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Abstract

Neurons in Spiking Neural Networks (SNNs) communicate through spikes, similarly that neurons in the
brain communicate, thus mimicking the brain. The working of SNNs is temporally based, as the spikes
are time-dependent. SNNs have the benefit to perform continual classification, and are inherently more
low-power than other Artificial Neural Networks (ANNs). Both the SNNs and other ANNs need to be
trained to perform specific tasks. There are several types of methodologies to train SNNs, but there is
yet no silver bullet.

Backpropagation algorithms can train other ANNs, but SNNs cannot be trained using this algorithm
since the spikes are not differentiable. Methods like Spike Timing Dependent Plasticity (STDP) or
Liquid State Machine (LSM) have their limits. Where the complexity of SNNs depends on the dataset,
the number of neurons, and other factors.

There were currently no known SNN implementations for the given gesture, achieving near state-
of-the-art results. The problem with the dataset is that usually no gesture is performed in front of the.
The datasets contain noise, and some data samples belong to two or more classes simultaneously.

The objective of this work is to develop an architecture and training methodology, that allows the
classification of the dataset using SNNs. This work presents a novel, architectural training methodology
Suino, which addresses the above problems.

The architecture consists of two components: the first is the spatial classifier, and the second
component is the temporal classifier. The frames from the dataset are filtered in the first stage, i.e. the
spatial classifier. The output of the spatial classifier is the input for the temporal classifier, which deals
with the temporal properties of the data. Suino does not provide false positives, that is the neurons do
not spike on the input dataset if the input dataset does not belong to any of the trained classes; hence
the method is robust.

The training method is built around these components, existing of different classical training meth-
ods: backpropagation, clustering, or any other consisting of fixed threshold method for auto label
correction. The second stage consists of a temporal classification method, trained using the Tempotron
learning rule.

The time-series dataset of gestures validated Suino. On the test set, the baseline method had an
accuracy of 97.0% with 35K parameters, while the presented method had an accuracy of 90.87% with
21K parameters. Hence, the method is more robust against false detections and continuously performs
classification.
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Introduction

Are we on the edge of achieving biologically, plausible, artificial intelligence? Can we train artificial
intelligence in such a way that it can think and learn for itself? In the past decade, much research
[7] was focused on Artificial Neural Networks (ANNs); inspired by biological networks, imitating the
brain. Figure 1.1 shows the connections between neurons in the brain. Several types of ANNs classes
exist. Conventional neural networks use numerical variables in the communication between neurons. In
spiking neural networks, the neurons communicate through spikes. A spike is a small voltage peak in
time where the arrival of the spike carries information.

Even though SNNs resemble the brain more than conventional neural networks, none of the existing
SNNs can yet be compared to the processing mechanism of the human brain [8, 9]. The brain structure
has evolved. When inspecting the brain, one sees a big spaghetti of connections between the neurons.
Upon closer look, a highly sophisticated structure will be visible [2].

\ l \ I <
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f dendrite button \ r i'

Figure 1.1: The entrance of a neuron (cell body) is a dendrite, connecting synapses of other neurons. The output of the
neuron is travelling through the axon to synapses connected to other neurons [2].
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1.1. MOTIVATION

The goal is to develop, a SNN hardware implementation, using radar system that detect hand-gestures.
Many other use-cases, such as radar, sonar, and automotive platforms [10], would benefit from such a
implementation. The automotive world uses, computationally efficient, machine learning models, which
have continuous data-stream as inputs. Moreover, automotive applications have a strict power budget
and require a great deal of robustness.

SNNs have inherent more low-power consumption when implemented in neuromorphic architectures
[11, 12], and can continuously classification, what is ideal for edge-computing. Conventional neural
networks can train with backpropagation [13]. However, this is not practical in SNNs due to the fact
that the approximated Dirac spikes are not differentiable. Some studies [14, 15], have classified temporal
datasets using conventional neural networks; a recurrent neural network. These networks are complex to
convert to the SNN. Methods, such as Spike Timing Dependent Plasticity (STDP) [16], or architectures
such as Liquid State Machine (LSM) [17], have limits. STDP suffers from the effect of the ping-pong
effect [18], where high frequencies affecting the performance of STDP becomes zero were it should be
potentiating (i.e. the aliasing effect). The architecture of LSM has positive feedback loops, as the
complexity increases, the network starts with a few spikes, but ends in a burst of spikes that is hard to
control.

1.2. THESIS GOALS

There exists no silver bullet for training SNNs, which suggests a new training method be developed.
This thesis explores a subset of ANNs, which a SNN architecture contain. The researcher also explores
different type(s) of architecture(s) that could be mapped to an SNN and gives an evaluation of different
feature representations of the radar data. The study compares methods with the state-of-the-art in
terms of complexity and performance.

The dataset is a radar dataset of hand gestures. Each sample is a video which the SNN architecture
needs to classify . The SNN architecture runs on an analog chip that constrains the number of neurons.
The model should not exceed more than hundreds of neurons.

1.3. THESIS CONTRIBUTIONS
This thesis made the following contributions:

o an architectural concept that is suitable for energy-efficient implementation of neuromorphic pro-
Cessors

« a devising an adaptable feature extraction method that spans multitude of classes or labels
o an implementation of a SNN compliant network can classify continuous input data stream

e a training method consisting of two phases: Firstly, filtering the prediction of the labelled dataset
and generating the unknown class, and secondly refining and retraining the filtering; subsequently
decreasing the network size

1.4. OUTLINE

This thesis briefly introduces SNNs and radar hand gesture datasets. The study will use a baseline to
validate the performance of and comparison to the presented architecture. Next, the research reviews
different architectures that could be converted to SNNs. The author separates the presented architecture
into two different components, with in-depth explanations. Consequently, the author explores and
describes the training methodology. The outline of the thesis is as follows:

o Chapter 2: Introduction to SNNs, datasets, and prior work.

o Chapter 3: Explains the presented architectural design, with a focus on the spatial and the
temporal parts.



1.4. OUTLINE

o Chapter 4: Describes the training methodology used to train the architecture.
o Chapter 5: Presents the results and analysis of the architecture.

o Chapter 6: Concludes the study and recommends future research.






Background

2.1. WHAT 1S LEARNING?

Learning is a refers to a process where the knowledge of the neurons comes from earlier experience. It
allows the brain to draw on previous experiences to learn new processes. However, the experience itself
is not stored, but it changes the nervous system in the human brain. What alters the neural circuits;
thinking, perceiving, and planning [2].

Why is it important to understand how humans learn? The answer gives an insight into training the
learning models. The human brain does not store the information, but physically changes the nervous
system: altering the network architecture by deciding which neuron is critical on this specific input.
The human brain has many different kinds of learning strategies, where perceptual-learning recognises
the stimuli it perceived earlier. Relational-learning, for example, can determine the type of room, using
different objects.

Active learning means adjusting the neural network parameters and not only remembering the explicit
given data.
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2.2. ARTIFICIAL INTELLIGENCE

Artificial Neural Networks (ANN), also called ’Artificial Intelligence’ is the biological inspired neural
networks. This thesis distinguishes between the generations of ANNs. Perceptrons make up the first
generation of ANNs. The second generation extends the first by adding a pointwise nonlinearity (i.e.
activation function) after the perceptron. Finally, the third generation is the spiking neural network, a
spike-based architecture instead of a numerically-valued architecture as with previous generations.
Machine learning is the study of algorithms to improve on earlier experience. Deep learning is part of
machine learning, based on representation-learning. This learning is feature-based. It understands the
network and tunes the features.

2.3. SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) are network-based models that mimic the brain functionalities, where
the spikes trigger communication. In other ANNs, the networks use numerical values throughout the
whole network.

Squids compared to the larger neuron cells of the human brain, in this experiment [3] they measured
the voltage between two neurons, and they notice the spiking behaviour as shown in figure 2.1. Those
voltage spikes were for a brief period, and it increased the membrane potential in the neurons. The
membrane potential is the voltage in the cell; when the cell exceeds the excitement threshold the neuron
will spike.

apical dendrites

>
l recording E +35 mV
electrode, 3 spike
=
2
2 40 ms
(]
c
o
Qo
£
o
€ -60 mV
basal dendrites time, ms
________________________

Figure 2.1: The experiment where Hodgkin measured using a recording electrode the spikes between neurons [3].

One of the main benefits of a SNN would be power consumption. High-end GPUs like the NVIDIA
2080Ti [19] draw hundred watts of power, making it less efficient for the radar classification. SNNs
could achieve microwatts of power using neuromorphic computing [20]. The primary benefit that SNNs
have compared to the same ANN is that the time dependency and continuale classification [21], which
is beneficial in a time-series dataset.

The one major issue with SNNs compared with other ANNs is spike-based communication. These Dirac
spikes are not differentiable, hence backpropagation [20, 22] will not work. In ANNs the backpropagation
is an essential element for training these networks. Therefore, training a SNN will not be straightforward.

