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Temperature Effects and Performance Optimization in Battery Systems

Dimitrios Ntagkras

Abstract

As the energy transition gains momentum, the development of effective energy storage technolo-
gies is crucial. Among these technologies, batteries are of utmost importance as they store chem-
ical energy that can be converted into electrical energy. The operation of batteries is a complex
process that involves the interplay of material technology, multiphysics transport phenomena, and
mechanical effects. While experiments can reveal new and unexpected features of batteries in var-
ious conditions, simulation models offer a cost- and time-effective way to gain valuable insights
across a wider range. However, the accuracy and fidelity of mathematical models are directly pro-
portional to the complexity of describing all the relevant phenomena. To date, equivalent-circuit
models have been the dominant framework for industrial applications due to their simplicity and
low computational cost. However, these models treat batteries as black boxes, which limit users’
ability to interpret the results. In contrast, physics-based models that couple electrochemistry, con-
servation laws, and heat equations can produce high-fidelity models that capture the intricacies of
battery operation. The Multiphase Porous Electrode theory (MPET) provides a useful framework for
integrating these phenomena and enables users to modify parameters that can significantly impact
simulation results. In this study, experiments in different operating temperatures were conducted
and analysed, and based on these outcomes, the accuracy and validity of MPET was tested. The
root mean squared error between the simulation and experimental results was smaller than 5% in
all cases. The correlation between the high temperature (50 ◦C) discharge curve and the ambient
temperature discharge curve showed the high dependence of temperature to the state of charge of
the battery which was confirmed by the experiments. Furthermore, a possible degradation mecha-
nism could have an impact in the final results. The main research outcomes were the exponential
relation between the temperature and the rate constant and between the particles conductivity and
the temperature. Using these two relations, the model could reproduce the same trend and equal
maximum capacity with the experiments. This shows the flexibility of the model in completely dif-
ferent operating conditions. After the validation, the active particle population model can be used to
understand the coccurent or particle by particle intercalation and gives indentifications of hotspot
in a battery. The final part was a sensitivity analysis about capacity optimization taking into account
not only different C-rates but also different temperatures. Because the whole study was in an exper-
imental coin cell, a relation to bigger battery systems should be built in the same manner using this
software so as to facilitate the development of more effective energy storage technologies.

Keywords: Li-ion batteries, phase separation materials, temperature dependency, parameter estima-
tion, optimization, machine learning, physics-based models.
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1
Introduction

1.1. Motivation
Nowadays the energy transition is imperative to move to a more sustainable world and to sketch
new pathways for technology. Fossil fuels are the main raw material of electricity and the relation
with the CO2 (carbon dioxide) emissions is inextricable. Global warming and generally increasing
incidents of severe weather are the main consequences of these emissions [9]. As it is obvious in
Figure 1.1, during the last three decades, in almost all the sectors, the greenhouse emissions are
decreased significantly [28]. This downward trend is attributable to new global energy regulations
aimed at achieving net-zero emissions by the mid-century. Wind turbines and solar panels are piv-
otal drivers of the substantial reduction in greenhouse gas emissions from the energy industry. How-
ever, the intermittent nature of renewable energy sources, stemming from their reliance on weather
conditions, prevents them from fully dominating the energy supply throughout the year. The solu-
tion to this intermittent operation lies in energy storage. Battery energy storage systems, flywheels,
compressed air storage systems, and ultracapacitors are among the innovative technologies that, at
varying scales, seek to bridge the technical and economic gaps associated with renewable sources
[1].
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Figure 1.1: Greenhouse gas emissions by source sector in Europe from 1990 to 2020 [28].

The sole exception to this trend, with a slight increase over the last three decades, is observed in the
transportation sector [28]. In Figure 1.2, it is illustrated the classification of GHG emissions based
on the different methods of transportation [28]. Road transport possesses more than 75% of the
bar that indicates the amount of emissions in million tones every year. Surprisingly, in 2020 the
emissions from this specific sector diminished to almost half of the amount of the previous year but
this was caused by the appearance of Covid-19. Thus, the electrification of vehicles is a massive step
towards the sustainability [6]. The transition to hybrid and electric vehicles promises a significant
reduction in emissions within this sector, serving as a cornerstone of the broader energy transition.
Batteries, which constitute a key component of electric vehicles and energy storage applications,
play a central role in this transformation.

Figure 1.2: Greenhouse gas emissions of transport from 1990 to 2020 [28].
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1.2. Challenges of Li-ion Batteries
The availability of the materials used as cathode and anode is crucial to avoid becoming a limiting
factor in the development of batteries. The anode is typically made of graphite, a widely available
material. This prudent choice stems from the fact that the total global reserves of graphite reached
320 million metric tons in 2021 [27]. On the other hand, the primary compounds used in cathodes
are lithium-transition metals, which are combined with salts such as phosphate (PO−

4 ), nickel (Ni),
iron (Fe), and manganese (Mn). These salts are not only readily available, but they also complement
the properties of lithium [5].
One of the main concerns of batteries’ manufacturers is the charging requirements. The time that
one electric car can be charged and the range of this charge is inseparably connected with the chem-
istry and the ability of the compounds such as the intercalation process [22]. The efficiency of a
battery is significantly influenced by temperature. Understanding the stable operational region of
the battery is essential, as it guides the thermal management system to prevent potential hazards
such as over-charging, thermal runaway, electrolyte decomposition and more. Moreover, high per-
formance and cycle life are crucial components of the figure of merit of batteries. To remain com-
petitive in the market, companies need to use cost-effective metals. Recycling these batteries poses
a significant challenge, and most companies aim to collect the battery components as alloys or ag-
gregates rather than recovering each metal separately [22].
The development of a very stable electrolyte is one of the biggest challenge. The stability window
of an electrolyte is defined by its lowest unoccupied molecular orbital (LUMO) and the highest oc-
cupied molecular orbital (HOMO). The Fermi energy level in the anode should be smaller than the
LUMO, otherwise undesirable reactions will occur forming unstable compounds. For the same rea-
son the Fermi level in the cathode should be higher than the HOMO. The "extension" of this stability
window will result to higher safety measures and will enhance the research to new electrolyte com-
positions which can tolerate higher voltages without decomposition.

Figure 1.3: Stability window of an electrolyte with and without a SEI layer[19] .
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1.3. Modelling of a battery
The lifetime and the performance of a battery rely on its physical properties. The vital parameter
is not the power consumption but how fast is the charge and the discharge process. Hence, the
responsibility of the battery management system (BMS) is to ensure the safe and the efficient oper-
ation of these processes. The control of parameters such as the state of charge (SoC), state of health
(SoH), overdischarge and overcharge are the main function of the BMS and this is the reason why
the modelling of batteries is so significant to the development of this technology [40].

Equivalent-circuit models

1. Simple models: This model consists of an internal resistance that can represent the different
losses in a battery (ohmic losses, activation losses etc.) and an ideal voltage source. In a real
battery the resistances, because of transport limitations that were described previously, vary.
Thus, the dynamic parameters of the problem such as the state of charge [41] does not take
into account for influencing the resistance’s value.

2. Thevenin models: This is a more advanced electrical-circuit model which has the ability to
capture the transient behavior of phenomena, for example higher discharge rate and vary-
ing stage of charge. With the use of resistor-capacitor networks in series and in parallel, these
models are capable of representing many complicating electrochemical incidents without go-
ing inside the battery. The nonlinear effect of the state of charge can not be calculated ac-
curately with the use only of resistor-capacitor networks but the combination with machine
learning through experimental data, can create a reliable model which has also very small
computational cost. This is the main advantage and why the majority of the automotive in-
dustries are using these models in the BMS [40].

Machine Learning models

1. Data-driven models: The field of machine learning has become pervasive in various techno-
logical domains. One key advantage of these techniques is their ability to achieve high accu-
racy while requiring relatively low computational costs. The power of these models are higher
because of the capability to capture the nonlinear behavior which is present in many differ-
ent parameters in batteries. The three phases of these model are the pre-processing (sorting
and evaluation of data), training (allow the model to be trained in an adequate data points
from different scenarios) and estimation (predict the behavior of the component in new and
unprecedented data to validate its level of accuracy). However, it is important to note that
machine learning models are inherently reliant on collected data, and the accuracy and re-
liability of a given model depend on the range of cases that the data has captured and the
quality of the data sorting. While experimental data can be used to train these models, there
is a risk of misinterpreting the battery’s state of health. Additionally, machine learning models
do not offer insight into phenomena such as solid electrolyte interface formation or lithium
plating, making it difficult to investigate these processes [24]. In cases of thermal runaway or
other unexpected outcomes, these models cannot offer information about the root cause of
the issue, making it difficult to address the problem in future application.

Electrochemical models

1. Moving Reaction zone model: These models assume that a specific region participates in a
reaction and this region moves with time. It is crucial to accurately model the activation losses
with respect to the state of charge, as the resistance of inactive material at the beginning of the
discharge process is very small. However, as the discharge region expands, molecules should
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travel longer distances to reach the reaction zone, resulting in greater activation losses. As the
state of charge changes over time, activation losses should also be time-dependent. A com-
monly used assumption is that electronic conductivity is much higher than ionic conductivity
in the electrode, as the metal of the electrode enhances the movement of electrons. However,
it is important to note that this model does not consider partially discharged regions and only
assumes fully charged and discharged regions. This model is more applicable in high charge
and discharge rate applications[20].In this model, the use of the equation 2.12 is chosen for
the cell voltage.

2. Single particle models: The focus of this model is on a single particle. Basic assumptions
such as that the concentration in the electrode is constant or that the ionic conductivity is
a lot higher are present. This model is suitable for slow charge applications where the con-
centration through the electrode does not change significantly and the model can simulate
a homogeneous concentration by solving only for one particle. Solving the diffusion equa-
tion and the mass conservation equation for one particle, the important variables can be cal-
culated through the whole electrode assuming no variation in the other particles. The con-
servation law about concentration should be solved both for the solid concentration in the
electrode but also for the electrolyte concentration. Expressing all the mechanisms (reaction
resistances due to concentration, mass transport limitations, etc) that are also present in the
macroscopic scale of an electrode, the creation of such a model is doable and can provide
surprisingly precise results and reliable models for validation.

3. Doyle-Fuller-Newman model(DFN): A pseudo-two-Dimensional model which uses non-linear
partial differential equations and algebraic equations in order to describe the complex inter-
action between the electrode and the electrolyte. The model is volume averaging approach
so as to assume that this region is homogeneous and continuous. This is the main reason
why this model is appropriate for solid- solution active materials. Mass transfer equations
and electrochemical relations are used to describe phenomena like diffusion or overpoten-
tial in this model [40]. This is a macro-homogeneous model which provides the opportunity
to the user to change not only the design aspects of the battery, such as the electrode thick-
ness and porosity but also the physical properties such as the diffusion coefficient of the solid
or the electrolyte [41]. Every finite volume in the anode and cathode assumes to consist of
one spherical homogeneous particle so as to show that the whole finite volume has the same
physical and chemical properties[17]. The main obstacle of implementing this model to BMS
is that the high complexity of solving these equations require powerful computational tools
in order to minimize the runtime. Although, in a pilot-scale can give a lot of insight and, thus,
can improve not only the research but also find solutions in the development of batteries.
For example, the lithium plating can be diminished by controlling the overpotential and this
choice can be done only with a physics-based model [24].

1.4. The need of Modelling
Computational modeling entails creating a virtual representation of the behavior of complex sys-
tems using principles derived from mathematics, physics, and computer science. Modeling offers
numerous advantages across a wide range of applications. It enables efficient simulations under
various operating conditions, leading to cost savings by reducing the necessity for extensive experi-
ments.

By utilizing modeling techniques, it becomes possible to investigate separate processes and un-
derstand their impact on the overall system. Furthermore, the incorporation of optimization algo-
rithms can greatly enhance the development of engineering tools. Computational models offer a
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safer and more cost-effective alternative to conduct experiments under extreme conditions. It is
important to note that the purpose of modeling is to guide experiments rather than replace them.

One of the key challenges is creating an accurate model that avoids making excessive assumptions
while maintaining a manageable computational time. Thorough examination of assumptions is
crucial to ensure that the model closely represents reality. Therefore, a solid understanding of the
underlying physics is essential for developing a reliable model. Last but not least, one of the most
important point of digital models is the choice of a representative unit which can describe more
accurately the problem but also can capture the dynamics. Thus, the length scale of your model is
critical.

