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Abstract

This thesis investigates the yaw stability of wind-driven vessels using wingsails, addressing the ur-
gent need for decarbonising global shipping. An analytical method is developed to assess directional
stability based on aerodynamic and hydrodynamic characteristics, yielding a universal stability criterion
validated with SEAMAN data. The study explores practical stability assessment approaches and evalu-
ates the impact of varying hydrodynamic parameters, aerodynamic models, and surge coupling effects.

Results show that while stability diagnostics are invariant under different hydrodynamic models, signifi-
cant variations occur in destabilised hulls. Including a boundary layer in the wind model has negligible
effects on stability but increases computational effort. The closed-loop analysis assesses proportional
and derivative feedback control strategies, demonstrating satisfactory stability for both human and au-
topilot control across all points of sail in the original hull configuration.

Time-domain responses to step rudder inputs indicate small steady errors and oscillatory components
under human control, with autopilot control yielding even more robust outcomes. The study highlights
the importance of surge coupling in stability analysis, often overlooked in previous models. The the-
sis concludes that wind-driven vessels can achieve directional stability under active control schemes,
providing a foundation for future research on sustainable maritime transportation.
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Nomenclature

Symbols
Symbol Definition Unit

AS Total sail area [m]
AT Projected transverse hull area [m]
B Ship beam [m]
CD Drag coefficient [-]
CL Lift coefficient [-]
hB Sail base height measured from waterline [m]
hS Total sail height measured from sail base [m]
Iz Moment of inertia around z-axis [kg·m2]
kzz Radius of gyration around z-axis [m]
L Ship length [m]
lC Chord length [m]
m Mass [kg]
N Moment in yaw direction [N·m]
r Yaw velocity [rad/s]
si Sheeting angle at the ith sail [rad]
T Ship draft [m]
TWA True wind direction relative to ship velocity [rad]
u Surge velocity [m/s]
U Total ship velocity [m/s]
v Sway velocity [m/s]
V10m True wind speed at z = 10m [m/s]
VA Apparent wind speed [m/s]
VT Local true wind speed [m/s]
X Forces in surge direction [N]
Y Forces in sway direction [N]
xg Longitudinal centre of mass position [m]

α Angle of attack [rad]
β Drift angle [rad]
δ Rudder angle [rad]
θA Apparent wind direction relative to bow [rad]
θW True wind direction relative to bow [rad]
ρ Water density [kg/m3]
ρa Air density [kg/m3]
ψ Yaw angle [rad]
∇ Ship displacement [m3]
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1
Introduction

Climate change poses a significant threat to human well-being and planetary health [3]. A critical mea-
sure to mitigate its impact is the rapid decarbonisation of the global economy. One sector contributing
notably to carbon emissions is shipping, accounting for approximately 3% of total annual anthropogenic
CO2 emissions [5]. The International Maritime Organisation (IMO) aims to reduce total annual GHG
emissions from international shipping by at least 20% (striving for 30%) by 2030 and by at least 70%
(striving for 80%) by 2040, compared to 2008 levels. Additionally, carbon intensity should be reduced
by at least 40% by 2030 [10].

Achieving these ambitious targets presents significant challenges for the global shipping industry. Pol-
icymakers play a crucial role in regulating fossil fuel supply and demand, incorporating climate change
externalities into fuel prices, and addressing the Jevons paradox by reducing shipping volumes. How-
ever, the engineering science community must focus on understanding and overcoming technical chal-
lenges to enhance transport efficiency.

Although numerous solutions exist, the most effective and straightforward approach—reducing trans-
port volumes—is politically sensitive and beyond the scope of this research. Operational strategies
to improve transport efficiency include just-in-time arrival, minimum time in port, weather routing, slow
steaming, trim optimization, autopilot improvements, better fleet and cargo management, ballast opti-
mization, hull roughness reduction, and propeller maintenance, upgrade, and optimization [19]. Design
and retrofit options involve alternative fuels, carbon capture and storage, engine optimization, waste
heat recycling, space optimization, autonomous shipping, installation of energy-saving devices, direct
environmental propulsion assistance, and wind propulsion.

Wind propulsion, in particular, remains a promising candidate for decarbonizing both new ships and re-
fits due to its historically proven effectiveness. However, fully wind-driven vessels face operational and
financial limitations that hinder their competitiveness with traditional cargo fleets under current fossil-
favoring fiscal policies. Despite these challenges, the scientific and societal interest in wind propulsion
has grown rapidly.

Traditionally, wind-driven vessels harness wind power through on-deck devices such as (wing)sails,
Flettner rotors, or kites, which generate a net force opposite to the vessel’s bow. This method intro-
duces a side force component, causing the vessel to sail at a drift angle. The nonlinear nature of
hull hydrodynamics in large commercial vessels renders classical straight-line stability criteria ([4][1])
unreliable for predicting directional stability under drift conditions. Therefore, a generalised analytical
stability criterion that accounts for wind forces is necessary.

Previous research has partially addressed this gap by extending analytical stability criteria to include
steady wind conditions [6][20][23][2]. Notably, the work of [25][26] represents a significant step towards
understanding stability in steady wind scenarios and proposes a generalisation of the classical stability
criterion.

However, wind forces on wind-driven vessels significantly influence surge forces (which were deemed
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insignificant by [25]), necessitating further investigation into factors affecting directional stability in cargo
vessels driven solely by wingsails. This area remains relatively unexplored due to the novelty of wind
propulsion in large vessels compared to the well-studied stability of sailing yachts with slender hulls.

To address these gaps, this thesis explores the following research questions:

To what extent is a vessel able to maintain yaw stability under the influence of varying wind
conditions and control system specifications when introducing large aerodynamic control sur-
faces?

1. Which analytical methods can be used to assess the directional stability of vessels equipped with
large aerodynamic control surfaces?

2. How do different modelling approaches impact the directional stability assessment of vessels?
3. How does the yawmotion of the system behave in both the frequency domain and the time domain

under proportional and derivative feedback control strategies?

By investigating these questions, this research aims to contribute to the development of effective solu-
tions for achieving yaw stability in wind-driven vessels under varying wind conditions and control system
specifications.



2
Methodology

2.1. Approach
When answering the respective research questions, care should be taken that the obtained results
are as generally applicable as possible. That said, while developing the methodology, a specific test
case of a wind-powered car carrier (wPCC) with four wingsails placed on the centre line was analysed.
This is especially relevant for the aerodynamic characteristics, which in general differs depending on
the vessel. However, since the aerodynamic part is considered as a separate module and interaction
effects are disregarded, the end result should be general with respect to arbitrary aerodynamic models.

When approaching the question of developing an analytical methodology for assessing directional sta-
bility, an important starting point is to define directional stability. Stability is a concept which relates to
dynamical systems, which is the study of the time evolution of points that belong to a certain mathemat-
ical space, or more specifically, a vector space, as is usually the case in engineering contexts. This
step means therefore to choose the particular vector space that is relevant to the problem at hand.

To that effect, a mathematical force model first needs to be crystallised which then leads to a concrete
(simplified) description of the relevant motions that relate to directional stability. The model simplifica-
tions and limitations should be made clear, which helps defining the model itself as well as charting
possible directions for future work. The model should also be sufficiently accurately describe the dy-
namics of the vessel. In essence this part comes down to describing the forces acting on a rigid body,
since hydroelasticity can be assumed negligible in a manoeuvring context [23].

After developing the forces that act on the vessel, a steady state or force equilibrium can be found if
the environmental conditions are known (wind speed and wind direction). Finding these steady states
means optimising for speed while keeping the drift angle, the rudder angle, and the angles of attack of
the sails within certain constraints. This step therefore reduces to a constrained optimisation problem,
for which an algorithm will be described. It is also known as a Velocity Prediction Programme (VPP).

Stability of a point is defined by properties of a small neighbourhood around the point in question.
Therefore, linearisation of the forces is another piece of the puzzle, and although this step in theory
only constitutes simple higher-dimensional differentiation, i.e. writing out Jacobian matrices, the tricky
part lies in unpacking the expressions until they are written in terms of parameters and variables that
are considered to be known.

Finally, the notion of stability of a steady state is explored through an equivalent criterion called the
Routh-Hurwitz criterion, which is a particularly useful tool in stability theory since it gives information
about the roots of the characteristic polynomial of a differential equation which is useful for determining
stability, without actually having to know the numerical value of the roots. This is particularly powerful
since by the Abel-Ruffini theorem, roots of polynomials of at least order 5 can in general not be written
in terms of their coefficients. Although in this thesis, at most order 4 polynomials will be considered,
this fact is of possible relevance to more complex force models, for example, with more degrees of
freedom.

3



2.1. Approach 4

To apply the methodology to an actual test vessel and obtain numerical results, all of the symbolic
parameters and variables must be resolved. The force model depends on physical constants (e.g.
water and air density), independent variables (wind speed and direction), and case-specific parameters.
The case parameters generally refer to the dimensions of the ship, the centre of mass, the rigging layout,
the hydrodynamic coefficients (including the rudder), the lift and drag characteristics of the wingsails,
and the drag coefficients of the superstructure. Depending on the amount of analysis performed on
a particular vessel, sometimes these parameters are already known. In other cases, semi-empirical
methods or educated guesses are needed.

The most important dependent variable resulting from the methods described above is something that
can bemost aptly described as the “degree of instability” of the system. This boils down to themaximum
of the real parts of the eigenvalues of the state transition matrix of the system, and its sign determines
whether the whole system is stable or not. The parameter can be interpreted as a diagnostic value
which mostly gives binary information (stable/unstable), although its magnitude is also indicative of
how close the system is to being marginally stable.

In order to solidify confidence in the developed stability assessment, several modelling choices are
varied and the effect on the results of the case study are examined. This forms the heart of the second
subquestion.

Finally, the closed-loop effects are studied when introducing proportional and derivative gain in the
system, and the step response in the time domain is analytically solved for a few specific operational
conditions. This constitutes the answer to the third subquestion.

2.1.1. Model assumptions
The forces on the vessel can be divided into inertia forces, hydrodynamic forces, and aerodynamic
forces. An additional subdivision can then be made for the hydrodynamic forces into hull forces, rudder
forces, and possibly propeller forces, depending on additional simplifications that the analytical calcula-
tions may warrant. A possible simplification is to assume that the propeller rate is adjusted according to
the required forward speed, yielding a constant forward speed as the thrust and extra wind resistance
cancel out. The aerodynamic forces can be subdivided into the forces exerted on the superstructure by
the wind, and the forces experienced by the wingsail system, which can be controlled. Consequently,
the reaction forces (inertial pseudoforces, hull forces and superstructure forces) can be grouped to-
gether, while the control forces (rudder and sail system) can be grouped together as well.
A priori all six degrees of freedom of the ship are relevant when considering a realistic situation for a
vessel on sea. However, in many modelling situations, one or more of the ship motions may be con-
strained in order to simplify the mechanics, provided that the simplifying assumptions are reasonable
in the case considered. Alternatively, other simplifying assumptions can be made with respect to envi-
ronmental forces or other forces. In this case, a 3DOF model is considered (surge, sway and yaw).
The assumptions that will be made are the following:

• Deep-water conditions may be assumed, i.e. water depth is modelled as infinite;
• There is no interference from other vessels, shores or other objects;
• Fluid memory effects are ignored, i.e. a quasi-static approach is taken;
• The ship hull is considered rigid, which means hydro-elasticity is assumed negligible;
• All control surfaces are considered rigid;
• Calm water is assumed, i.e. no wave excitation is considered;
• The wind profile is considered uniform in space and time and no interaction effects between the
different sails are considered;

• Roll is assumed negligible.

Whether or not roll motions may be considered negligible is an interesting question, and it can be
expected that the answer in general is negative, particularly when it comes to more extreme weather
conditions. However, for most cargo vessels, a roll angle of 5◦ is already considered rather extreme
and the captain will generally reduce the sail area in order to avoid heeling too much. In practice
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the maximum heel angle will be limited to about 5 degrees. That said, some non-negligible roll-sway-
yaw-rudder couplings may occur even at small heel angles, generally introducing instabilities into the
system. The extent to which this occurs is influenced by the drift angle as well [13]. A paper on nonlinear
stability of ship autopilots by Fossen and Lauvdal suggests a minimal speed to maintain controllability
when designing a combined yaw autopilot and rudder-roll stabilisation system [8]. An experimental
study on two different RoRo vessels suggests that the linear derivatives N ′

v and N ′
r may change by

respectively +20% and −25% for a heel angle of 5◦ [9]. A sensitivity study on a particular container
ship (S175), based on a nonlinear 4DOF steering model by Son and Nomoto, concludes that there are
several roll-dependent hydrodynamic derivatives that have amoderate or moderate to high effect on the
manoeuvring characteristics of the vessel in question [18]. Ship manoeuvrability may be significantly
influenced by trim and loading condition as well [11]. However, for the purposes of simplification it is
chosen to focus on the three most important degrees of freedom and to leave out the effects of trim
and loading condition, as well as any shallow water effects that could influence manoeuvrability.

2.2. Force Model
In this section, a force model will be developed that serves as the basis for all calculations, both for
the steady-state solutions and for the stability evaluations. Various conventions exist concerning how
equations of motion should be written down. In this thesis, a control theory approach will be taken
insofar as the notation will strive towards a state-space formulation.
In this thesis, a 3-DOF force model is used. The motions and forces considered are in the surge,
sway, and yaw direction. The most important shortcoming of such a model is its limited applicability
for stronger winds, as the heeling forces and consequent heeling motions will not be negligible in such
conditions. Using Newton’s laws of motion, the relation between accelerations and forces is given. The
relation between generalised velocity and forces is given by empirical tests from the literature. The goal
is to describe the dynamics of the system in a state-space representation.
The first goal is to describe the dynamics of a fully sailing cargo vessel with four sails and one rudder
using a modular force model. This means the total accelerations on the vessel will be given by the sum
of the forces and pseudoforces (due to a non-inertial reference frame) on the various components of the
ship. An inertial NED frame (North-East-Down) and a ship-fixed body frame are defined as described
in [7]. In the ship coordinate system, the origin is in the midship, while the centre of mass is in the
centreline of the ship, at distance xg in the x-direction. The coordinate frames are shown in Figure 2.1.
Forces will be expressed in the ship body frame so that the hydrodynamic forces become more

straightforward than would otherwise be the case. However, since the ship frame is not inertial, this
means that several pseudo-forces like Coriolis and centripetal forces will be introduced that would not
appear in an inertial frame. The dynamic equations follow from Newton’s laws as well as basic calculus
and are documented in [7]:


m(u̇− vr − xgr

2) =
∑
X

m(v̇ − ur − xg ṙ) =
∑
Y

(Iz +mx2g)ṙ +mxg(v̇ + ur) =
∑
N

(2.1)

Here the sums on the right-hand side constitute all external forces acting on the ship. Note that the mo-
ment of inertia Iz is defined with respect to the centre of mass, which gives rise to a termmx2g resulting
from the Parallel Axis Theorem.

The terms on the left-hand side containing velocities can be grouped and moved to the right-hand side.
They will be called inertial pseudo-forces:

FI,RB :=

m(vr + xgr
2)

−mur
−mxgur

 (2.2)

The point is to group the acceleration terms on the left-hand side and all other terms on the right-hand
side. This gives rise to the following vector FRB :



2.2. Force Model 6

Figure 2.1: Coordinate system and sign conventions
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FRB =

XRB

YRB
NRB

 :=

m(vr + xgr
2) +

∑
X

−mur +
∑
Y

−mxgur +
∑
N

 = FI,RB + FH + FA + FS (2.3)

The force vectors FH ,FA, and FS , are the hydrodynamic hull forces (including rudder forces), aerody-
namic forces acting on the ship superstructure, and the sail forces, respectively. These will be elabo-
rated upon in the following sections. The acceleration terms of Equation 2.1 give rise to the following
definition:

MRB :=

m 0 0
0 m mxg
0 mxg Iz +mx2g

 (2.4)

The velocities in 3 degrees of freedom are written as ν:

ν :=

uv
r

 (2.5)

Following Equations 2.1,2.3,2.4, and 2.5, the equations of motion can then be rewritten as follows:

MRB ν̇ = FRB (2.6)

2.2.1. Hydrodynamic forces
The hydrodynamic forces can be subdivided in potential forces, inertial forces and manoeuvring forces:

FH = −MAν̇ + FI,A + Fman, (2.7)

where each term will be explained below. The latter two terms can be combined, as we will see.

