not stopped, the noise level defined for the sensor in the top will keep decreasing, and 
the noise levels on the sensors at 2L/3 and L/2 will keep increasing. A discussion regarding this stage 
can be found in section 4.5. Subsequently, the estimated noise is compared with the defined noise in 
Figure 4-31 to Figure 4-36 for each sensor and each direction. It is highlighted that, in contrast to the 

results shown in section 3.3.2, the estimated distribution 𝑹̂ is compared to the defined distribution 
for the estimation 𝑹. The results shown in section 3.3.2 are compared to the real values defined for 
the simulation. A summary of the parameter estimation for all records analysed is shown in Table 4-4 
and Table 4-5 for local directions x and y respectively. 
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Figure 4-37 and Figure 4-38 shows the strain estimation obtained for the record OP6, for each 
direction. The 𝑀𝐴𝐸 and 𝑇𝑅𝐴𝐶 are summarised in Table 4-6 and Table 4-7 for all analysed records. 

  

Figure 4-22. Joint distribution surface. Record OP6. 
Local x direction (left) and Local y direction (right). 

 

Figure 4-23. Prior fit. Acceleration at L/2. Record OP6-x. 

 

 

Figure 4-24. Prior fit. Acceleration at 2L/3. Record OP6-x. 

 

 

Figure 4-25. Prior fit. Acceleration at top. Record OP6-x. 
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Figure 4-26. Prior fit. Acceleration at L/2. Record OP6-y. 

 

Figure 4-27. Prior fit. Acceleration at 2L/3. Record OP6-y. 

 

 

Figure 4-28. Prior fit. Acceleration at top. Record OP6-y. 

 

Figure 4-29. Posterior fit. Iterations. Record OP6-x. 
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Figure 4-30. Posterior fit. Iterations. Record OP6-y. 

 

Figure 4-31. Posterior fit. Acceleration at L/2. Record OP6-x. 

 

Figure 4-32. Posterior fit. Acceleration at 2L/4. Record OP6-x. 

 

Figure 4-33. Posterior fit. Acceleration at top. Record OP6-x. 

 

Figure 4-34. Posterior fit. Acceleration at L/2. Record OP6-y. 
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Figure 4-35. Posterior fit. Acceleration at 2L/3. Record OP6-y. 

 

Figure 4-36. Posterior fit. Acceleration at top. Record OP6-y. 

Table 4-4. Parameter estimation. All records. Local direction x. 

ID 𝜎[𝑁] 𝑙𝑠𝑐[𝑠] 
𝜎̂𝑅 (𝑢̈1/2) 

× 10−3 [
𝑚

𝑠2
] 

𝜎̂𝑅  (𝑢̈2/3) 

× 10−3 [
𝑚

𝑠2
] 

𝜎̂𝑅 (𝑢̈𝑡𝑜𝑝) 

× 10−3 [
𝑚

𝑠2
] 

tol[%] 

OP1-x 3961 0.046 17.30 12.53 16.53 0.67 

OP2-x 2049 0.045 13.40 11.08 7.06 1.00 

OP3-x 10319 0.048 43.42 42.34 40.15 0.88 

OP4-x 13179 0.048 70.85 70.99 38.14 0.86 

OP5-x 14404 0.045 69.02 73.30 46.19 5.48 

OP6-x 20845 0.050 163.07 158.74 42.04 19.30 

OP7-x 15928 0.050 64.24 69.21 66.77 0.90 

SU1-x 5952 0.052 21.12 21.52 25.09 0.79 

SU2-x 7008 0.048 28.55 29.60 27.84 0.93 

SU3-x 866 0.034 6.56 7.93 1.63 46.64 

SD1-x 2092 0.268 10.43 13.91 8.22 0.91 

SD2-x 3849 0.053 14.65 13.74 13.89 0.97 

SD3-x 1742 0.056 10.31 10.90 3.08 30.01 

PK1-x 2556 0.318 6.41 11.35 4.95 1.00 

PK2-x 462 0.300 3.77 3.59 2.85 0.72 

PK3-x 368 0.050 3.59 3.69 1.92 0.92 
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Table 4-5. Parameter estimation. All records. Local direction y. 