1.5. Rationale and structure of study
This work delves into the influence of temperature on battery performance and the phase separa-
tion of cathode materials. It encompasses electrochemical experiments alongside the validation of
a computational model. The study places a heightened focus on the solid dynamics within a par-
ticle, facilitating the shaping of distinct concentration profiles. Through investigation, it becomes
evident that temperature engenders voltage loss and influences the heterogeneous behavior ob-
served through experimentation. Unlike some other models, the research model adeptly captures
and elucidates this phenomenon, offering vital insights into the interior processes without resorting
to an opaque ’black box’ approach.
In chapter 2, a theoretical overview is given of any mechanisms underlying and a general overview
of the operation of Li-ion battery is illustrated. Additionally, the transport limitations and the phase
separation definition are introduced. While the methodology section is situated in chapter 3, it is
specifically referred to the computational section. Parameter estimation techniques are also elab-
orated and the technique of this study is also present in the end of the chapter. The experimental
methodology and experimental results of this study is discussed in chapter 4. Furthermore, in this
section, the entire experimental procedure is explained. The validation of the computational model,
the computational results and the sensitivity analysis are conducted in chapter 5. The study is con-
cluded in chapter 6, and a set of recommendations for future work are included in chapter 7.



2
Theoretical Background

The goal of the following sections are to provide a general overview of the underlying physics in
Li-ion batteries and more specifically in the phase separation materials like LFP cathode batteries.

9
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2.1. Terminology
In the Appendix there is a table which describes important terminology that will be used in the next
sections. If a definition is unclear, the reader can refer to this table( Table A.1).

2.2. Constituents and Operational Mechanisms of a Battery
As shown in Figure 2.1, in the negative electrode which is mostly a lead metal, during the discharge
process, electrons leave from the current collector (depicted in orange) and through an external
circuit goes to the positive electrode through the cathode current collector (depicted in grey). The
white rectangular section between the electrodes is called a separator which , not only, distinguishes
the two regions but also does not allow electrons to flow so as to prevent a short circuit. The build of
charge during the operation of the battery is compensated by the movement of ions with the help of
an electrolyte. Electrolyte enhances the movement of cations or anions through the separator while
it is an electronic insulator as mentioned before. Thus, the electrolyte is a solvent with dissolved
chemicals which can be alkaline or basic based on the application, so as to consist of positively and
negatively charge molecules.

Figure 2.1: Basic components of a battery cell [18].

It is pertinent to note that the fundamental operating principle of a battery is predicated on the con-
cept of electrochemical potential energy. This notion postulates that materials possess an inherent
tendency to either emit or accept electrons based on their composition. In the discharge phase of
a battery, the anodic material loses electrons, which causes ions to migrate from the anode to the
cathode. If the electrochemical reactions occurring within the battery are reversible, then electrical
energy can be generated, which can be subsequently converted into chemical energy. The electro-
chemical potential energy can be likened to the gravitational potential energy of a ball placed above
a surface (Figure 2.2). If the ball falls from this height the gravitational (potential) energy will con-
vert to kinetic energy. In order to return the ball to this height, work should be supplied equal to the
gravitational energy.

The figure of merit of a battery comprises critical parameters that are essential for designing new
batteries. These parameters include capacity, energy density (which is a function of weight), volt-
age, long cycle life, and low cost, among others. In addition to these parameters, the anode material
must possess at least one electron in a valence state, while the cathode material should exhibit a
propensity to close the outer shell with at least one electron. Consequently, manufacturers are lim-
ited to using specific materials
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Figure 2.2: Conversion of potential to kinetic energy [8].

2.2.1. Intercalation Working Principle
The lithium-ion battery cell operates through a process known as intercalation, where the move-
ment of lithium ions is akin to cars parking in slots. This process preserves the electrode structure,
which is crucial. During discharge, the lithium atom loses an electron, resulting in Li+, which tra-
verses the electrolyte and separator to reach the cathode, where it meets an electron and reverts
to its original state as neutral Li. Therefore, the material’s crystal structure must be open to enable
the insertion and extraction of lithium atoms. Another important concept to grasp is that during
the anode’s (discharge) process, the lithium atom that transforms to an ion resides on the particle’s
surface, and to return to equilibrium, the concentration on the surface must be replenished by diffu-
sion from the particle’s center. Conversely, in the cathode, the opposite recovery through diffusion
occurs since the lithium concentration is higher on the surface when it reaches the positive elec-
trode. The inhomogeneity of the particles creates partial lithiation, which will be described in detail
in a separate section. The degree of lithiation is extremely significant in determining the amount
of power generated and Joule heating produced through current in a specific location. Binders are
also added to the material to improve electronic conductivity.

2.3. Cell Potential and Overpotential
The cell potential, also known as the electromotive force or EMF, of a battery is the maximum po-
tential difference that can be achieved between the electrodes of the battery, when no current is
flowing. It is a measure of the ability of the battery to do work and is determined by the difference
in the standard electrode potentials of the two half-cells that comprise the battery, as well as the
concentration of the species involved in the redox reactions that occur at the electrodes. The cell
potential is typically expressed in volts (V) and is a critical parameter in determining the perfor-
mance and efficiency of a battery. Hereby, before creating the final formula of the cell voltage, the
individual losses should be considered and analysed below.
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Ohmic losses: It is related to the difficulty in the movement of electrons in the electrode and the
movement of ions in the electrolyte and the separator. Based on the Ohm’s law (2.1) and the Poullet’s
law(2.2), a construction of an equation which relates the voltage drop and the conductivity and the
geometrical properties are presented below.

∆ϕ= I ·R (2.1)

R = L

A ·k
(2.2)

Where∆ϕ (V) is the potential difference, I (A) is the current, R (Ω) is the resistance, L (m) is the length
of the electrode, A (m2) the area of the electrode and k (Ω−1 m−1) the conductivity. Combining these
two equations, the final equation is Equation 2.3( j (A/m2) is the current density).

∆ϕ= j ·L

k
(2.3)

It is obvious that the goal is to minimize this loss by increasing the conductivity and decreasing the
length so as to not only diminish the voltage drop but also the cost of production.

Activation losses: This loss is referred to the energy required by the reactants to initiate the trans-
formation into the products. As illustrated in Figure 2.3, the magnitude of the activation energy is
influenced by various factors, such as the endothermic or exothermic nature of the reaction, tem-
perature and the corresponding kinetic energy of the molecules, and concentration of the reactants.
Consequently, the product flux is contingent on the aforementioned variables in a proportional
manner (Equation 2.5).

Figure 2.3: Activation energy in spontaneous and non-spontaneous reactions.

Using Faraday’s law (2.4) which comes from mass and charge conservation and assuming first order
reactions (2.5), the current density can be expressed through the equation 2.7:

j = n ·F ·N (2.4)

N ∝ cR ·e
−Ea
R·T (2.5)
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j ∝ n ·F · cR ·e
Ea
R·T (2.6)

where n is the number of electrons that is moving from anode to the cathode, F(C/mol) is the Fara-
day’s constant, N(mol/(m2/s)) is the product flux, cR (mol/L) is the concetration of the reactants,
Ea(J) is the activation energy, R(J K−1mol−1) is the gas constant and T(K) is the temperature.
The activation energy can also be expressed with respect to the potential difference between the
electrode and the electrolyte and a charge transfer coefficient α which lowers the barrier and de-
cides which is the rate-limiting step of the reaction (i.e. electron transfer limited if α is close to 1).

j ∝ n ·F · cR ·e
α0 ·F ·(E−ϕ)

R·T (2.7)

Using the definition of activation overpotential (the potential difference above the equilibrium po-
tential required to overcome the activation energy, equation 2.8) and the exchange current density
(the current at zero overpotential,equation 2.9), the final equation is called Butler-Volmer equation
(equation 2.10) and accounts for the most fundamental equation of electrochemistry.

η= (E −ϕ)− (E −ϕ)eq (2.8)

j∗ = nF (kOcR,eq )aO (kR cO,eq )aR (2.9)

j = j∗ · (
cR

cR,eq
·e

α0 ·F ·η
R·T − cO

cO,eq
·e

−αR ·F ·η
R·T ) (2.10)

The subscript O is referred to the oxidation process and R to reduction, c is the concentration and
k is the rate constant of the reaction. The Butler-Volmer equation is the difference between the an-
odic and cathodic current and shows that the higher the exchange current density is the lower the
activation losses are.
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Figure 2.4: Anodic and cathodic tafel plot (concentration independent) of current with re-
spect to overpotential[36].

In the case that one of the reduction or the oxidation reaction dominates, the Butler-Volmer equa-
tion becomes Tafel equation. Using the Figure 2.4, you can calculate the exchange current density,
which physically represents the current that is needed in order for a molecule to jump the activa-
tion barrier (thus a higher exchange current density minimizes the activation losses), but also the
coefficients of the Tafel equation which is the tafel slopes.

j = j∗ · cR

cR,eq
·e

ηa
ba (2.11)

where ba is the anodic Tafel slope which is equal to RT/(αoF). Connecting all the above, the final
formula of the cell voltage is presented below:

Vcel l = Eoc − (ηc −ηa −∆ϕ−∆V ) (2.12)

where, Eoc is the open-circuit voltage, ηc and ηa is the overpotential in the cathode and the anode
respectively which relates the activation losses, ∆ϕ is the voltage drop because of the ohmic losses
due to ions’ transport and ∆V is the voltage drop because of the cable and electrode resistances(due
to electrons’ transport).

2.3.1. Overpotentials during charge transport
A comprehensive understanding of overpotential requires a detailed examination of the multiple
sources that contribute in electrochemical reactions. This approach involves careful consideration
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of the distinct types of overpotential that may arise and their individual contributions to the overall
overpotential observed in a given system.
1)Ionic conduction in the electrolyte: The diffusion of an ion not only through the separator but
also though the porous electrodes which is happening using the electrolyte as a carrier. Material
properties such as the mobility of ions and the density of an ion but also concentration and electri-
cal field gradients are the main mechanisms that drive this transport. The Fick’s law equation and
the more general Nernst-Plank equation is some of the fundamental equations that can be used to
describe this phenomenon.
2)Charge transport over the electrolyte-electrode interface: The reaction between the electrolyte
and the electrode enhances the transfer of ion in the electrode particle. This transport can be ex-
pressed with the Butler-Volmer equation and is related to the activation barrier that should be over-
come in order to happen this reaction.
3)Ionic conduction in the electrode material: The diffusion of an ion in the particle in order to
reach an electron and form Li. The ion transport through a lattice depends on the attempt jump fre-
quency that Li has so as to go from one stable position to the other one. Using Density Functional
Theory (DFT) you can simulate this behavior and calculate the diffusion of Li in a crystal structure.
4)Electronic conduction in the electrode material: The diffusion of an electron through the binders
and the additive material so as to reach the electrode particle and diffuse in the particle to reach the
ion (3rd charge transport).

Figure 2.5: The tranport limitations that were described before with the respective num-
bering.

2.3.2. Cell Voltage and Gibbs Free Energy
It is vital to connect the cell voltage with the Gibbs free energy in order to explain the trend of voltage
curves (Figure 2.7) and explaining phenomena like solid solution or phase separation.
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−Ecel l d q =∑
i
µi dni (2.13)

where µ(J/mole) is the chemical potential, dn is the number of moles, and dq is the amount of
charge which is equal to z· F · dn. Assuming that the lithium concentration in the anode is constant
in order to create a relation about the cell voltage which will be dependent only to the cathode
chemical potential. Thus,

Ecel l (x) =−µLi
cathode (x)

F
(2.14)

The definition of chemical potential is the derivative of the Gibbs free energy. The final relation is
given below:

Ecel l (x) =− 1

F

∂g (x)

∂x
(2.15)

2.3.3. Phase separation
The immiscible mixture of two compounds such as oil and water is a phase separation example. The
coexistence of two or more different phases in the same material with different chemical and physi-
cal properties is what is called phase separation and the miscibility gap is the range of compositions
where this phenomenon can occur. A regular solution model is able to capture the thermodynamic
properties of such a problem and relates the composition of lithium to the cell voltage.

g (x) = kbT (x ln(x)+ (1−x) ln(1−x))+Ωx(1−x) (2.16)

where x is the dimensionless fractional concentration(0-1), kb is the Boltzmann’s constant, T (K) is
the temperature and Ω is called regular solution parameter. This parameter is related to the en-
thalpy of mixing and explains if enthalpy or entropy term is dominant. The entropy term is the term
before Ω in the equation and the enthalpy term is the last term. Using the equation and the figure
2.6, it is implied that when the regular solution parameter is smaller than 2kbT, the system prefers
to be in disorder, thus a homogeneous solution is possible during the lithiation of the electrode. On
the other hand, increasing the Ω the nature can find different paths of minimum Gibbs free energy
and this results to partially lithiated spaces. There are lithium-poor and lithium-rich regions which
is what is called phase separation regions. In other words, when the voltage is measured, in reality
the chemical potential is measured and is inextricably connected to each other. Using this math-
ematical description for the Gibbs Free energy (Eq.2.16), the boundary involves naturally and the
different interfaces can be captured and not artificially implemented.
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Figure 2.6: Gibbs free energy (Left) and Voltage profile (Right) with respect to lithium con-
centration and different Ω [16] .

