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Abstract. A novel dynamic economic model-predictive control strategy is presented that improves wind farm
power production and reduces the additional demands of wake steering on yaw actuation when compared to an
industry state-of-the-art reference controller. The novel controller takes a distributed approach to yaw control op-
timisation using a free-vortex wake model. An actuator-disc representation of the wind turbine is employed and
adapted to the wind farm scale by modelling secondary effects of wake steering and connecting individual tur-
bines through a directed graph network. The economic model-predictive control problem is solved on a receding
horizon using gradient-based optimisation, demonstrating sufficient performance for realising real-time control.
The novel controller is tested in a large-eddy simulation environment and compared against a state-of-the-art
look-up table approach based on steady-state model optimisation and an extension with wind direction preview.
Under realistic variations in wind direction and wind speed, the preview-enabled look-up table controller yielded
the largest gains in power production. The novel controller based on the free-vortex wake produced smaller gains
in these conditions while yielding more power under large changes in wind direction. Additionally, the novel
controller demonstrated potential for a substantial reduction in yaw actuator usage.

1 Introduction

Wind farm flow control aims to improve wind turbine perfor-
mance by reducing aerodynamic wake interaction between
turbines which are often placed in large, densely spaced wind
farms to effectively make use of limited available space (van
Wingerden et al., 2020). Strategies such as wake redirec-
tion through yaw misalignment and dynamic induction con-
trol with blade pitch variations have been shown to achieve
improvements in power production and reductions in fatigue
loading (Meyers et al., 2022).

Wake redirection makes use of intentional yaw misalign-
ment to steer wakes away from downstream turbines. When
effectively applied, a small power loss is incurred on the up-
stream wind turbine which results in a larger power gain on
the downstream turbine. This has been demonstrated in wind
tunnel experiments (Campagnolo et al., 2016; Bastankhah
and Porté-Agel, 2019; Campagnolo et al., 2020) and sev-

eral field studies (Howland et al., 2019, 2022; Fleming et al.,
2020, 2021; Doekemeijer et al., 2021; Simley et al., 2021a).

The control strategies to apply wake steering in wind farms
may be roughly divided into model-based and model-free ap-
proaches. The latter attempts to synthesise control signals di-
rectly from measurements of the wind farm. In wind tunnel
experiments, a closed-loop, model-free yaw controller (Cam-
pagnolo et al., 2016) and extremum-seeking control (Kumar
et al., 2023) have been demonstrated to produce power gains
from wake steering under steady flow conditions. Extremum-
seeking control has also been demonstrated in large-eddy
simulation (LES) (Ciri et al., 2017). These data-driven meth-
ods have not been tested under realistic time-varying wind di-
rection variations. To improve interpretability of these meth-
ods, Sengers et al. (2022) introduce a purely data-driven
wake model with physically explainable parameters. How-
ever, it still requires wake measurements which are not gen-
erally available in the field.

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



722 M. J. van den Broek et al.: Dynamic wind farm flow control using free-vortex wake models

Recent work on wake steering uses a model-based ap-
proach that embeds prior knowledge and allows better gen-
eralisation to different operating conditions. The steady-state
models in the FLORIS toolbox (NREL, 2022), such as the
cumulative-curl (Martínez-Tossas et al., 2019) and Gauss-
curl hybrid (King et al., 2021) models, provide an approx-
imation for the time-averaged velocity profiles in the wake.
These models allow efficient optimisation of steady-state op-
timal yaw angles for wake steering to generate look-up ta-
bles (LUTs) with yaw offsets for varying wind directions.
These LUT approaches have been used, for example, for
yaw control under steady conditions in LES (Gebraad et al.,
2016), in a wind tunnel setting with simulated wind direc-
tion changes (Campagnolo et al., 2020), and in a closed-
loop control framework with model adaptation under time-
varying inflow in LES (Doekemeijer et al., 2020). Howland
et al. (2022) have most recently demonstrated the effective
use of a tuned steady-state model for wake steering in a field
experiment.

However, the validity of steady-state models may be lim-
ited under realistic, time-varying inflow conditions. The in-
clusion of wake dynamics is essential for active power con-
trol in wind farms (Shapiro et al., 2018), and the dynamics
of realistic wind direction variations need to be accounted
for in control optimisation (Kanev, 2020). For that purpose,
some studies have adapted the steady-state engineering wake
models to include dynamics (Lejeune et al., 2022; Becker
et al., 2022b; Branlard et al., 2023) or investigated wind di-
rection preview to account for the dynamics of wake prop-
agation (Simley et al., 2021b; Sengers et al., 2023). On
the other hand, a physics-based approach may naturally in-
clude the dynamics of wake propagation. The use of LES
for control optimisation showed promising results (Munters
and Meyers, 2018), and recent work has approached real-
time control by coarsening mesh resolution and adjusting
control parameters (Janssens and Meyers, 2023). An approx-
imation of wind farm flow using two-dimensional computa-
tional fluid dynamics (Boersma et al., 2018; van den Broek
and van Wingerden, 2020) has been attempted and proven
useful for induction control (van Wingerden et al., 2017; Vali
et al., 2019), but it inherently lacks the wake dynamics re-
quired to capture the wake deflection under yaw misalign-
ment (van den Broek et al., 2022b).

A dynamic, control-oriented free-vortex wake model
(FVW) of the wind turbine wake was developed for gradient-
based control optimisation and shown to capture sufficient
wake flow dynamics to model wake deflection for con-
trol (van den Broek et al., 2022a). The economic model-
predictive control implementation yielded promising results
for wake steering under time-varying inflow conditions. The
model formulation based on Lagrangian particles allows
greater flexibility compared to mesh-based flow calculations
(van den Broek et al., 2023b). Additionally, the model has
been validated for power predictions for wind turbines oper-
ating under yaw misalignment (van den Broek et al., 2023a).

Despite its flexibility, the optimisation with the FVW is cur-
rently limited to single wakes by the stability of the free-
vortex methods and the exponential increase in computa-
tional complexity with larger numbers of vortex elements.

To extend economic model-predictive control with the
FVW to larger wind farms, this paper develops a distributed
approach to control optimisation for wake steering under
time-varying inflow conditions. The performance of the
novel control strategy will then be evaluated in LES against
the greedy control baseline and, more importantly, a refer-
ence controller based on the industry state-of-the-art use of
a LUT with steady-state optimised yaw offsets, as well as an
extension with wind direction preview. In addition to syn-
thetic wind signals, a set of measured wind direction and
wind speed variations will be used to evaluate performance
in a simulated section of the Hollandse Kust Noord (HKN)
wind farm.