ID 𝜎[𝑁] 𝑙𝑠𝑐[𝑠] 
𝜎̂𝑅 (𝑢̈1/2) 

× 10−3 [
𝑚

𝑠2
] 

𝜎̂𝑅  (𝑢̈2/3) 

× 10−3 [
𝑚

𝑠2
] 

𝜎̂𝑅 (𝑢̈𝑡𝑜𝑝) 

× 10−3 [
𝑚

𝑠2
] 

tol[%] 

OP1-y 4993 0.046 28.39 27.40 14.41 0.97 

OP2-y 2592 0.045 16.73 17.93 3.96 0.93 

OP3-y 10859 0.046 39.35 34.90 48.74 0.66 

OP4-y 9557 0.050 43.16 42.83 26.57 3.36 

OP5-y 11911 0.051 57.96 58.52 33.86 3.96 

OP6-y 11983 0.061 35.52 36.30 42.32 0.73 

OP7-y 14404 0.050 79.46 78.27 28.33 6.57 

SU1-y 5532 0.052 20.71 20.22 19.36 0.93 

SU2-y 6004 0.051 24.75 24.92 13.71 0.24 

SU3-y 498 0.194 3.99 5.09 3.92 0.80 

SD1-y 2848 0.021 9.13 9.52 1.02 87.99 

SD2-y 3538 0.056 11.98 10.29 11.27 0.76 

SD3-y 1530 0.069 9.71 10.42 1.57 2.21 

PK1-y 1895 0.285 7.07 9.43 3.22 0.77 

PK2-y 354 0.220 3.47 3.65 2.68 0.46 

PK3-y 296 0.077 3.58 3.15 2.20 0.88 

 

 

Figure 4-37. Strain estimation. Record OP6-x. GPLFM. 

 

Figure 4-38. Strain estimation. Record OP6-y. GPLFM. 

4.3.2 MD&E 

Only two modes are used for the MD&E method. The same filter described in section 4.3 is applied 
after integration in the frequency domain. Figure 4-39 and Figure 4-40 shows the results for record 
OP6 in both directions. The 𝑀𝐴𝐸 and 𝑇𝑅𝐴𝐶 are summarised in Table 4-6 and Table 4-7 for all analysed 
records.  
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Figure 4-39. Strain estimation. Record OP6-x. MD&E. 

 

Figure 4-40. Strain estimation. Record OP6-y. MD&E. 

4.3.3 Summary of results 

The error metrics are summarised in Table 4-6 and Table 4-7 for both response estimation methods 
and all records under analysis, local directions x and y respectively. Note that, as illustrated in Figure 
4-38 and Figure 4-40, the estimation of both methods in the initial and final seconds of the records is 
inaccurate, with a more noticeable error for MD&E. Therefore, the first and last 100[s] are disregarded 
so as to provide a fair comparison between the methodologies employed. 

Table 4-6. Error Metrics. All records. Local direction x. 

 𝐺𝑃𝐿𝐹𝑀 𝑀𝐷&𝐸 

ID 
𝑀𝐴𝐸(𝜀, 𝜀̂) 

× 10−6[𝑚/𝑚] 
𝑇𝑅𝐴𝐶(𝜀, 𝜀̂) 

[%] 
𝑀𝐴𝐸(𝜀, 𝜀̂) 

× 10−6[𝑚/𝑚] 
𝑇𝑅𝐴𝐶(𝜀, 𝜀̂) 

[%] 