2.4. Temperature influence in batteries
The demanding charging and discharging requirements, as well as the challenging vehicular envi-
ronment, exert a notable influence on the operational parameters of the battery. In this context, the
thermal management system plays a crucial role in maintaining the battery’s temperature within
the optimal range of 30-45 °C, thereby enhancing its efficiency and performance [7].

Thermal runaway is the biggest danger in batteries and can occur when the battery is exposed to
high temperatures, such as when it is overcharged, overheated, or damaged. When the tempera-
ture of the battery increases, the electrolyte inside the battery can start to break down, leading to
the release of oxygen and other gases. The increased pressure inside the battery can cause the bat-
tery to rupture and catch fire[15]. There are many mitigation techniques such as separating the
battery cells from communicating thermally with each other (addition of a material that prevents
the thermal propagation but enhances the electrical conductivity between the cells), or using safety
controls(immense liquid flow for cooling) in a case of an excess of heat in the battery module[12].

2.4.1. Constant temperature impact in batteries
The coupling of electrochemical models with a thermal model is mandatory to describe accurately
the internal behavior of a battery. Empirically, it has been observed that the diffusivity of solid state
lithium, reaction rates, and electrolyte conductivity and diffusivity can be effectively characterized
by an Arrhenius relationship with respect to temperature, thereby providing valuable insights from
a practical standpoint. Thus, the previous parameters can be defined according to the following
relation[7]:

f (T ) = fr e f e
Ea
R ( 1

Tr e f
− 1

T )
(2.17)

Ea(J) is the activation energy, R(J K−1mol−1), Tr e f (K) is the reference temperature and T(K) is the
operating temperature. The function f is the parameter of interest. Although the cell voltage is
nonlinear so it can be measured through the energy equation.

The total chemical energy that can be converted to useful electrical energy and irreversible heat
dissipation is described by the following relationship:
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−A
∂G

∂t
= I ·V + A ·Q̇i r r (2.18)

where G is the total Gibbs energy in the cell, I(A) is the current produced in this time step multiplied
by the voltage V(V), A is the area of the cell and Q̇i r r is the irreversible heat loss which is very sen-
sitive to the operating temperature [7]. This irreversible heat loss represents the following losses:
dissipated effects in the electrolyte, the heat of mixing in the anode particles , Ohmic dissipation in
the solid parts of the anode , dissipation arising from the current flow across the overpotential drop
at the surfaces of the anode particles (also termed the polarisation loss),the heat of mixing in the
cathode particles , Ohmic dissipation in the solid parts of the cathode and the polarisation losses
at the surfaces of the cathode particles[34]. A very important note is that this is for the isothermal
case through a cell so the left hand side of equation 2.18 is zero.

Battery development is being decelerated because of the temperature influence during its opera-
tion. Pesaran, Santhanagopalan, and Kim [31] showed that the temperature impact can be cate-
gorized in low and high temperature effects. In cold conditions (below 0◦C ) the ion transport re-
sistance increases and in temperature higher than 40◦C , side reactions can occur spontaneously
leading in battery degradation. He found out that in low ranges of temperature, the formation of a
dendrite is more possible, which has as an effect the cycle life reduction of the battery. On the other
hand, despite that higher temperature leads to higher reaction rate(2.17), thus low charge overpo-
tential, the occurrence of side-reactions lowers the amount of lithium that can intercalate having as
a result the decrease of the cycle life. Moreover, Liu, Gao, and Cao [26] studied the impact of tem-
perature to the LFP battery capacity. The experiments conducted in the temperature range between
−10◦C to 60◦C and the capacity was measured every 20 cycles. The main outcome was that temper-
ature higher than 60◦C has the most significant effect in the cycle life which shows that this is the
upper temperature limit for a battery operation. The lower bound is the −10◦C and in Liu’s research
this temperature has the second biggest impact in the capacity and in the internal resistance of the
battery. Surprisingly, the internal resistance for temperatures higher than the upper limit is bigger
than the very low temperatures in spite of the proportionality between internal resistance and the
Arrhenius relation.

Duong, Bastawrous, and See [13] created an equivalent circuit model to simulate the temperature
effect on state of charge estimation in the LFP battery under dynamic load operation. After experi-
ments in different temperatures, the voltage curve with respect to the state of charge is diminishing
with decreasing temperature. The equivalent circuit model can predict accurately the voltage curve
in a big range but below 0◦C the model fails because the relation between the OCV and temperature
becomes nonlinear [21]. Paarmann et al. [30] investigated the temperature influence to the current
distribution in a cell experimentally. The conclusion was that the cell exhibits a significantly lower
current for lower temperatures than for higher temperatures.Although, the voltage dependency to
the different constant operating temperature and the position where the current is maximum has
not been examined in this research.

2.5. LFP characteristics
The first automotive batteries from Tesla was with NCA but from 2021, the most well-known electric
automotive company decides to change to LFP batteries. For this reason, it is important to inves-
tigate the reasons behind this action. The high resistance because of the low diffusion rate and
the poor electrical conductivity of LFP gives a primary idea that it can not be the first choice of a
manufacturer. If we look in the atomic scale, the atoms of iron are far away from each other( more
than 4 Angstroms apart) because of the existence of the oxygen atoms (Figure 3.6). It is assumed
that one material has good electronic conductivity if the distance between the iron atoms is below
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3 Angstroms. On the contrary, the crystal structure of NCA provides high conductivity because of
the small distance of Nickel atoms. Although, this creates instability and does not allow the full
delithiation of the electrode in order to prevent a crystal buckling. Thus, the researchers, except
from creating nanoparticles as it is mentioned above, carbon coatings increases drastically the sur-
face area and the conductivity between LFP cathode [37]. Even with these innovations, including
that the LFP batteries need less packaging, the LFP material is outplayed by the NCA in pack level
performance as it is obvious in the table below.

Table 2.1: Comparison of LFP and NCA [37]

Characteristics Lithium Iron Phosphate(LFP) Nickel Cobalt Aluminium(NCA)
Energy Density Pack 128 Wh/kg and 168Wh/l 160 Wh/kg and 238Wh/l
Safety High Low
Cycle life 760k to 1M Miles 250k to 320k Miles
Acceleration/Power Great Great(can become excellent)

A significant difference between nickel cobalt aluminium (NCA) and lithium iron phosphate (LFP)
lies in their voltage curve. Due to the 2-D diffusion in NCA, lithium ions can move freely within
the electrode during the discharge process. In contrast, LFP experiences phase separation (which
will be explained in a subsequent section), wherein only a specific region of the particle is active for
lithiation while the rest is inactive. Consequently, the voltage potential of LFP remains steady, re-
acting solely from the active region. While this steady voltage curve provides several advantages to
manufacturers, they must adopt a different perspective when working with these materials to avoid
confusion due to their new characteristics.

Figure 2.7: Battery discharge and charge curve for a)NCA and b)LFP [33] .

Regarding the safety aspect, NCA can reach a thermal runaway reaction at a lower temperature than
LFP. Furthermore, the amount of heat that is released in NCA is almost 5 times bigger than that of
lithium iron phosphate battery. The main reason is that the structure of NCA is unstable and allow
oxygen to decompose which is a main ingredient of fire.
Last but not least, is the cycle life where the LFP is by far greater than NCA and this is the main
reason why is so attractive for the new Tesla vehicles. The chemistry of this compound does not
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allow to degrade so easily even in higher temperatures and provide the possibility of charging until
100% without any problem.

Figure 2.8: The crystal structure of LFP [14] .

2.6. Research Goals, Questions and Approach
1. Research Goal: The goal of this research is to compare MPET predictions with battery exper-

imental results in different temperature ranges. The data should be analyzed so as to realize,
in different cases, the possible starting point of a hotspot in a battery and , thus, to prevent
the detrimental phenomenon of thermal runaway.

2. Research Question 1: How the experimental voltage curve and the simulated voltage curve
are influenced by different temperature operation condition?
Research Question 2: What is the effect on battery performance when varying the material
and physical properties of the components?
Subquestion: How is the active particle population influenced by the temperature variation?

3. Research Approach: The conduction of experiments in coin cells that are constructed in the
battery lab of TU Delft is the first part of this research. Running simulation using MPET to
compare the results is the second part of the research. Boundary conditions and physical
input parameters play significant role to the outcome and should be carefully chosen. The
outcome of this research using the isothermal MPET model can shed light on the impact of
temperature on phase separation materials. Temperature is known to affect the kinetics of
phase separation, but the exact impact is not known yet. Through experiments and phase
field modelling, we can underscore the importance of accurately characterizing the effects of
temperature on battery behavior. Furthermore, sensitivity analysis is a powerful tool for un-
derstanding the influence of different factors on battery performance. In particular, varying
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particle sizes, thermal and electronic conductivity, and electrode thickness can have a signif-
icant impact on battery behavior, especially at critical temperatures. To perform a sensitiv-
ity analysis, one can systematically vary each parameter while holding the other parameters
constant and observe the resulting changes in battery performance metrics, such as capacity,
power, and efficiency. As a result, you can understand the dominant limitation and how to
improve the construction of batteries so as to nullify this problem.





3
Methodology

This study aims to improve and validate a physics-based model for Li-ion batteries, focusing on
the mesoscale within a continuum media framework, while accounting for the significant impact
of phase separation within battery materials. The approach integrates conservation laws (balance
equations) and transport equations (constitutive relations) to create a precise representation of Li-
ion battery behavior. To achieve an accurate mesoscale model, microscale characteristics, including
particle size and shape, are inferred using advanced image processing techniques, while maintain-
ing computational efficiency as a priority. Nonetheless, due to the complexity, many commercial
software solutions incorporate an artificial representation of the microstructure.
The description of microscale is based on transport phenomena. The electrolyte equations are cat-
egorized in dilute and moderate mixtures and the ion exchange equations are based on Butler-
Volmer equation.Three different models will be explained so as to build the physics that will de-
scribe the operation of a battery.
This section consists of three parts. The electrolyte equations, the electrode equations and the
boundary conditions. Furthermore, the DFN model is subdivided with the same manner. The last
section is the description of multiphase porous electrode theory which is used in this study.
The methodology for constructing the computational model will be explained in this section, while
the experimental procedures will be presented in a separate chapter. Starting from the microscale,
we endeavor to derive the Doyle Fuller Newman (DFN) model, separating it into electrode and elec-
trolyte equations. The structure of this section is similar to the following references about DFN ([7])
and MPET ([38]) models.

3.1. Microscale model-Electrolyte equations
The electrolyte is flowing from the current collector in the porous medium of the anode and the
separator and reaches the cathode and the other current collector. Modelling the sites where the
electrolyte is flowing, and assuming charge neutrality ( the amount of positive and negative ions is
equal) the following general conservation equations can be written:

∂ci+
∂t

=−∇Ni+ (3.1)

∂ρi+
∂t

=−∇ ji+ (3.2)

23
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Figure 3.1: The computational domain of the microscale model in the electrode. The main
domains are the electrolyte domain Ωe and the solid material Ωp . The primary distinction
from the subsequent generalized models lies in the explicit delineation of boundary condi-
tions for each domain. The subscript e is reffered to electrolyte, s to solid and cc to current
collector.

The concentration c (mol/m3) can be either the positive (i+) or the negative (i-) ion’s concen-
tration in the electrolyte, N+ (mol/(m2 · s) is the ionic flux, ρ (C/m3) is the charge per cubic volume
and j (C/(m2 · s) is the current density[25] in the electrolyte.

The constitutive relations, the equations for the definitions of fluxes in the electrolyte, are cate-
gorized in two cases. Assuming dilute electrolytes, neglecting the interaction between the ions, but
taking into account only the chemical potential gradient, the flux can be defined:

N+ =−Mi ci∇µi (3.3)

where Mi ( m2/(V s)) is the mobility from the Einstein equation and the chemical potential
(µ) is defined as the summation of chemical and electrostatic contributions (kbTlnαi +µa + zi eϕ,
where kb is the Boltzmann constant, T (K) is the temperature, µa (J/mole) is the reference chemical
potential and zi is the amount of charge ions, α is the activity coefficient andϕ(V) is the electrostatic
potential).

From Nernst-Plank Theory and using the 3.3 and the chemical potential definition:
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Ni =−Di∇ci︸ ︷︷ ︸
Diffusion

+ ci vi︸︷︷︸
Advection

+ t+
F z+

ji︸ ︷︷ ︸
Electromigration

(3.4)

ji = −κ∇ϕi︸ ︷︷ ︸
Ohm’s Law

− κ
t+

F z+
∂µi

∂ci
∇ci︸ ︷︷ ︸

Chemical potential gradient

(3.5)

,where the first term of 3.4 comes from the Fick’s law, the second term is neglected in most cases
and comes from the convective flux, and the last term represents the flux because of electrostatic
interactions. Di is the diffusion coefficient, v (m/s) is the velocity of ions, t+ is the transference
number and F is the Faraday constant. These equations are solved in the domain Ωe .
In the equation 3.5, κ (S/m) is the ionic conductivity and ϕi is the electrolyte potential(V) with
respect to lithium electrode. This equation comes from the difference between the ionic fluxes of
the anions and cations(3.6).

ji+ = F (Ni+−Ni−) (3.6)

Using equation 3.4 and 3.6, the final conservation equation is presented below.