The added masses constitute the extra hydrodynamic forces that result from accelerating the water
around the vessel and are a direct result of Newton’s third law. The hydrodynamic forces due to this
phenomenon are called potential forces. Here we model the off-diagonal added masses as zero:

MAν̇ = −

Xu̇ 0 0
0 Yv̇ 0
0 0 Nṙ

u̇v̇
ṙ

 (2.8)

It is worth elaborating on the Munk moment. Potential flow theory gives us an expression for the magni-
tude of theMunkmoment in terms of the addedmasses of the body. The forces as a result of the change
in kinetic energy of the surrounding fluid take a rather similar form as the inertial forces described in
Equation 2.2, and depend on the added masses of the ship. Sagatun and Fossen [17] constructed the
concept of a Coriolis and centripetal matrixCA for the added masses, based on the Kirchhoff equations.
This matrix contains, besides some minor adjustments to the force matrix by Davidson and Schiff [4],
the more significant Munk moment that is not explicitly included in many manoeuvring models. These
forces are defined as follows:

F′
I,A = C′

A

u′v′
r′

 =

 −Y ′
v̇v

′r′ − Y ′
ṙr

′2

X ′
u̇u

′r′

(Y ′
v̇ −X ′

u̇)u
′v′ + Y ′

ṙu
′r′

 . (2.9)

In Equation 2.9, all primed parameters and variables mean that the respective quantities are nondimen-
sionalised according to the Prime System - specifically, the Prime System I which doesn’t use draft as
a reference quantity but only length. Since in our force model, only the hydrodynamic forces result
from a nondimensional framework, the choice was made to convert those forces to SI values and then
calculate all results in a dimensional setting. This choice is all the more valid since usually, but not
in our case, ship velocity is kept constant, which warrants its use as a reference speed. For more
information on nondimensionalisation, see Section 7.2.5 from [7]. All of the above forces become zero
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in the pure translation case r = 0, except for the term (Yv̇−Xu̇)uv, which is known as theMunkmoment.

However, the hull forces Fman also depend on ν. Many different manoeuvring models can be chosen to
model these, and the choice of such a model is a very interesting topic of discussion, although outside
of the scope of this thesis. In this case, a polynomial model was adopted that has the following form:

X ′
H = X ′

0 +X ′
uu

′ +X ′
vvv

′2 +X ′
vrv

′r′ +X ′
rrr

′2 +X ′
δδδ

2 (2.10)
Y ′
H = Y ′

vv
′ + Y ′

rr
′ + Y ′

vvvv
′3 + Y ′

vvrv
′2r′ + Y ′

vrrv
′r′2 + Y ′

rrrr
′3 + Y ′

δ δ

+ Y ′
δδδδ

3 + Y ′
rδδr

′δ2 + Y ′
rrδr

′2δ + Y ′
vδδv

′δ2 + Y ′
vvδv

′2δ + Y ′
vrδv

′r′δ

(2.11)

N ′
H = N ′

vv
′ +N ′

rr
′ +N ′

vvvv
′3 +N ′

vvrv
′2r′ +N ′

vrrv
′r′2 +N ′

rrrr
′3 +N ′

δδ

+N ′
δδδδ

3 +N ′
rδδr

′δ2 +N ′
rrδr

′2δ +N ′
vδδv

′δ2 +N ′
vvδv

′2δ +N ′
vrδv

′r′δ

(2.12)

Since the total moment acting on the ship due to pure translation is a combination of both the Munk
moment arising from potential theory and the viscous force contribution, there is no real advantage in
including the potential terms explicitly (see also the discussion by Sutulo and Soares on this matter
[21]). This holds not only for the Munk moment but also for the other terms present in FI,A, although
they are comparatively less significant in magnitude. Hence, for manoeuvring modelling purposes, the
added mass Coriolis and centripetal forces can be included in the hull forces. The attentive reader will
note that in the above manoeuvring model, terms like N ′

ur are missing, which would seemingly render
the previous argument invalid. However, in the linearised model, this caveat disappears, since Xu̇u0
can then be included in N ′

v or N ′
vvv, and the other terms in FI,A can be treated similarly. The polyno-

mial model is less physical in the sense that the individual terms contain blurred physical information,
and the fitting is done over the whole model. However, it works well enough for most simple purposes.
Summarising all of the above, for the purposes of this thesis, FI,A = 0.

Combining all of the above with Equation 2.6 and defining M := MRB + MA gives us the final force
equation and a force vector called Ftot containing various forces and pseudoforces:

Mν̇ = FRB +MAν̇ = FI,RB + Fman + FA + FS =: Ftot (2.13)

2.2.2. Aerodynamic superstructure forces
The aerodynamic forces FA experienced by the superstructure of the ship are related to the speed of
the ship at a reference point (in this case the origin of the ship frame), also called the apparent wind.
The model used is the following:

FA =

XA

YA
NA

 =
1

2
ρaV

2
A

 ATCX(θA)
ATCY (θA)
LATCN (θA)

 (2.14)

where ρa is the density of air, VA is the apparent wind speed at the origin, and AT is the transverse
projected area of the superstructure. Note that sometimes the lateral projected area AL is used as a
reference area for YA and NA, but this is just a convention issue and in the case study of this thesis,
only the coefficients with respect to AT were given. Lastly, CX , CY and CN are empirically determined
force coefficients that depend on the shape of the hull and vary with the apparent wind angle θA.

If the true wind (uT , vT )
T at a certain point (x, y, z) is known, as well as the ship speeds (u, v, r), the

apparent wind at that point can be calculated by[
uA
vA

]
=

[
u− yr + uT (z)
v + xr + vT (z)

]
(2.15)

θA = atan2(uA, vA) (2.16)
V 2
A = u2A + v2A = (u− yr + uT (z))

2 + (v + xr + vT (z))
2 (2.17)
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where the true wind (uT , vT )
T is obtained by applying a rotation transformation as it both depends on

the wind direction and the ship orientation (see Figure 2.1):[
uT
vT

]
= R(θw − ψ)

[
VT
0

]
=

[
VT cos(θW − ψ)
VT sin(θW − ψ)

]
(2.18)

The wind speed is modelled with the atmospheric boundary layer and will therefore vary in magnitude
depending on the height above the surface:

VT (z) = V10m

(
−z
10m

)1/7

(2.19)

Note that because of the right-handed coordinate system, a minus appears in the numerator. The
forces FA are modelled to always act at a height of 10m, hence the effective wind speed for FA will be
equal to V10m. In the next section, we will see in more detail how the boundary layer affects the sails.

2.2.3. Sail forces
The sail forces depend on ship speed, true wind, orientation, and sheeting angles. For any nonzero
ship speed, the boundary layer will cause variations in both the magnitude and direction of the apparent
wind as a function of height. This “twist effect” is well known to operators of sailing vessels, usually
dealt with by shaping the sail such that the sheeting angle becomes larger in the top part of the sail.
In the case of a rigid sail, this is impossible and the twist effect will result in a varying angle of attack
profile along the height.

The wind is assumed to exert only forces and no yaw moments on the sails. As a result, the yaw
moment delivered by the sails is solely due to the side forces multiplied by the respective force arms.
The thrust and side forces experienced by a single sail are obtained by a coordinate transformation
from the drag and lift forces. These are defined as, respectively, the force component aligned with the
flow and the component perpendicular to the flow. The relation to thrust and side force is then given by[

fT (z)
fS(z)

]
= R(π + θA(z))

[
fD(z)
fL(z)

]
=

[
− cos(θA(z)) sin(θA(z))
− sin(θA(z)) − cos(θA(z))

] [
fD(z)
fL(z)

]
(2.20)

where fT , fS , fD and fL are the force densities of the sail as a function of local angle of attack. The
total forces exerted on the sail are given by[

FT
FS

]
=

∫ −(hb+hS)

z=−hb

[
fT (z)
fS(z)

]
dz (2.21)

while the drag and lift force densities themselves are modelled as follows:[
fD(z)
fL(z)

]
=

1

2
ρaVA(z)

2Lc(z)

[
CD(α(z))
CL(α(z))

]
(2.22)

where Lc(z) is the local chord length of the sail (varying with height) and α(z) = θA(z)− s is the angle
of attack, defined as the difference between the apparent wind angle θA and the sheeting angle s. The
lift and drag coefficients of a rigid sail as functions of the angle of attack are considered known.

Finally, the forces exerted on all sails together make up the total sail forces, wherem ∈ N is the number
of sails and xri is the x position of sail number i (which constitutes the lever arm for the moment
delivered by that sail): XS

YS
NS

 =

m∑
i=1

1 0
0 1
0 xri

[
FTi

FSi

]
(2.23)

2.2.4. Stability formulation
Course stability can be described as the tendency for the yaw angle to restore to the equilibrium value
after a disturbance. To say something meaningful about stability, an equilibrium has to be found first.
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This is generally done through a velocity prediction programme (VPP). Using the force model as de-
scribed in the rest of this section, a simplified VPP was constructed to find the approximate operational
points of the ship in full sailing mode. A steady-state solution will have a constant yaw angle ψ0. This
angle can be assumed equal to zero without loss of generality because we can align the inertial coordi-
nate system with the bow direction in the steady state. This means that in general, the inertial reference
frame is not a literal North-East-Down frame anymore, but as this thesis does not deal with navigational
factors, this is not a problem. Furthermore, for the steady state, the yaw rate r0 = 0 since r = ψ̇ = 0
by definition of steady state. The total steady state solution x0 will hence consist of velocities u0 and
v0 in the horizontal plane, a steady rudder angle δ0 and steady sheeting angles s1,0, . . . , s4,0.

Using control theory notation, the stability problem can be described by a state-space description, defin-
ing

x :=


∆u
∆v
r
ψ

 =


u− u0
v − v0
r
ψ

 (2.24)

as the state. The state evolution matrix A will describe how the state changes as a function of itself.
Another matrixB describes the state change as a function of inputs u, which are defined as the physical
quantities that are directly adjustable by the controller. The state-space representation then takes the
following form:

ẋ = Ax+Bu (2.25)

Note that the steady term vanished due to the definition of x as the unsteady part of the variables
u, v, r, ψ. Higher-order terms are also not written here, although they will be present in general. How-
ever, if all relevant functions are smooth enough with bounded derivatives, then Taylor’s theorem guar-
antees a linear approximation provided x and u are small enough. However, as the model is highly
nonlinear, the linearisations A and B depend on the steady state x0,u0.

In a simple control model, we can choose∆δ and∆s1, . . . ,∆s4 as input variables, whereas, in a real sit-
uation, both the rudder and the sheeting angle are subject to their own dynamics. In such more precise
models, the input variables would in extreme examples be given by the duty ratio of the chopper inside
the sheeting actuator. For this model, the rudder and sheets are assumed to be directly controllable:

u :=


∆δ
∆s1
∆s2
∆s3
∆s4

 =


δ − δ0
s1 − s1,0
s2 − s2,0
s3 − s3,0
s4 − s4,0

 (2.26)

Like stated earlier, the workflow of the open-loop stability evaluation at a certain wind speed V10m and
wind angle θw consists of the following steps:

• Developing a force model and choosing environmental conditions (V10m, θw);
• Solving a constrained optimisation problem to find the associated operational point x0,u0;
• Computing stability derivatives of all forces at the operational point;
• Evaluating the Hurwitz stability of the associated state transition matrix.

2.3. VPP algorithm
Finding the steady state associated with a certain environmental condition is akin to solving the following
constrained optimisation problem:

minimise − (u20 + v20)

subject to
Ftot(u0, v0, δ0, s1,0, . . . , s4,0) = 0,

g(u0, v0, δ0, s1,0, . . . , s4,0) ≤ 0.
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The equality constraint means that the steady state should be a force equilibrium. The inequality con-
straint imposes boundaries on the decision variables u0, v0, δ0, s1,0, . . . , s4,0 by enforcing positive for-
ward velocity and limits on the drift angle β0 := atan2(u0, v0), rudder angle δ0 and angles of attack
αi,0 := θA(xri , 0,−hb)− si,0, measured at the foot of the sails. The following limits were used:

u0 ≥ 0;

β0 ∈ [−10◦, 10◦];

δ0 ∈ [−35◦, 35◦];

αi,0 ∈ [−20◦, 20◦].

(2.27)

To solve this optimisation problem, a Sequential Quadratic Programming (SQP) algorithm was used,
which is an iterative method for solving nonlinear constrained optimisation problems. The core of the
algorithm consists of expanding the dimension of the objective space by a Lagrange multipliers for all
active constraints, then approximating the Lagrangian function by a positive definite Hessian matrix.
This is also called a Lagrange-Newton method. Specialised techniques called quasi-Newton methods
exist to make sure the matrix is both positive definite and approximates the Hessian of the Lagrangian
well enough, although for the purposes of this thesis, starting from a close enough guess turned out to
suffice for positive-definiteness and for letting the algorithm converge without resorting to sophisticated
methods. The so-called QP subproblem is an unconstrained convex optimisation problem and hence
has a guaranteed solution. This solution defines a search direction from the last guess, after which
a line search is performed to find the next guess. When certain convergence criteria are satisfied
for the constraints and the objective function, or when a maximum number of iterations is performed,
the algorithm concludes. For more details regarding the exact algorithm, page 314 from [16] may be
consulted.

2.4. Linearisation
In this section, the forces acting on the vessel are differentiated so that the state transition matrix can
be found. Suppose for a start that a steady state x0 = (u0, v0, r0 = 0, ψ0 = 0)T is found. Then let ε > 0
and let (∆u,∆v, r, ψ) = O(ε) be a perturbation vector (heuristically, a vector “close enough” to zero to
ensure that all linearisations approximate the original functions sufficiently).

2.4.1. Wind linearisation and superstructure
First, the apparent wind speed, which appears in both the superstructure wind forces (Equation 2.14)
and the sail forces (Equation 2.22) will be treated. Its linearisation around a certain value VA0 is as
follows (following notation also used in [25] and expanding it):

V 2
A = VA0 + VAu∆u+ VAv∆v + VArr + VAψψ +O(ε2) (2.28)

for any (∆u,∆v, r, ψ)T ∈ O(ε), with the coefficients given as

VA0 = (u0 + VT cos θW )2 + (v0 + VT sin θW )2 (2.29)
VAu = 2(u0 + VT cos θW ) (2.30)
VAv = 2(v0 + VT cos θW ) (2.31)
VAr = 2xri(v0 + VT cos θW ) = xriVAv (2.32)
VAψ = 2VT (u0 sin θW − v0 cos θW ) (2.33)

In the above equations, VT is the local true wind speed (varying only with height above the free surface)
and θW is the true wind direction measured from the bow of the ship. The apparent wind angle can be
linearised as follows, using similar terminology as in [25] but including also the effect of yaw rate in the
apparent wind:

θA = θA0 + θAu∆u+ θAv∆v + θArr + θAψψ +O(ε2) (2.34)
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with the following expressions specifying the linear sensitivities of the apparent wind angle to the various
state variables:

θA0 = tan−1

(
v0 + VT sin θW
u0 + VT cos θW

)
(2.35)

θAu = −v0 + VT sin θW
VA0

(2.36)

θAv =
u0 + VT cos θW

VA0
(2.37)

θAr = xri
u0 + VT cos θW

VA0
= xriθAv (2.38)

θAψ = −V
2
T + VT (v0 sin θW + u0 cos θW )

VA0
(2.39)

The superstructure is subject to wind forces as explained in the previous work by [6][20][25]:

XA

YA
NA

 =

XA0

YA0

NA0

+

XAu XAv 0 XAψ

YAu YAv 0 YAψ
NAu NAv 0 NAψ



∆u
∆v
r
ψ

+O(ε2) (2.40)

with the steady-state forces given byXA0

YA0

NA0

 =
1

2
ρaVA0

 AXCXA(θA0)
AY CY A(θA0)
AY LCNA(θA0)

 (2.41)

and the “aerodynamic derivatives” as follows:

XAi =
1

2
ρaAX

(
VA0

∂CXA(θA0)

∂θA
θAi + VAiCXA(θA0)

)
(2.42)

YAi =
1

2
ρaAY

(
VA0

∂CY A(θA0)

∂θA
θAi + VAiCY A(θA0)

)
(2.43)

NAi =
1

2
ρaAY L

(
VA0

∂CNA(θA0)

∂θA
θAi + VAiCNA(θA0)

)
(2.44)

for i = u, v, ψ.