OP1-x 0.45 91.22 2.89 33.61 

OP2-x 0.55 81.28 1.04 71.59 

OP3-x 1.34 95.69 2.65 93.15 

OP4-x 2.14 94.38 3.69 94.56 

OP5-x 2.40 95.80 4.15 95.48 

OP6-x 4.72 86.08 5.79 91.88 

OP7-x 2.14 96.12 4.13 93.65 

SU1-x 0.87 99.14 1.85 96.55 

SU2-x 0.78 96.01 1.94 92.93 

SU3-x 0.19 67.44 0.91 23.33 

SD1-x 1.10 99.67 2.48 96.79 

SD2-x 0.66 94.91 2.33 73.63 

SD3-x 0.31 98.97 1.06 91.80 

PK1-x 1.27 99.80 3.32 98.80 

PK2-x 0.27 99.11 0.94 72.71 

PK3-x 0.09 85.42 0.91 14.21 
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Table 4-7. Error metrics. All records. Local direction y. 

 𝐺𝑃𝐿𝐹𝑀 𝑀𝐷&𝐸 

ID 
𝑀𝐴𝐸(𝜀, 𝜀̂) 

× 10−6[𝑚/𝑚] 
𝑇𝑅𝐴𝐶(𝜀, 𝜀̂) 

[%] 
𝑀𝐴𝐸(𝜀, 𝜀̂) 

× 10−6[𝑚/𝑚] 
𝑇𝑅𝐴𝐶(𝜀, 𝜀̂) 

[%] 

OP1-y 1.05 83.88 1.62 81.33 

OP2-y 0.93 73.60 1.78 57.44 

OP3-y 1.33 93.34 3.99 76.54 

OP4-y 1.60 94.55 3.49 87.19 

OP5-y 2.09 94.58 3.98 93.37 

OP6-y 2.87 99.69 6.34 98.11 

OP7-y 2.52 90.93 3.74 90.82 

SU1-y 0.79 98.72 1.87 93.09 

SU2-y 0.84 96.83 1.93 92.11 

SU3-y 0.26 93.67 1.05 47.86 

SD1-y 0.61 99.18 2.47 83.80 

SD2-y 0.78 97.77 2.92 74.53 

SD3-y 0.48 97.45 1.24 81.80 

PK1-y 1.11 99.60 1.91 97.59 

PK2-y 0.23 95.51 1.03 50.29 

PK3-y 0.13 76.02 1.02 12.29 

 

4.4 Fatigue Load Estimation 

The underlying aim of this work is to be able to predict the damage that the tower has suffered in 
terms of fatigue. Damage Equivalent Loads are often used to do so. The damage equivalent load, in 
terms of stresses, is defined by (see e.g., [43]): 

Δ𝜎𝑒𝑞 = √
∑ Δ𝜎𝑖

𝑚𝑁𝑖𝑖

𝑁𝑟𝑒𝑓

𝑚

 

With Δ𝜎𝑖 stress ranges and 𝑁𝑖 the corresponding number of cycles. 𝑚 is a material constant referring 
to the idealised straight slope observed on a double-logarithmic scaled SN-curve. Δ𝜎𝑒𝑞  is the damage 

equivalent load, and 𝑁𝑟𝑒𝑓 the number of cycles of the equivalent load. In words, the damage 

generated by the set of stress ranges Δ𝜎𝑖  with associated stress cycles 𝑁𝑖 would be the same to the 
damage generated by the equivalent stress range Δ𝜎𝑒𝑞  with associated stress cycle 𝑁𝑟𝑒𝑓. This under 

the assumption of linear accumulation of damage (Palmgren-Miner rule, [43]).  