∇ ji+ = 0 (3.7)

A more realistic model is the Stefan-Maxwell which also includes the interactions of all species,
thus:

N+ =−∑
Ui , j∇µi , j (3.8)

where Ui , j is the direct and indirect coefficients. Not only the electrochemical but also friction
forces between the ions are taken into account with this model. A more detailed derivation of the
moderate electrolyte equations are presented in the following paper [35]. The coefficients in this
model are a function of temperature and this is why in this study this model is implemented to in-
vestigate the power of the model in the dependence of the electrolyte to the operating temperature.

3.1.1. Microscale model-Electrode equations
The conservation equations that are used for the electrode (subscript el) domains are the same
with the electrolyte equations but instead of ions, the concentration flux and charge flux of lithium
inside the particle is calculated. This equation are solved in the solid domain of the particles and
the binders of the conductive matrix. On the other hand, the constitutive relations are influenced
only by the concentration and potential gradients.

Nel =−Del∇cel (3.9)

iel =−σel∇ϕel (3.10)
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These equations are solved in the domain Ωp . It is very important to realise that the diffusivity
(Del ) and the conductivity (σel ) are spatially dependent because of the different materials of the
microstructure. Except from the anode and cathode material there are also carbon binders and
Polyvinylidene fluoride(PVDF) which influence these values.

3.1.2. Microscale model-Boundary conditions
The interface between the solid particles and the electrolyte (∂Ωi n,e and ∂Ωi n,s) is solved through
Butler-Volmer equation.

iel = i0si nh(
F

2RT
ηel ) (3.11)

where i0 is the exchange current density (Equation 2.9) and ηel is the overpotential (Equation 2.8).
The current density is used in the boundary of the particles’ surface. The sign (equation 3.12) de-
pends on the direction of flux if it is from or to the electrolyte.

Nel · n̂ =−iel (3.12)

Furthermore, the differentiation between the various domains should be elucidated. In the cur-
rent collector a boundary condition is imposed as zero flux of lithium ions(equation 3.12) and two
boundary conditions of potential description in the two current collectors (Li foil- ϕ+ = 0V , LFP-
ϕ− = V (t )V at ∂Ωcc,s and ∂Ωcc,ss). No current can flow through the separator and outside of the
particles that are in contact with the outer boundary (∂Ωout ,e and ∂Ωout ,s , equation 3.13 and 3.12).
The last initial conditions are the concentration of active material in anode and cathode and the
concentration of the electrolyte (cs = cs,0,ce = ce,0 at t=0).

ii · n̂ = 0 (3.13)

3.1.3. Microscale model-Main points
The variables that are calculated in this model are the lithium ion concentration, the electrolyte
potential, the flux of lithium ions and the current density. Diffusion coefficient and ionic conduc-
tivity are spatially and thermally dependent and this is difficult to couple it. The chemical potential
should be defined as a function of temperature and concentration. The ideal theory is used for this
definition which can not capture the phase separation.

3.2. Doyle Fuller Newman model
In this model, the representation of distinct domains is presented as a continuum. It is a pseudo-
2D model, and equations are volume-averaged equations, obtained through the differentiation of
conservation laws, and utilizing effective properties instead of discrete values of diffusivities and
conductivities, which are based on the specific material and domain. To describe the intercalation
process within the particles, the assumption of spherical particle shapes is adopted, and a 1D spher-
ical conservation equation is utilized (figure 3.2). The electrodes and the separator also are assumed
as planar geometries which decreases the computational time and the complexity of the problem.
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Figure 3.2: The computational domain of the DFN model.

3.2.1. Volume - averaged equations

Figure 3.3: The control volume in a general volume averaged domain .

This technique discretizes the domain in finite volumes and because of the coexistence of two dif-
ferent phases, averages the equations according to the specific finite volume as figure 3.3. The equa-
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tions are the same with the equation of electrodes equations in the previous section. The only dif-
ference is that here the fluxes represent averaged macroscale fluxes. With reference of figure 3.3, the
conservation equations for the different phases(solid and liquid) can be expressed.

∂c1

∂t
=−(

1

V1

∫
V1,i n

∇N1 · n̂d s + 1

V1

∫
V1,out

∇N1 · n̂d s) (3.14)

the same equation can be written for the second phase. Summing the two equations:

∂ctot

∂t
=−(

1

Vtot

∫
V1,out

∇N1 · n̂d s + 1

Vtot

∫
V2,out

∇N2 · n̂d s) (3.15)

The constitutive equation is equation 3.3 but replacing all the discrete properties with effective ones.
(effective diffusion coefficient, effective mobility). By utilizing all the equations mentioned earlier, it
becomes possible to determine all the parameters for each phase. The comprehensive set of equa-
tions, including the conservation laws, transport equations, and the Butler-Volmer equation for ion
exchange, enables us to establish a complete description of the system’s behavior. Through this
approach, we can extract the necessary parameters for both the electrolyte and electrode phases,
obtaining a comprehensive understanding of the Li-ion battery’s performance and characteristics.
Regarding the electrode, the charge conservation and the ohm’s law ,modified in the same manner
as above, can express the conservation equations of this scale. The main difference with equation
3.2 is the insertion of a term bi which expresses the surface area per unit volume of particles in con-
tact with the electrolyte. The same procedure is followed for the electrolyte equations. Below, all the
equations and boundary conditions are presented. In the electrolyte model except from bi , there
is a coefficient ( Bi ) which is the transport efficiency based on the domain that is being calculated.
The tortuosity (τ) is also given by using the Bruggerman relation.

3.2.2. Equations of DFN model
Particle equations

Conservation equation:

∂cp

∂t
+ 1

r 2

∂(r 2Np )

∂r
= 0 (3.16)

Constitutive relation:

Np =−Dp
∂cp

∂r
(3.17)

Boundary (and initial) conditions:

Np = 0,r = 0

cp = c0, t = 0
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Np = ip /F,r = Rp

Electrode equations

Conservation equation:

∂ jel

∂x
=−bel ip (3.18)

Constitutive relation:

jel =−σel
∂ϕel

∂x
(3.19)

Boundary conditions:

ϕel = 0, x = 0

jel = 0, x = Ln

jel = 0, x = Lp −Ln

Electrolyte equations

Conservation equation:

ϵ(x)
∂ci+
∂t

=−∇Ni++ b(x)ip (x)

F
(3.20)

and equation 3.18.
Constitutive relation:

Ni =−Di (x)B(x)∇ci + ci vi + t+
F z+

jel (3.21)

and equation 3.5.
Boundary conditions:
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jel = 0

and

Nel = 0, x = L

jel = 0

and

Nel = 0, x = 0

cel = cel ,0, t = 0

Table 3.1: DFN model Symbols

Symbols Description Domain
cp Li-ion concentration(mol/m3) Particle
Np Diffusive ion flux(mol/(m2s) Particle
ip interfacial current density(A/m2) Particle
jel av. macr. current density(A/m2) Electrode
σel eff. electronic conductivity(S/m) Electrode

bel
sur f .
vol . of particles with electrolyte Electrode

cel ,0 initial Li-ion concentration in electrolyte electrolyte

Many symbols that are used in the above equations have not been explained thoroughly, thus,
a summary table is shown and in the next section the main differences will be highlighted between
this model and the MPET model and all the domains will be visualised.

3.3. MPET model
The Multiphase Porous Electrode Theory (MPET) comes from the Porous Electrode Theory by John
Newmann with some strong differences. The open circuit potential comes from non-equilibrium
thermodynamics to capture phenomena like phase separation (See chapter 2). Different models
which explain the behavior of the particles will be presented below to understand the limit of solid
solution and phase separation. Volume averaging theory fails to describe phenomena like the de-
formation inside the particles during intercalation and different concentration fields without the
correct formulation in the particles’ equations, thus DFN model is not capable of doing it. On the
other hand, a complete interpretation of the microstructure is computationally inefficient. Here
comes this software which approach the heterogenities in particles with defining the free en-
ergy functional. This section is separated in two subsections: the particle scale and the electrode-
electrolyte scale because the equations are coupled and are easier to comprehend the interaction
between the solid material and the electrolyte.
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3.3.1. Computational Domain and Particle equations

Figure 3.4: Computational domain in MPET model.

The simulation uses the finite volume method to solve the differential algebraic equations (DAE)
and also involves volume averaged methods but the particles are solved in their own scale and after
are treated as sources or sinks in the bigger scale (same with the DFN model).

3.3.2. Electrode - Electrolyte equations
Based on the conservation of species and conservation of charge( See section 3.1) the conservation
laws for the electrolyte in the electrodes can be expressed with equation 3.22 and 3.23.The reaction
rate R is equal to zero in the separator and thus the same equations describe the mass and charge
conservation for the electrolyte in all the battery domain by just neglecting this term. The ji+ is
calculated from equation 3.5 and the ionic flux from the Stefan-Maxwell equation (Constitutive re-
lations).

∂(ϵ(x)ci+)

∂t
=−∇Ni++RV ,i (3.22)

∑
zi eRV ,i =∇ ji+ (3.23)

The following figures summarize the aforementioned equations, field variables and some bound-
ary conditions of electrolyte in the separator and electrode.

The noteworthy point that is not mentioned before is that the ionic conductivity in the consti-
tutive equation of the current density is calculated through the research of Valoen and Bernardi in
the following paper [42]. The dependence of electrolyte on temperature is being described through
this research which shows the high importance in our study as well.
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Figure 3.5: Electrolyte equations in separator.

For the ionic flux, the definition of chemical potential for a given ion should be presented.

µl ,i = κbT ln(αl ,i )+µl ,ieq + zi eϕl ,i (3.24)

where κb is the Boltzmann constant, T(K) is the temperature ,αl ,i is the activity of species and µl ,ieq

is the reference chemical potential. This definition takes into account both the electrostatic and
chemical contributions.

Regarding the solid phase, the electrode equations have been mentioned in the previous sec-
tions (equations 3.18 and 3.19). The adding value of MPET is that the particle interaction can be
both parallel ( in the same finite volume) and serially through the electrode. The conductance be-
tween particles in a finite volume captures a more realistic behavior about the connection of the
particles and plays a significant role in this study (figure 3.7). Using the Ohm’s law and the charge
conservation, the current per volume is separated in the particles in the following manner.

G j ,k (ϕ j ,k −ϕ j ,k+1) = I j ,k (3.25)

I j ,k − I j ,k+1 =
∫

Ak+1

j j ,k+1d A (3.26)

where G j ,k is the conductance and I j ,k is the current between the particles.
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Figure 3.6: Electrolyte equations in electrode.

Boundary Conditions
The conservation equations and the constitutive relations will be solved only for anions because is
more convenient, thus there are four first-order differential equations and you need four boundary
conditions.

∇Nel = 0, at x=0 , x=L

∇iel = 0 at x=0 , x=L

3.3.3. Particle equations
The particle section has two parts. The solid dynamics of the particles and electrochemical reaction
section. The electrochemical section in our study, is referred to the Butler-Volmer equation which is
described in the previous sections. The overpotential and the exchange current density is expressed
with respect to the activities which are connected to the Gibbs free energy.

Solid dynamics
The calculation of the solid dynamics of a particle as can be seen from figure 3.8, needs the definition
of the chemical potential from the regular solution theory. The chemical potential is the functional
derivative of the total Gibbs free energy. Thus, the definition of Gibbs free energy is the new feature
of this model which incorporates the free energy and the surface energy.

G =
∫

Vp

g dV +
∫

Ap

γσd A (3.27)
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Figure 3.7: This figure shows that the particles are connected in series and electrons should
flow in the conductive matrix(resistances) creating a voltage drop in particle by particle
interaction.

g corresponds to the homogeneous (equation 2.16) and non-homogeneous gibbs free energy
density. Using the Cahn-Hillard thermodynamic model, the phase separation can be described by
the non-homegeneous gibbs free energy by the equation below.

gnh = 1

2(cs,r e f )2 ∇ciκ∇ci (3.28)

where κ is the gradient penalty tensor and cs,r e f is the a suitable concentration scale

The Allen-Cahn conservation equation used for LFP as proposed by Bazant, which neglects
transport in the y-axis of the particle and the local rate of concentration can be calculated by :

∂cav

∂t
= Ap

Vp
jp (r ) (3.29)

In figure 3.8 a summary of two different particle solid dynamics are presented. It is important to re-
alise that the Allen-Cahn model is characterized as reaction limited model instead of Cahn-Hillard
as diffusion limited model. This is explained also from the equation in the figure but also from the
domain visualization. In LFP, according to experimental outcomes, the y-axis diffusion is infinitely
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Figure 3.8: Particle discretization and summary of the equations .

fast so the reaction controls the intercalation of the lithium ions, but for example, in Lithium tita-
nium oxide(LTO) the diffusion equation controls the model. The phase separation in LFP can be
observed in x-axis as is illustrated in figure 3.9. The constitutive relation is the same as in the previ-
ous sections about the particles.