2.4.2. Sail forces
For the sails, the linearisation is considerably more involved. The linear derivatives which will constitute
the entries of the Jacobian matrix DxFS of the sail forces are denoted by the subscript S, hence giving
rise to the following notation:

FS = FS0+(DxFS)∆x+O(ε2) =

XS

YS
NS

 =

XS0

YS0
NS0

+

XSu XSv XSr XSψ

YSu YSv YSr YSψ
NSu NSv NSr NSψ



∆u
∆v
r
ψ

+O(ε2) (2.45)

Note that contrary to the simpler superstructure wind force model, a nonzero yawing rate dependence
is present in the model, since the sails (especially the outermost ones) will experience varying apparent
wind speeds when the ship is yawing.

The above Jacobian matrix is itself a linear combination of the derivatives of the forces on the individual
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sails:

DxFS =

1 0 1 0 · · · 1 0
0 1 0 1 · · · 0 1
0 xr1 0 xr2 · · · 0 xrm




∂FT1

∂u

∂FT1

∂v

∂FT1

∂r

∂FT1

∂ψ
∂FS1

∂u

∂FS1

∂v

∂FS1

∂r

∂FS1

∂ψ
...

...
...

...
∂FTm

∂u
∂FTm

∂v

∂FT1

∂r

∂FT1

∂ψ
∂FSm

∂u
∂FSm

∂v
∂FSm

∂r
∂FSm

∂ψ


(2.46)

where the force derivatives ∂FTi

∂u ,
∂FSi

∂u . . . ,
∂FTi

∂ψ ,
∂FSi

∂ψ in turn are given by differentiating the thrust and
side forces of the respective sail:[

∂FT1

∂u

∂FT1

∂v

∂FT1

∂r

∂FT1

∂ψ
∂FS1

∂u

∂FS1

∂v

∂FS1

∂r

∂FS1

∂ψ

]
=

∂

∂x

∫ −(hb+hS)

z=−hb

1

2
ρaV

2
A(z)R(θA(z) + π)

[
CD(α(z))
CL(α(z))

]
dz

=
1

2
ρa

∫ −(hb+hS)

z=−hb

∂

∂x

(
V 2
A(z)R(θA(z) + π)

[
CD(α(z))
CL(α(z))

])
dz

=
1

2
ρa

∫ −(hb+hS)

z=−hb

(
R(θA(z) + π)

[
CD(α(z))
CL(α(z))

])
∂

∂x
(V 2
A(z))

+
∂

∂x
(R(θA(z) + π)

(
V 2
A(z)

[
CD(α(z))
CL(α(z))

])
+
(
V 2
A(z)R(θA(z) + π)

) ∂

∂x

([
CD(α(z))
CL(α(z))

])
dz

(2.47)

where it should be kept in mind that this rather cumbersome expression is the result of standard calcu-
lus applications like the product rule and the appropriate switching of integral and derivative (which is
always allowed when the functions are smooth enough - hence the later choice for continuously differ-
entiable splines).

The right lid of Equation 2.47 can be developed even further. The first term contains the factor ∂
∂x (V

2
A(z)),

which is equal to
[
VAu VAv VAr VAψ

]
calculated with respect to the wind speed at height z. The

third term contains ∂
∂x

([
CD(α(z))
CL(α(z))

])
which, by the definition α(z) = s− θA(z) is equal to

−
[
∂CD

∂α
∂CL

∂α

] [
θAu θAv θAr θAψ

]
.

This is the part where the derivatives of the drag and lift coefficients of the sails need to be known.
The second term from Equation 2.47 contains terms that ultimately all relate back to the apparent wind
angle θA and its linearisation.

The upshot is that the state variable x influences the force density at a certain sail section in three
different ways:

• Through the apparent wind speed;
• Through the change in direction of the flow, which has an effect on the rotation matrix;
• Through the change in direction of the flow, which indirectly influences the drag and lift coefficients
because the angle of attack changes.

The first of these effects was already mentioned before when analysing the aerodynamic forces on the
superstructure and the aerodynamic derivatives VAu, . . . , VAψ. The second effect requires calculating
the derivative of the rotationmatrix, which is just a phase offset of π2 . The third effect requires knowledge
of (the first derivative of) the drag and lift coefficient functions. In the example case, these are just
low-degree polynomials, of which the derivative becomes relatively simple. It should be noted that in
a realistic wind-propelled scenario, the wingsails will make use of the drag profile in following wind
conditions, which means that values of α beyond the stall angle will appear. Such a scenario will entail
additional modelling complexity due to turbulence patterns that need high-fidelity sail-sail interactions
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in the model. Therefore angles beyond stall are not considered here and α will be limited to at most
20◦.

Lastly, the methodology described above holds in general for flow models with a nonuniform boundary
layer like the one described in Equation 2.19, but just as well for the uniform flowmodel of VT (z) ≡ V10m.
In the latter case, the integral over the sail height can be resolved before making the actual calculations,
thereby greatly reducing computational effort.

2.4.3. Hydrodynamics
The hydrodynamic forces are linearised as follows (note that the yaw angle ψ is unrelated to the hydro-
dynamic forces):

FH = FH0 + (DxFH)∆x+O(ε2) =

XH0

YH0

NH0

+

XHu XHv XHr 0
YHu YHv YHr 0
NHu NHv NHr 0



∆u
∆v
r
ψ

+O(ε2) (2.48)

The hydrodynamic derivatives are originally defined in a dimensionless vector space where it becomes
relatively easy to relate a small perturbation from the steady state to a specific term like Y ′

v , N ′
r or sim-

ilar. This is the way it worked with the original stability criterion. However, as stated also elsewhere,
the fact that in this case wind also has a substantial effect on the surge forces and hence on the total
ship speed by virtue of acting on a sail vessel, makes the choice for a coordinate system which is
nondimensionalised by the vessel speed U =

√
u2 + v2 unnatural. The total derivative of the hydrody-

namic forces will therefore be a lot messier than in other literature about manoeuvring theory, since the
simplification of having a constant ship speed during manoeuvring is unwarranted and actually, terms
like ∂U

∂u , . . . ,
∂U
∂]psi are also part of the full expression.

Two immediate attempts at solving come to mind. The first is to fit sea trials and model tests to a
polynomial model which uses dimensional speeds and do all actual calculations in SI units. However,
since

√
u2 + v2 is not a polynomial itself, the result will be a model of which the polynomial coefficients

will be hard to their nondimensional counterparts elsewhere in the literature. Nonetheless, this is the
route that was chosen to perform the numerical calculations in the Results chapter. The other solution
is to nondimensionalise the other forces and perform the whole linearisation and consequent stability
analysis in nondimensional space. This is also not ideal on account of the fact that these forces will be
divided by the ship speed . In other words, this solves the problem of unwieldy hydrodynamic forces
but introduces the same problem for all the other forces.

The most elegant solution would be to make all variables nondimensional by a quantity that is invariant
in the context of the problem at hand. Where the ship speed

√
u2 + v2 is useful for making quantities

nondimensional in the context of manoeuvring problems that consider ship speed invariant, it is not
so useful for our problem. Wind speed could be used, although it would lose its usefulness when
examining the ship stability under fluctuating wind patterns. This might be a major qualitative problem
when using high-fidelity models like the one from [12] while trying to verify stability resulting from an
analytical which divides all values by the wind speed. Of course, in such a case, one might resort to
using the mean wind speed instead, but the point stands that for all analytical methods, the constants
really need to behave like constants in order for the method to be trustworthy.

2.4.4. Inertial forces
The inertial forces are linearised very easily. The observation that r0 = 0 yields a very straightforward
expression: XIu XIv XIr XIψ

YIu YIv YIr YIψ
NIu NIv NIr NIψ

 = m

0 0 v0 0
0 0 −u0 0
0 0 xgu0 0

 (2.49)

In other words, the quadratic termmxgr
2 is negligible around a non-rotating steady state. What remains

is the CRB∗ matrix from [7], generalised for a nonzero side velocity.
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2.5. Stability assessment
After obtaining a solution for the constrained optimisation problem, the force derivatives at that point
can be computed. From now on, the term O(ε2) will be dropped since it can be assumed that the
perturbation from the steady state is small enough.

DxFtot =

Xt,u Xt,v Xt,r Xt,ψ

Yt,u Yt,v Yt,r Yt,ψ
Nt,u Nt,v Nt,r Nt,ψ

 =

XAu XAv 0 XAψ

YAu YAv 0 YAψ
NAu NAv 0 NAψ

+

XSu XSv XSr XSψ

YSu YSv YSr YSψ
NSu NSv NSr NSψ


+

XHu XHv XHr 0
YHu YHv YHr 0
NHu NHv NHr 0

+

0 0 XIr 0
0 0 YIr 0
0 0 NIr 0


(2.50)

The steady state was a force equilibrium, therefore the total forces can be written as the product of the
Dx matrix and the state vector (∆u,∆v, r, ψ)T . Also, this is the moment to invoke Equation 2.13 which
related the forces to (u̇, v̇, ṙ).

M

u̇v̇
ṙ

 =

Xtot

Ytot
Ntot

 = DxFtot


∆u
∆v
r
ψ

 (2.51)

From here, the state transition matrix A follows, which directly relates the time derivatives of the state
to the state itself. A similar process also leads to the input matrix B. This matrix can be built much like
how the A matrix was constructed. The leftmost column will be closely related to some combination
of the hydrodynamic parameters Xδδ, Yδ,Nvrδ, and the steady state speeds u0 and v0, while the other
columns relate to the aerodynamic forces through the angle of attack α = s− θA.

ẋ =


u̇
v̇
ṙ

ψ̇

 =

A︷ ︸︸ ︷ M−1 ·DxFtot

0 0 1 0



∆u
∆v
r
ψ

+

B︷ ︸︸ ︷ M−1 ·DuFtot

0



∆δ
∆s1
∆s2
∆s3
∆s4

 = Ax+Bu (2.52)

The Jacobian of the steady-state solution needs to be determined to evaluate the stability of an ODE
system. This is the state transition matrix A. If one or more of its eigenvalues lie in the right half-
plane, the corresponding eigenvector leads to an unstable solution. Therefore the problem reduces to
analysing the roots of the characteristic equation of A.

The characteristic polynomial of the state transition matrix A will be written as follows:

char(A) = a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 (2.53)

Its coefficients can be calculated from the force matrix derivatives and the mass matrix and amount to
the following (note that the entire monic polynomial was first multiplied by det(M) to obtain a simpler
expression):

a0 = det(M);

a1 = −m11m22Nt,r +m11m23Nt,v +m11m32Yt,r +m23m32Xt,u −m11m33Yt,v −m22m33Xt,u;

a2 = m11Yt,vNt,r −m22Xt,rNt,u +m22Xt,uNt,r −m11m22Nt,ψ +m23Xt,vNt,u −m23Xt,uNt,v

+m32Xt,rYt,u +m11m32Yt,ψ −m11Yt,rNt,v −m32Xt,uYt,r −m33Xt,vYt,u +m33Xt,uY t, v;

a3 = Xt,rYt,vNt,u −Xt,vYt,rNt,u −Xt,rYt,uNt,v +Xt,uYt,rNt,v +Xt,vYt,uNt,r −Xt,uYt,vNt,r

−Xt,uYt,ψNt,v +m11Yt,vNt,ψ −m22Xt,ψNt,u +m22Xt,uNt,ψ +m32Xt,ψYt,u −m32Xt,uYt,ψ;

a4 = Xt,ψYt,vNt,u +Xt,uYt,ψNt,v +Xt,vYt,uNt,ψ −Xt,vYt,ψNt,u −Xt,ψYt,uNt,v −Xt,uYt,vNt,ψ

By the Routh-Hurwitz criterion, the stability of char(A), which means the condition that all roots lie in
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the left half-plane, is equivalent to the following system of inequalities:

∆0 = a0 > 0; (2.54)
∆1 = a1 > 0; (2.55)
∆2 = a1a2 − a0a3 > 0; (2.56)
∆3 = a1a2a3 − a0a

2
3 − a21a4 > 0; (2.57)

∆4 = a4 > 0. (2.58)

It should be noted that this condition is stronger than the condition that all ai > 0. The system can
be simplified by noting that a0 is equal to the determinant of the mass matrix which means it will al-
ways be positive. Furthermore, a1 is always positive since the force derivatives Xt,u, Yt,v, Nt,r are all
negative, and the off-diagonal terms of the mass matrix are relatively small compared to the diagonal
terms (provided the vessel has a center of mass reasonably close to the midship). The other Hurwitz
coefficients ∆2,∆3,∆4 are less straightforward in terms of predicting their signs in a general setting.
All of the previous derivations can be summarised in the following statement:

The vessel is (open-loop) stable if and only if ∆2,∆3,∆4 > 0.

It will also prove useful to fit this condition by defining the degree of instability (DOI) of the system as
follows:

DOI(A) = Max(Re(Eig(A))) (2.59)

Whenever this number is positive, it means at least one of the Hurwitz coefficients is zero and the
system is unstable. When DOI(A) < 0, the system is stable. The case when the degree of instability
equals zero will not be treated as this case has measure zero in the corresponding probability space.



3
Case Study

The methodology developed to assess yaw stability in a 3-DOF framework will now be applied to the
specific case of an ongoing EU Horizon project called Oceanbird. The concept, as it is being developed
by Wallenius Wilhelmsen and Alfa Laval, in collaboration with multiple partners in the wind propulsion
industry, aims to develop oceangoing RoRo vessels able to transport several thousands of cars across
the Atlantic Ocean, using wind as the main means of propulsion. An artistic rendition is shown in Figure
3.1.

In the context of the Oceanbird project, two demonstrator vessels are currently being built. The first
vessel, named Tirranna, is a retrofit that is currently in the process of equipping one wingsail on its deck.
Full-scale trial data from Tirranna serves as a testbed for the next generation of vessels - in particular,
the second demonstrator vessel, named Orcelle Wind. This will be a new build with multiple wingsails,
using wind as the main source of propulsion. The latest design iteration has six wingsails, a length of
206.6m, a beam of 39m and a height of 70m above water, boasts a capacity of 7100 car units and is
expected to emit at least 50− 60% less than conventional car carriers [22].

For the case study, a design iteration of theOceanbird concept will be used for which there was sufficient
data readily available. The main design constants, as well as the aerodynamic and hydrodynamic
parameters, were provided by RISE SSPA (https://www.ri.se/en/what-we-do/maritime).

Quantity Name Symbol Quantity
Length L 206.6m
Beam B 39m
Draft T 8.5m
Displacement ∇ 30 843m3

Longitudinal CoM position xg −9.8m
Yaw radius of gyration kzz 72.1m

Table 3.1: Main vessel data of the wPCC

The wPCC has four wingsails placed at the centreline of the vessel, where the mean centre of effort
approximately crosses the axis of rotation so as to not cause difficulties with regards to control of the
angle of attack. In Table 3.2, the main aerodynamic data of the ship is given, as well as the air density
and the reference area used for calculating the wind force exerted on the superstructure. The shape
of the sail is given by discrete values for the chord lengths at 25 different sections of the sail. Table
3.3 presents the exact chord lengths at 25 linearly spaced chords along the height of the sail. The
wingsails have a NACA 0015 profile, which is a symmetrical shape. This has the advantage of being
able to generate lift on both starboard and port wind directions without deforming. Figure 3.2 shows
the measured drag and lift coefficients against the angle of attack. To be able to calculate aerodynamic
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Figure 3.1: Orcelle car carrier developed by Oceanbird

Quantity Name Symbol Quantity
Air density ρa 1.225 kgm−3

Reference area for wind forces AT 1229m2

Sail area AS 7376m2

Sail height hS 80m
Sail foot above water line hB 27m
Longitudinal CoE of sail 1 xS,1 −61.6m
Longitudinal CoE of sail 2 xS,2 −18.4m
Longitudinal CoE of sail 3 xS,3 24.8m
Longitudinal CoE of sail 4 xS,4 68.0m

Table 3.2: Aerodynamic constants and parameters

Height above hB (m) lC (m) Height above hB (m) lC (m) Height above hB (m) lC (m)
1.6 26.5663 30.4 25.3884 59.2 20.9925
4.8 26.5544 33.6 25.1076 62.4 20.0252
8.0 26.5124 36.8 24.7945 65.6 18.9216
11.2 26.4403 40.0 24.4482 68.8 17.6874
14.4 26.3385 43.2 24.0647 72.0 16.3276
17.6 26.2072 46.4 23.6286 75.2 14.8471
20.8 26.0467 49.6 23.1215 78.4 13.25
24.0 25.8571 52.8 22.5251
27.2 25.638 56.0 21.8213

Table 3.3: Discrete chord lengths of the wingsail

forces for any angle of attack, an interpolation function is needed. Since the stability evaluation method
described in the methodology section uses force derivatives of first degree, the interpolation function
is required to be continuously differentiable in order to avoid discontinuities in the stability evaluation.
Therefore, a spline method of order 2 was used to ensure that the interpolation function is continuously
differentiable. The aerodynamic profile for negative angles of attack was consequently extrapolated
according to CD(−α) = CD(α) and CL(−α) = −CL(α). This follows by symmetry of the airfoil.
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Figure 3.2: Measured aerodynamic coefficients for NACA 0015 airfoil, including 2-degree interpolation spline

Since the interaction effects between the four sails are expected to be both less predictable and larger in
magnitude when entering angles of attack beyond the stall angle (|α| > 20◦), the sails are constrained
to always stay within the no-stall region. This practice allows for a relatively simple polynomial approx-
imation of the drag and lift coefficients. It turns out that for a NACA 0015 airfoil such as used in the
example case, the drag and lift coefficients in the non-stall region can be approximated really well by
the following polynomials obtained by a least-square fit on even (drag) resp. uneven (lift) polynomials
of degree at most 5: [

CD(α)
CL(α)

]
=

[
0.008163 + 0.03283α2 + 2.286α4

6.196α+ 1.127α3 − 97.70α5

]
(3.1)

Figure 3.3: Measured aerodynamic coefficients for NACA 0015 airfoil in no-stall region, including interpolation polynomial
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Using polynomial approximations for the aerodynamic coefficients means simple expressions exist for
both the functions and their derivatives over the whole domain. The polynomial fits are shown in Figure
3.3.