Leaky-Integrate-and-Fire Neuron The Leaky-Integrate-and-Fire (LIF) neuron is one of the many
types of neuron models for the SNNs, which is computational efficient versus a biophysical trade-
off. This model [4] is one of the most efficient computational neuron models [21], but the biological
plausibility less compared with more complex models, such as Hodgkin-Huxley [21]. The LIF is not
only computational efficient, but also the analog hardware model is less complex to implement [23].

The LIF neuron has the leaky component that makes the neuron important. Each biological synapse
connects to the dendrites of another neuron. The signal goes first through the synapse were the impor-
tance (weight) is determined. Figure 2.2 shows that from neuron J a spike enters the ’synapse’. The
spike will enable a current injection all the inputs currents together is I(¢) what is the input to the
soma (cell body).
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Figure 2.2: In the LIF neuron the synaptic is the receiver of the signal and the soma is the central part of the neuron [4].

2.3.1. SPIKE ENCODING

The SNN uses numerically value inputs, which need to be converted to spike-based patterns. In the
next section, different approaches are discussed how to generate these spikes for the SNNs. There
exist many types of spiking encoding styles. However, selecting the right one also depends on training
and architecture. Rate encoding convert an ANN architecture to a spiking model [24]. For temporal
encoding, spike encoding algorithms are used [16, 21, 24, 25].

Rate encoding Rate encoding is used to convert a range of values into a range of frequencies spikes
[24]. When the input values are increases, the spike frequency increase with it. Figure 2.3 shows the
rate encoding of a layer neurons in time. Rate encoding is usually used because of the simplicity of the
conversion. However, this has its limitations. If the input values are near the maximum numerical value,
the frequency will also be near the max spike frequency. In other words, many spikes are generated if
the numerical value is high. The methods power-efficiency decrease, slowing down the network [12].
Rate encoding produces spike trains, but maintaining a single variable is expensive [11]. It can also be
likely that the timing of the individual spike trains will convey information penalising the performance
of the SNN [24].

Spike encoding algorithms The spike encoding algorithms are encoding methods that convert
signals into spike sequences, based on an algorithm. There are many different encoding strategies.
Threshold-based encoding is an algorithm that generates spikes when the thresholds of neurons have
exceeded. Rank-Order coding and Population-Rank Order Coding assume that the first spike generated
hold [24] the most important information. Opposing neurons will spike in time based on their rank of
information. Many others exist, but spike encoding algorithms are more complex to implement [12].
However, these algorithms can be 5.68 times faster in making decisions consuming 15.12 times less
power. Figure 2.4 shows the temporal encoding. Compared to figure 2.3, it is clear that temporal
encoding reduced the number of spikes, so each spike contains more information.

2.3.2. LEARNING IN SNN MODEL

Learning SNN is challenging part and remains an open research question [16, 23]. There is still no general
rule for learning a SNN. The transfer function is usually non-differentiable [23]. Backpropagation is the
primary method for many ANN models that update the weights using the gradient descent method.
The backwards-pass is done using a differential equation that calculates the gradient. However, doing
this backwards-pass the transfer function in a SNN is typically not differentiable because of the spike
[23].

This section describes the state-of-the-art training methods in SNN architectures. As explained in the
previous section, there are different ways to encode the spike. The selection depends on the type of
learning strategies used.
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Rate encoding

T

Neuron number

Figure 2.3: Rate based encoding in time where each horizontal axis presence a neuron.

Temporal encoding

Neuron number

Time

Figure 2.4: Each row represents the spike rate of a neuron using temporal encoding. The presented information is less
dense than figure 2.3, but contains the same information.
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UNSUPERVISED LEARNING IN SNNSs

USing micro-electrodes in rabbits, the study detected a mechanism for learning [26]. This method
called spike-timing-dependent plasticity (STDP) is bio-inspired learning (i.e. inspired by this mech-
anism). There are many variants of STDP implementations [27]. The Tripple-STDP [28] uses three
spikes to conclude if the weight of that neuron should be increased or decreased. The implementa-
tions are unsupervised and, work in one layer, but to the training is a challenge [18]. The reason
for the performance problem is the limiting ping-pong effect. Training using STDP is compared with
backpropagation time-consuming.

SUPERVISED LEARNING IN SNNs

Supervised learning is a training methodology were the input is mapped to the output. Backpropagation
opened many doors for different applications. It had a performance boost, and training became easier
to gain higher accuracy. Some researchers combined SNNs with the backpropagation [17, 20, 23, 29-31].
The list is continuously growing, where others combined STDP with backpropagation are designed [30].
There exist other methods such as SpikeTemp [32], E-prop [33], Chronotron [16, 34], to name a few.
This thesis discuss the SpikeProp, and Tempotron more in-depth.

SpikeProp Similar to the backpropagation algorithm, the SpikeProp determines to a given input
pattern the desired firing times [30]. It is using the least mean squares error for determining the difference
between training outputs times and desired output times. The research shows that it overcomes the
discontinuities introduced by the thresholding. It would also solve complex non-linearity classifications
using the faster temporal encoding and comparable to rate encoded architects. In the paper [24], they
explain possible assumptions: each neuron in the network can only fire once in each processing step,
ignoring the time-course of the neuron’s membrane potential after the firing.

Tempotron The Tempotron learning rule is a supervised synaptic learning rule to tune the synaptic
efficacies with the following amount equation 2.1.

Aw; = A Z K(tmaa:_ti) (21)

t; <tmaz

Where A is the maximal synaptic update for the spikes, and the K(..) is the spike itself. It is
important to note that the learning rule (\) is essential to tune right. The #,,4, is the postsynaptic
potential voltage, where it the max is reach. This implements a gradient-descent, which minimizes
the cost function. The cost function is V(tmaz) — Vine, where Vip,. is the threshold voltage [35]. The
limitation of Tempotron is that it only allows having one layer, because of the update rule.
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2.4. ANN 10 SNN

Spiking neural networks are biologically plausible models but struggle with achieving accuracy. In con-
trast, deep-learning has been the state-of-art research methodology attaining the highest performance.
It is due to state-of-the-art results the representation-learning model quickly achieves. There is exten-
sive research converting deep-learning methods to the SNN field [36-38]. However, most are conversions
of a model architecture to a digital implementation of a SNN.

A limitation of this method is ignoring the benefit of the SNNs of temporal classification. Most recent
SNN studies focused on backpropagation [17]. Porting it to an ANN but neglecting the timing is es-
sential for low-latency handling of temporal problems. However, these methods solve the continuous
classification and use less power. Many of the experiments for the SNNs backpropagation implementa-
tions use digital SNN hardware accelerations [39].

The convolutional neural networks (CNNs) [40] are mostly used for image processing, for example,if it
is a cat or dog, or which rowing boat team is in an image [41]. The CNNs are resemble the opposite of
recurrent neural network (RNN) [17, 42]]. Speech, language, or signal processing applications mostly
use the recurrent neural networks (RNNs). The RNNs are used for a temporal sequence, such as the
SNNs. The LSTM looks most closely at the SNNs because of the leaky parameter. The research fo-
cussed on solving the gap between LSTM and SNNs [14, 17, 39, 43-47]. The sSNU method of [17] uses
state-of-the-art LSTM implementation.
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2.5. PRIOR WORK

In this section discusses, the related work from scientific publications and explores the basics of the
radar, hand gesture datasets .

2.5.1. THE RANGE-DOPPLER RADAR

The generation of the Range-Doppler are developed from a sig-
nal, shown in figure 2.5. Understanding how the Doppler frames
are generated explains the number of processing steps taken and
the issues these may cause. Using multiple antennas could also 7@, py(M
improve the accuracy of the classification, as shown in the paper M, oM
[48]. Here the study use the radar connected to a short-time dis- @’V\/\
crete Fourier transform (STDFT) to obtain the angle information

from multiple antennas.

T, £,M

The radar sensor sends a RF carrying frequency [5] to the
environment. The radial distance r;(T) variates in time T and
the complex reflective parameter p;(T) reflects with a frequency
variation, because of the Doppler effect.

Figure 2.5: The radar transmits a signal
to the hand; the movement of the hand

Two Fast-Fourier Transforms (FFTs), showed in figure 2.6 creates a doppler effect. In this effect of
generates the Range-Doppler images [5, 6]. As figure 2.5 shows, reflections from multiple dynamic scatter-
) . ing centres change the frequencies of the
the radars send a Linear Frequency Modulated Continuous Wave- waves [3].
form (LFMCW), to the object and receive it back. Multiple
sweeps are collected and placed into a matrix form, where each
row represents one sweep, as shown in figure 2.7. After the first FFT, each row contains the range pro-
files. Finally, the second FFT creates the Doppler in each column. If there is insufficient information
in that column from the first FFT, the column would have an evenly distributed valued range. The
moving object will have in the scatterings changing of frequencies in the same range, and can therefore
be seen as (a) blob(s). Moving a hand will have a scatter of velocities, and in the Range-Doppler shows

the hand as a blob.
First FFT Second FFT Range-Doppler

Figure 2.6: The raw data that is entered, based on the two FFTs generates each Range-Doppler image.