The stress ranges and corresponding number of cycles are determined using the rainflow counting 
method on the analysed records (omitting the initial and last 100[s] from the analysis, as discussed in 
4.3.3). The rainflow counting method is applied to each record, and subsequently combined to 
generate the stress ranges and corresponding number of cycles for all the records analysed. The result 
is shown in Figure 4-41. Note that stresses are computed by multiplying the obtained strains with the 
assumed modulus of elasticity 𝐸 = 200000[𝑀𝑃𝑎]. Consequently, the damage equivalent load, and 
relative errors, are presented in Table 4-8. The damage equivalent load is detailed for each record in 
Table 4-9 and Table 4-10. Note that the material constant is set as 𝑚 = 4 and the reference number 
of cycles is set as 𝑁𝑟𝑒𝑓 = 10

7, as per industry standard. 



 

59 

 

 

Figure 4-41. Stress ranges and number of cycles. Rainflow counting method. 

Table 4-8. Damage Equivalent Load. All records summary. 

 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐺𝑃𝐿𝐹𝑀 𝑀𝐷&𝐸 

Direction Δ𝜎𝑒𝑞[𝑀𝑃𝑎] Δ𝜎̂𝑒𝑞[𝑀𝑃𝑎] 𝑒Δ𝜎̂𝑒𝑞[%] Δ𝜎̂𝑒𝑞[𝑀𝑃𝑎] 𝑒Δ𝜎̂𝑒𝑞[%] 

𝑥 0.860 0.820 −4.71 1.072 +24.59 

𝑦 0.733 0.801 +9.36 0.961 +31.18 

√𝑥2 + 𝑦2 1.130 1.146 +1.45 1.439 +27.40 

 

Table 4-9. Damage Equivalent Load. All records. Local direction x. 

 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐺𝑃𝐿𝐹𝑀 𝑀𝐷&𝐸 

ID Δ𝜎𝑒𝑞[𝑀𝑃𝑎] Δ𝜎̂𝑒𝑞[𝑀𝑃𝑎] 𝑒Δ𝜎̂𝑒𝑞[%] Δ𝜎̂𝑒𝑞[𝑀𝑃𝑎] 𝑒Δ𝜎̂𝑒𝑞[%] 

OP1-x 0.090 0.084 −6.35 0.175 +94.64 

OP2-x 0.064 0.061 −4.87 0.090 +40.47 

OP3-x 0.326 0.328 +0.52 0.404 +24.09 

OP4-x 0.478 0.460 −3.74 0.585 +22.44 

OP5-x 0.548 0.551 +0.63 0.684 +24.92 

OP6-x 0.739 0.666 −9.86 0.916 +24.04 

OP7-x 0.530 0.532 +0.50 0.662 +25.04 

SU1-x 0.208 0.230 +10.81 0.270 +29.97 

SU2-x 0.253 0.247 −2.53 0.336 +32.86 

SU3-x 0.031 0.019 −40.22 0.052 +67.39 

SD1-x 0.231 0.266 +14.86 0.307 +32.63 

SD2-x 0.168 0.160 −4.73 0.225 +33.40 

SD3-x 0.086 0.097 +12.22 0.121 +39.78 

PK1-x 0.299 0.343 +14.77 0.411 +37.63 

PK2-x 0.046 0.054 +16.97 0.070 +51.40 

PK3-x 0.008 0.010 +14.81 0.044 +430.15 
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Table 4-10. Damage Equivalent Load. All records. Local direction y. 

 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐺𝑃𝐿𝐹𝑀 𝑀𝐷&𝐸 

ID Δ𝜎𝑒𝑞[𝑀𝑃𝑎] Δ𝜎̂𝑒𝑞[𝑀𝑃𝑎] 𝑒Δ𝜎̂𝑒𝑞[%] Δ𝜎̂𝑒𝑞[𝑀𝑃𝑎] 𝑒Δ𝜎̂𝑒𝑞[%] 