The contribution of this paper is twofold: (i) develop-
ment of a distributed approach to dynamic economic model-
predictive control for wake steering with a free-vortex wake
model and (ii) validation of the control strategy under realis-
tic, turbulent inflow conditions with wind direction and wind
speed variation.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the FVW model for the wind turbine wake
and the coupling to facilitate farm-scale optimisation. The
model-predictive control strategy is developed in Sect. 3.
The reference controllers and simulation test cases for val-
idation are defined in Sect. 4. The results are then discussed
in Sect. 5, and, finally, the conclusions are shown in Sect. 6.

2 Model development

The core of the novel dynamic model-predictive control strat-
egy is the FVW model, briefly described in Sect. 2.1. In
order to implement this model in a farm-scale controller,
Sect. 2.2 presents a strategy for incorporating secondary
steering effects when a turbine operates in the wake of a yaw-
misaligned turbine. Section 2.3 then illustrates the strategy
for connecting wind turbines into wind farms by construct-
ing a directed graph connecting upstream and downstream
neighbouring turbines.

2.1 Wake model for control optimisation

The wake model used for yaw control optimisation is an
actuator-disc representation of the wind turbine modelled
with the free-vortex wake as developed in van den Broek
et al. (2022a) and validated for power predictions for wake
steering control with yaw misalignment (van den Broek et al.,
2023a), which yielded the current model parameters listed
in Table 1. The model, illustrated in Fig. 1, assumes a uni-
formly loaded actuator disc that sheds vorticity from its edge.
These rings of vorticity are discretised in straight-line vortex
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Table 1. Numerical parameters for the FVW actuator-disc model.

Time step 1t · u∞/D 0.3
Number of rings nr 40
Elements per ring ne 16
Initial core size σ/D 0.16
Turbulent growth δ 100
Yaw exponent – thrust βt 1
Yaw exponent – power βp 3

Figure 1. Free-vortex wake model of the wind turbine wake. Rings
of vorticity discretised in straight-line vortex filaments are shed
from the wind turbine rotor modelled as an actuator disc forming a
skeletal representation of the wake. The wake develops the charac-
teristic curled shape for turbine operation under yaw misalignment.

filaments and advected downstream as Lagrangian particles,
forming a skeletal representation of the wind turbine wake.

A non-linear state-space system is defined for the model
dynamics which updates the model state vector qk ∈ Rns ,
with the number of states ns at discrete time step k as

qk+1 = f (qk,ψk,ak,u∞), (1)

where the state vector contains the start and end points, vor-
ticity, and core size for all vortex filaments. The turbine yaw
headingψk and the induction factor ak are control inputs, and
u∞ is the free-stream velocity. The yaw misalignment angle
γ = θ −ψ is the difference between turbine heading ψ and
wind direction θ .

At fixed time intervals 1t , a vortex ring discretised in ne
vortex filaments is generated at the edge of the rotor. At the
same time, a vortex ring at the end of the wake is removed
to maintain a finite wake with nr rings. The vorticity 0 gen-
erated along the edge of an actuator disc is directly related
to the pressure differential generated by the disc (van Kuik,
2018),

0 =1t
∂0

∂t
=1t

1
ρ

T

Ar
, (2)

where ρ is the air density, Ar is the area swept by the rotor,
and T is the thrust force. The vortex filaments are convected
over time with a rate ẋ ∈ R3

ẋ = uind(x)+u∞(x), (3)

which is the combination of the free-stream velocity u∞ ∈
R3 and the total velocity induced by all filaments uind ∈ R3

at the vortex position x ∈ R3.
The induced velocity of an individual vortex filament ui ∈

R3 at a point x0 ∈ R3 according to the Biot–Savart law (Katz
and Plotkin, 2001; Leishman, 2000) is

ui(x0)=
0

4π
r1× r2

||r1× r2||2
r0 ·

(
r1

||r1||
−

r2

||r2||

)
, (4)

where the relative positions r ∈ R3 for a vortex filament start-
ing at x1 ∈ R3 and ending at x2 ∈ R3, with vortex strength 0,
are defined as

r0 = x2− x1, (5)
r1 = x1− x0, (6)
r2 = x2− x0. (7)

A Gaussian core with core size σ is included to regularise
the singular behaviour of the induced velocity close to the
vortex filament,

ui,σ (x0)= ui(x0)
(

1− exp
(
−
||r1× r2||

2

σ 2||r0||2

))
. (8)

The effects of turbulent and viscous diffusion are approxi-
mated using the growth of the vortex core

σk+1 =

√
4αδν1t + σ 2

k , (9)

which is Squire’s modification of the diffusive growth of the
Lamb–Oseen vortex core (Squire, 1965), with the discrete
time step k, the constant α = 1.25643, effective turbulent vis-
cosity coefficient δ to tune core growth, kinematic viscosity
ν= 1.5× 10−5 m2 s−1, and time step 1t .

The thrust T and aerodynamic power pa for the rotor
model are calculated as

T = ct ·
1
2
ρAru

2
∞cosβt (γ ), (10)

pa = cp ·
1
2
ρAru

3
∞cosβp (γ ), (11)

where ct and cp are, respectively, the thrust and power co-
efficient and u∞ is the magnitude of the free-stream inflow
velocity. For performance evaluation in terms of available
power for downstream turbines, the free-stream velocity u∞
in Eq. (11) is replaced by the rotor-averaged velocity ur at the
position of the downstream rotor, which includes the veloc-
ity deficit from the aerodynamic wake. This rotor-averaged
velocity is calculated as

ur =

∣∣∣∣∣
∣∣∣∣∣ 1
nu

nu∑
i=1

u∞(pi)+uind(pi)

∣∣∣∣∣
∣∣∣∣∣
2

, (12)

where nu sampling points pi ∈ R3 are evenly distributed over
the rotor area.
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The yaw dependence of the coefficients can be tuned with
the cosine exponents βt and βp for thrust and power, respec-
tively, as seen in, for example, Hulsman et al. (2022). The
current values for these exponents are based on work by
van den Broek et al. (2023a), although they may differ in
reality (Howland et al., 2020; Li and Yang, 2021) and, thus,
may require tuning for different turbine types or atmospheric
conditions. Additionally, a dependence on thrust force (Heck
et al., 2023) or on wind field heterogeneity (Liew et al., 2020)
is not included in the current work.

The induction factor is used to calculate the thrust coeffi-
cient and power coefficient for the model as

ct(a)=

{
4a(1− a) if a ≤ at,

ct1− 4(
√
ct1− 1)(1− a) if a > at,

(13)

cp(a)= 4a(1− a)2, (14)

with parameter ct1 = 2.3 and the induction at the transition
point at = 1− 1

2
√
ct1 (Burton et al., 2001). In the current

study, the induction factor is fixed to the optimum value
known from momentum theory, a = 0.33; however it may
also be used as a degree of freedom for induction control or
to adapt the model to above-rated operating conditions.