Range-Doppler images are beneficial when there is a need for having velocities and range data. An
example of such an application is the exact speed or direction of the object. For finding the angle of an
object, researchers need multiple antennas. Tuning the parameters of the radar will change the focus
of the radar.

Fast time Range Range

(a) (b)

Js|ddoq

awn Mo|S
awp MoJIS

Figure 2.7: Range-Doppler generation by a) The first 1D FFT along the fast time, b) The second FFT along the slow
time [6].
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2.5.2. GOOGLE SOLI

Google Pixel 4 smartphone is using the radar for gesture control. They are using a ~ 60GHz sub-
millimetre radar placed next to the front camera. The earlier gesture-radar research [5, 49] found an
improved algorithm. The published papers discussed the use of RNN architectures or 3D CNN [(]
models.

These models use many parameters. However, compared with the hardware model, these will not fit
the design requirement of this thesis.

The paper [50] describes the implementation of the exact sensor. The radar used in Pixel 4 uses multi-
ple antennas inside of the chip. This radar can discriminate between multiple targets. They need this
information to determine the angle of multiple movements of a hand gesture.

2.5.3. GESTURE RECOGNITION USING LSMs

Liquid State Machine The Liquid State Machine (LSM) would be a biologically plausible [51]
architecture. The LSM is essentially an one-layer trained network. Zooming into this structure, it
shows many recurrent connections, a reservoir of neurons stimulating other neurons with a recurrent,
connected topology [8]. In the network, there are different neurons: input neurons, feedback neurons,
and output neurons. This paper [52] highlights the issue with LSMs; the number of spikes explodes
throughout the network. However, paper [8], contradicts this arguing that this will not happen with
more inputs and a bigger model using their method.

2.5.4. RGB VIDEO DATASETS

There exist a few datasets, such as the Jester [53], and IsoGD [54]. Those are RGB video clips of human
hand gestures. This study could use this dataset if the sensing were the same. However, this research
uses the dataset of radar hand gestures. The researcher selected this fundamentally different dataset
because of RGB values instead of Doppler velocities.

Use this dataset as a baseline will no fair comparison. The features that the network will train cannot
be compared with the radar dataset. The radar dataset is a different type of data representation. The
radar dataset exists mostly out of blobs [6], were the RGB dataset exist of a picture with a subject’s
hand.

Transfer learning Transfer learning is a method [55] to use a well-trained model and convert it to
a different architecture or learning purpose. When converted, this architecture will be used to train it
further. The benefit of this method is to decrease training time, so there is only one fine-tune phase
needed. The disadvantage of transfer is the overfitting to particular classes [56] that were pre-trained
by the other.



Architectural design

This chapter represents the SNN architecture. Section 3.1, describes the baseline and the different
design possibilities while Section 3.3.3 discusses the presented architecture.

The architecture is separated into two distinct stages. The first stage is the spatial classifier that finds
spatial importance in the design, acting as a filter. The second stage of the network is the temporal
classifier that determines the classification using the temporal aspect of the time-series dataset. These
stages describe different methods and arguments.

The SNN architecture is an analogue-spiking, neural network with hardware limits: the architecture is
developed for hand gesture recognition. The next chapter explains the training method for the presented
architecture.

3.1. THE BASELINE FOR THE RADAR DATASET

The researcher chose the state-of-the-art convolution, Long Short-Term Memory Conv_ LSTM [14], as
the baseline for the gesture time-series dataset. The architecture combines the CNN with the LSTM.
Each frame has a CNN detecting features and an LSTM determining the class. The research needs
a baseline for two reasons. Firstly, there was insufficient information about the dataset and what the
values represent. Secondly, a baseline compares a state-of-the-art design with the presented SNN archi-
tecture to understand the performances.

3.2. ARCHITECTURAL REQUIREMENTS

The chosen architecture meets design requirements. The design needs to be small, not exceeding thou-
sands of neurons. Adding an extra digital circuit in the network will not be a significant problem, but
this cannot be implemented in the final design. The architecture should consider that the neuron model
is pre-defined. Another neuron model, the Izhikevich [21] is not viable. Instead, the SNN neuron model
selected should be the leaky-integrate and fire (LIF).

Figure 3.1 explains the basic structure of the overall architecture. In a practical environment, the
time a person takes to perform a gesture cannot be determined accurately. Therefore, the architecture
should be a flexible design, which could be altered. The Range-Doppler dataset contains hand gestures
video recordings, not consistently starting or ending at the same video frame. The architecture needs
to allow for empty frames.

3.3. ARCHITECTURAL OVERVIEW

The author discusses architectures in the following section.
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Hece SNN classifier >
frames labels
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-

Figure 3.1: The radar is sensing the gestures and will be processed by the SNN that determines the existence and types
of hand gestures. If no hand gesture is present, there will be no response. The SNN will spike if a gesture is present. This
design record radar data continuously.

3.3.1. LIQUID STATE MACHINE

An earlier study explored the Liquid State Machine (LSM) design [34]. It found that the biggest obsta-
cle was tuning the parameters, in the order of 20-dimensional space. There could be multiple, workable
solutions but finding the best solution required a large amount of computation power. However, some
parameters could already be determined to decrease the parameter space. The other obstacle for using
an LSM is the positive feedback loops. These positive feedback loops will explode the spike on the
output. The LSM has recurrent connections between neurons, which are the positive feedback loops.
The neurons spikes on earlier signals; due to design, there are no negative spikes. Studies showed that
LSMs are easy to tune for small problems using temporal encoding [8, 51, 52]. Another study has
shown the stability of inputting nine neurons with temporal encoding, which will not explode with
spikes throughout the network [3].

Input layer

Figure 3.2: The LSM is shown as the grey box where multiple neurons are recurrently connected. The readout of the
network relates to the specific set of output neurons.

The LSM has the possibility of tuning the time scale due to the recurrent connections. The LSM
was proposed as a brain-like architecture. However, this network is only a small part of the brain seen
as a hyper-parameter itself [51]. The sparser the network, the weaker the interaction between neurons;
a more dense network would become more chaotic.

3.3.2. LONG SHORT-TERM MEMORY IN SNN

The long short-term memory in SNN (LSTM) is a recurrent neural network (RNN), that is specialised
in sequential data. Speech, translation of a text, or the gesture dataset are examples of such data. The
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LSTM uses the same principle as the leaky unit methods that in time, delayed information or saved it
for extended periods.

LSTM architectural use recurrent neurons behind each other. There are studies done in the LSTM
to SNN implementation. The paper [17] proposed an LSTM model with SNNs and showed similar
accuracy with practical Spiking Neural Unit (SNU). However, exist an implementation, as the results
that were shown, were based on a simulation. There is no implementation found, and no substantial
evidence that learning such architecture and implementing would work. This can still be something to
consider, as [39] showed that such a design had many obstacles to overcome. The main advantage of
an LSTM in SNN is the time dependency.

3.3.3. THE LAYERED NETWORK

The solution would be that the frames come in it continuously. To have a smaller network, as suggested
by [57] will provide a filter at the start where the second part is classified. Figure 3.3 gives an overview
for the layered network of a radar dataset. The video frames enter the architecture using an encoder and
the spatial classifier filters the encoded radar frames one-by-one. The output of the spatial classifier
directly connects with the temporal classification. In the temporal classifier, the temporal aspect is
analysed to determine the type of gesture. When there is a gesture found, the output will fire from the
temporal classifier enabling the decoder can translate the spike to a digital signal.

In a practical application, many of the frames hold no gesture information. The temporal classifier
inputs directly connect to the output of the spatial classifier. The temporal classifier will work as a
temporal decision buffer making decisions based on the output of the spatial classifier.

Encoder —»{ Spatial classifier ——> Temporal classifer —>» Decoder

7

Figure 3.3: Network architecture-layered video frames come in one-by-one to the spatial classifier. Where it classifies each
frame to which class it belongs. The temporal classifier decides whether a class is enough stimulated and fires on that
gesture.

3.4. SPATIAL CLASSIFICATION

The spatial classifier is the input filter of the network and tries to categorise the input frames that
come in. The frames will enter individually, and the output will distinguish between the class and the
frame. In the hand gesture dataset, many frames are empty or belong to multiple classes, which require
further research to gain insight into its ability to perform. The spatial classifier should be robust against
empty frames or those that are similar between classes. This makes the spatial classifier perform well in
continues data streams, but it does not mean that this is the most critical function. The primary aim of
the spatial classifier will be pre-filtering the data so that the temporal classifier can act as the relational
time-depend decision-maker, similar to the relational-learning principle. The following section discusses
the different designs of possibilities. In future datasets, the learned information will still be valuable.
No one design fits all.
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3.4.1. SELF-ORGANISING MAP

The Self-Organising Map (SOM) is a brain-like structure were the neighbour neurons are connected.
Figure 3.4 shows the SOM structure. The SOM structures benefit is that it has the perfect topology-
preserving architecture. The method is unsupervised, but there exist supervised versions that help to
accelerate the learning [58]. The architecture has a tree-type structure for each class, with a likely
strong response between a specific neuron and class. The further away a neuron is from a sample, the
less correlation that neuron had with that sample. The paper on the SOM-layer [59] suggests that it
works well with data that contains blobs. In the given time-series dataset, the information is given in
blobs, but some classes have minor differences. The SOM layer SNN implementation will be the same
type of architecture as the ANN.