Boundary conditions
Taking into account only one of the conservation equations (eq.3.29) and its constitutive relation,
two boundary conditions should be provided.

n̂ ·Np =− jp , at x=R

n̂ ∂g
∂∇cp

= n̂ ∂γs

∂cp
, at x=R

For easier convergence the dimensionless concentation in the sides of the particles is 0.98.

3.3.4. Length scale coupling
The different length scales are coupled by the electrochemical reaction equations. After the calcu-
lation of the rate of change of concentration in a particle (equation 3.29), the volumetric reaction
rate Rv,i is the summation of all the particles multiplied by the active material percentage. The to-
tal current density per electrode area is calculated as the summation of all the volumetric reaction
rates.

icel l =−∑∫
Lc

zi eRV ,i dL (3.30)
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Figure 3.9: The intercalation loss of Li+ in the y-axis is assumed to be neglected. The phase
separation in a particle can be in a(x) axis as the finite volumes are completely empty in the
beginning of the axis and in the end of the axis are completely lithiated [19].

Finally the overall cell voltage is calculated through the following equation:

∆ϕcel l =∆ϕapp − icel l Rser (3.31)

3.3.5. Assumptions and limitations
One of the main limitations of this software is that every finite volume should include at least one
particle in order to be able to capture the phase separating behavior with high accuracy. Further-
more, electroneutrality of the electrolyte and the non-existence of the pseudo-capacitance phe-
nomenon are reasonable assumptions in battery modelling but a future version of MPET can in-
culde these characteristics. Another mechanism that is missing is the deformation stresses during
intercalation that can occur.

One major limitation is the isothermal condition. Generation and transport of heat is imple-
mented in MPET in 2023 but the accuracy of this new model has not been validated yet. The depen-
dence in temperature is the main outline of this study but the heat production validation can be a
future research. The two last limitations are the particles’ geometry and the degradation modelling.
The particles can be simulated as spheres or rectangles and the degradation does not play a role in
the current version of MPET. The temperature dependence of degradation in experimental studies
is known, thus this extension is of high importance.

3.3.6. Choice of Parameters
In our study, the anode is lithium foil, thus the cathode is only simulated. All the particles assume
to be in a perfect bath of electrolyte. The parameters that have not been calculated or measured
experimentally are the electronic conductivity of the cathode material, the Bruggerman exponent,
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the particles’ conductivity, the rate constant and the particle size. The electronic conductivity was
sourced from the existing literature and also finds application in an open-source battery simulation
package named Pybamm, developed in Python. Meanwhile, the determination of the Bruggerman
exponent adopts a unique approach, as showcased in figure 3.11. This approach diverges from the
conventional Bruggerman relation. Instead, it draws on experimental data for LFP with low carbon
loading, a parallel that resonates with our research, thereby establishing a distinct relationship. The
particle size can be measured experimentally (but because of the time limitation a mean size was
chosen and a big standard deviation of the size can represent the different particles as can be seen
in figure 3.10). This is a strong assumption which helps the simulation to capture the same behavior
with the experiments and the influence of this parameter is also presented in the results section.

Figure 3.10: Image of the microstructure of an LFP cathode material. The particle size can
vary a lot and this explains the choice of a high standard deviation[23].
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Figure 3.11: The tortuosity of 70% and 90% active material of LFP are presented in the figure
by Landesfeind [23]. The comparison of Bruggerman for spherical particles is also depicted
by the blue dashed line. This figure explains the choice of the value of Bruggerman expo-
nent.

Table 3.2: Parameters

Physical Input Parameters Value(Range) Based on
Profile type Constant current -
Heat generation Isothermal -
C-Rate vary -
Vmax 4 (V) OCV
Vmi n 2.5 (V) Cut-off Voltage
Temperature 268-323 (K) case
Electronic conductivity (σ,Ohm’s law) 0.34 (S/m) Prada2013 model(PyBAMM)
Electronic conductivity in particles (Gc ) 0.34e−13 - 10.0e−13(S) case
Standard deviation of Gc 0.34e−14 - 10.0e−14(S) case
Initial electrolyte concentration (c0) 1000(mol/m3) initial condition
Electrolyte model SM(Stefan-Maxwell) temperature dependence
Electrolyte coefficients valoen-bernardi paper[42]
Neg.ion diffusion coefficient Dn=2.94e-10 (m2/s) literature
Pos.ion diffusion coefficient Dp =2.2e-10 (m2/s) literature
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Table 3.3: Parameters

Design Input Parameters Value(Range) Based on
Particle size 30e−9 (m) -
Standard deviation of particle size 100e−9 (m) -
Length of electrode 80e−6 (m) measurement
Length of separator 25e−6 (m) measurement
Volume loading of active material 93% calculation
cathode porosity 56% calculation
seperator porosity 55% literature [43]
Bruggerman exponent of cathode -2 literature [23]

Table 3.4: Material Parameters

Material Parameters Value(Range) Source
Type Allen-Cahn Literature
Shape C3 Literature
Ω 1.8560e−20 experiments(literature)
gradient energy(κ) 5.01481e−10 experiments(literature)
Reaction Type Butler-Volmer -
k0 0.01-0.2 case
α 0.5 (symmetric) -

Table 3.5: Computational Parameters

Computational Parameters Value(Range) Source
Particle’s discretization 2e−9 (m) choice
Volume’s discretization 1.5e−6 (m) choice
time steps 200 choice
tolerance 1.0e−10 choice
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3.4. Parameter Estimation
The first goal of this study is to validate the accuracy of the software compared to experimental
results. In order to do so, the input parameters should be defined. There are different ways to
estimate some parameters which are unknown because they can not be measured experimentally or
vary in a very big range for similar cases. The two most powerful is machine learning or optimization
algorithms.

During this study, both methods were investigated. Three different regression machine learning
algorithms were implemented( Polynomial Regression , Support Vector Machine, Random Forest
Regression). The first and simplest model that was implemented was the Polynomial Regression
Machine learning (ML) model. This model is based on the least squares and tries to create a rela-
tionship between the input data to the output data. Ordinary least squares is the minimization of
the sum of squares of the differences between the observed dependent variable in the given dataset
and those predicted by the function. The model encompasses numerous input features and aims
to establish distinct relationships for each output variable. However, the pronounced nonlinearity
observed in the rate constant, as evident from the results section, renders this model unsuitable for
accurate representation.

Figure 3.12: Visualisation of squared error in a linear regression problem.

The second model that tested was the Support Vector Machine model. Central to the approach
is the utilization of hyperplanes to create distinct classes between the outcomes. Whether applied to
classification or regression challenges, the establishment of a maximum margin classifier is imper-
ative for finding diverse solutions. However, this paradigm creates ambiguity applied to continuous
functions, such as in our scenario, especially in the presence of highly nonlinear parameters, like
the rate constant. It’s worth emphasizing that despite these complexities, the particles’ and electri-
cal conductivity could be successfully ascertained, exhibiting an error margin of approximately 8%.

The most efficient Machine learning model which also gave the motivation for the Monte Carlo
approach was the Random Forest Regression. It based on a decision tree form by using statistical
modeling where the node splits are decided based on an information metric. The core principle
revolves around separating the input features and examining the outcomes associated with each
subset resulting from this division. These outcomes can be categorized as either true or false. In
instances where the outcome is false, a decision tree construction process continues, offering a
variety of potential results. Ultimately, by interlinking all conceivable outcomes, a continuous func-
tion materializes, effectively representing the output variable. The separation of the input features
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is based on Gini impurity. Avoiding the mathematic formulation, the intuition is how pure the dif-
ferent classes are. The lower the value of Gini impurity, the less mixing between the classes and
the split leads to more homogeneous subsets and improved classification accuracy. Decision tree
algorithms, like CART (Classification and Regression Trees), often use Gini impurity as a criterion
for evaluating splits and growing the tree. This random splitting reaches to very accurate results for
the conductivity parameters close to 2% and close to 10% for the rate constant.
Before continuing to the optimization algorithms, the main steps in a machine learning model
should be noted.

1. Begin by reading the dataset and applying normalization to ensure that all features are scaled
within the range of 0 to 1.

2. Divide the data into two subsets: the training dataset, which will be used to train the model,
and the test dataset, which will be employed to assess the model’s performance. Ensuring
no interaction between these subsets is crucial to prevent any data leakage. Typically, the
default separation allocates 70% of the input data to the training subset, with the remaining
30% forming the test subset.

3. Each machine learning model has its own set of specific parameters that must be defined
when utilizing Python libraries. These parameters include aspects like maximum iterations,
optimization method (e.g., gradient descent), polynomial degree (e.g., 2nd or 3rd degree),
and learning rate. Defining these parameters accurately is pivotal in achieving optimal model
performance.

4. Different performance metrics can be used as the mean squared error or the standard devia-
tion of the solution for the post processing of the results.

The parameter identification using optimization algorithms is a very famous and especially in
the battery community where many parameters can not be found experimentally. The first step is
to construct the estimator.

ϕ̂= ar g (mi n(F (ϕ))) (3.32)

where F is the objective function that needs to be minimised and ϕ̂ is the input argument (can
be a vector). The most common, and also in this study, objective function is the mean root least
squares equation.

F (ϕ) = mean(
∑√

(Vi ,exp −Vi ,si m(ϕ̂))2) (3.33)

The main problem of optimization of battery parameters is the convexity of a function. The
convex problems have the advantage that any local minimum is also a global minimum, which is
not the case for the non-convex problems. There are many different categories in optimization al-
gorithms. The basic argument is if the method is based on the derivative of the objective function.
The basic principle is that starting from a specific point within the parameter space, a gradual pro-
gression is made by moving in a direction that diminishes the cost function. This progression is
guided by insights into the gradient and occasionally even the curvature of the function [3].

In this study a derivative-based method is partially implemented. Starting with a good initial
guess, the goal is the decrease of the objective function as you iteratively change the parameters’
values (ϕ). For the direction of your next iteration, the condition that should be fulfilled is presented
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in equation 3.34. The vector p̂ should be chosen so as the derivative of the objective function will
decrease. Equation 3.35 is the condition for the step size where c1 is between 0 and 1 and α is the
step value. There are many different ways to calculate the step length and the descent direction
which is not the scope of this study. Last step is the update of parameters’ vectors and the check of
the convergence criterion until you reach a minimum threshold. This method is called line-search
method.

∇(F (ϕ̂))T p̂ < 0 (3.34)

F (xnew ) ≤ F (0)+αc1
∂F (0)

∂x
(3.35)

In this study a combination of the Monte-Carlo(MC) approach and the line-search method was
implemented. The MC approach is a computational technique which includes a massive amount of
simulations based on the law of large numbers and you approximate the solution of the minimiza-
tion of the objective function. The randomness of the simulations gives an overview of the possible
outcomes that can be established. The results based on statistical probabilities but the sample size
plays an important role (law of large numbers). The descent direction and the step size of the differ-
ent simulations are decided by the aforementioned line-search method. Running different samples
of simulations, choosing every time the three best local minima solutions and running again in the
vicinity of these solutions is the main methodology of our approach. This procedure did not guar-
antee the finding of the global minima but a very good approach of the optimization.



4
Experiments

The upcoming chapters will detail the primary methodology applied in the experimental section.
The initial section will outline the preparation process for the components utilized in the experi-
ments. Subsequently, a comprehensive account of the experimental procedure will be presented,
along with the derivation of key assumptions. Towards the conclusion of the chapter, the experi-
mental results will be discussed and explained in-depth, providing a thorough analysis of the out-
comes.

4.1. Pretreatment and preparation of the components
The initial phase encompasses the collection of all requisite components, followed by appropriate
processing. The assembly of a coin cell transpires within a glovebox, shielding the battery from
environmental influences. Due to lithium’s strong reactivity with oxygen and moisture, mitigation
against their presence remains essential to avert unfavorable reactions. Additionally, the glovebox
environment filters out airborne impurities that might otherwise compromise battery performance
during assembly. The assembly steps are as follows:

1. The separator and the LFP cathode electrode are precisely cut to their required dimensions
using the Celgard 2500 as the separator, a widely used component in both experimental
and modeling studies. Figure 5.3 illustrates the tool employed for shaping the separator and
the electrode. For comprehensive information on the dimensions and properties of the com-
ponents, please refer to Table 4.1.
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Figure 4.1: Tool for the circular shape of the separator with diameter of 19mm. A similar
tool with diameter 12.77mm was used for the LFP cathode electrode.