2.2 Modelling secondary steering

One important effect that is not immediately accounted for in
the FVW is the cumulative effect of wake steering. Wind tur-
bines in the wake of a yaw-misaligned turbine need to yaw
less to achieve the same wake deflection as an isolated tur-
bine, as shown in simulation (Fleming et al., 2018) and wind
tunnel experiments (Bastankhah and Porté-Agel, 2019). This
cumulative effect of wake deflection is attributed to cross-
flow on the waked rotor and the trailing vortices from the
yaw-misaligned turbine. The secondary steering effects have
been accounted for in a control-oriented model in FLORIS
through the calculation of an effective yaw angle (King et al.,
2021).

A simulation study is used to develop a method for incor-
porating these secondary steering effects in the current wake
model. The study is performed with LES using settings as
described in Sect. 4.6. The turbulent inflow has an average
speed of 9 ms−1. The effects of yaw misalignment are mea-
sured for one, two, three, and five turbines with a 5D inter-
turbine spacing, where D is the rotor diameter. The layout is
aligned with the wind direction. For three and fewer turbines,
the domain size is 4 km× 2 km× 1 km. The five-turbine test
is performed on a 6 km× 2 km× 1 km domain. Cross-stream
flow slices are recorded at 1D intervals downstream from the
first turbine. The wake deflection, illustrated in Fig. 2, is cal-
culated based on the average flow over the final 1500 s of the
2000 s simulations.

Based on these simulation results, we present a method
for the calculation of an induced yaw angle which is used
to propagate the effects of secondary steering to downstream

turbines with minimal additional complexity. It differs from
the solution proposed by King et al. (2021) because the in-
duced yaw effects are calculated directly from the sampled
velocity.

For downstream neighbours, the velocity is sampled over
a rotor-disc area. The effective flow direction θeff is calcu-
lated from the velocity components in the horizontal plane.
We take the root mean square of the wind direction θu ∈ Rnu

sampled over nu points to get one effective flow direction,

θeff = RMS(θu). (15)

The proposed induced yaw angle γind is then the difference
between the effective inflow and the nominal wind direction,

γind = θeff− θ. (16)

The optimised yaw offset γ ? is the result of the optimisa-
tion with the FVW model. The new induced yaw angle re-
duces this optimised yaw offset to yield the commanded yaw
angle γref, which is sent to the wind turbine

γref = γ
?
− γi

with

{
γi =max(min(γ ?,γind),0) if γ ? > 0,

γi =min(max(γ ?,γind),0) otherwise.
(17)

The conditional application of the induced yaw ensures
the yaw reference does not compensate for induced yaw to
achieve zero offset.

Figure 2 shows how this induced yaw angle contributes to
approximating the secondary steering effects. The wake de-
flection is defined as the position where potential power from
a virtual rotor placed in the stream would be minimal, as used
in, for example, Schottler et al. (2018) and van den Broek
et al. (2023a). The FVW results are based on individually
simulated wakes which have been combined using the root-
sum-square superposition of the wake deficit. The induced
yaw angles from the first two upstream turbines for each tur-
bine are added to the actual yaw misalignment with respect
to the free-stream inflow. The downstream turbines operate
at a smaller yaw offset magnitude but achieve similar levels
of wake redirection. This captures the secondary steering ef-
fects for implementation in the control optimisation strategy.
Note that the induced yaw effects are not applied to turbines
that are operating without yaw offset, as it would lead to un-
wanted offsets.

The downstream deflection from the second turbine on-
wards is captured better for negative yaw misalignments.
Wake redirection with positive yaw offsets appears to lead
to more deflection on downstream turbines in the LESs due
to rotating flow in the wake and ground effects, but mod-
elling this asymmetry is out of the scope of this paper. In
future work, an asymmetric thrust–yaw curve could be im-
plemented or further refinements could be incorporated in a
model adaptation stage in a closed-loop control implementa-
tion.

Wind Energ. Sci., 9, 721–740, 2024 https://doi.org/10.5194/wes-9-721-2024
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Figure 2. Deflection of the wake centre comparing the FVW mod-
elling of induced yaw effects with time-averaged flow from LES.
The individual FVW wakes have been combined for this compari-
son using a root-sum-square superposition of the wake deficit. The
cumulative effect of wake steering is captured since a reduced yaw
offset is required for similar levels of wake deflection when operat-
ing in the wake of yaw-misaligned turbines. The model is symmet-
ric, whereas the LES data show greater wake deflection from the
second turbine onwards when implementing positive yaw misalign-
ments.

Figure 3. Selection of up- and downstream neighbours based on
arc sectors around the inflow wind direction. The resulting directed
graph connects the wind turbine in the farm in the direction of flow.

2.3 Directed graph network

The communication protocol between upstream and down-
stream neighbours is constructed based on a directed graph
network, similar to, for example, the work by Starke et al.
(2021). The structure of this network naturally changes with
the wind direction as wakes propagate with the flow through
the farm. The relevant neighbouring turbines are selected
based on arc sectors around the wind turbine as illustrated
in Fig. 3. The arc sectors are defined by a radius of influence
and a spreading angle around the predicted inflow. Separate
directed graphs are constructed for the upstream and down-
stream connection, although they may be symmetric.

The upstream graph is used for propagating the induced
yaw effects to account for the secondary effects of wake

Figure 4. Representation of the wakes in a wind farm using a net-
work of FVW models, with an indication of the graph connecting
the wakes which have been individually simulated. The highlighted
wakes show a wake and its immediate upstream and downstream
neighbours. The upstream wake simulation provides induced yaw
estimates for incorporating secondary steering in the control sig-
nal for the downstream turbine. The downstream neighbour is ac-
counted for in the optimisation for wake steering to minimise nega-
tive effects from wake interaction.

steering. The downstream graph is used to determine which
turbines are relevant in the optimisation for wake redirection
control. Simulated wake length and prediction horizon are
both important in determining suitable arc radius settings;
downstream turbines, for example, should only be included
in the optimisation problem if adequately covered by the sim-
ulated wake length and the prediction horizon. The spreading
angle limits the connection to only those wakes that may ac-
tually interact through the streamwise wake propagation. It
should be wide enough to cover the width of the wake and
possible deflection due to yaw misalignment. An example
network of FVW models is shown in Fig. 4 using a sym-
metric upstream and downstream graph, illustrating how the
wake models are connected along the flow direction through
the farm controls.