Figure 3.4: The self-organizing map holds neurons that are connected with their neighbours. The further away from a
neuron, the less correlation the sample has with that neuron.

The architecture of the SOM layer can exist in many forms: circular, perfectly preserved, or 3D

cube. The architecture could be tuned to a specific dataset. Before the training starts, the weights are
set randomly with a standard feed, making it reproducible on any computer for that specific library
version.
Each sample will be compared to the network for finding the closest neurons. Finding the closest neuron
to the sample is done using the Euclidean distance between the weights and the sample. The neuron
weights that is the closest to the sample will be updated. The weight update formula uses a learning-
rate (1, (t)) for stability.

WiT « WiT 0, (t) * h(mp, t) * (X —W57T) (3.1)

In this approach, the neuron that is more closely related to that specific data-point will respond.
There are no biases; thus no updates are done. Equation 3.1 presents the weight-update formula. The
h(np,t) is the neighbourhood update function. Essential this means that the neurons around the best
match neuron h(np,t) will be 1. When that neuron in the network is not the direct neighbour, the
function returns to 0.
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3.4.2. MULTI-LAYER PERCEPTRON

The Multi-Layer Perceptron (MLP) is a proven architecture in the field of artificial intelligence. The
MLP dates from 1986 [13] when there were limited computing power and resources for learning deep
networks consisting of millions of neurons [7]. The benefit of the MLP compared with CNNs is the
more natural conversion from an MLP to SNN. The disadvantage of this conversion is that the encod-
ing variant should be rate encoded and the loss converted to SNN. The two main advantages of using
an MLP for the conversion to SNN has many hidden layers. Firstly, it makes the architecture more
noise-robust [58] and solves the XOR problem. Secondly, the network has bias implemented with a
RELU activation function. There exist MLPs without biases in the neuron, but these networks have
shown problems classifying the radar dataset.

XjWi

Figure 3.5: An neuron (N;) in a MLP where X is the input, W the weights, and Y is the output of the neuron what is
for another neuron behind its X.

Figure 3.5 shows the neuron in the MLP network. The biases () is in the neuron itself (equation
3.2). Where the activation function (act(.)) is the RELU activation function. The reason is that is
more closer to the activation function in the SNNs. In the analog SNN neurons negative voltages are
not possible; the activation function should be a positive valued [46].

J
Y :act(ﬂi+2wi7kxk) (3.2)
k=0

The training is done using the Python Scikit-learn library [60]. The reason for being that many
learning functions or extra functions for testing the performance were already implemented. These
weights and biases are saved and imported to the simulator using the function ANN2SNN.m.

3.4.3. DETERMINING THE VALUE N-OUTPUTS

For the dataset, the only labels that exist are the labels for the full video. In the future, many more
gestures can be added to the dataset. Another approach of a dataset could exist only of gestures that
can be seen as a vector. Instead of a full gesture, the gesture is divided into parts like waving. Waving
exist of two elements left and right, separating those into two different spatial outputs, where the first
output is the one going left movement and the other to the right.

There are six gestures, with each having multiple vector movements. Labelling the dataset by hand is
not an option, so an evaluation of different feature representation has been done to determine n-outputs
of the spatial classifier.

Histogram A histogram can detect the blobs. There are two histograms for the row and column.
The histogram is simply the sum of each row and column. The highest peaks of both histograms mean
that the blob is being placed. Calculating the maximum value of the two histograms gives the location
of the blob. However, there can be multiple blobs. A threshold can determine all the peaks above
this value if the blob is in the middle points. One disadvantage is that if it is a digital approach, the
blob itself contains essential information about the type of gesture. The background of such a gesture
(e.g. moving the body) could contain critical information in the classification. Another issue with a
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histogram is that most of the blobs are not perfect circles. Only using the histograms as an output for
the network would mean an n-by-n output with a value range for each output.

Scaling and orientation The field of computer vision, many studies were done to discover features,
filters, and stereo images that generate 3D point-clouds. The results identified several ways to find
feature points in an image needed to stitch multiple images together. There are many approaches that
all work differently, even better, such as SIFT [61].
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Figure 3.6: The frames are sub-sampled where each sub-samples is seperated into n-bins.

Finding feature points in a frame and generating a label should be as unique, yet universal. When
two images shift in orientation or magnitude, the feature point should still be the same.
The following section explains how the SIFT feature detector is used on the radar dataset. The approach
of the difference of Gaussian is not used. It was used to find the feature-area point, but this dataset
had already contained interest points. Figure In figure 3.6 gives two steps:

o The frames are filtered using a first-order Gaussian filter with a kernel size of three in both x and
y direction and divided by two.

« The absolute is taken from the frames. Then the frames are normalised between the minimum
value and the maximum value.

o Next, the frames are sub-sampled. In the paper of SIFT, this will be around the interest-point,
where it will be ignored.

o For each interest-point, the magnitude and orientation are calculated.

o Then the orientations are divided into k-bins, where k is a hyper-parameter. If the value eight
has been chosen, bin zero would be from 0-45 degrees, bin one from 45-90, till 315-360 degrees.

o There are eight subspaces in the rows and eight in the columns, so 8-by-8 sub-spaces each con-
taining 8 bins, therefore 8 8 x8 = 512 output vector element. The researcher divided it under
k-bins again.
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Meansift The Meansift [62] is a clustering algorithm focusing on finding the maximum of the density
function. It looks for the maximum in the frame where the blobs are positioned. Meanshift is used for
finding the blobs in the frames, where the number of clusters is not being defined. In other clustering
methods, the number of required clusters to be found are given in advance, such as K-means [63]. The
Meansift algorithm defines the number of several types of blobs.

However, to have a better understanding if the amount of information is sufficient to tell if the
clustering value is big enough. The number of frames used is compared with the clustering coefficient.
This comparison is obtained from the input frames versus output clusters. Figure 3.7 gives an example
of the Meansift implementation.

Figure 3.7: The clustering coefficient is the diameter from which a cluster should exist.
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3.5. TEMPORAL CLASSIFICATION

In the human brain, there are many learning strategies. The spatial classifier is the perceptual-learning
strategy for recognising perceived stimulants. The perceptual-learning strategy will learn to identify the
objects so that the temporal classifier can classify the relational-learning strategies. The radar frames
will be labelled in time so that the multiple gesture frames can be recognised as a gesture. The temporal
classifier would be confident if it perceived more of those gestures before.

This section of the chapter discusses the temporal classifier. Theoretically, there are several approaches
possible, but this paper explores the following practical approaches. Firstly, the dataset generated from
the special classifier is discussed . Secondly, the author explores different methods, such as the counting
method, array buffer, and training using Tempotron.

3.5.1. DATASET SETUP

The output of the spatial classifier will connect to the temporal classifier. Each video is classified in
time, and the output of the spatial classifier will spike on each frame. The temporal-dataset consists
of an array of gestures labelled by the spatial classifier. Each video label is the original label from the
radar dataset. Equation 3.3 shows the dataset. Each row represents the frame classification time-step,
and the last row represents the original label for the video. The radar dataset consists of six gestures.
However, the output of the spatial classifier has an extra unknown gesture output. In the given equation,
it is gesture seven (g7). Each frame label in this temporal-dataset is entering with the same time-stamp
20msec (50Hz).

TN To T3 T4 T5 T ... T49 Ts0 Label

gl g2 g1 g2 g7 gl ... g7 g7 gl

gb g7 g3 g7 g5 ¢5 ... g3 g5 g5 (3.3)
gt g6 g7 g4 g4 g5 ... g6 gb g6

3.5.2. COUNTING THE FRAMES

To determine the performance of the spatial classifier, the counting method was used for its practical
implementation. It will allow insight into the performances and its failures. When starting with a
complex implementation, it is more difficult to establish where it will fail. It is not only essential to
distinguish cases where it failed, but it can also be used to determine how well the spatial part of the
network performed. The counting method and heat-maps are used to tune the spatial classifier.

There are n-frames where it is not known when the actual gesture starts. The temporal-dataset
contains m (seven) different gestures, which calles for m + 1 counters. The extra counter is for keeping
track off the number of frames that came in. FEach time a new gesture comes in a counter of that
gestures are increased and the frame counter. In the radar dataset there are always 50 frames for each
gesture; in figure 3.8, the frame counter will count to 50 frames.