In the used model, the aerodynamic forces on the hull depend on the apparent wind angle at the origin.
The measured data follows from virtual tests and correspond closely to data found in the literature for
similar hull shapes. Again, an interpolation spline of degree 2 was used in combination with symmetry
laws in order to cover all possible values of the apparent wind angle θA. The result is shown in Figure
3.4.

Figure 3.4: Measured aerodynamic coefficients of the superstructure depending on apparent wind angle, including 2-degree
interpolation spline

In order to obtain the hydrodynamic coefficients, the model was subjected to a so-called Virtual Captive
Test (VCT), which means that a high-fidelity flow model was used on a virtual hull to perform the same
kind of trials that would be used in a towing tank to fit a polynomial manoeuvring model to a scale model
of a vessel. Two fitting models were used: one that is linear in sway and yaw, and a more nonlinear
model having nonzero coupling forces in sway and yaw. For brevity, they will be referred to as the linear
resp. nonlinear model.

Figure 3.5 and 3.6 clearly illustrate the difference between the two manoeuvring models that were used.
Both the data and the zigzag test in the figures are due to Martin Alexandersson at RISE SSPA. The
exact coefficients are shown in Table 3.4 and 3.5.
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Quantity Value Quantity Value Quantity Value
X ′

0 -0.00121944 Y ′
v -0.012095 N ′

v -0.00122871
X ′
u 0.000616273 Y ′

r 0.0 N ′
r -0.00219559

X ′
vv 0.000980115 Y ′

vvv 0.0 N ′
vvv 0.0

X ′
vr 0.000423671 Y ′

vvr 0.0 N ′
vvr 0.0

X ′
rr 0.000144873 Y ′

vrr 0.0 N ′
vrr 0.0

X ′
δδ -0.00302748 Y ′

rrr 0.0 N ′
rrr 0.0

Y ′
δ 0.00459817 N ′

δ -0.0022101
Y ′
δδδ 0.00673454 N ′

δδδ -0.00338169
Y ′
rδδ 0.0 N ′

rδδ 0.0
Y ′
rrδ 0.0 N ′

rrδ 0.0
Y ′
vδδ 0.0 N ′

vδδ 0.0
Y ′
vvδ 0.0 N ′

vvδ 0.0
Y ′
vrδ 0.0 N ′

vrδ 0.0

Table 3.4: Hydrodynamic coefficients for linear model fitted to VCT data

Quantity Value Quantity Value Quantity Value
X ′

0 -0.00121944 Y ′
v -0.0104463 N ′

v -0.000961098
X ′
u 0.000616273 Y ′

r 0.00370091 N ′
r -0.00198337

X ′
vv 0.00203195 Y ′

vvv -0.0593839 N ′
vvv -0.0107814

X ′
vr 0.00104735 Y ′

vvr -0.0649034 N ′
vvr -0.0391047

X ′
rr -0.000264788 Y ′

vrr -0.0437891 N ′
vrr -0.00566021

X ′
δδ -0.00302748 Y ′

rrr -0.00385248 N ′
rrr -0.00262059

Y ′
δ 0.00459817 N ′

δ -0.0022101
Y ′
δδδ 0.00673454 N ′

δδδ -0.00338169
Y ′
rδδ 0.0 N ′

rδδ 0.0
Y ′
rrδ 0.0 N ′

rrδ 0.0
Y ′
vδδ 0.0 N ′

vδδ 0.0
Y ′
vvδ 0.0 N ′

vvδ 0.0
Y ′
vrδ 0.0 N ′

vrδ 0.0

Table 3.5: Hydrodynamic coefficients for nonlinear model fitted to VCT data
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Figure 3.5: Manoeuvring model zigzag test comparison - spatial plot

Figure 3.6: Manoeuvring model zigzag test comparison - rudder angle and velocities



4
Results

4.1. Steady state results
All of the results have been obtained by implementing the described model in Wolfram Mathematica.
The script used to obtain the data can be requested by contacting guidohaenen@gmail.com, while
intermediate VPP results have been presented here in Appendix A.

The constrained optimisation algorithmwas first run with four different underlying hydrodynamic models,
using the relatively simple uniform flow model. Both of the models given in Table 3.4 and 3.5 result
in stable hulls in terms of the classical stability criterion Y ′

v(N
′
r − m′x′g) + (m′ − Y ′

r )N
′
v > 0, which

is the binary diagnostic of stability at zero drift without considering aerodynamics. As an attempt to
verify the methodology of evaluating the sign of the maximum of the real part of the eigenvalues of the
system transition matrix, the method should produce unstable results for a hull that is inherently more
unstable in the classical sense. Therefore, both models were used as well as their tweaked “unstable”
counterparts. In the modified models, the original coefficients N ′

v and N ′
r were respectively multiplied

by 2 and divided by 3.

The steady-state data resulting from the algorithm consists of steady velocities u0 and v0, as well as a
steady rudder angle δ0 and steady sheeting angles s1,0, . . . , s4,0.

The results, showing the resulting ship speed U =
√
u20 + v20 for every true wind angle TWA (see

below for the definition of TWA) are shown in Figure 4.1. A wind speed of 8ms−1 was used, which
is weak enough that in a 4-DOF model, the heeling constraints would be satisfied even without having
to reef the sails [15]. True wind angles θW varied between 32◦ and 160◦. It is clear that the model
differences do not have a large effect on the outcome of the VPP algorithm. This observation, along
with the general magnitude of the numbers found, strengthens confidence in the validity of the method.

A transformation θw 7→ θw − β0 =: TWA was made so that the angles shown in the plot refer to
true wind angles with respect to the speed over ground (SOG), which is the standard practice for VPP
results. The fact that the drift angle as a function of the true wind is a bijection means that this can be
done without loss of information. The reason for defining θw with respect to the bow was to align with
the previous work on yaw stability in steady wind [25]. The reason for using TWA in the VPP plot is
just a presentation convention that allows for comparison with other VPP plots and has no effect on
the stability assessment. The steady-state ship velocities resulting from the SEAMAN VPP used by
RISE/SSPA and applied to the stable ship hull is included in Figure 4.1. It can be observed that the
results are very close. The force model developed in this thesis thus produces credible results, at least
for the steady state calculation.

4.2. Open-loop stability assessment
For all four hydrodynamic models, the steady state data served to calculate the numerical value of the
A and B matrices. This allowed for a direct computation of the eigenvalues of the A matrix for every
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Figure 4.1: VPP results for four different hydrodynamic models, V10m = 8ms−1
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Figure 4.2: Open-loop degree of instability for four different hydrodynamic models, V10m = 8ms−1

θW , of which the real parts were then calculated. The largest value served as a marker for whether the
open-loop system was stable. This is also called the “degree of instability” or DOI, which was earlier
defined in Equation 2.59. To verify that all derivations were correctly implemented, the found DOI
values were verified by running a simple Euler scheme on a few steady states of both stability types.
The results are presented in Figure 4.2, where the stable and unstable regions are shaded green and
red, respectively. Any subsequent stability plot will follow the same convention. An almost stepwise
linear behaviour can be discerned when looking at Figure 4.2. This cannot result from a small data
resolution, since a step size of 1◦ was used when varying θW , and the steps in the graph have a larger
step size. Future studies could delve into the exact mechanisms at play here by unpacking the Hurwitz
coefficients and exploring how they evolve under a varying true wind angle.

Furthermore, it is rather surprising that for the “stable hull” cases, there exist several disconnected
intervals of θW values that yield a stable steady equilibrium. This means that for those wind angles,
the helmsman could fix the rudder position and the sheets and go on a coffee break without the ship
veering out of control - all while using sail propulsion and sailing under a drift angle. For most wind
angles, however, the ship cannot maintain a stable heading without any form of active steering. This is
in line with the general intuition that one could have in the context of sailing vessels. The few stability
islands mentioned above might even disappear when a 4-DOF model or a more accurate aerodynamic
interaction model would be used instead of the basic approximation of the current methodology.

A more obvious observation that one would hope to see is the fact that artificially destabilised hulls do
in fact yield more unstable eigenvalues when operating in full sailing mode. This further solidifies the
validity of the results.

An attempt was made in the methodology section to derive a general analytical criterion. Due to the
exponentially increasing complexity of the Routh-Hurwitz criterion with each new added dimension,
the expressions were rather cumbersome and unwieldy. For actual applications, the system matrices
could be calculated just as well by perturbing all the forces described around the steady state with small
values ε, thus obtaining all the necessary partial derivatives to fill in the force derivatives. This has its
own drawbacks, seeing as it would require five times as many force evaluations - one for the steady
state solution and one for each dimension of the state vector. Applications of the Hurwitz method could
prove superior in cases where computational time required for the force calculations is longer than the
time required to fill in the force matrix from the steady state information alone.

In this specific case, it turns out that for all the wind angles analysed θw ∈ [32◦, 160◦], the Hurwitz
coefficients ∆1, . . . ,∆3 > 0 and it is purely the coefficient ∆4 that determines open-loop yaw stability.
In Figure 4.3, this is visualised. It can be seen that the sign of the DOI quantity is larger than zero if
and only if the quantity∆′

4 := ∆4
1
8ρ

3L7V 4
10m

, a nondimensional version of∆4, is smaller than zero. It would
be very interesting to see whether this reduction of the Routh-Hurwitz conditions is possible in a more
general marine engineering context, or if it is exclusive to the particular hull and force model being used.
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Figure 4.3: Fourth Hurwitz coefficient at various true wind angles.

Figure 4.4: Open-loop degree of instability for both analytical models compared with SEAMAN results

In the former case, the stability criterion would look as follows:

Xt,ψYt,vNt,u +Xt,uYt,ψNt,v +Xt,vYt,uNt,ψ > Xt,vYt,ψNt,u +Xt,ψYt,uNt,v +Xt,uYt,vNt,ψ (4.1)

A sanity check for whether the found DOI values are reasonable, can be done by comparing them
with the values obtained by discrete differentiation of the SEAMAN VPP used by RISE SSPA as it was
applied on the stable hull case. In this case, for every steady state resulting from the optimisation
problem, a very small perturbation was made in the direction of every state variable, which yielded
corresponding matrices A and B for the chosen operational conditions. Essentially, the force matrices
were filled in by taking difference quotients of the forces as calculated by the SEAMAN algorithm. The
resulting matrices are due to data delivered by Fredrik Olsson at RISE SSPA. This data yielded numer-
ically estimated system matrices A of which the DOI value was plotted in Figure 4.4 together with the
data resulting from the model in this thesis. It can be concluded that the analytical stability assessment
is indeed reasonable as it roughly agrees with the SEAMAN-produced data - both concerning order of
magnitude of the DOI and concerning its general trend when comparing different points of sail.

The results found by the method developed in the methodology section agree quite well with the SEA-
MAN data. Both methods show open-loop instability at the upwind points of sail and marginal stability
on a beam reach. The results slightly diverge again as the wind angle approaches 160◦, which may be
explained by interaction effects (not modelled in the methodology but present in SEAMAN data) which
become stronger when the sails block each other more.
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4.3. Modelling approaches
In order to gain a more in-depth understanding of the modelling limits of the applied methodology, two
additional variations were made in the open-loop stability assessment.

4.3.1. Wind flow model
The first variation pertains to the wind strength variations over the height. Both a model with an at-
mospheric boundary layer and one without a boundary layer but with a constant wind profile over the
height (multiplying V10m by a correction factor of 1.285 to adjust for the average forces on the sail in the
boundary layer model) were used. The results (using only the linear hydrodynamic model for a stable
hull) are shown in Figure 4.5, using the same conventions as in Figure 4.1. Again, the steady-state

Figure 4.5: Ship speed from VPP at V10m = 8ms−1 for uniform-flow model and boundary layer model, using linear stable hull.

differences between both models are virtually equal. This is a priori not a guarantee that the force
derivatives also behave the same. Nonetheless, they actually do behave roughly the same, as can be
seen by the DOI plot in Figure 4.6. From the above results, it can be concluded that the application of a
model with an atmospheric boundary layer does not lead to substantial qualitative stability differences
when compared with the uniform flow model that uses a wind speed correction factor. The difference in
computational effort is huge, therefore an important takeaway is that the exact distribution of the wind
profile and resulting twist effects are of negligible importance when assessing directional stability.

4.3.2. Surge coupling
Since this thesis builds on the previous work done on the yaw stability of a ship in steady wind by adding
sails to the equation, it makes sense to gauge the effect of surge coupling on stability as the thrust-yaw
coupling on force is expected to be considerably larger than for propeller-driven vessels. The state
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Figure 4.6: Degree of instability for two different flow models, using the linear stable hull type.

transition matrix A is first explicitly written out in symbolic coefficients:

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 1 0

 (4.2)

An attempt to simplify this system can be made by defining the no-surge state transition matrix, which
is the bottom-right part of the original state transition matrix:

ANS :=

a22 a23 a24
a32 a33 a34
0 1 0

 (4.3)

The Hurwitz criterion can be formulated again from the no-surge state transition matrix ANS . Again,
all Hurwitz coefficients turn out positive except for the last one, which determines the overall stability
of the sway-yaw system. This corresponds to the D4 quantity from [25] and is reformulated here using
the notation applied to the no-surge (subscript NS) case:

∆3,NS = Yt,vNt,ψ − Yt,ψNt,v (4.4)

Whenever this quantity is larger than zero, the course will be stable for this particular vessel. For other
vessels, the other Hurwitz coefficients may further restrict the stability of the system.

The degree of instability for the restricted matrix was plotted in Figure 4.7 for all steady-state results,
and a comparison can be made with the original surge-coupled case. The results are similar, although
stable equilibria become unstable in some beam reach points of sail after neglecting the surge coupling.
Another main observation is the divergence of the results in headwinds. Although the stability type
remains unstable in the whole region θw ∈ [32◦, 80◦], the surge coupling could be expected to yield
qualitative differences with regards to stability in another situation - for example, when considering a
different vessel or when adding the influence of rudder feedback.

Unlike in the case of the atmospheric boundary layer, in this case the results are too different to be able
to neglect surge couplings.

4.4. Closed-loop analysis
To add the influence of rudder feedback on yaw motion, a K matrix is defined according to a propor-
tional/derivative (PD) control scheme. Note the gain values are multiplied by −1 to account for the sign
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Figure 4.7: Degree of instability of the vessel system both with and without surge coupling, using the linear stable hull type.

convention of δ combined with the usual notation of feedback, that is, A−BK.