3 Controller synthesis

In this section we develop an economic model-predictive
wind farm controller around the network of FVW models.
Section 3.1 describes a reduction in the dimensionality of the
optimisation using a B-spline basis. The optimisation prob-
lem for the open-loop receding horizon control strategy is
then defined in Sect. 3.2.

3.1 Basis functions for control signal

Previous work (van den Broek et al., 2022a, 2023b) uses
a control signal that may be freely chosen at every sim-
ulation time step. However, the current implementation of
the model uses forward-mode automatic differentiation for
constructing the gradients for optimisation, as opposed to
the manual derivation of the adjoint method developed by

https://doi.org/10.5194/wes-9-721-2024 Wind Energ. Sci., 9, 721–740, 2024
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van den Broek et al. (2022a). The automatic differentiation
framework yields additional flexibility in model development
and facilitates improvements in computational performance
by minimising code complexity. Furthermore, it drastically
reduces the memory requirements for gradient calculation
compared to the manual adjoint derivation, which required
storing all partial derivatives at every time step. As a trade-
off, it comes with a computational cost that scales linearly
with the number of control degrees of freedom. For that rea-
son, the current work aims to limit the possible search space
to improve optimisation performance.

The dimensionality of the problem is reduced by con-
structing the control signal using B-splines. For the optimi-
sation, the control signal needs to be defined over a predic-
tion horizon of Nh steps from the current step k = k0. The
reference turbine yaw heading ψ is calculated from a spline
s(k,c) defined on the range k ∈ [k0;k0+Nh] as

ψk = s(k,c), (18)

at time step k with nb the number of B-spline basis func-
tions with the corresponding coefficients c ∈ Rnb . Figure 5
illustrates the construction of a control signal from an exam-
ple B-spline basis with nb = 7 splines, starting at k0 = 0 and
with a prediction horizon Nh = 80 steps.

To further reduce the dimensionality, not all coefficients
are left to be free variables in the optimisation problem. The
first coefficient is chosen equal to the current yaw angle to en-
sure a continuous yaw signal, c1 = ψk0 . The turnpike effect
(Dorfman et al., 1958), also illustrated by van den Broek et al.
(2022a), leads turbines to always return to greedy control to-
wards the finite optimisation horizon. Therefore, in the ex-
ample illustrated in Fig. 5, the final three coefficients, c5,c6,
and c7, are chosen equal to the wind direction, which leaves
the remaining coefficients, c2,c3, and c4, free as the control
parameters for the optimisation problem.

The smoothness of the B-spline basis improved the be-
haviour of the gradient for optimisation with the FVW in trial
optimisations. The basis functions average out noisy contri-
butions to the gradient and smoothen the optimisation land-
scape. This allows the optimisation problem in the current
work to be defined with a lower input regularisation cost
while still yielding smooth control signals. The dimensional-
ity reduction from the use of basis functions does limit some
of the flexibility in the control solutions that can be found
compared to fully free optimisation.

3.2 Distributed optimisation

In order to scale the model-based control approach with the
FVW to the wind farm scale, a distributed approach is imple-
mented as illustrated in Fig. 6 and described in Algorithm 1.
In this approach, each individual turbine has its own wake
model. The optimisations for all turbines are then performed
in parallel, where each of the turbines attempts to optimise

Figure 5. B-spline basis with nb = 7 splines for constructing a yaw
control signal over the prediction horizon. The first coefficient is
fixed to the preceding yaw reference for continuity, c1 = ψk0 . The
final three coefficients, c5,c6, and c7, are set equal to the wind di-
rection θ at the associated time steps because the optimisation re-
turns to greedy control towards the finite horizon. The remaining
three coefficients, c2,c3, and c4, are free in the optimisation.

its control signal considering wake effects on its immedi-
ate downstream neighbours given an expected inflow over
the prediction horizon that is kept fixed during the itera-
tions of the non-linear solver. This is an economic model-
predictive control problem because the extremum for power
maximisation is not known a priori, whereas conventional
model-predictive control is concerned with driving an objec-
tive function to zero, such as for tracking a power reference
(Grüne and Pannek, 2017).

The full control optimisation problem is solved in a reced-
ing horizon control scheme, in which Nc ≥ 1 is defined to
be the number of samples executed before re-optimisation.
Larger values reduce the computational requirements but re-
duce flexibility under changing predictions as the control sig-
nal is re-optimised less frequently. At every re-optimisation
step, information is shared between turbines in the farm.

The yaw reference for each individual turbine is defined
by the coefficients of the spline basis, of which several are
fixed and the nm free coefficients are gathered in the control
vector m ∈ Rnm . For every turbine, we construct the scalar
objective function J : Rnm → R to optimise the mean power
production over the prediction horizon for the current turbine
and its immediate downstream neighbours

J (m)=
k0+Nh∑
k=k0

(
R(ψk −ψk−1)2

+

nt,sub∑
i=1

Qpk,i

)
. (19)

The objective function uses an initial condition qk0
for the

wake model at the current time step k = k0 with the state up-
date according to Eq. (1) using a set of free-stream velocity
predictions u∞ over the horizon. The power p of turbine i
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Figure 6. The finite-horizon optimisation problem for economic model-predictive control is solved in parallel with a wake model for each
turbine. A central controller communicates with the wind farm to update control set points and incorporates the predicted inflow. It updates
the graphs connecting upstream and downstream neighbours and distributes information. The current control framework is open loop and
does not utilise wind farm measurements for state estimation or parameter updates.

at time step k is calculated following Eq. (11) and the yaw
heading reference ψ following Eq. (18). The output weight
is Q< 0 such that minimisation of the objective maximises
mean power production over the horizon and the input weight
R ≥ 0 balances the output and actuation cost. The number of
turbines nt,sub is the size of the subset of the wind farm con-
sisting of the current turbine and its immediate downstream
neighbours in the directed graph.

The objective function is then implemented in the optimi-
sation problem

min
m
J (m) subject to |γk| ≤ γmax, (20)

where the maximum yaw offsets γmax are enforced as hard
limits relative to the predicted inflow. The optimised yaw sig-
nal does not include the induced yaw effects; these are taken
into account before sending the control signals to the wind
turbine yaw controller for implementation in the wind farm.
The problem is solved with the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) optimisation algorithm (Byrd et al., 1995),
although this approach was ineffective in previous work
(van den Broek et al., 2022a) because of the noisy optimi-
sation landscape. The smoothing effect of the B-spline basis
enabled better convergence trial optimisations.

The controller framework presented here is operated in
open loop as data assimilation for state estimation and pa-
rameter updates are beyond the scope of the current work.
Additionally, the management of fatigue loading is impor-
tant for turbine operation but left out of the control objective.
Minimisation of fatigue loads could be achieved by integrat-
ing a surrogate model for turbine loads (Shaler et al., 2022;
Bossanyi, 2022), adding an associated cost to the objective
function, and subsequently appropriately balancing objective
weights.