The counting method can have more advanced features, for example, for each gesture, a different
threshold value. When there are not enough gestures found in the class, the video can be ignored .
With the condition that there are enough gestures found, the method will determine the maximum
counted gesture, and return the most founded gesture.

The benefits of this implementation are that it gives an uncomplicated overview of each video gesture,
and the digital implementation can be implemented in hardware without complex operations. The
disadvantage of the counting approach that is it is not possible to determine connections between
certain gesture classifications that overlap. If more frames of gesture one is in gesture video two, the
counting method cannot find correlations for the video classification. There is also a loss of information
with the temporal gesture classification. There are videos where the last frame(s) shows many false
detections. The counting method removes the time information knowledge what will result in a false
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Figure 3.8: Here the counting implementation has been shown without the threshold part. The method shows that it will
count till 50 frames and then compare each gesture counter for finding the maximal gesture counter.

detection. The main benefit of SNNs is the in-time classification. With the counting method this benefit
will not be used.

In summary, the counting method is useful for determining performance. It is not the best solution
because it removes the time information. Nevertheless, the solution with a threshold could be practical
for implementation, if the temporal classification is not essential.

3.5.3. ARRAY BUFFER

The array buffer uses a FIFO buffer architecture for classifying a gesture in time. The input for the
temporal classifier will be the FIFO buffer implementation. Each time a new frame is being labelled,
it will enter the buffer, and the oldest gesture will leave the buffer. This approach will divide the SNN
network into two parts, each part using an encoder and decoder.

This approach is useful when the classification cannot be done using an SNN or counting method.
The disadvantages of the buffer method are that a digital buffer would be less energy efficient than an
SNN approach. The other issue is the classification: continuously classifying each time a new gesture
comes in, and if multiple gestures are performed quickly after each other. It will be not known when a
particular gesture is finished, when the choice is for a windowed approach where with each n-frames a
classification happens. Hence, this buffer should have a variable width. Therefore the size of the buffer
is unknown, and the dataset could get more complicated to detect multiple gestures.

The given array buffer could be designed using a layer of SNNs that will decide when is a gesture being
found. A second layer after the SNNs can be classified using a network, such as a decision tree [57].
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3.5.4. LEARNING USING THE TEMPOTRON LEARNING RULE

There exist multiple training methods to train an SNN. The training methodology will be temporal-
based encoding because the spatial classifier generates spikes. Those spikes can be used as an input for
the temporal classifier. There are m — 1 inputs from the spatial classifier, where the unknown class is
not connected to the temporal classification. The counting methods showed already promising results,
but it misses the temporal classification and decisions based on multiple classes. Some classes are closely
related to each other. Making decisions based on multiple input gestures for a class will improve the
final accuracy. The state-of-the-art LSTM has a leaky factor inside of its neuron; the SNN’s LIF neuron.
Tempotron learning rule [35] uses the gradient-descent learning approach for training the LIF neurons.
In the background, equation 2.1 describes the update method of the weights. The LIF neurons are
also in the design of the inhouse neuromorphic processor. Tempotron learning rule is limited by having
one-layer architecture. Multiple layers can solve the XOR problem and be more robust against noise [58].
Using the Tempotron learning rule, the leaky par, decides from multiple inputs, and determines when
the neuron is excited enough.

There are other approaches for learning SNNs, but Tempotron is a straightforward approach to train
because it uses less hyper-parameters. The other benefit is it does not matter which type of input spike
[64] the Tempotron uses.



Training methodology

In the following chapter, the training method Suino has been discussed for the presented architecture.
The previous chapters have described the spatial and temporal part of the architecture what is shown
in figure 4.1. The first part of the network is called the spatial classifier or frame classifier, and use a
trained ANN. The second part of the network is called the temporal classifier. The temporal classifier
is trained using a SNN training method. This classifier uses temporal encoded spikes as an input to
classify the hand gesture in time. However, setting all the weights and biases of the network correctly,
we first have to determine, what learning steps are taken and the procedure for achieving state-of-the-art
results. In next section 77, an brief overview is given where the followup sections give a more in-depth
analysis.
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Figure 4.1: For the hand gesture dataset, the video frames enter the spatial classifier one-by-one and the temporal classifier
determines if there was a hand gesture being found.
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4.1. THE REST OF THE CHAPTER IS REDACTED FROM THE THESIS AND
IS EXPLAINED IN THE FUTURE PATENT.



Results and Analysis

This chapter discusses the experiments and analyses the obtained results. Here, the author also argues
the architecture, training methods, and algorithms:

o The author discusses the radar hand gesture dataset and compares the baseline to the presented
architecture from this thesis.

o The author shows the spatial and temporal classifier results and the reasoning for specific design
steps.

o The researcher analyses the training methodology and its hyper-parameters.

5.1. RADAR DATASET

The radar that has been used for the detection of hand gestures is a ~ 60GHz radar sensor, with three
channels where each channel represents an antenna. The fourth antenna may not have been given in
the dataset. The dataset consists of six different hand gestures, shown in table 5.1. The given dataset
did not explain which hand gesture belongs to which class.

Table 5.1: There are six radar hand gestures in the dataset. The type of hand gesture is an estimation because it is not
known what the exact gesture where.

Gesture type
Gesture 1 Grab
Gesture 2 Finger Rub
Gesture 3 Finger Waves
Gesture 4  Circle
Gesture 5 Swipe
Gesture 6 Top-Down

Two subjects, each performing six types of hand gestures, a 100 times, make up the radar dataset.
The recordings consist of 50 frames each, with a size of 32-by-32 pixels. Only three channels were
provided. Each hand gesture video consists of 50 frames, but the gesture recordings do not always start
at the first frame. In short: two subjects, six gestures each, 100 videos per subject with 50 frames of
32-by-32 pixels across three channels.

29
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Frames In figures 5.1 different frames are given from gesture five. The figures are scaled for making
the blobs human visible. The reason to scale the frames if for making them human readable. In equation
5.1 the scaling formula is shown. The im is the absolute taken from a radar frame. For each frame (im)
the vmax is the maximum pixel value and the vmin the minimal pixel value of the frame.

m —umin

scaled_img = (5.1)

vmar — vmin

Figure 5.1: On the left frame 1 and the middle frame 50 is given for gesture 5. On the right, an empty frame is given.
The printed version shows a different colour perspective between the frames.

Differences between recordings Different recordings will produce a slight difference in the repre-
sentation of the gesture. This variation happens in real life, which needs to be added to the dataset.
Otherwise, during training, it overfits on a specific dataset. Figure 5.2 shows two different recordings
from the two subjects. Both showing the same gesture, but there is a variation in both recordings.
There can be several reasons for this representation because those frames are scaled like figure 5.1.
Hence, the rest of the video is not visible due to the scaling. Alternatively, the different circle motions
the subjects performed can vary in speed or size.

Figure 5.2: Here, gesture four is performed where the frames are stitched behind each other from left till right. There
are six frames separated across the rows and columns, where each frame uses 32 rows and columns. In total, there are 50
frames in both images. On the left, person one, and on the right person two is shown.
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Evenly distributed The sets should be evenly distributed to improve accuracy and not overfit on
both train and test set, as shown in figure 5.3. It is essential to evenly distribute both of these sets;
otherwise a small bias to one class from a network will be visible.

140 4 B Train set

I Test set

120

100

801

60

Class label

Figure 5.3: Between each class label, the number of samples is evenly distributed.

5.2. BASELINE PERFORMANCE

For the baseline, the researcher chose the Convolution LSTM (ConvLSTM) [14]. The ConvLSTM
is specialised in video classification because it has convolution filters in each LSTM neuron. Before
the experiment starts, the train set and test set are generated. Both are evenly distributed in class
distributions, and each class has the same set size. The other comparisons use the same train and test
set. The same random seed initialises the network.

Layer (type) Output Shape Param #
conv 1st m2d 1 (ConvLSTM2D) (None, 32, 32, 50) 92000
batch normalization 1 (Batch (None, 32, 32, 50) 200
dropout 1 (Dropout) (None, 32, 32, 50) ]
flatten_1 (Flatten) (None, 51200) 4]
dense 1 (Dense) (None, 6) 387206
activation 1 (Activation) (None, B6) 4]

Total params: 399,406
Trainable params: 399,386
Non-trainable params: 180

Figure 5.4: The architecture of the video classifier using a Conv_ LSTM

Figure 5.4 shows the ConvLSTM with 50 filters. The learning optimiser is RMSprop. The model

uses the ConvLSTM 2D layer with 50 (ConvLSTM _50) or six (ConvLSTM _06) filters and a kernel
size of 3-by-3. After this layer, the Batch-normalisation is added with a dropout-layer for protecting
overfitting in the network. After that, a flatten-layer and a dense-layer are added . For the activation
function, a Softmax layer is used. During training, the batch size of 64 is used with a validation split
of 30%. The models chosen were from the Keras example website [65].
This thesis used the stripped-down version, with the LSTM-layer, dense- and dropout layer removed,
which did not change the accuracy, but increased the computational complexity, learning the architec-
ture more gently. Table 5.2 shows the accuracies for both networks. With some more tuning, it would
be possible to improve the results, but that was out of the scope of the thesis.
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Table 5.2: Comparison of two different ConvLSTMs both having different numbers of input filters. The first has six filters
the second 50 filters.