K(G1, G2) :=


0 0 −G2 −G1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (4.5)

A simple first implementation is a control scheme with only a proportional gain of G1 = 0.3 (G2 = 0),
representing human steering:

Khuman :=


0 0 0 −0.3
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (4.6)

A control scheme which is expected to be more powerful is given by proportional and derivative gains
G1 = G2 = 1.0, which more closely resembles how an autopilot would steer the vessel.

Kauto :=


0 0 −1.0 −1.0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (4.7)

The closed-loop DOI is then calculated again by taking the maximum of the real parts of the eigenvalues
of the systemmatrix, which in this case is equal toA−BK rather than justA like it was in the open-loop
case. The result is seen in Figures 4.8 and 4.9, where a comparison was again made between four
different sets of hydrodynamic coefficients as described in the beginning of the Results section. The
vessel is now steerable at all the analysed points of sail, as is to be expected since it was originally
designed to be wind-propelled. The nonlinear model of the same hull gives virtually the same results
as the linear model. The tweaked destabilised hulls have closed-loop eigenvalues further to the right
(as seen in the complex plane) which makes them more unstable in the wind-propelled context, as
expected. The destabilised hull resulting from the nonlinear hydrodynamic model is less affected than
the one that came from a linear model, which can be expected since the linear terms are also the ones
that were tweaked and in a nonlinear model, overall stability under a drift angle depends not only on
the linear coefficients that appear in the classical stability criterion. The autopilot control case, like the
human control case, showcases a drastically improved stability under all points of sail when compared
to the open-loop case. There is less added effect of PD control when using the original hull, while
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Figure 4.8: Closed-loop degree of instability of human steering control (G1 = 0.3, G2 = 0).

Figure 4.9: Closed-loop degree of instability of automatic steering control (G1 = 1.0, G2 = 1.0).

the tweaked hulls benefit a little from the effect of adding derivative control. The DOI of the nonlinear
unstable model closely follows its stable counterparts for closed-hauled points of sail, and then starts
increasing after what is likely a bifurcation in the eigenvalue space (note that taking the maximum of the
real parts of the eigenvalues means that at certain points, when changing the underlying parameters,
the eigenvalues can flip positions, which is likely to have happened here).

The plots in Figures 4.8 and 4.9 again include the numerically obtained data from the SEAMAN software
used by RISE SSPA, applied on the stable hull type. The data agrees quite well with the results obtained
from the analytical method.

The unstable hulls used in this thesis are more hypothetical and only result from artificially tweaking the
hydrodynamic coefficients. An interesting direction of further research would be to investigate these
same characteristics for a refit of a real unstable vessel (or at the very least a parameter set that was
directly derived from VCT data), e.g. a tanker or bulk carrier.

4.5. Yaw motion
For the last research question, the time-domain behaviour of the closed-loop system is examined to
get an idea of the robustness of the step response. Also, the general method of solving the associated
ODE with boundary conditions is presented.

The yaw motion can be calculated starting from an equilibrium operational point and subsequently
assuming a new target yaw angle ψr in order to simulate a step response. Recall Equation 2.52 and
assume constant sheeting angles to investigate the ship/rudder system around a constant equilibrium
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point:


u̇
v̇
ṙ

ψ̇

 =

A︷ ︸︸ ︷ M−1 ·DxFtot

0 0 1 0



∆u
∆v
r
ψ

+

B︷ ︸︸ ︷ M−1 ·DuFtot

0



∆δ
0
...
0

 (4.8)

When rewriting the ODE system of Equation 4.8 so that u and v are eliminated, a fourth-order differential
equation is the result:

a0
...
r + a1r̈ + a2ṙ + a3r + a4ψ = q1δ̈ + q2δ̇ + q3∆δ (4.9)

Here the ai coefficients are the same as in Equation 2.53, while the qi coefficients are found by unpack-
ing the definitions of Du and the mass matrix M. As before, the entire equation was first multiplied by
det(M) in order to clear out the bulky fractions resulting from inverting the mass matrix. After unpacking
everything, the qi coefficients are as follows:

q1 = m11m22Nt,δ −m11m32Yt,δ;

q2 = m11Yt,δNt,v −m11Yt,vNt,δ +m22Xt,δNt,u −m22Xt,uNt,δ +m32Xt,uYt,δ −m32Xt,δYt,u;

q3 = Xt,uYt,vNt,δ −Xt,uYt,δNt,v −Xt,vYt,uNt,δ +Xt,vYt,δNt,u +Xt,δYt,uNt,v −Xt,δYt,vNt,u.

There is no straightforward way to solve equation 4.9 if the behaviour of ∆δ is unknown. An attempt
to solve the simplified equation can be made by ignoring the inertia of the rudder and hence defining
a quasi-static “rudder efficiency coefficient” q3/a4 similar to the one present in [25]. However, since in
the case of the wPCC, we already established that a4 is close to or smaller than zero, this coefficient
will often flip negative or approach infinity and has little physical meaning. It is also not immediately
clear that the time derivatives of the rudder motion can be ignored when calculating the yaw motion.
Therefore, a proportional control scheme with gain G1 = 0.3 is used to ensure a stable yaw motion
for all points of sail, thus ensuring a meaningful comparison between various operational points. The
situation considered is a steady operational condition at equilibrium. Then a new target angle ψr is
introduced at t = 0, hence the change in rudder angle will be equal to

∆δ = G1(ψ − ψr). (4.10)

This way the control system aims for a yaw angle that differs from the previous yaw angle ψ0 by the value
ψr. The obtained solution can be interpreted as a step response to the combined rudder controller/ship-
system.
Now ∆δ can be written in terms of ψ so that the ODE can be solved. The new ODE containing only
time derivatives of ψ, and divided by the reference angle ψr, looks like the following:

a0

...
r (t)

ψr
+ a1

r̈(t)

ψr
+ (a2 − q1G1)

ṙ(t)

ψr
+ (a3 − q2G1)

r(t)

ψr
+ (a4 − q3G1)

ψ(t)

ψr
= −q3G1 (4.11)

It turns out that the corresponding characteristic equation

a0λ
4 + a1λ

3 + (a2 − q1G1)λ
2 + (a3 − q2G1)λ+ (a4 − q3G1) = 0 (4.12)

has two real roots and one pair of complex conjugates. After using familiar techniques for solving
polynomial equations, these roots can be expressed in terms of the polynomial coefficients. In practical
applications, a numerical root finding method suffices. The characteristic equation can be rewritten in
its root form as follows:

a0(λ− σ̃0)(λ− σ̃1)(λ− (σ̃2R + σ̃2I i))(λ− (σ̃2R − σ̃2I i)) = 0 (4.13)

The general solution of the ODE then looks as follows:

∆ψ(t)

ψr
= C0e

σ̃0t + C1e
σ̃1t + C2e

σ̃2Rt cos(σ̃2It) + C3e
σ̃2Rt sin(σ̃2It) + C4 (4.14)
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Figure 4.10: Comparison between yaw motion at θw = 50◦ with and without the approximation a0 = 0.

The root σ̃0, which is the root with the most negative real part, can be disregarded in the final solution
since it is a solution component of relatively high frequency, which quickly approaches zero as t > 0.
This is akin to making the simplification that a0 = 0, which is an inertia term that is neglected in the
K-T Nomoto model as well [14]. It turns out this simplification does not change the other coefficients
by much, as exemplified by numerically solving the yaw motion for θw = 50◦ both with and without this
approximation. The result is visible in Figure 4.10.
The simplified ODE characteristic equation can now be summarised as follows:

a1λ
3 + (a2 − q1G1)λ

2 + (a3 − q2G1)λ+ (a4 − q3G1) = 0 (4.15)
a1(λ− σ1)(λ− (σ2R + σ2I i))(λ− (σ2R − σ2I i)) = 0 (4.16)

∆ψ(t)

ψr
= C1e

σ1t + C2e
σ2Rt cos(σ2It) + C3e

σ2Rt sin(σ2It) + C4 (4.17)

The chosen boundary conditions are ψ(∞)
ψr

= −q3G1

a4−q3G1
(assuming that all time derivatives converge to

zero, this is the static solution at infinity), ψ(0) = 0, r(0) = 0, ṙ(0) = 0, and r̈(0) = 0. These boundary
conditions represent a situation in which the ODE is completely solvable, and the lowest-order time
derivatives of the yaw angle are zero at t = 0. This leads to the following linear system of boundary
equations: 

0
0
0

−q3G1

a4−q3G1

 =


1 1 0 1
σ1 σ2R σ2I 0
σ2
1 σ2

2R − σ2
2I 2σ2Rσ2I 0

0 0 0 1



C1

C2

C3

C4

 (4.18)

This linear system can now be solved to obtain the boundary coefficients by inverting the matrix on the
right hand side. The result is a convoluted expression of terms appearing in Equation 4.18 and can be
easily calculated by inverting the matrix.

When examining the solution for three different points of sail (closed-hauled, beam reach and broad
reach), it becomes clear that the oscillatory components driven by σ2R and σ2I have a relatively small
contribution to the motion. The numerical values of the solution coefficients are presented in Table 4.1.

The solutions, normalised by the reference angle ψr, are dominated by the real eigenvalue σ1. Oscil-
latory components are virtually negligible. Yaw oscillation, which was the dominant phenomenon in
the last section of the previous work by Yasukawa et. al [25], driven by the complex conjugate pair of
eigenvalues σ2, plays almost no role here due to the additional eigenvalue σ1 dominating the transient
response. The steady errors in the yaw response arise due to the fact that no integral control was
applied. Whenever a4 6= 0, the steady error will be unequal to zero.
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θw = 50◦ θw = 90◦ θw = 130◦

σ1 -0.00449485 -0.00538884 -0.00477033
σ2R -0.0105731 -0.0113001 -0.00776853
σ2I 0.0145206 0.0157717 0.0114955
C1 -1.51065 -1.41765 -1.40152
C2 0.35044 0.349288 0.373944
C3 -0.212452 -0.234121 -0.328886
C4 1.16022 1.06836 1.02758

Table 4.1: Numerical values of coefficients of ODE solution for three different points of sail, using the human control scheme
and the linear stable hull

Figure 4.11: Time evolution of ODE solution for three different points of sail, using the human control scheme and the linear
stable hull.

The autopilot control scheme gives an even better response, as can be seen both in the numerical
overview in Table 4.2 and the time response plot in Figure 4.12. The steady error is a lot smaller, owing
to the larger proportional gain applied in this case. Note that a proportional gain of 1.0 is still very
reasonable in an actual operational context in the terms of actuator limits, as this means that the extra
rudder angle applied is equal to the current yaw angle anomaly (not counting derivative gain).

Both the human and autopilot control cases show that the vessel from the case study is very controllable
by active steering.

θw = 50◦ θw = 90◦ θw = 130◦

σ1 -0.0047302 -0.00538429 -0.00481328
σ2R -0.018626 -0.020248 -0.014127
σ2I 0.0276442 0.0295592 0.0209084
C1 -1.21086 -1.19565 -1.22522
C2 0.167642 0.176081 0.217105
C3 -0.0942371 -0.0971766 -0.135366
C4 1.04322 1.01957 1.00812

Table 4.2: Numerical values of coefficients of ODE solution for three different points of sail, using the autopilot control scheme
and the linear stable hull
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Figure 4.12: Time evolution of ODE solution for three different points of sail, using the autopilot control scheme and the linear
stable hull.



5
Conclusions

We recall the research questions here:

To what extent is a vessel able to maintain yaw stability under the influence of varying wind
conditions and control system specifications when introducing large aerodynamic control sur-
faces?

1. Which analytical methods can be used to assess the directional stability of vessels equipped with
large aerodynamic control surfaces?

2. How do different modelling approaches impact the directional stability assessment of vessels?
3. How does the yawmotion of the system behave in both the frequency domain and the time domain

under proportional and derivative feedback control strategies?

5.1. Analytical method
An analytical method was developed for assessing directional stability of any vessel for which the
basic aerodynamic and hydrodynamic characteristics are known. The main aim when attacking the
first research question was to mathematically reformulate the notion of a stable linearised system into
a single inequality that holistically described the stability type of the system. Although this reduction
of stability conditions turned out to be possible for this particular vessel, that is a tentative conclusion
that might lose its value when the hydrodynamic coefficients look wholly different. Possible future work
could look into examining the signs of the various ∆i for a range of vessels.

For many practical applications, the easiest approach to assessing stability might be to directly de-
rive the degree of instability of the system from the system matrices. This can be done by filling in
the force derivative matrices with difference quotients to approximate the total derivative, exactly as
demonstrated in this thesis with the SEAMAN data.

The directional stability diagnostic, whether in the form of a numerically-calculated DOI or an equivalent
combination of Hurwitz coefficients, is a binary dimensionless quantity that could be expanded into a
red/orange/green partition or similar. To do this, a notion of marginal stability would need to be defined,
which could relate to the necessary gains needed to stabilise the system. This could be an interesting
direction for future research in the field.

5.2. Model variations
The different model approaches that were performed provided various useful insights. Variations were
made in the hydrodynamic parameters, the aerodynamic model, and the system dimension (whether
to take into account surge coupling or not).

The different datasets for the hydrodynamic coefficients produced no significant results when compar-

35
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ing a nonlinear hull with a linear hull, at least for the original stable case. This is good news for the
simple methods developed here, since the stability diagnostic should be invariant under the choice of
hydrodynamic model. The fact that differences in the results arose for the artificially destabilised hulls
can be explained by the relative importance of the linear coefficients (which are the coefficients that
were altered), which is lower in the nonlinear model than in the linear one.

The effect of including a boundary layer in the wind model was also examined, mostly with the aim of
improving the computational time of both the VPP algorithm and calculating the force derivatives. The
differences in the stability outcome are almost completely negligible in this case, although this could
change when sail-sail and wind-sail interaction effects are present in the force model. The computa-
tional effort is much larger for the boundary layer model, which requires the calculation of the apparent
wind angle and speed at all sail heights instead of just once.

Surge coupling is perhaps the most interesting phenomenon here, since it has the strongest connection
to the core of the research gap. Where previous directional stability models were able to disregard surge
or even yaw angle - in the classical stability criterion, only sway and yaw velocities play a role - this
thesis needed a state-space model of all four dimensions. The surge coupling effects turn out to not
be negligible, although for some points of sail the differences are small. It could be expected that this
dimension plays a stronger role in this case, since wind propulsion inevitably has a strong effect on the
surge forces so that coupling effects are very likely in most situations.

5.3. Closed-loop analysis
When looking at the closed-loop response of the wPCC vessel, both a proportional gain scheme (G1 =
0.3, G2 = 0.0) and a PD scheme (G1 = 1.0, G2 = 1.0) were applied, corresponding to human control
and autopilot control, respectively. The degree of instability (DOI) is then calculated with the closed-
loop system matrix A − BK. The DOI values for both control schemes are satisfactory on all points
of sail when looking at the original hull. For the artificially destabilised hulls the results are, in varying
degrees, relatively more unstable - as expected. Again, the SEAMAN data serve as a verification for
the stable hull results.

The time-domain response of a step rudder input was also solved. This was done by first neglecting
the most high-frequency eigenvalue through the approximation a0 = 0, and then applying the boundary
conditions ψ(0) = r(0) = ṙ(0) = 0 on the resulting third-degree ODE. Numerical solutions for three
different points of sail yielded small steady errors and negligible oscillatory components for the human
steering control scheme, and yielded negligible steady errors and negligible oscillatory components for
the autopilot control scheme.

Most solutions are dominated by the exponential term corresponding to the constant C1 and the eigen-
value σ1, which is the eigenvalue that arises due to the extra surge coupling term. When comparing
the found results with a similar analysis done by Yasukawa et al. [25], the most striking difference is
the absence of this eigenvalue in their work. As such, a comparison of the various eigenperiods of the
oscillatory components has much less value in the present case.

The general conclusion is that, looking at the case study at hand, the wPCC vessel becomes direction-
ally stable rather easily under active rudder control schemes, even when using moderate gain values
and simple PD control. The step responses are acceptable in the time domain when looking at over-
shoot. For a more realistic estimation of the response (especially the settling time which is at present
quite long), the rudder action should be driven by a maximum rudder angle rate δ̇ or even a separate
plant including rudder inertia. In the current analysis, the chosen boundary conditions may diverge
from reality because they were rather conservative.