Algorithm 1 Free-vortex wake controller.

initialise wind farm from configuration
for turbine in wind farm do

construct free-vortex wake model
q0← run transient with initial inflow

end for
k← 0
kfinal← tfinal/1t
while k < kfinal do
u∞← inflow over prediction horizon
graphs← update graphs with u∞
for turbine in wind farm do

position, controls← downstream neighbours from graphs
m← minimise J (m) with u∞, position, controls
c← combine fixed and optimised coefficients
ψ?← spline with coefficients c
for i in 1 to Nc do
qk+i← update model state qk with ψ?, u∞
γind← calculate induced yaw at position

end for
γind← upstream neighbours (≤ 2) from graphs
γref← reduce γ ? with γind

end for
k← k+Nc

end while

4 Methods for controller validation

Given the novel control strategy constructed around the FVW
model, it is imperative to validate its control performance
with a suitable reference controller and realistic operating
conditions. Section 4.1 describes the turbine yaw controller
used to implement the reference signals from the wind farm
controllers. The reference wind farm controllers are intro-
duced in Sect. 4.2, followed by the settings for the FVW
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controller in Sect. 4.3. The wind farms for the test cases are
defined in Sect. 4.4, and a realistic time-varying wind signal
for driving the simulation study is provided in Sect. 4.5. Fi-
nally, Sect. 4.6 describes the simulation environment that is
used to measure controller performance.

4.1 Turbine yaw controller

The first aspect of testing the control strategy in a realistic
wind farm setting is the implementation of a local turbine
yaw controller. This yaw controller is used for all control
strategies to follow the specified reference signal. The basic
yaw controller is implemented based on a dead-band con-
trol strategy (Kanev, 2020) with an 8° dead band. When the
magnitude of the yaw error exceeds the dead band, the tur-
bine will yaw with a constant 0.3 ° s−1 yaw rate until the error
reaches zero. Additionally, to avoid persistent unintentional
yaw misalignment, error integration is implemented similar
to Kragh and Fleming (2012). The turbine will yaw until the
error reaches zero if the cumulative error exceeds the equiv-
alent of 5 ° of misalignment for 5 min. This is set more strict
than in the original work to facilitate a fair comparison of the
control strategies.

4.2 Reference wind farm controllers

The standard baseline control strategy for wind farm con-
trol is greedy control, where each turbine operates individ-
ually to track the inflow wind direction without considering
collective wind farm performance. This baseline is used in
the current study to provide normalised output measures and
quantify relative gains. However, a reference wake steering
controller is necessary to assess the potential for dynamic
model-predictive control.

The current industry state of the art for implementing wake
steering uses look-up tables with yaw angles optimised using
steady-state engineering models. Therefore, we use FLORIS
(NREL, 2022) with the cumulative-curl model (Martínez-
Tossas et al., 2019) and the serial-refine optimisation strategy
(Fleming et al., 2022) to generate a look-up table with yaw
angle offsets optimised for power production in steady state.
A 2° hysteresis is applied on the wind direction signal to
avoid excessive yaw actuation around wind directions where
the yaw offset in the look-up table changes sign (Kanev,
2020).

The model-predictive controller assumes a preview of the
inflow over the optimisation horizon. For fair comparison,
the greedy controller and the LUT controller use the same
inflow information. However, these controllers lack a pre-
view and therefore utilise only the instantaneous flow condi-
tions. Recent work by Simley et al. (2021b) and Sengers et al.
(2023) explores LUT control with a preview of the wind di-
rection, selecting yaw offsets from the look-up table based on
the inflow direction at a time in the future. With these stud-
ies in mind, we implement a preview-enabled look-up table
(PLUT) controller to study whether results similar to the eco-
nomic model-predictive controller might be realised by util-
ising a simple control strategy. To do so, we use the same pre-
optimised yaw offsets and hysteresis strategy that the LUT
controller is based on. However, the yaw reference is selected
based on the inflow direction θ at a time tpreview = t +1t .

We relate the preview time to the time it takes for the ef-
fects of control actions to propagate to downstream turbines.
A simple formulation relates the preview window 1t to tur-
bine spacing 1x and the free-stream wind speed u∞ as

1t =
1x

fw · u∞
, (21)

where fw ≤ 1 is an approximate fraction of the free-stream
wind speed at which the wake propagates. Simley et al.
(2021b) and Sengers et al. (2023) find an optimal preview
window which, for their configuration, is equivalent to fw =

0.9 and fw = 1.0, respectively. For now, we implement the
control strategy with fw = 1 and an inter-turbine spacing of
1x/D = 5 which corresponds with the spacing along the
main rows of wind turbines where wake steering will be ap-
plied for the layouts presented in Sect. 4.4. Note that this a
rough preview implementation; further exploration and re-
finement are outside the scope of the current work.

4.3 FVW controller settings

In the current study, the optimisation problem at the core of
the FVW controller is solved over a prediction horizon of
Nh = 80 steps. In order to save some computational expense,
the first Nc = 5 samples of the optimised control signal are
executed before re-optimisation, which is the first 6 % of the
prediction horizon. The output weight is set to Q=−1, and
the input weight R = 0.001 balances the output and actua-
tion cost. The optimisation parameters were chosen based on
results of exploratory parameter variations. The yaw offset
results from the optimisation are limited to maximum yaw
offsets of γmax = 30°.

A B-spline basis with seven coefficients is chosen to pro-
vide enough degrees of freedom for control on the given pre-
diction horizon, which corresponds to the example illustrated
in Fig. 5. The first coefficient is chosen equal to the current
yaw angle at time step k0 to ensure a continuous yaw signal,
c1 = ψk0 , and the final three coefficients, c5,c6, and c7, are
chosen equal to the predicted wind direction at the associated
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time steps. The middle three coefficients remain free as the
control parameters for the optimisation problem and are used
to define the control vector m= [c2 c3 c4]

T.
The directed graph network is constructed using a spread-

ing angle of 30° and a range of 8D for both the upstream
and downstream connections. The 8D range is the limit for
consistent power predictions with the current settings of the
FVW model because a finite-length wake is simulated.

4.4 Wind farm definitions

The test wind farms use the DTU 10 MW reference turbine
(Bak et al., 2012) with a rotor diameter D= 178.3 m and a
hub height of 119 m.

The first test case is a three-turbine wind farm (TTWF),
illustrated in Fig. 7, which is a relatively simple proof of
concept to test the novel control strategy under a synthetic
time-varying wind direction. The turbines are aligned with a
240° wind direction and spaced 5D apart. The case provides
room for transitions between greedy control and wake steer-
ing. It also requires the controller to account for secondary
steering effects to avoid excessive yaw misalignment.