Architecture  Parameter count Test set accuracy
ConvLSTM_06 35K 97.0%
ConvLSTM 50 400K 95.0%

5.3. SPATIAL CLASSIFIER

The spatial classifier is the input filter of the network. This section discusses the presented method
further and alternatives that can be used with different datasets. The robustness is also measured and
compared to the baseline and the training methodology.

5.3.1. HOW TO DETERMINE THE PERFORMANCE

The CNNs are state-of-the-art spatial classifiers for image classification. This work uses CNNs to label
each frame of the gesture video. As no prior work exists on this dataset (i.e. a CNN classifier used to
label this dataset), this approach is novel and able to learn on the dataset. The work [6] uses 3D-CNNs
for Range-Doppler hand gesture recognition. The state-of-the-art version of the VGG [37], MiniVGG
[66], has a small size when compared to works as described in the studies of [41], and achieves an
accuracy of 29.47%. If a fully connected network replaced the CNN, the accuracy reached 40.13%. The
spatial classification accuracy is good if it is in the range of 30% to 60% because the network is small,
and it avoids overfitting. The study avoided using CNNs in the final design due to the unfeasibility of
mapping a CNN onto an SNN. Consider the equations 5.2 and 5.3, even though the accuracy is 40.98%,
class two is favoured when compared to other classes. This will be a problem for the spatial classifier,
and the stages after the spatial classifier, as many frames could potentially be labelled as class two
instead as class zero. An ideal confusion matrix would be an evenly distributed, and the diagonal needs
to be as high as possible for that data set.

T\P 0 cl c2
c0 50 101 1980
A= cl 28 307 1672 (5.2)

c2 1 10 2276

trace(A)

=ty 100% = 40.98% (5.3)

Accuracy result :
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5.3.2. MULTI-LAYER PERCEPTRON

The spatial classifier uses the Multi-Layer perceptron (MLP). The following sections explore if there
are enough data samples to train the MLP. After that, the author discusses two different versions of
the MLP. One has a bias, and the other does not have a bias in the neuron model. Then, the weight
matrices of the input neurons and the heat maps of the video frames are used to determine respectively,
the neurons’ focus and the network’s performance. The last section looks at the improvements of the
retrained network methodology.

TRAIN SET SIZE

To verify that there were enough data samples given, the final network performance was tested as a
function of different dataset sizes. However, the results showed that using only % was enough to achieve
84.54% accuracy. The reason for this result is the high homogeneity of the dataset. This homogeneity
could have been introduced either during the recording or during the Range-Doppler transformations.

BIAS IN THE NEURONS

The weights will determine the steepness of the activation function, but the bias will do something
different. The biases make the neuron’s activation function more flexible, but they allow neurons to
produce spikes without any input activation. The biases come from the spatial classifier . Each neuron
had one bias and many weights. In the LIF-neurons, there is a threshold value that determines when
the neuron should fire. The bias is a threshold value that makes a neuron more or less critical to the
network, as it can add a negative bias to suppress that neuron (if a negative bias is supported).

The performance improvement obtained by adding a bias is considerable. Without the biases, the
average accuracy was 27%. With the biases, the average accuracy was 53%. It was clear from the
confusion matrix (equation 5.4) that the model was overfitted on class four and five. The accuracy for
this confusion matrix was 29.15% without the biases. Equation 5.5 shows the confusion matrix with
bias. In this case, the accuracy of was 48.23%. Both setups had the same learning parameters.

[T\P 0 ¢l 2 ¢3 c4 ch

c0 30 47 0 4 160 331
cl 2 716 O 8 425 2849
A= ¢2 0 101 4 19 1249 2627 | — accuracy =29.15% (5.4)
c3 0 132 3 229 421 3215
c4 2 196 1 3 2034 1764
5 0 13 0 1 2 3984]

[T\P 0 cl 2 3 c4 b
c0 2210 247 169 560 133 681
cl 1034 1194 544 532 259 437

A= | 2 597 198 2242 543 199 221 | — accuracy = 48.23% (5.5)

c3 861 277 795 1532 84 451

c4 724 284 308 301 2204 179

cH 1063 111 79 524 29 2194 |
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SHOW WEIGHT GRAPHS

Why is the MLP learning on the dataset? Can the weight graphs determine where it looks? Each input
neuron fully connects to the input. From each neuron, the input weights present as an image. After
some scaling the inputs can be made visible. Figure 5.5 shows the input weights of an input layer with
16 neurons for the given radar dataset. Not all 25 neurons of the MLP__A model are shown. It is
essential to pinpoint the focus of the network when determining if the network is not overfitted. To find
a pattern from the dataset and in some frames, it also looks at background movements. The frames are
essentially blobs moving in time, but not for all hand gestures. For some hand gestures, the network
also looks to smaller velocity changes in the Range-Doppler images. It is using more input neurons for
the radar dataset results in empty neurons or neurons that respond to noise in the frames.

Figure 5.5: Here, the input neurons weigh images. It shows to which areas a specific class responds and to which it will
not respond. On the top left is the first neuron. The second neuron is on the right of it. Blue means inadequate response,
where yellow means maximum response and red is in-between those responses.
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HEATMAP

The spatial classifier will label each frame of the hand gesture video with a number from zero till five.
After filtering (as explained in Chapter 4), the output of the train set and test set is being labelled.
Figure 5.6 shows the train set, where Figure 5.7 shows the test set. These figures are small screenshots
from the full set. In the train set, many frames are labelled with different classes when in the ideal
circumstances this would be label seven (unknown class) with zero (this part of the dataset is class
zero). Appendix A.4 shows the full, labelled test set. It also shows that different classes have more
frames labelled in time than others.
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Figure 5.6: The figures show a part of the training set with the class label in the last column. Each row represents the
hand gesture video frame. Class 7 represents the unknown frame.
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Figure 5.7: The figures show a part of the testing set with the class label on the last column. Each row represents the
hand gesture video frame. Class 7 represents the unknown frame.
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5.3.3. FEEDFORWARD THRESHOLD

After the first MLP network, the predictions are filtered using a simple threshold value. In the following
figure 5.8, a prediction plot shows the accuracy versus the true label. Each frame of the dataset is
labelled, and the prediction accuracy tracked for the correct label despite incorrect classification. In
the figure, there is a small blob found near 0.2 (=20%). Here, the network misclassified the frames by
the network; the frames did not contain enough information to indicate to which class it belonged. The
tipping point of the graph is around 60%.

After the first MLP network, the predictions are filtered using a simple threshold value. In the following
figure 5.8, a prediction plot shows the accuracy versus true label. Each frame of the dataset is labelled
and kept track what the prediction accuracy was for the correct label even if it was not correctly
classified. In the figure, there is a small blob found near 0.2 (=20%). Here the frames are miss classified
by the network, hence the frames did not contain enough information to show that it belongs to the
certain class. The tipping point of the graph is around 60%.
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Figure 5.8: The prediction accuracy for the correct class label versus the number of frames the accuracy was the correct
class.

If the threshold value was lower than 60%, more incorrect frames were labelled. If the accuracy was
higher than 80%, fewer frames were labelled. In earlier experiments, some videos were fully labelled to
'unknown’. The closer the accuracy values were set to 100%, the more videos were completely labelled
as unknown. Figure 5.9 shows that after the threshold accuracy was set at 85%, the final accuracy of
the network dropped.
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Figure 5.9: The threshold value of the feeedforward is compared with the full network performance.

5.3.4. RETRAINING

The retraining is an essential step in the learning process. In this step, the unknown label is added
in the training architecture, and the network can be made smaller. The first-trained MLP network
has 1024 inputs, with two hidden layers of each 25 neurons, and six outputs. The feed-forward pass
generates new labels used in the retraining phase of the network. Chapter 4 shows the feed-forward,
pass-filtering method. The retrained network size could be increased, as shown in table 5.3. The accu-
racy of the retrained networks is above 75%, but this is inaccurate. This statistic ignores the unknown
frames. The section of the dataset frames, which the network labelled, was above 75%. Going to a
bigger network size does not mean that the final network accuracy increased, it decreased. The ac-
curacy of each frame was labelled more thoroughly, and more frames belonged to the unknown class.
The test set accuracy compared with the originally given labels. These test labels were not filtered in
the feed-forward step. All the frames of each video were labelled to the class to which the video belonged.

Table 5.3: Different network architectures before and after retraining. The final accuracy is based on the counting method.