5.4. Future work
Future work done in the field might build on this research in the following ways:

• Expand the motion model to a 4DOF model, adding roll (ϕ) and roll rate (p) as variables. This
would imply that the state-space model has six dimensions, and the ODE would become even
more complex. However, numerical directional stability assessments with respect to a varying
wind speed and subsequent heeling effects could be interesting from both design and operational
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points of view;
• Explore the wind-assisted case (wingsail/Flettner/kite) where a propeller guarantees a steady
ship speed;

• Evaluate sheeting control strategies (especially multiple sails). Note that the notation from this
thesis already facilitates the use of sheeting angles as input variables, which was briefly explored
and then abandoned due to unverifiable results;

• Develop traffic-light diagnostic (stable/marginally stable/unstable) or similar;
• Examine fundamentally different hull shapes like tankers, container vessels, and small sailing
yachts;

• Experimentally validate methodology using existent scale models;
• Compare different underlying models:

– High-fidelity methods like turbulence models, flow-sail and sail-sail interaction;
– Integral control gain;
– Alternative hydrodynamic models like the MMG model [24];

• Find general sign of ∆2,∆3 for a wide variety of vessels to reduce the conditions for stability.
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A
Intermediate VPP results

Table A.1: VPP results for linear stable hull

θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
32 5.76549 -1.01705 3.49014 18.2875 18.2571 18.2268 18.1967
33 5.90448 -1.00977 3.34924 18.3996 18.4265 18.4523 18.477
34 6.0391 -1.00033 3.22079 18.4486 18.4697 18.49 18.5097
35 6.1696 -0.991146 3.1011 18.493 18.5093 18.525 18.5404
36 6.29612 -0.982177 2.98929 18.5334 18.5457 18.5576 18.5693
37 6.41878 -0.973392 2.88457 18.5704 18.5793 18.588 18.5966
38 6.53768 -0.964761 2.78626 18.6045 18.6105 18.6165 18.6225
39 6.65292 -0.956259 2.69375 18.6359 18.6396 18.6433 18.647
40 6.76457 -0.947862 2.60652 18.6651 18.6668 18.6685 18.6702
41 6.87271 -0.93955 2.52408 18.6923 18.6923 18.6923 18.6923
42 6.97739 -0.931307 2.44604 18.7179 18.7165 18.7151 18.7137
43 7.07837 -0.923108 2.37198 18.7419 18.7395 18.7371 18.7347
44 7.17564 -0.914931 2.30158 18.7646 18.7613 18.758 18.7547
45 7.26923 -0.906762 2.23451 18.786 18.782 18.7779 18.7738
46 7.35921 -0.89859 2.17053 18.8063 18.8016 18.7969 18.7921
47 7.44562 -0.890405 2.10937 18.8256 18.8203 18.815 18.8096
48 7.52848 -0.882197 2.05082 18.8439 18.8382 18.8324 18.8265
49 7.60785 -0.873958 1.99469 18.8613 18.8552 18.849 18.8427
50 7.68375 -0.865682 1.9408 18.878 18.8716 18.865 18.8583
51 7.75621 -0.857362 1.88898 18.894 18.8872 18.8804 18.8734
52 7.82526 -0.848992 1.83909 18.9093 18.9023 18.8952 18.8879
53 7.89093 -0.840568 1.791 18.924 18.9168 18.9094 18.902
54 7.95324 -0.832086 1.74458 18.9382 18.9308 18.9232 18.9156
55 8.0122 -0.823543 1.69972 18.9518 18.9443 18.9366 18.9287
56 8.06785 -0.814935 1.65632 18.965 18.9573 18.9495 18.9415
57 8.12021 -0.80626 1.6143 18.9777 18.97 18.962 18.9539
58 8.16928 -0.797516 1.57355 18.9901 18.9822 18.9742 18.966
59 8.2151 -0.788701 1.534 19.002 18.9941 18.986 18.9777
60 8.25792 -0.779815 1.49541 19.0135 19.0054 18.9971 18.9886
61 8.29816 -0.770861 1.45746 19.0246 19.0163 19.0078 18.9991
62 8.33582 -0.76184 1.4201 19.0354 19.0269 19.0182 19.0093
63 8.37092 -0.752753 1.3833 19.0459 19.0373 19.0284 19.0193
64 8.40347 -0.743601 1.34701 19.0562 19.0474 19.0384 19.0291
65 8.43347 -0.734385 1.31121 19.0661 19.0572 19.0481 19.0387
66 8.46093 -0.725105 1.27586 19.0759 19.0669 19.0576 19.0481
67 8.48588 -0.715764 1.24094 19.0854 19.0763 19.0669 19.0573

40



41

θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
68 8.50832 -0.706362 1.2064 19.0947 19.0855 19.076 19.0663
69 8.52826 -0.696901 1.17224 19.1038 19.0945 19.085 19.0751
70 8.54572 -0.687383 1.13841 19.1127 19.1033 19.0937 19.0838
71 8.56072 -0.677811 1.10489 19.1214 19.112 19.1023 19.0923
72 8.57326 -0.668185 1.07166 19.13 19.1205 19.1108 19.1007
73 8.58337 -0.658509 1.0387 19.1384 19.1289 19.1191 19.109
74 8.59107 -0.648784 1.00598 19.1466 19.1371 19.1273 19.1171
75 8.59636 -0.639014 0.973475 19.1547 19.1452 19.1353 19.1251
76 8.59919 -0.629183 0.941261 19.1628 19.1532 19.1433 19.1332
77 8.59931 -0.619241 0.909559 19.1707 19.1611 19.1513 19.1412
78 8.59675 -0.609188 0.878358 19.1785 19.169 19.1592 19.1491
79 8.59152 -0.599027 0.847632 19.1862 19.1767 19.167 19.1569
80 8.58366 -0.588759 0.817358 19.1938 19.1844 19.1746 19.1646
81 8.57319 -0.57839 0.787513 19.2013 19.1919 19.1822 19.1723
82 8.56015 -0.56792 0.758075 19.2087 19.1994 19.1898 19.1798
83 8.54456 -0.557355 0.729024 19.216 19.2068 19.1972 19.1873
84 8.52646 -0.546696 0.70034 19.2233 19.2141 19.2046 19.1948
85 8.50588 -0.535948 0.672006 19.2305 19.2214 19.2119 19.2021
86 8.48287 -0.525114 0.644002 19.2377 19.2285 19.2191 19.2094
87 8.45746 -0.514196 0.616314 19.2448 19.2357 19.2263 19.2167
88 8.42968 -0.5032 0.588924 19.2518 19.2428 19.2335 19.2239
89 8.39959 -0.492128 0.561828 19.2588 19.2498 19.2406 19.231
90 8.36745 -0.480974 0.536004 19.2657 19.2567 19.2475 19.238
91 8.33346 -0.469734 0.512106 19.2725 19.2636 19.2544 19.245
92 8.29767 -0.458412 0.49015 19.2793 19.2704 19.2613 19.2519
93 8.26011 -0.447013 0.470151 19.286 19.2772 19.2681 19.2587
94 8.22084 -0.435542 0.452126 19.2927 19.2839 19.2749 19.2656
95 8.17991 -0.424003 0.436096 19.2993 19.2906 19.2816 19.2724
96 8.13738 -0.412404 0.422087 19.3059 19.2972 19.2883 19.2792
97 8.09328 -0.400742 0.410118 19.3124 19.3038 19.295 19.2859
98 8.04767 -0.389026 0.400219 19.3189 19.3104 19.3017 19.2927
99 8.0006 -0.377261 0.392423 19.3254 19.317 19.3083 19.2994
100 7.95213 -0.365449 0.386732 19.3319 19.3235 19.3149 19.3061
101 7.90217 -0.353595 0.381421 19.3383 19.33 19.3216 19.3129
102 7.85068 -0.341701 0.375461 19.3448 19.3366 19.3282 19.3196
103 7.79774 -0.329771 0.368832 19.3512 19.3431 19.3349 19.3264
104 7.74339 -0.317809 0.361514 19.3577 19.3497 19.3415 19.3331
105 7.68772 -0.305818 0.353487 19.3642 19.3562 19.3481 19.3398
106 7.63078 -0.293802 0.344728 19.3707 19.3628 19.3547 19.3465
107 7.57264 -0.281765 0.335216 19.3772 19.3694 19.3614 19.3532
108 7.51336 -0.269711 0.324926 19.3838 19.376 19.368 19.3599
109 7.453 -0.257641 0.313874 19.3903 19.3826 19.3747 19.3667
110 7.39115 -0.245559 0.303456 19.3969 19.3893 19.3815 19.3735
111 7.32764 -0.233468 0.294397 19.4036 19.396 19.3883 19.3804
112 7.26255 -0.221366 0.286746 19.4103 19.4028 19.3951 19.3874
113 7.19596 -0.209254 0.280556 19.417 19.4096 19.402 19.3944
114 7.12794 -0.197132 0.275883 19.4238 19.4165 19.409 19.4014
115 7.05859 -0.184998 0.272792 19.4307 19.4234 19.416 19.4085
116 6.98798 -0.172851 0.27135 19.4376 19.4303 19.423 19.4156
117 6.91642 -0.160827 0.270299 19.4445 19.4373 19.4301 19.4227
118 6.84433 -0.149137 0.267565 19.4515 19.4444 19.4372 19.4299
119 6.77179 -0.137786 0.263072 19.4586 19.4515 19.4443 19.437
120 6.69888 -0.126773 0.256764 19.4658 19.4587 19.4515 19.4443
121 6.62564 -0.116097 0.248581 19.473 19.4659 19.4587 19.4515
122 6.55216 -0.105757 0.238463 19.4803 19.4732 19.466 19.4589
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
123 6.47842 -0.095688 0.226554 19.4877 19.4806 19.4734 19.4663
124 6.40427 -0.0857206 0.21334 19.4952 19.4881 19.4809 19.4737
125 6.32976 -0.0758424 0.198793 19.5028 19.4957 19.4885 19.4813
126 6.25497 -0.0660487 0.182854 19.5106 19.5034 19.4962 19.489
127 6.17994 -0.0563339 0.165459 19.5184 19.5112 19.5039 19.4967
128 6.10465 -0.0466863 0.146766 19.5265 19.5191 19.5119 19.5046
129 6.02822 -0.0370424 0.129032 19.5346 19.5273 19.5199 19.5126
130 5.95046 -0.0273734 0.112927 19.543 19.5356 19.5282 19.5208
131 5.8714 -0.0176613 0.0985582 19.5516 19.5441 19.5366 19.5292
132 5.79106 -0.00788532 0.0860506 19.5603 19.5528 19.5453 19.5378
133 5.71083 0.00183012 0.0750155 19.5693 19.5616 19.554 19.5465
134 5.63427 0.0111161 0.0641327 19.5783 19.5705 19.5628 19.5552
135 5.56131 0.0199696 0.0533642 19.5874 19.5794 19.5716 19.5639
136 5.49171 0.0284066 0.0427468 19.5965 19.5885 19.5806 19.5727
137 5.42512 0.0364622 0.0320383 19.6058 19.5976 19.5896 19.5817
138 5.36031 0.044347 0.018575 19.6154 19.607 19.5988 19.5907
139 5.29693 0.0521171 0.00166304 19.6251 19.6165 19.6081 19.5999
140 5.23494 0.0597779 -0.0187278 19.6351 19.6263 19.6177 19.6093
141 5.17428 0.0673357 -0.042563 19.6454 19.6364 19.6275 19.6189
142 5.11389 0.0748299 -0.066684 19.656 19.6467 19.6376 19.6287
143 5.05323 0.0822903 -0.0893086 19.667 19.6574 19.6479 19.6388
144 4.9923 0.0897304 -0.110354 19.6785 19.6684 19.6587 19.6492
145 4.93111 0.0971668 -0.129726 19.6904 19.6799 19.6698 19.66
146 4.8697 0.1047 -0.147331 19.7027 19.6918 19.6813 19.6711
147 4.80807 0.112394 -0.163052 19.7156 19.7043 19.6933 19.6827
148 4.74622 0.120269 -0.176739 19.7291 19.7172 19.7058 19.6948
149 4.68405 0.12832 -0.188416 19.7432 19.7307 19.7187 19.7072
150 4.62102 0.136343 -0.199664 19.7581 19.7449 19.7322 19.7202
151 4.55695 0.144309 -0.2108 19.7737 19.7597 19.7464 19.7337
152 4.49177 0.152242 -0.221729 19.7903 19.7754 19.7613 19.7478
153 4.42624 0.160206 -0.235776 19.808 19.7922 19.7773 19.7632
154 4.36198 0.168299 -0.259931 19.8268 19.8101 19.7943 19.7793
155 4.29887 0.176538 -0.294853 19.8469 19.829 19.8121 19.7963
156 4.23679 0.18494 -0.340815 19.8684 19.849 19.8308 19.8138
157 4.17446 0.193693 -0.392616 19.8912 19.8699 19.8501 19.8316
158 4.11126 0.202911 -0.448353 19.9158 19.8924 19.8706 19.8504
159 4.0471 0.212639 -0.508458 19.9425 19.9164 19.8924 19.8703
160 3.98191 0.222896 -0.575571 19.9715 19.9423 19.9156 19.8912