The second wind farm test case is a subset of the Hollandse
Kust Noord (HKN) wind farm, scaled by rotor diameter from
the actual turbine to the DTU 10 MW reference turbine. The
10 turbines in the south-west corner are selected as illus-
trated in Fig. 7. For the first HKN test case, labelled HKNA,
a synthetic wind direction signal is constructed to test con-
troller performance for several transients and steady-state
wind directions. The wind direction signals for the TTWF
and HKNA cases are designed specifically to test the con-
troller performance in the respective wind farm layouts.

4.5 Real-world wind signal

In order to set up realistic wind variations for the wind farm,
we make use of publicly available wind measurements. The
raw data from a ZephIR 300 m wind lidar at the HKN lo-
cation are adapted from the KNMI Data Platform (KNMI,
2023).

Two 7 h time series of wind speed and wind direction
are selected from the available measurements and illustrated
in Fig. 8. These time series drive the LES for test cases
HKNB and HKNC. The selected data have wind directions
of 180°≤ θ ≤ 270° such that the south-west inflow bound-
aries can be used for driving the LES domain. Furthermore,
the wind speeds are such that the wind turbines operate in
region II under below-rated conditions. The measurements
record wind conditions at 133 m above sea level, which is
close to the 119 m hub height of the DTU 10 MW reference
turbine.

The raw data are cleaned up and interpolated from the
original samples at approximately 17 s intervals to 1 s sam-
ples with cubic splines. A low-pass filter with a 1/600 Hz
cut-off frequency is applied to generate a suitable signal for

Figure 7. Layout of the wind farm test cases and simulation do-
mains, as well as angle definitions for wind direction θ , turbine
heading ψ , and yaw misalignment γ = θ −ψ . The three-turbine
wind farm has a 5D spacing and is aligned along θ = 240°. The 10-
turbine subset of Hollandse Kust Noord (HKN) is the south-west
corner of the wind farm, scaled to the 10 MW reference turbine.

Figure 8. Time series of lidar measurements of wind direction and
wind speed at the HKN location (KNMI, 2023). The raw data are
post-processed and low-pass filtered with a 1/600 Hz cut-off fre-
quency. Two 7 h time series with wind direction 180°≤ θ ≤ 270°
and below-rated wind speeds are selected for driving the realistic
wind variations in the LES.

driving the LES. Higher-frequency variations are naturally
reintroduced in the turbulent variations in the simulation.

4.6 Simulation environment

The controllers are tested in large-eddy simulations (LESs)
with turbulent precursors using SOWFA (Simulator fOr
Wind Farm Applications) (Churchfield et al., 2012). Turbines
are modelled with a rotating actuator-disc model of the DTU
10 MW reference turbine (Bak et al., 2012).

The three-turbine wind farm is simulated in a
4 km× 2 km× 1 km domain. The HKN cases are run
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in a 5 km× 5 km× 1 km domain. The positioning of the
turbines in the domains is illustrated in Fig. 7. The base cell
size is set to 20 m in all directions. A single refinement is
applied to the bottom layer (z< 300 m) to 10 m cells. This
yields a total of approximately 9.7× 106 grid cells. The
simulations are run with a 0.5 s time step.

Turbulent precursors are prepared before the controller
simulations by simulating for 20 000 s to develop turbulence
and then forcing the specified wind direction and wind speed
variations. The wind direction and speed appear to change
almost uniformly throughout the flow field.

The use of the same precursor data for all control strategies
allows a comparison of the differences in output measures
originating from the control.

5 Results and discussion

The performance of the novel FVW controller is first eval-
uated on the three-turbine wind farm in Sect. 5.1. Subse-
quently, it is tested on the 10-turbine subset of HKN with
synthetic wind direction variation in Sect. 5.2 and with real-
istic wind variations in Sect. 5.3. Section 5.4 comments on
the limitations of optimisation with finite-length wakes on a
finite horizon, and Sect. 5.5 provides a perspective towards
closed-loop control. A benchmark of computational perfor-
mance is presented in Sect. 5.6 to discuss the steps towards
real-time optimisation. Finally, Sect. 5.7 discusses the poten-
tial for preview-enabled look-up table control.

5.1 Three-turbine wind farm

The three-turbine test case is a relatively simple proof of con-
cept to test the novel control strategy. The yaw offsets imple-
mented by the three controllers are illustrated in Fig. 9. In-
tentional yaw misalignment is applied to turbines 1 and 2 in
all control strategies. The maximum offsets utilise the ±30°
bounds applied to the optimisation problem. No offsets are
applied to turbine 3, which is the most downstream turbine.
It is always controlled towards alignment with the local free-
stream wind direction for the range of wind directions stud-
ied here. The magnitude of yaw misalignment on turbine 2 is
lower than on turbine 1 for both FVW and LUT controllers.
This is the result of accommodating for secondary steering
effects in the yaw control strategy. The induced yaw effect
from operating in the wake of yaw-misaligned turbine 1 low-
ers the required angle of misalignment for a similar level of
wake redirection.

An important feature of the yaw reference generated by
the novel FVW controller is the anticipation of changes in
wind direction – the turbines yaw before the wind has actu-
ally rotated. The LUT controller, on the other hand, reacts
to changes as they happen. The basic PLUT implementation
realises an effect on the yaw reference for turbines 1 and 2
that is similar to the FVW controller behaviour by antici-
pating the transients. However, turbine 3, which is the most

Figure 9. Yaw offsets realised for the three-turbine test case. Tur-
bines 1 and 2 implement intentional yaw misalignment for wake
steering around turbine 3. The FVW controller anticipates wind di-
rection changes and accounts for secondary steering effects.

downstream, tracks the instantaneous wind direction in the
FVW controller but yaws in advance of the transients with
the PLUT approach. This leads to a longer time spent in
misaligned operation, where yaw-aligned operation would be
optimal.

The gains in power production of the FVW controller over
the LUT appear mainly during the transients in wind di-
rection as illustrated in Fig. 10, with the PLUT controller
achieving similar results. The power lost due to misaligned
operation is initially sacrificed as the controller anticipates
changes, which results in a gain in production following the
transient. The FVW controller makes use of the dynamics
of propagation of the wakes for long-term gains in power
production, which can be seen in the normalised energy E
produced since the start of the simulation. The power gains
with FVW and PLUT controllers highlight the importance
of considering the wake propagation dynamics when dealing
with time-varying inflow conditions. The optimisation over
future inflow conditions with the FVW and the inclusion of
a preview in the LUT can both produce control signals that
provide better performance than the LUT based on steady-
state assumptions. The performance in steady state is ap-
proximately equivalent between the three wake steering con-
trollers.