2. The various components are carefully arranged inside a dry vacuum chamber. This spe-
cialized chamber is constructed using robust materials, such as stainless steel or glass, to
withstand the low-pressure conditions. The process of degassing the battery components (as
depicted in Figure 4.2) is essential to eliminate any potential air gases and bubbles. The cham-
ber operates at a temperature of 80◦C and a pressure 1 bar lower than atmospheric pressure
. It is crucial for the components to remain inside the chamber for a minimum of 12 hours
before they are transferred to the glove box. This precautionary step ensures that the compo-
nents are thoroughly degassed and prepared for further assembly without any unwanted gas
interference.

Figure 4.2: Explode-view of the battery coin cell
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Figure 4.3: Dry vacuum chamber for degassing the components of the batteries.

3. The assembly of the battery is conducted in the glovebox (Figure 4.4b) before starting the
electrochemical cycling. The only component which is not visible in Figure 4.2 is the elec-
trolyte ( Figure 4.4a) which is being absorbed by the separator during the manufacturing of
the battery by using an adjustable pipette. The amount of electrolyte is 80µL.

(a) Electrolyte ECDMC 1:1 (b) Glovebox of the battery lab

Figure 4.4: The use of glovebox is mandatory to prevent side reactions during the assembly
of the coin cell.
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Components Material Diameter(mm) Thickness
Top cap Steel 1.6 ± 0.001 (cm) 1 (mm)
Anode CC(current collector) Aluminium 1.277 ± 0.001 cm 180 (µm)
Anode electrode Lithium foil 1.277 ± 0.001 cm 110 (µm)
Separator Plastic 1.5± 0.001 cm 20 (µm)
Electrolyte ECDMC - -
Cathode electrode LFP 1.277 ± 0.001 cm 80 (µm)
Cathode CC(current collector) Aluminium 1.277 ± 0.001 cm 20 (µm)
Spacer Steel 1.5 ± 0.001 (cm) 1 (mm)
Bottom cap Steel 1.6 ± 0.001 (cm) 1 (mm)

Table 4.1: Design Properties of the components in a coin cell

4.2. Procedure for the conduction of electrochemical cycling
experiments

For the electrochemical testing, two different softwares were used. The majority of the experiments
conducted in the Lanhe battery testing system, and some of the high temperature experiments in
the Maccor battery testing system.

4.2.1. Lanhe and Maccor Battery Testing System
This software represents a cutting-edge battery analysis tool for both academic and commercial
purposes. Its remarkable precision, with a sampling rate of one ten-thousandth, and high-speed
capabilities make it a standard in the field. The software offers versatility by allowing for a wide
range of voltages and currents, making it suitable for various experiments and diverse capacity cells.

For constant current (CC) processes, electrical current is supplied from a power source until the
predetermined maximum voltage is attained. Complex electrical circuits, including metal-oxide-
semiconductor field-effect transistors (MOS-FETs), control the current during this phase. Similarly,
for constant voltage (CV) processes, a comparable mechanism is employed. While Maccor is a sim-
ilar software, it lacks the computational power of Lanhe, but for the purposes of this study, both
software tools are more than adequate.

The experimental procedure initiates with the cell being allowed to rest for at least half a day, en-
suring complete absorption of the electrolyte and reaching the desired temperature. Next, a charge
cycle using constant current (CC) is performed, considering that lithium is present in the cathode
material. After reaching the cut-off voltage, the cell undergoes another rest period before starting
the discharge phase. The discharge phase involves two steps: a constant discharge current rate (D-
CC) until the voltage reaches 2.5V, followed by a constant discharge voltage (D-CV) until the current
drops below 0.03 C, ensuring full discharge of the battery. This procedure is repeated once more,
with the initial two cycles referred to as formation cycles. The charge and discharge C-rate are set at
0.1 C, allowing the battery to approach equilibrium without causing damage.

Following the formation cycles, a specific pattern is repeated twice, employing four different
current rates. Starting from 0.5 C, with increments of 0.5 C, the procedure begins with a 10-minute
rest period. Subsequently, a constant current (CC) rate is applied until the cut-off voltage surpasses
4.0 V. The cell then rests for another 10 minutes, after which a CC rate of 0.1 C, with the same cut-
off voltage, is used. A constant current-constant voltage (C-CV) at 4V is applied until the current
reduces below 0.003 C. This completes the charge phase, followed by a 10-minute rest period before
the discharge phase commences. The discharge phase mirrors the charge phase with a constant
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discharge current rate (D-CC) of 2.5 V as the initial step..

Figure 4.5: The procedure of the electrochemical testing.

The operating temperature is fixed by a cooling box or a temperature chamber. The experimen-
tal temperatures are −5◦C , 0◦C , 10◦C (fixed by cooling box) 25◦C (Room temperature) and 50◦C
(fixed by temperature chamber). Furthermore, different high temperatures were tested but these
results are not presented in this section but in the Appendix because of the use of a different cell.
The two experimental tests have the material properties of table 4.1 with the only difference that
one cell has capacity equal to 2mAh/cm2 and the second one 1mAh/cm2.

4.3. Measurements and calculations of design parameters
4.3.1. Isothermal Assumption
The area capacity by the manufacturer is 2mAh/cm2.The area of coin cell is 1.28cm2, thus the ca-
pacity at 1C is 2.56mAh.
By checking the OCV value which is 3.422V at 25 ◦C, and the discharge voltage curve for 1C at am-
bient temperature, the overpotential is approximately between 0.1 to 0.2V. Multiplying the over-
potential with the capacity, the energy that has spent in irreversible processes can be calculated.
The energy is equal to: 0.2V · 0.00256Ah = 0.000512W h. Multiplying by 3600, the energy in Joule
is: E = 1.8452J.
To simplify matters, assuming that the cell is exclusively made of stainless steel, the values for its
mass (m) and heat capacity (cp ) can be found. The mass is measured close to 5.1g and the heat
capacity of stainless steel is 520 J/(kg ·K ).
Assuming steady state, the temperature difference can be given by the following relation: Q = m ·cp ·
∆T . The maximum temperature difference using the total energy as heat is 0.68K.
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To sum up, after many strong assumptions the maximum temperature difference that you can have
in a coin cell which consists of stainless steel in close to 0.7K. The coin cell has different material lay-
ers, because of the anode(Lithium metal) separator and cathode which are materials such as plactic
and LFP which have a higher heat capacity value. This implies that the temperature difference in
our study will be a lot smaller. Hence, the isothermal assumption is valid.

4.3.2. Porosity calculation
The porosity was also reported by the manufacturer but the calculation is the following:

1st Step: Area of cathode is calculated. The circular area in the coin cell of LFP is 1.28 cm2.

2nd Step: The total density of the cathode is calculated using the percentage of each material.
The effective density is equal to 1.55 g/cm2.

3r d Step: Measure the weight of the cathode material. The current collector (aluminium) is at-
tached to the cathode material and should be subtracted from the total weight. The effective weight
of cathode is 18.5 mg. Using the weight and the density from step 2, the volume is calculated (0.0337
cm3).

4thStep: The effective volume of the cathode material is calculated by multiplying the area by
the thickness of the electrode. The effective volume is 0.0896 cm3.

5thStep: The definition of porosity is given below.

ϵ= Vtot

Vsol i d
Vtot ≈ 0.56 (4.1)

4.3.3. Active material calculation
The manufacturer gives the active particle fraction per weight as 90 %, and 5% is carbon and 5%
Polyvinylidene fluoride (PVDF). The input parameter should in volume loading so the following as-
sumption about the density of the mentioned materials are presented.
Density of carbon: ρc = 2.2 g/cm3

Density of PVDF: ρp = 1.8 g/cm3

Density of LFP: ρl = 1.5 g/cm3

Finding all the different volumes using the formula of density definition and take the percent-
age of each material, the final volume loading is 93%.

4.4. Experimental Results
The results are divided into two main parts. The first part focuses on the operating temperature and
comprises five different figures, which demonstrate the effect of temperature on the battery’s power
output. This analysis provides valuable insights into how temperature influences the battery’s per-
formance.
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In the second part, an analysis based on the C-rate is presented, offering essential insights into
understanding the impact of temperature concerning the current demand.

The figures corresponds to the high capacity cell of 2mAh/cm2 because only this cell is tested
also in the computational section. The figures of the low capacity cell are presented in the Appendix.

4.4.1. Temperature variation
The figure displayed below illustrates the discharge voltage curves at room temperature. Through-
out the experiment, temperature measurements were recorded using a thermocouple, with fluctu-
ations of approximately 0.5 ◦C due to sensitivity errors. The isothermal assumption is commonly
employed in such experiments, given the minimal power output generated by the coin cell. Addi-
tionally, evidence supporting the isothermal condition is provided, further confirming the validity
of this assumption.

Figure 4.6: Experimental Discharge Voltage curve in five different C-rates at 25◦C .

The first experiment was conducted at 25◦ C. In all battery testing experiments, as mentioned
before the first two cycles are formation cycles. Thus, the dip in the 0.1C can be because of the for-
mation of the cell. The capacity in such a small current reaches the maximum which shows that
the overpotentials because of reaction and transport limitations are negligible. The increase of C-
rate infers a decrease in the starting point of the voltage because of the separator overpotential.In
the battery operation, the separator overpotential remains constant throughout the cycle, as it is
not affected by the cycling time. On the other hand, the diffusion transport overpotential experi-
ences an increase with longer cycling times. This phenomenon occurs due to the accumulation of
reaction products or depletion of reactants at the electrode-electrolyte interface during extended
cycling. As the cycling time increases, the rate of diffusion becomes a limiting factor, leading to a
higher overpotential associated with the transport of reactants and products within the battery. The
variation in diffusion transport overpotential is a critical aspect to consider when analyzing bat-
tery performance over extended cycling periods.Furthermore, at lower C-rates, due to the reaction
approaching equilibrium, the system tends to stabilize around certain points. Stability points are
the lowest value points in the green curve shown in Figure 2.6. Additionally, during this phase, a
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relatively flat plateau becomes apparent in the data. Increasing the C-rate, transport limitations be-
cause of conductivity losses are dominant and some particles can not be lithiated reaching lower
maximum capacity.

Figure 4.7: Experimental Discharge Voltage curve in five different C-rates at 50◦C .

This graph is in elevated temperature. The optimal temperature range of LFP batteries is below
50◦ C and this was the reason for the choice of this value. The high temperature promotes the re-
action rate through the Arrhenius relation. The electrolyte conductivity is known to increase with
an increase in temperature, as described by the model of Stefan-Maxwell and Valoen-Bernardi co-
efficients. As the temperature rises, the mobility of ions within the electrolyte increases, leading to
higher ion transport rates and a subsequent increase in conductivity, thus, the lithium ions interca-
late faster in the particles. The starting point of the voltage curve is higher than the previous case
which means that the separator overpotential decreases. Although the increase on C-rate presents a
steeper gradient in the voltage curves which ends in smaller capacities as we will see in the next sub-
section. Thus, the higher temperature accelerates the reactions but also decrease the full capacity
of the cell.

The figure below initiates the analysis of the impact of low operating temperature on battery
performance. Notably, the voltage loss at low temperature is substantial compared to previous
cases. Additionally, as the C-rates increase, the derivative of voltage with respect to the filling frac-
tion becomes constant. This behavior indicates that the low temperature poses challenges for ion
movement and their reaction with solid particles. The activation barrier is difficult to be overcome,
leading to decreased utilization of the full length of the electrode. The hindrance in ion movement
and reaction at low temperature limits the overall battery performance, resulting in reduced effi-
ciency and capacity.
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Figure 4.8: Experimental Discharge Voltage curve in five different C-rates at 10◦C .

Resting the battery for 12 hours at 0◦C results in the partial freezing of the electrolyte or elec-
trode components. Consequently, some particles become completely inactive during the subse-
quent electrochemical testing of the battery. This leads to more than 20% of the total capacity being
rendered useless during testing at 0.1C due to the adverse effects of low temperature. Furthermore,
when the C-rate is increased, the voltage curve experiences a significant drop, indicating very high
overpotentials at low temperatures. This suggests that the battery’s performance is notably affected
by the rate of current discharge, particularly in colder conditions, resulting in substantial losses in
efficiency.

Figure 4.9: Experimental Discharge Voltage curve in five different C-rates at 0◦C .
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Between -5◦C and 0◦C, the results show a remarkable similarity, with the curvature of the dis-
charge curve nearly diminished. This leads to a linear relationship between voltage and filling frac-
tion within this temperature range. However, it is important to note that the dependence on the
C-rate is entirely nonlinear, suggesting that the battery’s response to changes in the rate of current
discharge is not linearly proportional. The nonlinearity with respect to the C-rate signifies that the
battery’s performance is highly sensitive to the rate at which it is charged or discharged in very low
temperatures (so in countries which the temperature during winter is close to 0 ◦C) , which requires
careful consideration.

Figure 4.10: Experimental Discharge Voltage curve in five different C-rates at -5◦C .