Table A.2: VPP results for nonlinear stable hull

θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
32 5.95021 -1.00877 3.48155 18.3809 18.4629 18.5346 18.598
33 6.07886 -1.0063 3.33362 18.4308 18.5015 18.5643 18.6203
34 6.20396 -1.00355 3.19616 18.476 18.5372 18.5921 18.6418
35 6.32558 -1.00053 3.06812 18.5171 18.5702 18.6184 18.6623
36 6.44378 -0.997245 2.94854 18.5548 18.6009 18.6432 18.6821
37 6.55863 -0.993714 2.83663 18.5894 18.6295 18.6667 18.7011
38 6.67018 -0.989942 2.73165 18.6215 18.6564 18.689 18.7194
39 6.77849 -0.985939 2.63296 18.6512 18.6816 18.7102 18.7371
40 6.8836 -0.98171 2.54001 18.6789 18.7053 18.7304 18.7541
41 6.98553 -0.977261 2.45229 18.7048 18.7278 18.7496 18.7705
42 7.08434 -0.972598 2.36936 18.7291 18.749 18.7681 18.7863
43 7.17996 -0.967725 2.29082 18.7521 18.7694 18.786 18.802
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
44 7.27218 -0.962629 2.21629 18.7738 18.7889 18.8034 18.8175
45 7.36098 -0.957314 2.14544 18.7944 18.8075 18.8201 18.8324
46 7.44639 -0.951782 2.07797 18.814 18.8252 18.8362 18.8469
47 7.52845 -0.946039 2.01361 18.8326 18.8422 18.8517 18.8609
48 7.60716 -0.940087 1.95214 18.8503 18.8585 18.8666 18.8745
49 7.68255 -0.933931 1.89331 18.8673 18.8742 18.881 18.8877
50 7.75465 -0.927573 1.83696 18.8835 18.8892 18.8949 18.9005
51 7.82347 -0.921017 1.78289 18.899 18.9038 18.9084 18.913
52 7.88902 -0.914267 1.73094 18.914 18.9177 18.9215 18.9252
53 7.95133 -0.907326 1.68097 18.9283 18.9313 18.9342 18.937
54 8.0104 -0.900198 1.63284 18.9422 18.9443 18.9465 18.9486
55 8.06626 -0.892885 1.58643 18.9556 18.957 18.9584 18.9598
56 8.11891 -0.88539 1.54163 18.9685 18.9693 18.9701 18.9709
57 8.16837 -0.877718 1.49833 18.981 18.9812 18.9814 18.9816
58 8.21466 -0.869871 1.45644 18.9931 18.9928 18.9925 18.9921
59 8.25779 -0.861853 1.41587 19.0049 19.004 19.0032 19.0024
60 8.29777 -0.853667 1.37655 19.0163 19.015 19.0137 19.0124
61 8.33499 -0.845322 1.33813 19.0272 19.0254 19.0236 19.0217
62 8.36973 -0.836829 1.30039 19.0379 19.0356 19.0332 19.0308
63 8.40199 -0.828191 1.26328 19.0483 19.0455 19.0426 19.0397
64 8.43178 -0.819412 1.22676 19.0584 19.0551 19.0518 19.0485
65 8.45911 -0.810495 1.19079 19.0683 19.0646 19.0609 19.0571
66 8.48399 -0.801445 1.15534 19.0779 19.0738 19.0697 19.0655
67 8.50643 -0.792264 1.12038 19.0874 19.0829 19.0784 19.0738
68 8.52644 -0.782958 1.08587 19.0966 19.0918 19.0869 19.082
69 8.54404 -0.77353 1.05178 19.1056 19.1005 19.0953 19.09
70 8.55923 -0.763984 1.01809 19.1144 19.109 19.1035 19.0979
71 8.57202 -0.754324 0.984755 19.1231 19.1174 19.1116 19.1057
72 8.58245 -0.744555 0.951761 19.1316 19.1256 19.1196 19.1134
73 8.59051 -0.734679 0.91908 19.1399 19.1337 19.1275 19.121
74 8.59622 -0.724703 0.886687 19.1481 19.1417 19.1352 19.1285
75 8.59961 -0.714629 0.854558 19.1562 19.1496 19.1428 19.1359
76 8.60069 -0.704463 0.822673 19.1641 19.1573 19.1504 19.1433
77 8.59925 -0.694159 0.791232 19.172 19.1651 19.158 19.1508
78 8.59516 -0.68369 0.760343 19.1797 19.1727 19.1655 19.1581
79 8.58847 -0.673061 0.72998 19.1874 19.1803 19.1729 19.1655
80 8.57919 -0.662275 0.70012 19.195 19.1877 19.1803 19.1727
81 8.56735 -0.651337 0.67074 19.2024 19.1951 19.1876 19.1799
82 8.55299 -0.640251 0.641818 19.2098 19.2024 19.1948 19.187
83 8.53615 -0.629021 0.613333 19.2171 19.2097 19.202 19.1941
84 8.51684 -0.617651 0.585267 19.2244 19.2168 19.2091 19.2011
85 8.49511 -0.606146 0.557602 19.2316 19.224 19.2161 19.2081
86 8.47099 -0.59451 0.530319 19.2387 19.231 19.2231 19.2151
87 8.44453 -0.582748 0.503404 19.2458 19.238 19.2301 19.222
88 8.41576 -0.570863 0.47684 19.2528 19.245 19.237 19.2288
89 8.38473 -0.558863 0.450616 19.2597 19.2519 19.2439 19.2356
90 8.3516 -0.546742 0.425234 19.2666 19.2587 19.2506 19.2423
91 8.31667 -0.534495 0.401838 19.2734 19.2655 19.2573 19.2489
92 8.28 -0.522127 0.380482 19.2802 19.2722 19.264 19.2555
93 8.24165 -0.509642 0.361183 19.2869 19.2788 19.2706 19.2621
94 8.20165 -0.497045 0.343961 19.2936 19.2855 19.2772 19.2686
95 8.16006 -0.484343 0.32884 19.3002 19.292 19.2837 19.2752
96 8.11693 -0.471542 0.315847 19.3067 19.2986 19.2903 19.2817
97 8.07231 -0.458642 0.305004 19.3132 19.3051 19.2968 19.2882
98 8.02625 -0.44565 0.296343 19.3197 19.3116 19.3032 19.2947
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
99 7.97881 -0.432573 0.289899 19.3262 19.3181 19.3097 19.3011
100 7.93004 -0.419415 0.285706 19.3326 19.3245 19.3162 19.3076
101 7.87988 -0.40618 0.282355 19.3391 19.3309 19.3226 19.3141
102 7.82826 -0.39287 0.27842 19.3455 19.3374 19.3291 19.3206
103 7.77525 -0.379491 0.273884 19.3519 19.3438 19.3356 19.3271
104 7.72091 -0.366046 0.268729 19.3584 19.3503 19.3421 19.3336
105 7.6653 -0.352536 0.262936 19.3648 19.3568 19.3485 19.3401
106 7.60849 -0.338973 0.256488 19.3713 19.3632 19.355 19.3466
107 7.55055 -0.325358 0.249363 19.3778 19.3697 19.3615 19.3531
108 7.49155 -0.311694 0.241541 19.3843 19.3762 19.368 19.3596
109 7.43155 -0.29799 0.233029 19.3908 19.3827 19.3745 19.3661
110 7.37013 -0.284241 0.225192 19.3974 19.3893 19.3811 19.3728
111 7.30711 -0.270453 0.218823 19.404 19.396 19.3878 19.3795
112 7.24258 -0.256626 0.213975 19.4107 19.4027 19.3945 19.3863
113 7.17659 -0.242759 0.210703 19.4174 19.4094 19.4013 19.3931
114 7.10926 -0.228857 0.20907 19.4241 19.4161 19.4081 19.3999
115 7.04064 -0.214918 0.20914 19.4309 19.423 19.4149 19.4068
116 6.97083 -0.200938 0.210986 19.4378 19.4298 19.4218 19.4137
117 6.90013 -0.187084 0.21324 19.4446 19.4367 19.4287 19.4206
118 6.82894 -0.173596 0.213803 19.4516 19.4437 19.4357 19.4276
119 6.75733 -0.160479 0.212601 19.4586 19.4507 19.4427 19.4346
120 6.68535 -0.147736 0.209575 19.4657 19.4577 19.4497 19.4416
121 6.6131 -0.13537 0.204665 19.4729 19.4649 19.4568 19.4487
122 6.54059 -0.123376 0.197804 19.4801 19.4721 19.464 19.4558
123 6.46781 -0.111676 0.189181 19.4874 19.4794 19.4712 19.4631
124 6.39465 -0.10008 0.17933 19.4949 19.4867 19.4786 19.4704
125 6.32116 -0.0885771 0.168222 19.5024 19.4942 19.486 19.4778
126 6.2474 -0.0771618 0.155804 19.5101 19.5018 19.4935 19.4852
127 6.17343 -0.0658293 0.142015 19.5179 19.5095 19.5011 19.4928
128 6.09919 -0.0545663 0.12705 19.5258 19.5173 19.5089 19.5005
129 6.02383 -0.0432999 0.113194 19.5339 19.5253 19.5168 19.5083
130 5.94718 -0.0319992 0.10108 19.5421 19.5335 19.5249 19.5163
131 5.86925 -0.0206448 0.0908234 19.5506 19.5418 19.5331 19.5245
132 5.79008 -0.00921451 0.0825594 19.5592 19.5504 19.5416 19.5328
133 5.71105 0.00214451 0.0758436 19.5681 19.559 19.5501 19.5412
134 5.63561 0.0130051 0.0692026 19.5769 19.5677 19.5586 19.5497
135 5.56369 0.0233628 0.0625829 19.5859 19.5765 19.5673 19.5582
136 5.49503 0.0332346 0.0560126 19.5949 19.5853 19.576 19.5667
137 5.42934 0.0426568 0.0492885 19.6041 19.5943 19.5847 19.5754
138 5.36539 0.0518696 0.0398958 19.6134 19.6034 19.5937 19.5841
139 5.30286 0.060941 0.0271187 19.623 19.6128 19.6028 19.593
140 5.24169 0.0698762 0.0109264 19.6328 19.6223 19.6121 19.6021
141 5.18183 0.0786803 -0.00868703 19.6429 19.6321 19.6216 19.6114
142 5.12231 0.0873946 -0.0287998 19.6534 19.6422 19.6313 19.6208
143 5.06252 0.0960539 -0.0474043 19.6641 19.6525 19.6413 19.6305
144 5.00246 0.104672 -0.0644199 19.6753 19.6633 19.6517 19.6405
145 4.94213 0.113262 -0.0797527 19.6869 19.6744 19.6624 19.6508
146 4.88159 0.121928 -0.093277 19.699 19.686 19.6735 19.6615
147 4.82087 0.130749 -0.104858 19.7116 19.698 19.685 19.6725
148 4.75994 0.139741 -0.114355 19.7248 19.7105 19.6969 19.684
149 4.69875 0.148912 -0.121702 19.7385 19.7235 19.7093 19.6958
150 4.63677 0.15804 -0.128449 19.7529 19.7371 19.7222 19.708
151 4.57377 0.167058 -0.13513 19.768 19.7513 19.7356 19.7207
152 4.50969 0.175989 -0.141657 19.784 19.7663 19.7497 19.734
153 4.44496 0.184885 -0.150051 19.8012 19.7824 19.7649 19.7484
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
154 4.38139 0.19386 -0.167857 19.8193 19.7995 19.781 19.7636
155 4.31899 0.202935 -0.196163 19.8387 19.8175 19.7978 19.7795
156 4.25767 0.212112 -0.235481 19.8594 19.8366 19.8156 19.7961
157 4.19646 0.221543 -0.281816 19.8813 19.8565 19.8337 19.8127
158 4.13445 0.231378 -0.331915 19.9049 19.8777 19.8529 19.8301
159 4.07158 0.241645 -0.386232 19.9304 19.9004 19.8732 19.8485
160 4.00775 0.252359 -0.44615 19.958 19.9248 19.8949 19.8679

Table A.3: VPP results for linear unstable hull

θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
32 5.67578 -0.880981 7.40058 18.043 18.239 18.3917 18.514
33 5.82216 -0.871993 7.13609 18.135 18.3024 18.436 18.545
34 5.96366 -0.863341 6.89042 18.2149 18.3591 18.4766 18.5741
35 6.10049 -0.854977 6.66163 18.2849 18.4101 18.514 18.6016
36 6.23288 -0.846859 6.44799 18.347 18.4564 18.5486 18.6274
37 6.36098 -0.838949 6.24798 18.4024 18.4985 18.5807 18.6519
38 6.48496 -0.831216 6.06027 18.4523 18.5372 18.6107 18.675
39 6.60493 -0.823631 5.88367 18.4974 18.5727 18.6387 18.697
40 6.72103 -0.816171 5.71717 18.5386 18.6056 18.665 18.718
41 6.83326 -0.808813 5.55987 18.5764 18.6365 18.6901 18.7384
42 6.94144 -0.80153 5.41101 18.6113 18.6653 18.714 18.7581
43 7.04565 -0.7943 5.26984 18.6436 18.6923 18.7366 18.7769
44 7.14596 -0.78711 5.1357 18.6736 18.7177 18.7579 18.7949
45 7.24244 -0.779944 5.00799 18.7015 18.7415 18.7782 18.8122
46 7.33515 -0.772791 4.88618 18.7277 18.764 18.7976 18.8287
47 7.42414 -0.76564 4.7698 18.7522 18.7853 18.816 18.8447
48 7.50948 -0.758483 4.65843 18.7753 18.8055 18.8336 18.86
49 7.5912 -0.75131 4.55168 18.7972 18.8246 18.8505 18.8747
50 7.66934 -0.744114 4.4492 18.8178 18.8429 18.8666 18.889
51 7.74394 -0.736889 4.35069 18.8374 18.8604 18.8822 18.9028
52 7.81504 -0.72963 4.25586 18.8561 18.8771 18.8971 18.9161
53 7.88266 -0.722332 4.16445 18.8738 18.8931 18.9115 18.929
54 7.94683 -0.71499 4.07623 18.8908 18.9085 18.9254 18.9416
55 8.00759 -0.707601 3.99099 18.9071 18.9233 18.9388 18.9537
56 8.06496 -0.700162 3.90853 18.9226 18.9375 18.9518 18.9655
57 8.11896 -0.692671 3.82866 18.9376 18.9512 18.9644 18.977
58 8.16961 -0.685124 3.75122 18.952 18.9645 18.9766 18.9882
59 8.21715 -0.67752 3.67586 18.9658 18.9771 18.988 18.9987
60 8.26202 -0.669862 3.60209 18.979 18.9892 18.9991 19.0088
61 8.30422 -0.662149 3.5298 18.9918 19.001 19.0099 19.0186
62 8.34378 -0.654382 3.4589 19.0042 19.0124 19.0204 19.0283
63 8.3807 -0.646561 3.38932 19.0162 19.0235 19.0307 19.0377
64 8.415 -0.638686 3.32097 19.0278 19.0343 19.0407 19.0469
65 8.44668 -0.630757 3.25379 19.0391 19.0448 19.0504 19.056
66 8.47576 -0.622776 3.18771 19.0501 19.0551 19.06 19.0648
67 8.50225 -0.614744 3.12265 19.0607 19.0651 19.0693 19.0735
68 8.52618 -0.606661 3.05857 19.0711 19.0748 19.0785 19.0821
69 8.54754 -0.598529 2.9954 19.0812 19.0843 19.0874 19.0905
70 8.56636 -0.59035 2.93309 19.0911 19.0937 19.0962 19.0987
71 8.58265 -0.582124 2.87158 19.1008 19.1028 19.1048 19.1068
72 8.59643 -0.573853 2.81083 19.1102 19.1117 19.1133 19.1148
73 8.60772 -0.56554 2.75078 19.1194 19.1205 19.1216 19.1227
74 8.61653 -0.557186 2.69139 19.1285 19.1291 19.1298 19.1304
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
75 8.62287 -0.548792 2.63264 19.1373 19.1376 19.1379 19.1381
76 8.62653 -0.540317 2.57462 19.1461 19.146 19.1459 19.1458
77 8.62741 -0.531746 2.51735 19.1546 19.1543 19.1539 19.1535
78 8.62555 -0.523082 2.46078 19.1631 19.1624 19.1617 19.161
79 8.62098 -0.514327 2.40486 19.1714 19.1705 19.1695 19.1685
80 8.61372 -0.505484 2.34955 19.1796 19.1784 19.1772 19.1759
81 8.6038 -0.496554 2.29481 19.1877 19.1862 19.1847 19.1832
82 8.59125 -0.48754 2.24059 19.1956 19.1939 19.1922 19.1905
83 8.57611 -0.478446 2.18686 19.2035 19.2016 19.1997 19.1977
84 8.55841 -0.469273 2.13358 19.2113 19.2091 19.207 19.2048
85 8.53819 -0.460025 2.08071 19.219 19.2166 19.2143 19.2119
86 8.51547 -0.450704 2.02821 19.2266 19.2241 19.2215 19.219
87 8.49031 -0.441315 1.97606 19.2341 19.2314 19.2287 19.226
88 8.46273 -0.431858 1.92421 19.2415 19.2387 19.2358 19.2329
89 8.4328 -0.422336 1.87273 19.2489 19.2459 19.2429 19.2398
90 8.40082 -0.412741 1.8227 19.2562 19.253 19.2498 19.2465
91 8.3669 -0.403075 1.7744 19.2634 19.2601 19.2567 19.2533
92 8.33108 -0.39334 1.72785 19.2706 19.2671 19.2635 19.26
93 8.29342 -0.38354 1.68305 19.2776 19.274 19.2704 19.2666
94 8.25396 -0.373679 1.64 19.2846 19.2809 19.2771 19.2733
95 8.21276 -0.363761 1.59871 19.2916 19.2878 19.2839 19.2799
96 8.16987 -0.353789 1.55918 19.2985 19.2946 19.2906 19.2865
97 8.12534 -0.343767 1.52144 19.3054 19.3013 19.2972 19.2931
98 8.07923 -0.3337 1.4855 19.3122 19.3081 19.3039 19.2997
99 8.0316 -0.32359 1.45138 19.3189 19.3148 19.3105 19.3062
100 7.9825 -0.313442 1.41902 19.3257 19.3214 19.3171 19.3128
101 7.93185 -0.303258 1.38658 19.3324 19.3281 19.3238 19.3193
102 7.87966 -0.293041 1.35323 19.3392 19.3348 19.3304 19.3259
103 7.826 -0.282794 1.31893 19.3459 19.3415 19.337 19.3325
104 7.77091 -0.272522 1.28363 19.3526 19.3481 19.3436 19.339
105 7.71447 -0.262225 1.24731 19.3593 19.3548 19.3502 19.3456
106 7.65675 -0.251909 1.20993 19.3661 19.3615 19.3569 19.3522
107 7.5978 -0.241576 1.17143 19.3728 19.3682 19.3635 19.3588
108 7.53769 -0.231229 1.13177 19.3796 19.3749 19.3702 19.3653
109 7.47647 -0.22087 1.09096 19.3864 19.3817 19.3768 19.372
110 7.41373 -0.210503 1.05041 19.3933 19.3885 19.3836 19.3787
111 7.34929 -0.200127 1.01082 19.4001 19.3953 19.3904 19.3855
112 7.28324 -0.189745 0.972212 19.4071 19.4022 19.3973 19.3923
113 7.21565 -0.179354 0.934586 19.414 19.4091 19.4042 19.3992
114 7.14661 -0.168955 0.897966 19.421 19.4161 19.4111 19.4061
115 7.0762 -0.158547 0.862372 19.4281 19.4231 19.4181 19.4131
116 7.0045 -0.14813 0.827828 19.4352 19.4302 19.4252 19.4201
117 6.93183 -0.137811 0.793506 19.4424 19.4373 19.4323 19.4271
118 6.85866 -0.127781 0.757945 19.4496 19.4445 19.4394 19.4342
119 6.78507 -0.118042 0.721071 19.4568 19.4517 19.4465 19.4413
120 6.71112 -0.108595 0.682831 19.4642 19.459 19.4538 19.4485
121 6.63689 -0.0994384 0.643168 19.4716 19.4663 19.461 19.4557
122 6.56243 -0.0905715 0.602024 19.4791 19.4738 19.4684 19.463
123 6.48774 -0.0819426 0.55933 19.4867 19.4813 19.4758 19.4704
124 6.41265 -0.0734036 0.514986 19.4944 19.4889 19.4834 19.4779
125 6.33721 -0.0649421 0.468899 19.5022 19.4966 19.491 19.4854
126 6.26147 -0.0565539 0.420968 19.5101 19.5044 19.4988 19.4931
127 6.18551 -0.0482343 0.371086 19.5182 19.5124 19.5066 19.5008
128 6.10929 -0.0399734 0.319322 19.5264 19.5205 19.5146 19.5087
129 6.03193 -0.0317169 0.267685 19.5347 19.5287 19.5227 19.5168
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
130 5.95322 -0.0234387 0.21673 19.5433 19.5372 19.5311 19.525
131 5.87319 -0.0151235 0.166434 19.5521 19.5459 19.5396 19.5334
132 5.79185 -0.00675298 0.116775 19.5611 19.5547 19.5484 19.5421
133 5.71062 0.00156629 0.0677808 19.5703 19.5638 19.5572 19.5508
134 5.63315 0.00951478 0.0196086 19.5796 19.5728 19.5661 19.5595
135 5.55935 0.0170898 -0.027665 19.5889 19.582 19.5751 19.5683
136 5.48899 0.0243054 -0.0739697 19.5984 19.5912 19.5842 19.5772
137 5.42169 0.031194 -0.119648 19.6079 19.6006 19.5934 19.5862
138 5.35618 0.0379389 -0.168268 19.6177 19.6102 19.6027 19.5954
139 5.29213 0.0445859 -0.220696 19.6278 19.62 19.6123 19.6047
140 5.22948 0.0511398 -0.276975 19.6382 19.63 19.6221 19.6142
141 5.16817 0.0576068 -0.337045 19.6488 19.6404 19.6321 19.624
142 5.10707 0.0640224 -0.397799 19.6598 19.651 19.6424 19.6339
143 5.04571 0.0704109 -0.457796 19.6713 19.662 19.653 19.6442
144 4.98407 0.0767842 -0.517047 19.6832 19.6735 19.664 19.6548
145 4.92218 0.0831587 -0.575577 19.6956 19.6854 19.6755 19.6659
146 4.86007 0.0896259 -0.633822 19.7086 19.6978 19.6874 19.6773
147 4.79772 0.0962373 -0.692014 19.7221 19.7107 19.6997 19.6891
148 4.73512 0.103009 -0.750163 19.7364 19.7243 19.7126 19.7015
149 4.67216 0.109926 -0.808417 19.7513 19.7384 19.7261 19.7143
150 4.60828 0.116809 -0.867559 19.7671 19.7533 19.7402 19.7276
151 4.54335 0.123647 -0.927814 19.7838 19.769 19.7549 19.7415
152 4.47728 0.130462 -0.989305 19.8016 19.7857 19.7705 19.7562
153 4.41114 0.137325 -1.05708 19.8208 19.8036 19.7874 19.7721
154 4.3462 0.144317 -1.13751 19.8412 19.8226 19.8052 19.7887
155 4.28242 0.151441 -1.2312 19.8632 19.8429 19.824 19.8062
156 4.2195 0.158731 -1.33824 19.8868 19.8644 19.8437 19.8244
157 4.15598 0.166374 -1.45453 19.9123 19.8874 19.8644 19.8431
158 4.09146 0.174445 -1.57989 19.9401 19.9121 19.8864 19.8629
159 4.02584 0.182988 -1.71539 19.9706 19.9388 19.9101 19.8839
160 3.95899 0.19201 -1.866 20.0042 19.968 19.9354 19.9061