The cumulative results for the TTWF are shown in Fig. 11
and listed in Table 2. In terms of power production with re-
spect to greedy control, the implementations of wake redirec-
tion with the FVW and the PLUT controllers yield a 3.8 %
gain which exceeds the 2.7 % achieved with the LUT ap-
proach. The demand on the yaw actuators is measured us-
ing the yaw travel 1ψ , which is the total angular distance
covered during the length of the simulation. The power im-
provements with the FVW are achieved with only a slightly
increased demand on the yaw actuators as the total yaw travel
increase compared to the greedy baseline is 58.1 % for the
LUT and 69.3 % for the FVW controller. The yaw travel for
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Figure 10. Wind farm performance for the three-turbine test case,
where the top two plots show the driving wind direction and wind
speed for the simulation. The third row shows energy produced rel-
ative to greedy control, and the bottom row shows 60 s averages
of relative power production. The FVW controller improved power
generation during and following transients by anticipating changes
and performs approximately equivalent to the LUT in steady state.

Figure 11. Cumulative results for the three-turbine test case in
terms of total relative power production and yaw travel. The FVW
controller improved power production at a slight increase in yaw
travel compared to the LUT controller. In this case, the PLUT
achieves the same improvement in power production as the FVW.

the LUT and PLUT controllers is identical as they are based
on the same wind direction signal and yaw offsets.

5.2 The 10-turbine subset of HKN

We expand the results from the three-turbine case by con-
sidering the 10-turbine subset of the south-west corner of the
HKN wind farm with a synthetic wind direction variation de-
fined in Fig. 15. A series of flow snapshots from the LES are

Table 2. Mean power production and cumulative yaw travel for the
four test cases, where HKNA, HKNB, and HKNC feature the same
10-turbine wind farm and TTWF features a three-turbine wind farm.
Increases are noted relative to the greedy control baseline.

Power (MW) Yaw travel (°)

HKNA greedy 61.23 1247
LUT +1.51 +2.5 % +691 +55.4 %
PLUT +1.59 +2.6 % +691 +55.4 %
FVW +1.96 +3.2 % +518 +41.5 %

HKNB greedy 22.79 1749
LUT +0.49 +2.2 % +2928 +167.4 %
PLUT +0.59 +2.6 % +2788 +159.4 %
FVW +0.53 +2.3 % +615 +35.1 %

HKNC greedy 27.86 2052
LUT +1.46 +5.2 % +4232 +206.3 %
PLUT +1.85 +6.6 % +4237 +206.5 %
FVW +1.58 +5.7 % +2780 +135.5 %

TTWF greedy 16.36 364
LUT +0.44 +2.7 % +211 +58.1 %
PLUT +0.63 +3.8 % +211 +58.1 %
FVW +0.63 +3.8 % +252 +69.3 %

provided in Fig. 12 to illustrate the discussion of controller
performance.

The cumulative performance of the FVW with respect to
the LUT and PLUT is illustrated in Fig. 13 and listed in Ta-
ble 2. The FVW controller produces a 3.2 % gain in mean
power production which exceeds the gain of 2.5 % from the
LUT controller. This gain is consistent with the improvement
over the LUT controller found in the TTWF case. The PLUT
controller only realises a 2.6 % power gain, which is a slight
improvement over the LUT but much less than is achieved
with the FVW. The FVW notably reduces the yaw travel de-
mand, increasing 41.5 % over greedy control, whereas the
LUT and PLUT controllers lead to a 55.4 % increase. This
is in contrast with the results from the TTWF case where a
slight increase in yaw travel was observed.

Turbine 1, which is upstream in all simulated wind direc-
tions, loses a bit more power comparing the FVW to the LUT
as it operates under yaw-misaligned conditions for longer.
However, this is offset by the power gain coming mostly
from turbines 2 to 7, which are relatively close together along
the wind directions considered. Unlike the TTWF case, the
power gains from the PLUT controller are not equivalent to
that from the FVW controller.

Turbines 8 to 10 are further downstream and are there-
fore not always accounted for in the optimisation with the
FVW as, for the wind directions considered, they are often
beyond the finite length of the simulated wakes given the cur-
rent controller settings. The implementation of a preview on
these downstream turbines leads to a slight loss in perfor-
mance comparing the PLUT to the LUT controller.
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Figure 12. Series of hub height flow snapshots from LES of the HKNA test case with the FVW controller. In the initial transient, (a) all
wind turbines are aligned with the mean inflow direction. Wake steering solutions are illustrated in (d) and (e) for the southern row of wind
turbines 1, 3, and 5 and (k) and (l) for the western row of wind turbines 1, 2, 4, 6, and 8. Waked turbines have a reduced yaw offset because
of the modelling of secondary steering effects. For certain wind directions, long wakes impact farm performance, which are not accounted
for in the FVW due to the limited prediction horizon. For example, (d) and (e) show the wake of turbine 4 impinging on turbine 9 and (h)
and (i) show turbine 8 operating in the wake of turbine 3.

Figure 13. The FVW controller improves power production with
respect to the LUT and PLUT approaches and reduces the increase
in total yaw actuation required. The gain comes mostly from tur-
bines 2 to 7, whereas turbines 1 and 8 to 10 lose some power with
respect to the LUT and PLUT controllers.

This lack of wake redirection away from the turbines far
downstream is also apparent in the yaw offsets applied as il-
lustrated in Fig. 14. Turbines 1, 3, and 4 have steady-state
segments where no yaw misalignment is applied in the FVW
controller, even though the LUT prescribes offsets for these
wind directions. Their downstream neighbours are beyond
the length of the simulated wakes with the FVW and can
therefore not be accounted for in the model-predictive con-
trol optimisation with the current controller configuration.

The power generation over time for this test case is illus-
trated in Fig. 15. The underperformance of the FVW con-
troller in the initial segment is due to the lack of yaw mis-

alignment on turbines 1 and 4, which leads their wake to
impinge on turbines 9 and 10, whereas the yaw misalign-
ment specified by the LUT controller minimises this nega-
tive aerodynamic interaction. The final segment of the sim-
ulation shows particular benefit from wake steering as the
wind direction is aligned with the western row of turbines 1,
2, 4, 6, and 8. The gains in power for the FVW controller
over the LUT controller emerge during the transients in wind
direction. Accounting for the propagation dynamics of the
wakes leads to fewer instances of loss compared to greedy
control. In steady state, the FVW controller with the current
controller settings performs approximately equivalent to or
slightly worse than the LUT controller.