Network Network size Para. cnt Accuracy Unkn. frame Final Acc.
MLPA_ 20 1024x20x20x6 21K 49.12% 00.00% 90.43%
MLPA_ 25 1024x25x25x6 26K 50.44% 00.00% 89.17%
Retrained MLPA_ 20 1024x20x20x7 21K 79.42% 60.97% 87.50%
Retrained MLPA_ 25 1024x20x20x7 21K 75.28% 58.88% 93.33%
Retrained MLPA_ 25 1024x20x20x7 21K 74.63% 63.24% 94.33%

Both retrained MLPA 20 and retrained MLPA 25 are converted to an MLP with two hidden
layers of 20 units. Table 5.3 shows that the network size was decreased and learned to label frames as
unknown. This mimicking of the network increased the final performance by 5.16%. The Final ACC
is done using the counting method, so this percentage is determined over all frames. Table 5.4 shows
the most important hyper-parameters of the network. The first hidden layers were kept small to lower
the number of neurons. When the first hidden layer had 100 neurons, the parameter count increased to
105K, where the final accuracy dropped. The threshold value for the retrained MLPA 25 with 93.33%
accuracy had a threshold value set to 67%, and 94.33% had the accuracy set to 63%. These statistics
indicate that during the retraining phase, the full potential of the filter is not used. During the sweep
of many different setups, the value 63% was chosen to be the threshold value.
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Table 5.4: The network parameters the retraining phase.

Parameter MLP_ 25 | Retrained MLPA_ 25
Input 1024 1024

Output 6 7

epoches 200 200

activation RELU RELU

solver Adam Adam

Learning rate | le-3 le-3

hidden-layers | (25, 25) (20, 20)

5.3.5. CLUSTERING

There are diverse types of clustering methods used to validate the performance of the network. This
section explains these methods. Appendix A.1 gives a table is with the number of clusters each method

has generated.

Self-Organizing map The SOM is an unsupervised learning method determined from the data
sample, the closest neuron that best matches with that class. The results for the SOM layer was
23.64%. The reason for this would be the same as for the other clustering methods, as explained in the
next paragraph.

Meansift The following figure 5.10 shows the variation of dataset sizes versus the clustering sizes.
This dataset was obtained by adding the training and testing set, where each data sample has labelled
frames. The Red line is the smoothed result of the Blue line, and the Blue line is the actual result.
There were many tests done to understand this behaviour, but there was no clear explanation. The
researcher calculated the bandwidth with the Scikit-learn estimate bandwith function.
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Figure 5.10: The dataset size versus the founded Meansift clusters.

The number of clusters is converted to 78 clusters on the full dataset size, which is promising. How-
ever, the study evaluated the final performance with a second MLP network and AdaBoost using a
decision tree that never went higher than 22.62%. Plotting the number of frames, shows that almost
the whole dataset (60K frames), 41K was labelled as cluster zero. Figure 5.11 shows how the clusters
are distributed.

Figure 5.12 Here, each row represents the video of a gesture. It shows that many frames are labelled
as unknown, and some did not have any other label zero. This small part of the dataset is the same



5.3. SPATIAL CLASSIFIER 39

500 A

400 -

W

o

(=]
L

Frame count

] 10 20 30 40 50 60 70 80

Cluster number

Figure 5.11: The distribution of each Meansift cluster versus the radar frames. Small note to make is that label 0 (red
line) was originally 40973, but here set to 500 for visualization.

as the rest of the videos for other classes. Figure 5.2 shows that there are many different blobs at the
beginning of the recordings. Figure 5.12 shows specific clusters at the beginning and the end. In many
hand-gesture videos, the starting point of a gesture is at the start and not in the end.

2 6 6 6 6
1310150 39 33 5 3|

Figure 5.12: Each row represents the video of a gesture the last column is the class. Labelled using the Meansift method.

Summary The issue shown with Meansift is that many frames are labelled to a specific class. In other
clustering methods, such as the SOM layer, the version of scaling and orientation feature extractor and
the K-means that the few outliers of the dataset are clustered. When those clustering methods were
classified, the temporal network could only label them with an average accuracy of 23% compared with
the flipping-coin percentage of 16.67%. This is not usable. Even if empty frames are removed, or other
methods used to lower the frameset, it did not help to get a more evenly distributed clustering.

The complexity involved to scale the number of clusters is the other issue with clustering methods.
The SNN will run on an analog chip with room for hundreds of neurons; using over 5K of features will
not be practical.
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5.4. TEMPORAL CLASSIFIER

The temporal part of the network is where the videos are labelled to the class they belong. The unknown
class was added to ignore frames that held no hand-gesture movement or common movements between
classes. The next sections explain in-depth the reasons for training on the test set, which is divided
into a newer test set. The author also discusses the temporal layer parameters.

5.4.1. TRAINED ON THE TEST SET

There was a problem with the temporal classification; it did not achieve near state-of-the-art perfor-
mance because it was trained on the training set. The training set should generally be overfitted on
the data and achieve high accuracy, but this was not the case for the temporal classifier. The final
performance was below 50% trained on the training set.

In the previous section on the heatmap, Figure 5.6 shows part of the train set and in Figure 5.7 shows
the test set. The train set highlights numerous misclassifications, while more frames are labelled as
unknown in the test set. The sets are differently classified, and therefore, would affect the performance
of the temporal classifier. Hence, the final results should be compared to the test set that is generated
from the new dataset. There are 240 videos for the original test set. In the temporal classifier, 140
videos are being used for training and 100 for testing. The absolute accuracy from the baseline is only
done on these 100 videos.

5.4.2. TEMPOTRON LEARNED LAYER

The test set learns the Tempotron. This result is not directly comparable with the other methods as
it uses less data for the training set, involved in a lower degree of accuracy. A few parameters are set
in advance for the Tempotron learning-rule. The 74 to a small value is only needed during training but
is not present in the simulator. In table 5.5 are the parameters shown during training and table 5.6
gives the confusion matrix for the results. During the training of the temporal classifier, small changes
of 10729 or 107! could already be the difference between success and failure. Six inputs spike for the
input classes and six output classes for the gesture classification in time. The in-house simulator defines
the time step, V_ rest, and threshold.

The accuracy achieved for the networks is 90.87%, using the retrained MLP_ 25 in the spatial classifier
converted to spikes. The unknown class is replaced with no spike at that time step. There were some
videos, which did not have an output response or multiple output responses simultaneously. These were
ignored and labelled as unknown.

Table 5.5: The network parameters for training Tempotron

Parameter Value
Input 6

Output 6

Time step lus
Learning rate | le-19
V_rest 0

T le—4

Ts 32e—8
Threshold 0.450e — 13
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5.5. ROBUSTNESS OF THE NETWORK

The many papers [5, 49, 67] on the Range-Doppler approaches did not discuss false detection of the
datasets. The paper of [6] shows that the detection of datasets is essential to embedded information
of an unknown gesture, but they did not determine if their approach is robust. The robustness test is
a complex problem [68, 69]. It is difficult be confident when the architecture works in different envi-
ronments, and perfect performed gestures do not bias the generated dataset. The author argues that
robustness is more important than having the best accuracy. The approach of this thesis differs from
other state-of-the-art approaches because it teaches the network to recognise the unknown gestures.
This differs from other approaches [6], where final ANNs indicates the certainty about a complete ges-
ture video instead of determining the frames.

Dataset setup The author removed a class from the dataset during training and added it in the
testing phases to measure the robustness of the network. The selection of removed class was random
as many frames were labelled as a different class. The removed class had the most frames predicted
belonging to different classes. In the confusion matrix, in equation 5.6, the class is removed. The
temporal classifier has labelled the removed class four, as unknown. The accuracy of the confusion
matrix is 93.72%. The accuracy calculation ignores the unknown column for comparison between the
setups. The confusion matrix in equation 5.7 showed it when the removed class was present during the
training. The accuracy is calculated using the trace of the matrix divided by the sum of all values, but
the unknown column ignored.

Presented architecture In the confusion matrix and heat-maps, it appears that there were a few
wrongly labelled in that removed class. The class was firstly removed and then added again in the
dataset. The following results are from the presented architecture giving the following confusion matrix
5.7 an accuracy of 95.61%.

The confusion matrix 5.6 shows that the classes not trained, were almost classified as unknown: meaning
that random movements or noise can be filtered from the network, and the network’s output will not
spike to those hand-gesture videos.

[True\Predict c0 ¢l ¢2 ¢3 ¢4 5 Unknown]
c0 36 0 0 O 0 O 4
cl 3 3 0 0 0 0 2
A= c2 0 0 32 0 0 O 8 (5.6)
c3 0 1 4 0 0 O 35
c4 10 0 0 39 0 0
i ch 10 1 0 0 37 1 ]
[True\Predict c0 ¢l ¢2 ¢3 ¢4 5 Unknown|
c0 34 0 0 0 0 1 5
cl 139 0 0 0 O 0
A= c2 1 0 3 1 0 0 3 (5.7)
c3 0 0 3 3 0 0 2
c4 1 0 0 0 39 0 1
i cb 2 0 0 0 o0 37 1 ]

ConvLSTM The expectation of the baseline, the ConvLSTM, was that the samples not trained on
would be predicted to different classes. Equation 5.8 shows such a confusion matrix of the ConvLSTM.
Here, the expectation was that the removed classes would have a low prediction accuracy. In practice,
this was not the case; the prediction accuracy for the classes not trained on was still 100%. Some videos
had a lower accuracy than 99% but were the wrongly classified videos from other classes.