Table A.4: VPP results for nonlinear unstable hull

θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
32 5.84305 -0.915935 6.54473 18.1551 18.3562 18.5087 18.6283
33 5.97802 -0.912432 6.32341 18.2293 18.4046 18.5407 18.6494
34 6.10909 -0.90873 6.11643 18.295 18.4488 18.5707 18.6696
35 6.23636 -0.904843 5.92248 18.3537 18.4893 18.5988 18.6891
36 6.35992 -0.900777 5.74032 18.4065 18.5267 18.6253 18.7078
37 6.47987 -0.896541 5.56888 18.4542 18.5612 18.6504 18.7259
38 6.59627 -0.892141 5.40719 18.4977 18.5933 18.6741 18.7433
39 6.7092 -0.887581 5.2544 18.5375 18.6232 18.6966 18.76
40 6.81871 -0.882867 5.10975 18.5741 18.6512 18.7179 18.7762
41 6.92485 -0.878001 4.97255 18.608 18.6775 18.7383 18.7919
42 7.02758 -0.872985 4.84223 18.6395 18.7024 18.758 18.8074
43 7.12669 -0.867809 4.71824 18.6689 18.7261 18.777 18.8226
44 7.22221 -0.862472 4.60008 18.6963 18.7484 18.7952 18.8373
45 7.31417 -0.856979 4.48729 18.7221 18.7696 18.8126 18.8515
46 7.40262 -0.851329 4.37944 18.7464 18.7898 18.8293 18.8654
47 7.48759 -0.845526 4.27616 18.7692 18.809 18.8454 18.8788
48 7.56911 -0.839571 4.17711 18.7908 18.8273 18.8608 18.8918
49 7.6472 -0.833465 4.08199 18.8114 18.8448 18.8757 18.9044
50 7.7219 -0.827211 3.9905 18.8308 18.8616 18.8901 18.9167
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
51 7.79321 -0.82081 3.90241 18.8494 18.8776 18.904 18.9287
52 7.86118 -0.814264 3.81748 18.8671 18.8931 18.9174 18.9403
53 7.92581 -0.807574 3.73549 18.884 18.9079 18.9305 18.9517
54 7.98713 -0.800743 3.65625 18.9003 18.9223 18.9431 18.9628
55 8.04516 -0.793772 3.57958 18.9158 18.9361 18.9554 18.9737
56 8.09991 -0.786663 3.50532 18.9308 18.9495 18.9673 18.9842
57 8.15139 -0.779419 3.43332 18.9452 18.9624 18.9789 18.9946
58 8.19964 -0.772041 3.36343 18.9591 18.975 18.9902 19.0047
59 8.24465 -0.764532 3.29554 18.9725 18.9871 19.0012 19.0147
60 8.28675 -0.756895 3.22926 18.9853 18.9987 19.0115 19.0239
61 8.32629 -0.749141 3.16421 18.9978 19.0098 19.0215 19.0328
62 8.36327 -0.741271 3.10032 19.0098 19.0207 19.0314 19.0417
63 8.39771 -0.733288 3.03752 19.0214 19.0313 19.041 19.0503
64 8.42961 -0.725196 2.97575 19.0328 19.0417 19.0504 19.0588
65 8.45898 -0.716997 2.91495 19.0438 19.0518 19.0595 19.0672
66 8.48584 -0.708693 2.85506 19.0545 19.0616 19.0686 19.0754
67 8.51019 -0.700289 2.79602 19.0649 19.0712 19.0774 19.0835
68 8.53205 -0.691786 2.7378 19.0751 19.0806 19.0861 19.0914
69 8.55143 -0.683188 2.68034 19.085 19.0898 19.0946 19.0992
70 8.56834 -0.674499 2.62358 19.0947 19.0988 19.1029 19.107
71 8.5828 -0.665721 2.5675 19.1042 19.1077 19.1111 19.1146
72 8.59482 -0.656858 2.51204 19.1134 19.1163 19.1192 19.1221
73 8.60442 -0.647913 2.45717 19.1225 19.1249 19.1272 19.1295
74 8.61161 -0.63889 2.40285 19.1314 19.1332 19.135 19.1368
75 8.61641 -0.629792 2.34903 19.1401 19.1414 19.1428 19.1441
76 8.61876 -0.620608 2.29575 19.1487 19.1496 19.1505 19.1514
77 8.61842 -0.611289 2.24314 19.1572 19.1577 19.1582 19.1586
78 8.61538 -0.601837 2.19117 19.1655 19.1656 19.1658 19.1659
79 8.60968 -0.592254 2.1398 19.1737 19.1735 19.1733 19.173
80 8.60134 -0.582543 2.089 19.1818 19.1813 19.1807 19.1801
81 8.59039 -0.572709 2.03871 19.1898 19.1889 19.188 19.1871
82 8.57686 -0.562753 1.98891 19.1977 19.1965 19.1953 19.1941
83 8.56079 -0.552681 1.93956 19.2055 19.204 19.2025 19.201
84 8.54221 -0.542496 1.89063 19.2132 19.2114 19.2097 19.2079
85 8.52116 -0.532201 1.84208 19.2208 19.2188 19.2168 19.2148
86 8.49766 -0.5218 1.79388 19.2283 19.2261 19.2238 19.2216
87 8.47176 -0.511298 1.746 19.2358 19.2333 19.2308 19.2283
88 8.44351 -0.500697 1.69841 19.2432 19.2405 19.2378 19.2351
89 8.41293 -0.490003 1.65109 19.2505 19.2476 19.2447 19.2417
90 8.38027 -0.479208 1.60486 19.2577 19.2546 19.2515 19.2483
91 8.34573 -0.468311 1.56041 19.2649 19.2616 19.2582 19.2548
92 8.30936 -0.457316 1.51777 19.272 19.2685 19.2649 19.2613
93 8.27121 -0.446227 1.47691 19.279 19.2753 19.2716 19.2678
94 8.23132 -0.435048 1.43787 19.286 19.2821 19.2782 19.2743
95 8.18976 -0.423784 1.40064 19.2929 19.2889 19.2848 19.2807
96 8.14658 -0.412439 1.36525 19.2998 19.2956 19.2914 19.2871
97 8.10182 -0.401018 1.3317 19.3066 19.3023 19.2979 19.2935
98 8.05554 -0.389526 1.30001 19.3133 19.3089 19.3045 19.2999
99 8.00782 -0.377969 1.27022 19.3201 19.3155 19.311 19.3063
100 7.95868 -0.366347 1.24232 19.3268 19.3221 19.3175 19.3127
101 7.90807 -0.354666 1.21468 19.3334 19.3287 19.324 19.3191
102 7.85599 -0.342929 1.18614 19.3401 19.3353 19.3305 19.3256
103 7.80247 -0.331139 1.15668 19.3468 19.3419 19.337 19.332
104 7.7476 -0.319302 1.12627 19.3535 19.3485 19.3435 19.3384
105 7.69142 -0.30742 1.09486 19.3602 19.3551 19.35 19.3448
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θW (°) u0 (m/s) v0 (m/s) δ0 (°) α0,1 (°) α0,2 (°) α0,3 (°) α0,4 (°)
106 7.63401 -0.295497 1.06243 19.3669 19.3617 19.3565 19.3512
107 7.57543 -0.283538 1.02892 19.3736 19.3684 19.3631 19.3577
108 7.51575 -0.271546 0.994309 19.3803 19.375 19.3696 19.3641
109 7.45502 -0.259523 0.958581 19.3871 19.3816 19.3762 19.3706
110 7.39283 -0.247474 0.923134 19.3939 19.3884 19.3828 19.3772
111 7.32899 -0.235399 0.888722 19.4007 19.3952 19.3895 19.3839
112 7.26359 -0.223299 0.855365 19.4076 19.402 19.3963 19.3906
113 7.19671 -0.211175 0.823083 19.4145 19.4088 19.4031 19.3973
114 7.12842 -0.199026 0.791901 19.4214 19.4157 19.4099 19.4041
115 7.05881 -0.186852 0.761846 19.4284 19.4227 19.4168 19.411
116 6.98796 -0.174652 0.732948 19.4355 19.4297 19.4238 19.4179
117 6.91619 -0.162561 0.70427 19.4426 19.4367 19.4308 19.4248
118 6.84394 -0.150796 0.674269 19.4497 19.4438 19.4378 19.4317
119 6.77129 -0.139363 0.642874 19.4569 19.4509 19.4448 19.4387
120 6.69828 -0.128261 0.610033 19.4642 19.4581 19.4519 19.4457
121 6.625 -0.117491 0.575693 19.4715 19.4653 19.4591 19.4528
122 6.55149 -0.107054 0.539795 19.479 19.4727 19.4663 19.46
123 6.47775 -0.0968829 0.502307 19.4865 19.4801 19.4737 19.4672
124 6.40361 -0.0868089 0.463234 19.4941 19.4876 19.4811 19.4746
125 6.32914 -0.0768197 0.422495 19.5018 19.4952 19.4886 19.482
126 6.25439 -0.0669108 0.379997 19.5097 19.503 19.4962 19.4895
127 6.17942 -0.0570775 0.335644 19.5177 19.5108 19.5039 19.4971
128 6.10419 -0.0473081 0.289543 19.5258 19.5188 19.5118 19.5048
129 6.02784 -0.0375391 0.243752 19.5341 19.5269 19.5198 19.5127
130 5.95016 -0.0277417 0.198808 19.5425 19.5353 19.528 19.5208
131 5.87119 -0.0178986 0.15471 19.5512 19.5438 19.5364 19.529
132 5.79094 -0.00798975 0.111462 19.5601 19.5525 19.5449 19.5374
133 5.71083 0.00185786 0.0690206 19.5692 19.5614 19.5536 19.5459
134 5.63439 0.0112698 0.0272856 19.5783 19.5703 19.5623 19.5545
135 5.56155 0.0202423 -0.013687 19.5875 19.5793 19.5711 19.5631
136 5.49208 0.0287889 -0.0538237 19.5968 19.5883 19.58 19.5717
137 5.4256 0.0369486 -0.0934297 19.6063 19.5975 19.5889 19.5805
138 5.36089 0.0449316 -0.135847 19.6159 19.6069 19.598 19.5894
139 5.29762 0.0527946 -0.181957 19.6258 19.6165 19.6073 19.5984
140 5.23572 0.0605443 -0.23181 19.636 19.6263 19.6169 19.6077
141 5.17515 0.0681826 -0.28536 19.6464 19.6364 19.6266 19.6171
142 5.11486 0.07575 -0.339672 19.6572 19.6468 19.6366 19.6267
143 5.05431 0.0832738 -0.393079 19.6684 19.6575 19.6469 19.6366
144 4.99349 0.0907704 -0.445604 19.6801 19.6686 19.6575 19.6468
145 4.93241 0.0982529 -0.497228 19.6922 19.6802 19.6686 19.6574
146 4.87111 0.105821 -0.548271 19.7049 19.6922 19.68 19.6683
147 4.80961 0.113536 -0.598911 19.7181 19.7047 19.6919 19.6797
148 4.74789 0.121416 -0.649138 19.7319 19.7178 19.7043 19.6914
149 4.68588 0.129455 -0.699031 19.7464 19.7314 19.7171 19.7036
150 4.623 0.137449 -0.749486 19.7617 19.7457 19.7305 19.7161
151 4.5591 0.145363 -0.800788 19.7778 19.7607 19.7446 19.7293
152 4.49409 0.153218 -0.853017 19.795 19.7766 19.7593 19.743
153 4.42869 0.161076 -0.909613 19.8134 19.7937 19.7752 19.7579
154 4.36449 0.169039 -0.977901 19.833 19.8118 19.792 19.7736
155 4.30142 0.177115 -1.05866 19.8541 19.831 19.8098 19.79
156 4.23938 0.185313 -1.15227 19.8766 19.8515 19.8283 19.807
157 4.17705 0.193817 -1.25482 19.9008 19.873 19.8476 19.8243
158 4.11383 0.202728 -1.36509 19.9271 19.8961 19.8681 19.8426
159 4.04962 0.212078 -1.48394 19.9558 19.921 19.8898 19.8618
160 3.98434 0.221876 -1.61435 19.9872 19.948 19.9131 19.8821
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