4.4. Experimental Results 53

4.4.2. Current Variation

Figure 4.11: Experimental voltage curves in different temperatures in 0.5C (Left) and in
1C(Right).

In the figure 4.11 different discharge voltage curves are presented in five different temperatures in
0.5C and 1C. The capacity loss increases as the C-rate increases and when the temperature plum-
mets below 10 ◦C this behavior becomes nonlinear. The difference between the two figures is a loss
of 10% to 20% of capacity by increasing the C-rate from 0.5C to 1C. Indeed, an intriguing observa-
tion is that the discharge curve at 50◦C exhibits a slightly lower capacity than the curve at ambient
temperature. This unexpected behavior will be subject to a detailed investigation and analysis in
the forthcoming figure. A comprehensive examination will be conducted to elucidate the under-
lying factors responsible for this unique characteristic, shedding light on the intricate relationship
between temperature and battery performance at 50 ◦C.
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Figure 4.12: Experimental voltage curves in different temperatures in 1.5C (Left) and in
2C(Right).

As the C-rate increases to 1.5 and 2 at 50 ◦ C, the behavior of the cell progressively becomes less
efficient. This trend is evident from the discharge voltage curves, which show a notable decrease in
the cell’s overall capacity at higher C-rates. The higher current demand at these elevated temper-
atures results in increased overpotentials and a more pronounced voltage drop during discharge.
Consequently, the battery’s capacity is compromised, leading to reduced energy output and effi-
ciency. This finding was counterintuitive, because the higher temperature, the faster the reaction
rate and the movement of the ions. The optimum temperature range is between 20 ◦ C and 50 ◦ C
thus this experimental temperature was the threshold.
The first mechanism that could explain this outcome was the state of charge of the battery. After
every cycle a Constant Current and Constant voltage steps are implemented to completely charge
the battery before the next cycle. In this temperature after the CC step the capacity was a lot lower
than the previous cycles. Although after the CV step, the discharge capacity reaches very close to
the initial capacity that can be measured in the 0.1C cycle. In the literature, there is a profound de-
pendence of open circuit voltage to the state of charge and this also is connected to the operating
temperature ([32],[10], [44]) .
The second mechanism was the degradation. The lower capacity as you increase the c-rate in this
elevated temperature indicates a possible irreversible damage in the cell. The developed solid elec-
trolyte interphase (SEI) demonstrates a lack of thermal stability, rendering it susceptible to degra-
dation. Exposure to elevated temperatures during cycling can lead to its deterioration and potential
destruction. The formation of a new SEI demands the consumption of lithium ions which infers
the decrease of active material and hence, the capacity loss[2]. Furthermore, battery degradation
can be due to reaction kinetics degradation and impedance increase. This can be observed by an
earlier end of the charging or the discharging process, similar to our case [39]. In the same research
the big influence of temperature to capacity fade is also presented. Cycles with operating tempera-
ture above 50 ◦C can have 10 times bigger capacity impact than in the ambient temperature (Figure
4.13).
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Figure 4.13: Effect of operating temperature on LIB cycle life [39].





5
Results

5.1. Monte Carlo Analysis and Optimization Insights
Initially, the research centered on estimating four crucial parameters: the serial electrical conduc-
tivity, the Bruggerman exponent, the particles’ electrical conductivity, and the reaction constant
k0. Among these parameters, the Bruggerman exponent and electrical conductivity were chosen
as constant values, as detailed in the Methodology section. This decision was based not only on
existing literature but also due to the high sensitivity of the results to these values. While some
parameter combinations exhibited better fits with the experimental discharge voltage curves, the
same parameters yielded entirely random results at different C-rates and temperatures. This un-
predictability underscored the complexity of the battery behavior and the significance of accurately
defining these constants for reliable predictions.

The parameter estimation takes into account five different temperatures (-5◦C, 0◦C, 10◦C, 25◦C,
50◦C) and two different C-rates(0.5C, 1C). Below the objective function (Mean root squared error be-
tween simulated and experimental discharge voltage curve) of the modified Monte-Carlo approach
is presented in 3 different operating conditions.
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Figure 5.1: Optimization for 0.5C and 0◦C.

The figure 5.1 illustrates the value of the root mean squared error at 0.5C and 0◦C. As it is men-
tioned before, many simulations were conducted and the 3 best simulations were chosen in order
to repeat the procedure of the root finding in the vicinity of them. The figure 5.1 is one of the last
bunch of simulations and the range of the varying parameters were: k0 between 0.01 to 0.1 and Par-
ticles Conductivity between 0.5e−13S to 5e−13S. It is clear that different local minima can be noticed
from the 3D plot depending on the k0 value. The projection of the 3D curve in the k0-Particles’ con-
ductivity plane is also depicted (coolwarm contours). The influence of particles conductivity is not
so visible but the smaller the value the closer to the minimization of the error is(black circles in the
figure).

It is important to note that the k0 is not the effective in these 3D plots but the prefactor k in the
equation 5.1. This is the reason for the formulation of this relationship in the next subsection. In
MPET the activation energy and the temperature with respect to the ambient temperature in Kelvin
is normalised as depicted below.

k0,e f f = k ·e

Ea
Na ·kb ·Tr e f

·(− 1
Top
Tr e f

+1)

(5.1)

A similar graph can be presented at 0.5C - 10◦C, where the range of k0 remains unchanged,
but the Gc (particles’ conductivity) varies between 0.5e−13 S to 3e−13 S. Notably, the introduction of
series conductivity between paticles is the key factor that enables the battery to achieve the same
maximum capacity as observed in the experiments. Consequently, the effective range of this value
aligns with the depicted ranges for each specific case. The ability to capture the same maximum ca-
pacity through the implementation of parallel conductivity underscores its crucial role in accurately
simulating the battery’s performance across different conditions and parameters.
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Figure 5.2: Optimization for 0.5C and 10◦C.

Figure 5.3: Optimization for 1C and 25◦C.

This 3D plot represents the objective function’s values at 1C - 25◦C, demonstrating a different
range compared to the previous cases. Here, the parameter k0 varies between 0.1 and 0.2, while Gc

falls within the range of 5e−13 S to 10e−13 S. A crucial finding from these simulations is the identi-
fication of a threshold value for the particles’ conductivity, which was observed to be around 8e−13

S. Notably, particle conductivities greater than this threshold had no discernible influence on the
maximum capacity.

It is essential to note that the 3D plots presented here pertain solely to the 1C-rate scenario,
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yet the optimization process encompasses the best parameters for two C-rates. Therefore, the final
results for validation may exhibit slight variations due to the inclusion of additional C-rate data.
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5.2. Validation of simulations and experiments

Figure 5.4: Validation of simulation results with the experimental results for all the temper-
atures in 0.5C.

C-rate Temperature(◦C) RMSE(V)
0.5 -5 0.08(2.7%)
0.5 0 0.05(1.8%)
0.5 10 0.06(1.9%)
0.5 25 0.07(2.2%)
0.5 50 0.07(2.2%)
1 -5 0.13(4.3%)
1 0 0.09(3.1%)
1 10 0.06(2.0%)
1 25 0.08(2.5%)
1 50 0.16(4.7%)

Table 5.1: Summary of Root mean squared error values between experimental and simu-
lated discharge curves

The parameter estimation depends on 5 different temperatures and 2 different c-rates. In the
table you can see the final RMSE value of every curve. The simulation in 0.5C is very close to the
experiments because of the smaller overpotentials. More specifically, the value of k0 influence the
starting point of all discharge curves. The maximum capacity can be simulated as close as possible
but with a small deviation from the real value. A better optimization of the Gc will result to the best
fit. The trend of the simulated curves are similar to the experiments which is the most important
outcome. The wavy behavior can be explained by the numerical limitations because of the simula-
tion of discrete particles. The discretization that this software is using has a sensitivity in very steep
concentration gradients, which can cause minor oscillations. Increasing the number of particles,
this wavy behavior can be nullified.
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Figure 5.5: Validation of simulation results with the experimental results for all the temper-
atures in 1C.

As the current increases, the curves become unstable in the end of the simulation in low tem-
peratures This can be explained because of, not only the bigger overpotential but also the discrete
number of simulated particles. The biggest deviation is observed in 50◦C as it was expected because
this experiment was the last one and the cell starts to degrade. A further investigation of more ex-
periments should be conducted but as it is clear from the next figure, according to simulations the
maximum capacity does not decrease with the increased temperature.
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Figure 5.6: Validation of simulation results with the experimental results for all the temper-
atures in 1.5C.

Figure 5.7: Validation of simulation results with the experimental results for all the temper-
atures in 2C.

The previous figures do not include the 0◦C discharge curves(the solver did not converge be-
cause of the LU factorization failure) but the main outcome is that the software loses its accuracy in
very low temperatures( the error is 8%). Furthermore, when comparing the simulation and experi-
mental results at 50◦C, the likelihood of cell degradation becomes more evident. Moreover, the cell
doesn’t recover the same capacity at ambient temperature after the high-temperature experiment,
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implying irreversible damage.

Below, the two interpolated functions that stand as the primary outcome of this study are show-
cased. The rate constant has an exponential correlation with temperature, as governed by the Ar-
rhenius relation. The equation formulated here enables the fitting of the activation energy. The
MIT group discovered that a comparable relationship is corroborated by utilizing chronoamperom-
etry experiments, a completely different approach. This study concludes with a value of activation
energy which is remarkably close to our findings[4].

Figure 5.8: Relation between k0 with temperature.

One of the main limitations of LFP material is its poor electrical conductivity. The particles
conductivity is a very complex phenomenon to describe numerically and in the following two re-
searches an exponential relation between temperature and Gc is suggested [11],[29]. The behavior
of electrical conductivity with respect to temperature can be similar to a semiconductor’s behavior.
The poor electrical conductivity of LFP but the high amount of loading by carbon can enable this
behavior and the exponential relation between the temperature and the particles’ conductivity can
be justified.
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Figure 5.9: Relation between gc with temperature.

Following the application of the aforementioned equations, the visualized graphs display the
comparison between simulations and experimental results. The only discernible distinction emerges
in the 0◦C discharge curve. These graphs aptly demonstrate the remarkable adaptability of the soft-
ware in forecasting coin cell voltage curves across diverse C-rates and temperatures, all while main-
taining the integrity of other parameters constant. This outcome underscores the software’s potency
in modeling intricate battery behavior with dynamic precision.
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Figure 5.10: Validation of simulation results with the experimental results for all the tem-
peratures in 0.5C.

Figure 5.11: Validation of simulation results with the experimental results for all the tem-
peratures in 1C.

5.3. Active particle population with temperature
One of the main capabilities of MPET is the implementation of phase field modelling which is one
of the main characteristic of the LFP material. The phase field enables the possibility of varying the
active particle population based on the surface area of the particle. This is the significant point to
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grasp from the following figures. The active particle population gives insight of how the particle size
influences the connectivity between the particles, if the system is transport of reaction limited or
even where a possible hotspot can be generated.
The subsequent illustrations depict the dynamic distribution of active particles throughout the bat-
tery discharge process. The connection between the intercalation of lithium ions within the par-
ticles is governed by a correlation between the rate constant and the temperature. In simulations
conducted at extremely low temperatures, the range of active particles during discharge lies within
the 20% to 30% range, with certain particles becoming completely inactive over the course of the
process (see Figure 5.14). This particular figure represents a similar simulation conducted at 0◦C,
featuring a smaller number of particles.
The ease of lithiation for particles with smaller surface areas, influenced by the Allen-Cahn model, is
noteworthy. Additionally, the particles’ conductivity significantly influences their lithiation process.
Notably, particles connected to larger particles do not experience lithiation with the same consis-
tency compared to those interconnected with smaller particles. As the temperature is elevated, the
population of active particles grows. Nonetheless, upon comparing simulations conducted at room
temperature with those at higher temperatures, a notable disparity of over 10% in active particle
population is observed in the room temperature simulation.

Figure 5.12: Active particle population in 0.5C.
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Figure 5.13: Active particle population in 1C.

Figure 5.15: SoC in particles with 1C and 25◦C.

In the following figure, we present the input parameters utilized to create the heat maps. Se-
lecting these specific values is crucial for examining how a given parameter interacts with factors
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Figure 5.14: SoC in particles at 1C and 0◦C.

like temperature or C-rate. Additionally, these parameters closely align with those chosen when
validating the model at room temperature.

Figure 5.16: Input Specifications for the simulations which are used in the following heat
maps.

Before embarking on the sensitivity analysis concerning geometrical properties, it is imperative
to establish an understanding of the intricate interplay between the maximum active particle count
and variables such as temperature, C-rate, and pivotal parameters like the rate constant or particles
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conductivity. To clarify this interrelation, a set of three main plots has been presented for each pa-
rameter. These plots are subdivided into two subplots: the left one pertains to the maximum count
of active particles, while the right subplot delves into the maximum filling fraction or the state of
charge. These plots meticulously elucidate the impact of temperature and the specific research pa-
rameter on the aforementioned variables. The initial plot pertains to the 1C rate, followed by the
second one for the 2C rate, and the third for the 3C rate. Correspondingly, similar visual representa-
tions are crafted for the second parameter in question.