OP1-y 0.154 0.109 −29.26 0.201 +30.29 

OP2-y 0.088 0.083 −6.02 0.139 +58.03 

OP3-y 0.323 0.290 −9.92 0.412 +27.63 

OP4-y 0.344 0.349 +1.35 0.428 +24.37 

OP5-y 0.436 0.438 +0.51 0.575 +31.92 

OP6-y 0.644 0.746 +15.90 0.865 +34.36 

OP7-y 0.467 0.425 −9.09 0.560 +19.90 

SU1-y 0.178 0.195 +9.65 0.228 +28.11 

SU2-y 0.218 0.231 +5.98 0.268 +22.81 

SU3-y 0.037 0.042 +16.22 0.063 +73.39 

SD1-y 0.134 0.151 +12.08 0.213 +58.37 

SD2-y 0.189 0.206 +9.00 0.261 +37.92 

SD3-y 0.073 0.086 +17.89 0.106 +44.57 

PK1-y 0.203 0.239 +17.66 0.264 +30.15 

PK2-y 0.028 0.034 +20.45 0.060 +112.20 

PK3-y 0.010 0.012 +18.64 0.047 +376.92 

 

4.5 Discussion 

The mechanical model is deemed to be a reasonable representation of the structure as the three 
bending modes of the tower are observed from identification (see Table 4-2 and Table 4-3). Note that 
the available information is insufficient to conclude exactly which identified mode represents the third 
mode, as there are at least two reasonable candidates present in the analysis. However, the relevance 
of the system identification in the context of this work is to validate the mechanical model. Given that 
at least one of them should be associated to the third mode, and noticing that they are reasonably 
accurate, the ignorance regarding exactly which one represents the third mode is not a problem for 
the subsequent analysis. Furthermore, note that the strain is related to lower frequencies (as it is 
related to displacements), therefore the accuracy of the first and second mode are more relevant than 
the third mode. 

It is highlighted that this model is not a perfect representation of the real structure, and can be 
improved. However, given that the same model is used for both response estimation methods, it is 
considered to be accurate enough to allow a reasonable comparison between them. Many 
improvements may be considered for future works. Some of them are: the inclusion of aerodynamic 
damping effect, the addition of soil stiffness, and the addition of the mass moment of inertia on top 
of the structure. It is highlighted that several modes were identified which are not captured by the 
mechanical model. These may correspond to rotor modes or torsional modes. 

The fitting of the prior is applied by computing the joint distribution surface and finding the maximum 
as the initial guess for the optimisation algorithm. This initial guess will always be close to the final 
solution, thus ensuring good results from the optimisation. Note that this process is not 
computationally expensive given that the only relevant computation needed in each iteration is 
solving the continuous-time Lyapunov equation (see section 2.4.4.2). This is particularly true when 
compared with the Maximum A Posteriori approach. As illustrated by Figure 4-26 to Figure 4-28, the 
prior fit is not perfect. This is not due to failure in finding the best hyperparameters to describe the 
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load, but rather the failure of the model itself to accurately represent the real response of the 
structure. Note that the model used includes an assumption regarding the location of the load 
(horizontal load applied on top). 

The 𝜎 and 𝑙𝑠𝑐  found for each record are summarised in Table 4-4 and Table 4-5. Note that, in general, 
the 𝑙𝑠𝑐  is relatively constant for most of the records (𝑙𝑠𝑐 ≈ 0.05[𝑠]). Note that, as mentioned in section 
2.4.2.3, a relevant correlation can be found up to 5𝑙𝑠𝑐. Imposing that there should be a relevant 
amount of correlation between time steps defines a minimum 𝑙𝑠𝑐  given by: 5𝑙𝑠𝑐 > Δ𝑡 ⇒ 𝑙𝑠𝑐 >
0.01[𝑠]. In all cases the 𝑙𝑠𝑐  estimated is larger, which means that there is always some relevant 
correlation between time steps. Furthermore, note that 𝜎 tends to increase as the wind speed is 
higher. This is a direct consequence of higher wind speeds yielding higher amplitudes of the response. 