The accuracy for the dataset where all classes were added and comprised of 100 videos had an accuracy
0f96%. When the class was removed from the training set and added again during testing, the accuracy
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was 77% for 100 videos.

It is possible to train a different dataset for the LSTM, but this approach has some caveats. This
dataset would have a different class added containing videos that should be ignored . The solution is
probably robust against movements that are false detections or noisy frames. Nevertheless, it can fail
with cross-class frames. The LSTM weighs the cross-class frames to a specific class for these frames,
when they could have information that is relevant to random movements and should be ignored. The
other limitation of this dataset is that it will not overfit on the provided extra class containing videos
that should be ignored.

[True\Predict c0 ¢l ¢2 ¢3 c4 cb]
c0 7 0 0 0 0 O
cl 0 18 0 0 1 0
A= c2 0 0 13 0 0 O (5.8)
3 0O 0 11 o 0 7
c4 0 0 0 0 15 0
B 1 0 0 0 0 14

5.6. COMPARISON OF THE ARCHITECTURES

This section discusses the final accuracies and why the accuracies are not the only metric to consider.

The presented architecture developed with the training method Suino, learned to detect when the
networks are unsure about a frame of a video. It is more robust against false detection than a state-
of-the-art ConvLLSTM because of the use of the temporal classifier that leaked in time. Random move-
ments close to a class will be ignored. It could also make decisions if other classes were present in the
dataset to use this in the decision. The final scores compared with the F1 metric was evenly distributed.

Table 5.6: The final results: comparing state-of-the-art with the presented architecture. Where robustness is determined
using the method, one class was removed from the original dataset.

Network Parameter Count Robust Final Accuracy
ConvLSTM 06 35K No 97.00%
Retrained MLP + counting method 21K No 94.58%
Retrained MLP + Tempotron 21K Yes 90.87%

Table 5.6 presents the final model accuracies. The presented architecture learned with Suino is the
retrained MLP_ 25 with Tempotron. The counting method shows a higher accuracy, then the SNN
layer trained using the Tempotron learning rule. The lower accuracy is because of videos where the
network did not respond. Those were wrongly labelled because the network needed to label these, but
there was no class excited enough. It is hard to determine the robustness of the architecture and how
well the network performs in a real-life environment. Looking only at the final network architecture, it
does not portray the full picture. The presented architecture is, therefore, the winner: it is more robust
to false detections and converts easier to the analog SNN.



Conclusions

6.1. THESIS CONTRIBUTIONS

This thesis explored a subset of ANNs with a focus on the radar dataset of hand gestures. Following
this exploration, the researcher developed an architecture for hand gesture recognition. The analog
neuromorphic spiking neural network processor constrained the design.

This study subdivided the presented architecture into two components: the spatial and temporal
classification. An MLP trained the spatial part, which can be converted to an SNN. The temporal
part used an SNN training method. Hence, the architecture was a pure SNN block that contained no
digital circuits in between. The spatial classifier has multiple layers for robustness, where the temporal
classifier was trained to classify the temporal aspect of the hand gestures.

The presented architecture was not only energy-efficient compared with a state-of-the-art deep-
learning approach, but also small in size, fitting on the neuromorphic chip. The architecture can
continuously classify the radar frames and remain energy-efficient.

This study presented a new training methodology for training such an architecture. The Suino-
method is a stable training technique using proven classical methods to ensure stability and speed. It
learns to classify which frames to ignore and classifies time-series data. Compared with the state-of-the-
art Suino-method, an architecture that is not only small in size but more robust against false detections.
The network will reject classes absent from the training set. The network size was decreased and taught
to ignore frames; a smaller network was mimicking the larger network.

This thesis discusses different feature extraction methods and how these methods could be used in
Suino. Using The Suino-method can convert the extraction methods to the SNNs. The given dataset
did not perform well on the clustering methodologies and feature extractions.

The ConvLSTM had an accuracy of 97.0% compared to 90.87% of the presented architecture of
Suino. Although the accuracy is lower than that of the ConvLSTM, Suino is more robust against false
detections, can perform continuous classification , and is more energy efficient. The ConvLSTM without
modification is not robust compared to unknown classes. The counting method showed promising
results of 94.58% but is a time-slotted approach that needs gesture thresholds for the prevention of false
detections.
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6. CONCLUSIONS

6.2. FUTURE WORK

In this thesis, SpikeProp is not further being discussed, but it uses multiple layers that help the
architecture to be more robust. Both the spatial- and temporal classifier could benefit from this.

To validate robustness, a new dataset should be generated containing more noise, different persons,
different environments, and gestures that are incorrectly performed. Also, the speed of the gesture
should be a variable in the recording. The dataset could also exists of vector gestures, where each
gesture is not entirely performed and in the temporal classifier stitched together.

Different representation such as the micro-Doppler should be explored. The current architecture
uses range-Doppler frames for classification. Methods from the sound classification should be
explored. A significant difference between radar and sound signals is the frequency.

A study that focused on improving the robustness of the fixed-threshold choice in Suino.

A broader search in different datasets has to be done to understand how well Suino can be
generalised.

Currently, it is not known if the neurons can remember the 20ms between frames. Therefore, a
feasibility study for the LSTM could be conducted, to determine if it can remember time reliably.

Is it possible to make the counting method more robust and energy-efficient?

6.3. PATENT

The training methodology presented in this thesis is being filed for a patent application. At the time
of writing this thesis, the patent number is unknown.
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Appendix

Information with extra results or other information that is not crucial to the report itself.

A.1. CLUSTERING

In the following table A.1 several types of clustering methods found number of clusters. K-means was
generated using 100 clusters because K-means uses the number of clusters as hyper-parameter. However,
the result was the same as Meansift, which does not provide enough information about the dataset.
Figure A.1 shows that most outliers are placed in clusters. The frames containing movements belonged
to just a few clusters.

The clusty_* is the method obtained from the stripped version of SIFT feature extractor [61]. The PCA
showed that lowering the cumulative explained variance, the feature size would exist of 140 components.
The clusty__A is filtered on the dataset based on the labels. If the label is ignored, and a unique sort is
done on this matrix where each row represents a feature, the number of features is less. Therefore, this
is called clusty B.

Table A.1: Different network architectures and the number of clusters

Clustering method Number of clusters

K-means 100
PCA 18528
clusty A 15956
clusty_ B 5084

Figure A.1: K-means clustering with 100 clusters. As seen it that the radar datasets outliners are clusters, but not the
gesture movements.
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50 A. APPENDIX

A.2. CONVERSION LOSSES

It is no the core focus of this thesis to run the architecture in the analogue SNN hardware, but there
were some performance losses during the conversion. Here follows list of different ways the network
performance could be impacted:

e« The RC model that has been used in the SNNs does not match the ReLu activation function.
This ReLu activation function is used in the Multi-Layer Perceptron. During the conversion, this
will have some inaccuracies.

o There exist no negative inputs, so the network can only work when this is not being used. The
dataset performed better when the absolute was being taken in the tests. It is still unknown why
this had a better result.

o The negative weights and biases are also a problem for the network. There exist no such negative
voltage and currents in the analog design (currently), so those weights should be scaled or been
set to zero. What lowers the accuracy.

o The chip will have its own unique inaccuracies where a small change in the resistor, capacitor,
and current injectors for the bias will have already an impact with slight differences.

o Conversion from the numerical values into a spike encoding should not have a significant impact,
but in the hardware itself, some noise can be added.

A.3. OVERVIEW OF SOFTWARE COMPONENTS

During my thesis I wrote many scrips/programs. Here a small overview is given what languages have
been used:

o Python - for the machine learning and dataset scripts (Anaconda for the platform).
o MATLAB - in-house simulator, machine learning, and analysis of results.

o Linux Bash - for running automatically experiments.

o C/C++ - for validating SNN architectures or testing a SNN method.

o Rust - for some quick analyses of results.

o« HDL - for the counting method.

o Web-languages - To keep track of report from the experiments for analysing.
The next part will give an overview of the main libraries that have been used. There are many more

o Scikit-learn [60] - machine learning toolbox.
o Keras - deep learning toolbox.

e SNNSIM - the in-house simulator.

o Brian2 - spiking neural network toolbox.

o pyNN - language for building neural networks independent from the simulator.
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In the following figure A.2 part of the dataset is shown how each frame was labelled. Each column
represents a frame. Where the last column shows the actual label, each row represents a hand gesture

video.
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Part of the labelled frames in the hand gesture radar videos.
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