Figure 5.17: Left:Maximum active particle population based on particles conductivity vs
temperature in 1C. Right: Filling fraction based on particles conductivity vs temperature in
1C.

The conductivity and the temperature has a very big influence to the maximum active particles.
It is intuitive that the decrease of temperature infers a decrease in the maximum active particles but
also the value of conductivity has an influence. An important note is that the increase in C-rate does
not result to higher maximum active particles, whereas more and more particles can produce the
demanding current. This tool can be very useful to realise the importance of particles connectivity
and how the heat is generated in the cathode. A future validation with experimental data can be
revolutionary in battery community.
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Figure 5.18: Left:Maximum active particle population based on particles conductivity vs
temperature in 2C. Right: Filling fraction based on particles conductivity vs temperature in
2C.

Figure 5.19: Left:Maximum active particle population based on particles conductivity vs
temperature in 3C. Right: Filling fraction based on particles conductivity vs temperature in
3C.

Regarding the rate constant, there is a threshold which has an influence in the active particle
population. Bigger values than 0.1, shows a drop from 100% to 60%. The rate constant represents the
ease of a particle to lose or gain an electron. The higher the value the more energy is required for the
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intercalation to happen. The analysis confirms that the prediction of the active particle population
is not proportional to temperature in all cases, but variables as the rate constant and conductivity
between particles can have a significant influence which can also accumulate all the active particles
in a specific region resulting in damage of the cell and even thermal runaway.

Figure 5.20: Left:Maximum active particle population based on rate constant vs tempera-
ture in 1C. Right: Filling fraction based on rate constant vs temperature in 1C.

Figure 5.21: Left:Maximum active particle population based on rate constant vs tempera-
ture in 2C. Right: Filling fraction based on rate constant vs temperature in 2C.
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Figure 5.22: Left:Maximum active particle population based on rate constant vs tempera-
ture in 3C. Right: Filling fraction based on rate constant vs temperature in 3C

5.4. Temperature influence in design parameters
5.4.1. Particle size with different particle size standard deviation
In the conducted analysis, it is discernible that the operational temperature remains invariant in its
effect on the maximum capacity across various particle sizes. Crucially, the study underscores that
variations in particle size distribution can exert a considerable influence on the attainable maxi-
mum capacity. The implications of this finding suggest that careful consideration of particle size
distribution is paramount when optimizing for maximum capacity, irrespective of the operational
temperature. This nuanced understanding can offer valuable insights into the design and optimiza-
tion of energy storage systems.
Furthermore, the more realistic scenario, as presented in the Methodology section, showed the high
importance of big standard deviation so as to simulate accurately the state of charge of the battery.
In the ideal case, where the particles have equal size, the state of charge can reach almost 100% in
all the temperature ranges. On the other hand the maximum value can be 90%.
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Figure 5.23: Particle size sensitivity with temperature in 1C. with particle standard deviation
distribution equal 10nm.

Figure 5.24: Paricle size sensitivity with temperature in 1C. with particle standard deviation
distribution equal 100nm.



5.4. Temperature influence in design parameters 75

5.4.2. Cathode Porosity in different C-rates

Figure 5.25: Electrode porosity sensitivity with temperature in 1C.

In comparison to the effects of particle size, the relationship between electrode porosity and tem-
perature is more pronounced. At a discharge rate of 1C, porosity should exceed 0.4 to attain the
maximum capacity across various temperature scenarios. As the C-rates increase, there’s a narrow-
ing of suitable porosity values within distinct temperature regions. This highlights the interplay
between porosity and discharge rates, emphasizing the significance of optimizing these parameters
for efficient battery operation at different temperatures. Such insights could be pivotal in guiding
battery design and performance enhancements.
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Figure 5.26: Electrode porosity sensitivity with temperature in 2C.

5.4.3. Cathode Electrode Length in different C-rates

Figure 5.27: Electrode length sensitivity with temperature in 1C.
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Figure 5.28: Electrode length sensitivity with temperature in 2C.

As the battery operates at different temperatures, the relationship between electrode length and
capacity is investigated. At a discharge rate of 1C, the electrode length must surpass a certain critical
value to achieve optimal capacity across various temperature ranges. Moreover, as the discharge
rates increase, the suitable range of electrode lengths becomes narrower, particularly in distinct
temperature regions. This intricate interplay between electrode length and operating temperature
underscores the need to carefully consider and optimize these parameters to ensure efficient battery
operation under varying temperature conditions. By understanding the crucial role of electrode
length in battery performance, researchers and engineers can fine-tune and tailor battery designs.

5.4.4. Tortuosity sensitivity
The Bruggeman exponent plays a pivotal role not only in characterizing tortuosity within the bat-
tery structure but also in influencing the effective properties utilized in volume-averaged equations.
Although this value is often treated as a fitting parameter to match experimental data, its true sig-
nificance in simulation scenarios cannot be understated. The Bruggeman exponent governs the
pathways through which ions and electrons navigate within the battery, impacting overall transport
processes and kinetics.

As temperature variations are taken into account, the influence of the Bruggerman exponent on
maximum capacity becomes more and more visible. This phenomenon arises due to the intricate
interplay between temperature, tortuosity, and effective properties within the battery structure. The
temperature-dependent behavior of the Bruggeman exponent underscores the complexity of bat-
tery performance under varying operating conditions.
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Figure 5.29: Bruggerman exponent sensitivity with current in 323K.

Figure 5.30: Bruggerman exponent sensitivity with current in 298K.
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Figure 5.31: Bruggerman exponent sensitivity with current in 273K.

It is essential to comprehend and accurately calibrate the Bruggeman exponent to ensure re-
liable and accurate simulations of battery behavior across different temperatures. Understanding
its role in temperature-dependent performance evaluations is crucial for developing efficient and
robust battery models that accurately capture the intricacies of battery operation under real-world
conditions.

5.5. Optimal region for LFP battery construction
The conclusion of the mentioned sensitivity analysis is the following graphs. Without paying at-
tention to the operating temperature, the battery can reach in a state of charge higher than 85% in a
range of values as can be seen in figure 5.32. Although, this optimal region decreases significantly by
taking into consideration the operating temperature. The Bruggerman exponent should be bigger
than -2 instead of -2.5, the porosity should be between 52% to 85% instead of 30% to 85%, and the
length of cathode electrode should be between 30 to 900 µm instead of 30 to 200 µm. This analysis is
based on a coin cell, thus this region should be different for cylindrical cells which can be simulated
as many parallel coin cells.
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Figure 5.32: Optimal Region without taking into account temperature impact.
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Figure 5.33: Optimal Region with temperature impact.





6
Conclusion

The ongoing debate between physics-based and machine learning models regarding their domi-
nance in battery simulation is a well-recognized phenomenon. The Multiphase Porous Electrode
Theory emerges as a model closely related to the DFN (Doyle-Fuller-Newman) framework. It inte-
grates non-equilibrium thermodynamics to effectively capture particle inhomogeneities within the
battery electrode structure. The reliability of this model was rigorously assessed through experi-
mental validation.

Coin cells, assembled within the university laboratory, were utilized as experimental batter-
ies. These cells underwent thorough electrochemical testing involving diverse Constant Current-
Constant Voltage charge and discharge cycles, enabling the extraction of voltage curves. The results
showed the temperature and current dependence in the voltage performance. One of the main
outcomes was the capacity loss in the highest experimental temperature and as you increase the
current rate. This was explained by degradation mechanisms and state of charge dependence and
enable a future research in this subsection of battery simulations.

Introducing a customized Monte Carlo approach applicable to various parameter estimation
scenarios, the significant yet unknown parameters were successfully identified. Subsequently, the
model underwent validation across five distinct temperatures and two different C-rates, reaffirming
its accuracy and robustness. The main outcome of this research was the formulation of two relations
as a function of temperature. The rate constant and particles’ conductivity exhibit an exponential
correlation with temperature. For accurate battery simulation across diverse operational condi-
tions, it is imperative that the model incorporates this temperature-dependent relationship. The
degradation also can be artificially simulated if you include a number of cycle dependence in the
relation of the particles’ conductivity, but this relation should be investigated in another research.

The last result comprised a sensitivity analysis focused on optimizing performance geometry
while accounting for temperature influence. In the previous section, the contrasting impact of con-
sidering solely C-rate dependence versus incorporating both C-rate and temperature dependence
is readily apparent. The model effectively demonstrates its capabilities, motivating further explo-
ration through simulations involving multiple cells. This approach is vital for representing cylin-
drical cell configurations, thereby establishing a more accurate depiction of the critical region that
could serve as a cornerstone in the development of efficient phase-separating lithium-ion batteries.
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7
Recommendations

This research is the beginning of a new chapter in research at TU Delft. The experimental investiga-
tion of operating temperature and after that, the heat generation in the core of a battery will enhance
the understanding of battery operation. The conduction of more experiments in the temperature of
interest (below 0 ◦C and above 50◦C) will result to a better understanding of temperature influence
not only to the capacity but also to the degradation mechanisms. Experimental techniques which
will investigate the surface of the cathode material so as to realise possible aging and loss of active
material can be a future study to confirm the findings of this research.

The implementation of a physics-informed neural network would be the next step in the mod-
elling community which can take advantage of both the underlying physics and the machine learn-
ing. The results of our research showed encouraging outcomes regarding the random forest regres-
sion model which opens the discussion if the increase of data simulations and the implementation
of a neural network can improve the accuracy of the results.

A connection between the interpolated functions and the capacity and state of charge should
be established. Although an optimal region for construction of LFP batteries is proposed, this cor-
responds to coin cells. The experiments in cylindrical cells and the modelling of a cylindrical cell
using many cells in parallel can create a more robust relation which will correspond to a wider range
of battery cells.

The experiments in cylindrical cells should be validated by simulations with the use of MPET.
The connection of many different cells will be an important extension of this software which can
show its capabilities in many cells and even in a battery pack. The problem of thermal runaway can
be meticulously investigated if a physics-based model is implemented in this scale. Although the
computational time should be improved and the use of supercomputers for this project is manda-
tory.

The phase field modelling can be influenced by mechanical stresses which are not included yet
in this model. The investigation of heat generation in LFP batteries should also take into account
the mechanical stresses that can be created by the deformation of the particles.
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A
Appendix

Table A.1: General terminology for batteries

Terminology Definition Units

Cell
Consists of two electrodes and electrolyte

which enhances the movement of ions.
A separator is also present.

No Units

C-Rate

Expresses electrical current. For example, if one
battery has capacity of 10 Ah, then the 1C definition

means that the battery can be fully discharged in
one hour if it provides a constant current of 10A.

A(Ampere)

Cut-off Voltage
Convention voltage where the battery is

considered empty and can not be
discharged anymore than this point.

V(Voltage)

State Of Charge(SOC) The amount of charge that is available in the battery. %
Terminal Voltage The applied voltage in the two terminals. V(Voltage)

Open-Circuit Voltage
The Terminal Voltage when no current is

flowing in the wire.
V(Voltage)

Porosity(ϵs )
The volume fraction

Vpor e

Vtot al

where Vpor e is the void volume
that the electrolyte can flow.

No units

Tortuosity(τ)

Fraction which describes the real "path"
of a molecule with respect to the distance if

the molecule was travelling only in a straight horizontal line.
High tortuosity means difficulty on the movement

of a molecule which translates to less transportation
and less production.

No units

Coulombic efficiency
The ratio between the Discharge capacity

to the charge capacity.
%

Energy efficiency
Energy that goes out divided to the energy that is

supplied. Energy is the integration of voltage in an
infinitesimal capacity difference.

%
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Figure A.1: 1C discharge voltage curve in ambient temperature from Lahne.
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Figure A.2: Some of the results of the simulations and the experimental results in the same
graph in the beginning of the project.

Below the comparison between the two coin cells with 1m Ah/cm2 and 2m Ah/cm2 is presented.

Figure A.3: Comparison between low and high capacity cell in different C-rates at -5◦C.
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Figure A.4: Comparison between low and high capacity cell in different C-rates at 0◦C.

Figure A.5: Comparison between low and high capacity cell in different C-rates at 25◦C.

The temperature and the maximum capacity of every material plays an important role to the
capacity loss. This is why a relation with the capacity should be implemented in the research.

Furthermore, the behavior of higher capacity loss in higher temperature is also noted in another
cell with the same capacity with the cell which is analysed in the main report.
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Figure A.6: High capacity cell’s voltage curve at 45◦C and 60◦C at 0.5C.

Some results from the support vector machine regression and the random forest regression by
predicting the electrical conductivity.

Figure A.7: Support vector machine regression analysis for predicting the electrical con-
ductivity.
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Figure A.8: Random forrest regression with boosting methods to predict the electrical con-
ductivity.
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