The fitting of the posterior was observed to sometimes fail in finding a relative error lower than the 
defined tolerance. To explain the observed behaviour, it is important to realise that the model is not 
perfect. This brings as a consequence that the part of the real response that cannot be captured by 
the model will be considered as noise. Furthermore, this noise may not behave like a white gaussian 
noise. This justifies why the convergence is not ensured. The proposed solution, which is to stop the 
iteration once the relative error stops decreasing, still provides a reasonable solution for the overall 
process. Note that the fitting of the posterior aims to define a noise level that provides a reasonably 
accurate estimation for the strain, not to define the exact noise level that the sensor has. The 
estimation obtained is shown to be accurate in comparison to the MD&E, even for the cases when the 
iteration has stopped, as presented in section 4.3.3. 

Table 4-6 and Table 4-7 summarises the error metrics obtained for both response estimation methods. 
The 𝑀𝐴𝐸 is observed to be lower when using the GPLFM method. For all cases. This means that the 
GPLFM is consistently more accurate than the MD&E. The 𝑇𝑅𝐴𝐶 is not always lower for the GPLFM, 
there are a few exceptions observed. Note however that these exceptions yield a very low difference 
between the 𝑇𝑅𝐴𝐶 values obtained from each method. In summary, these numerical results clearly 
show that the GPLFM method is more accurate. 

The comparison was extended into the calculation of Damage Equivalent Loads from all the records 
analysed. The results are summarised in Table 4-8. The resulting Damage Equivalent Loads obtained 
are observed to be more accurate when using the GPLFM method. From Table 4-9 and Table 4-10 the 
MD&E are observed to be always overestimating the measured Damage Equivalent Load. This is 
mainly attributed to the fact that the noise is considered to be part of the response. These results 
further conclude numerically that the GPLFM is an improvement when compared with the MD&E 
method. 
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5 Conclusion 
The aim of this work is to answer the research question exposed in section 1.3: 

“Does the novel GPLFM method improves upon existing methods?” 

In consistency with the methodology defined in section 1.4, the answer is provided from a theoretical 
point of view and a numerical point of view, and can be briefly stated as follows: 

“The GPLFM is an improvement upon existing methods, from both  
a theoretical and a numerical point of view” 

The results that justify this answer are summarised in section 5.1 and 5.2 for the theoretical and 
numerical assessment, respectively. Section 5.3 provides some relevant observations and 
recommendations for future works regarding the use of the GPLFM. 

5.1 Theoretical assessment 

The response estimation methods were divided into three: the Kalman Filter based methods, the 
MD&E method, and the novel GPLFM.  

The GPLFM was recognised in section 1.2 to be also part of the Kalman Filter based methods, and it 
was observed to be an improvement: it has no stability issues, and it provides a robust way to 
represent the unknown load instead of assuming it to be a white gaussian noise. Furthermore, in the 
GPLFM method the stochastic representation of the load is left for the user to be defined. The 
stochastic definition for the load employed in this work is based upon an adjustable covariance 
function which only imposes correlations between close points in time. The amplitude of the load and 
the extent of the correlations are fully controlled by the hyperparameters 𝜎 and 𝑙𝑠𝑐, as discussed in 
section 2.4.2.3. It is highlighted that the GPLFM method is not restricted to this covariance function, 
if there is prior knowledge of harmonics in the load for example, this information could be fed into 
the model by a periodic covariance function.  

The MD&E has been observed to be a very simple yet effective way to estimate the response. From a 
theoretical perspective, this method neglects the measurement noise, and it requires integration in 
order to find strains from accelerations. In contrast with the GPLFM: the measurement noise is taken 
into account, and no integration is required. As a consequence, the GPLFM provides an improved 
framework for response estimation. It is highlighted however that the simplicity of the MD&E method 
is translated in less computational cost to implement it when compared with the GPLFM method.  

In conclusion, from a theoretical point of view, the GPLFM method has been observed as an 
improvement upon existing methods. 

5.2 Numerical assessment 

The numerical assessment has been restricted to a comparison between the MD&E and the GPLFM 
methods as a consequence of the literature review (see section 1.2). The comparison is made initially 
upon a simulation, and subsequently upon a real structure. 

From the simulation results, as presented in section 3, the response estimation methods are 
illustrated and validated. The obtained results are accurate for both methods, as expected, but the 
accuracy is observed to be improved for the GPLFM method. The difference however is low. The 
simulation also illustrates and validates the approach used for system identification upon the real 
structure. 
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For the real structure, a mechanical model was built and validated through system identification. The 
mechanical model employed was observed to be a simplistic approach of reality, but given that the 
same mechanical model is used by both methods, it is a sufficient model for the numerical assessment. 
A set of records are defined for the analysis, they are selected to be representative of the different 
operational conditions relevant for fatigue design of the wind turbine. The analysis shows that better 
results are obtained when using the GPLFM for all records. This is further extended in the calculation 
of Damage Equivalent Loads, providing a measure of accuracy for all records analysed. The result 
shows a relative error that, depending on operational conditions, ranges within 20-40[%] for the 
MD&E and less than 10[%] for the GPLFM. 

The results obtained from the numerical assessment shows that the GPLFM is an improvement upon 
the MD&E method. This is valid for both the simulation and the real structure evaluated. From a 
practical point of view however, the increased computational cost associated to the GPLFM must be 
taken into account. 

5.3 Observations and recommendations for future works 

Even though the GPLFM method employed in this work is based upon what has been proposed in [18] 
for response estimation, there are some differences in the methodology employed that should be 
noted. This takes into account recent methodologies found in [19] and the underlying theory that can 
be found in [40] and [39]. In [18], the stationary covariance is defined only for the load and disregards 
the computation of the stationary covariance for the complete system. Furthermore, an additional 
white gaussian noise is defined to represent model errors. The approach considered in this work 
considers the stationary covariance for the complete system (see section 2.4.4.2), which defines as a 
consequence a physically meaningful white gaussian noise related to the model. This approach is also 
exposed in [19], although formulated for the context of joint input-state-parameter estimation. 

The ‘ itting of the prior and posterior’ is a new approa h for parameter estimation in the  ontext of 
GPLFM. It has been shown to provide a more intuitive and efficient way to compute the parameters 
when  ompared with the ‘Maximum   Posteriori’ approa h.  he Maximum   Posteriori approa h 
presented here is not the only approach found in literature. For example, in [19] a Markov Chain 
Monte Carlo is used to perform inference. Note that this method would be even more expensive 
computationally. Other methods can be found in [39] such as Expectation Maximisation, or a Gradient-
based optimisation approach. All these methods follow the same strategy of parameter estimation 
through maximising the posterior. Research aimed on finding a robust and efficient approach based 
on maximising the posterior is re ommended for future wor s.  he ‘fitting of the prior and posterior’ 
method may be considered as an intuitive and practical way to verify the results. 

Future works should consider an improved mechanical model to represent the wind turbine. The main 
improvements to consider are: the use of an additional moment load applied on top or modal loads, 
inclusion of mass moment of inertia (thus distinguishing between FA and SS directions), inclusion of 
soil stiffness, and inclusion of aerodynamic damping. These additional parameters may change in time, 
therefore online identification and model updating should be considered. Furthermore, the strain 
estimations should be sought in the whole frequency range, this can be realised by including 
measurements that deliver this information (strain measurements, GPS sensors, inclinometers, etc.). 
It is important to realise that filtering of quasi-static information of accelerometers is not a 
requirement for applying the GPLFM. The resulting estimation will still be stable, but the quasi-static 
frequencies will still not be able to be observed from the accelerations. This contrasts with employing 
the MD&E method, where filtering is a requirement when using accelerations. As a consequence, the 
GPLFM has the potential to provide a single framework to find the full strain estimation. 
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