The PLUT controller notably underperforms even with re-
spect to the LUT controller for a large part of this simu-
lation. The simple preview implementation produces some
gains following the transients but sacrifices more power to
achieve this. These losses may be due to the large wind di-
rection variations and the wind farm layout, in addition to
the implementation of a preview on turbines that should be
in yaw-aligned operation.

5.3 Realistic wind variations

The previous two cases highlighted the potential for the gains
in terms of power generation and yaw travel reductions that
may be achieved with the FVW controller. The wind di-
rection variations were, however, specifically designed to
test the added value of the dynamic model-predictive con-
trol framework and therefore lack realism. The two cases
HKNB and HKNC are simulated using measured wind data
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Figure 14. Realised yaw offsets for LUT and FVW controllers for the HKNA test case. Notably, there are some steady-state segments where
turbines 1, 3, and 4 are not misaligned by the FVW controller where the LUT does prescribe a yaw offset. This is due to the limitations of
the simulated wake length and prediction horizon in the current settings of the FVW controller.

Figure 15. Relative energy produced and power production for the
HKNA test case. During transients in wind direction, the LUT ap-
proach loses power with respect to greedy control. The FVW con-
troller loses a bit as it anticipates changes but then gains power over
the LUT controller. The initial steady-state segment also shows un-
derperformance with respect to the LUT approach. The PLUT con-
troller appears less effective during transients and only slightly im-
proves in the LUT approach.

to demonstrate controller performance under real variations
in wind speed and direction.

Figure 16 summarises the total improvement in power pro-
duction with respect to greedy control, which is also listed in
Table 2. In the case of HKNB, the increase in power gener-
ation by wake redirection is improved from 2.2 % with the
LUT to 2.3 % with the FVW controller and 2.6 % with the

PLUT. The increased yaw travel is limited to only 35.1 %
with the FVW compared to 167.4 % with the LUT approach.
The minor differences in yaw travel between LUT and PLUT
controllers are due to the treatment of the end of the time-
series simulation. Case HKNC shows an increase in power
production of 5.7 % with the FVW compared to 5.2 % with
the LUT and 6.6 % with the PLUT, as well as a reduction in
additional yaw travel from 206.3 % to 135.5 %. The losses
of the FVW with respect to the LUT controller appear on
turbines 9 and 10, which are far downstream from their up-
stream neighbours, i.e. beyond 12D downstream for most of
the simulated wind directions.

These results show that some of the improvement in
wind farm performance from a dynamic economic model-
predictive control approach is maintained under realistic,
time-varying wind conditions, where both wind direction and
speed change over time. However, under certain conditions,
unnecessary losses are incurred with respect to the LUT con-
troller due to the limitations of the FVW controller with the
current settings. A simple preview implementation appears
more effective in accounting for the effects of wake propaga-
tion while not being limited by finite wake length simulation
and receding horizon predictions.

The performance over time is shown in Fig. 17. The rela-
tive energy production over time shows that the power gains
from the FVW controller over the LUT controller are con-
sistent throughout most of the simulated time series. The
performance of the FVW and PLUT controller is equivalent
for large parts of the simulation. The energy production with
the PLUT sometimes exceeds the FVW, but some additional
losses are incurred that bring it back to the same level.

The final segment of the HKNC test case exhibits a pat-
tern with some large performance differences between the
LUT and FVW controllers. This is where the PLUT con-
troller achieves a large gain with respect to the FVW con-
troller, whereas they realised similar production until that
point in time. This segment is illustrated in more detail in
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Figure 16. Controller performance relative to greedy control in terms of power production. In both cases, the PLUT controller yields
the biggest increase in power production compared to greedy control, although the FVW controller also outperforms the LUT approach.
Additionally, the FVW achieves these gains with a lower total cost in terms of yaw actuator duty. The FVW controller shows a tendency to
underperform compared to the LUT for turbines 9 and 10, which are more than 12D away from their upstream neighbours for most of the
simulated wind directions.

Figure 17. Relative energy produced, power over time, and power averaged in 3600 s bins for the two data-driven test cases, HKNB and
HKNC. The driving wind direction and wind speed are shown in the top two rows. The third row shows the cumulative energy time series
normalised with respect to the greedy baseline controller. The LUT, PLUT, and the FVW controller exhibit significant improvements over
greedy control. The bottom row shows the 1 h averaged power production of both controllers normalised by the greedy baseline.

Fig. 18 with relative power production and the yaw heading
of turbine 1. The wind direction oscillates slightly around
θ = 201.5°, which is aligned with the western row of turbines
1, 2, 4, 6, and 8. The yaw action of turbine 1 is representative
of the control signal applied to turbines 2, 4, and 6 further
downstream.

Due to the limits of the prediction horizon in the FVW
controller, the FVW controller produces a control signal that
switches the direction of wake steering with the oscillations
in the wind direction. On the contrary, the implementation of
hysteresis in the LUT controllers produces a consistent yaw
offset reference to one side when combined with the local tur-
bine yaw controller. Without hysteresis, the LUT controllers
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Figure 18. Segment of the HKNC test case shown in Fig. 17. The
inflow wind direction oscillates around the western row of turbines
1, 2, 4, 6, and 8, which is aligned at θ = 201.5°. The yaw head-
ing of turbine 1, ψ1, is representative of that applied to turbines 2,
4, and 6. The FVW controller switches wake steering directions
from t = 22 000 to 23 700 s, whereas the hysteresis in the LUT con-
troller produces a constant yaw offset. The excessive yaw action
in the FVW results in underperformance for this segment. Beyond
t = 23 700 s, the FVW correctly anticipates the wind direction vari-
ation producing a net gain in power production.

would present the same switching behaviour currently ob-
served in the FVW controller.

This difference in control signal leads to significant vari-
ations in relative power production. For this wind direction
variation from approximately t = 22 000 to 23 700 s, the pre-
dictive action of the FVW controller anticipates gains that
are not fully realised. The losses from the yaw movements
exceed the gains from the wake steering in the optimal di-
rection. The final segment from t = 23 700 s onwards shows
how the predictive controller anticipates the wind direction
variation to yield a net gain in power production compared to
the LUT. The PLUT controller is able to realise these gains
without the losses incurred with the FVW control signal and
ends up with the largest average power production.

5.4 On wake length and the prediction horizon

The results from the control test cases show some of the lim-
itations of the proposed model-predictive control approach.
The finite-horizon optimisation can not account for turbines
that are outside the simulated wake length or beyond the pre-
diction horizon.

If wind turbines are placed along a straight line, the sim-
ulated wake and optimisation horizon only needs to be long
enough to cover optimisation from one turbine to the next
downstream neighbour to trigger wake steering. However, for
longer rows of turbines, the segment from HKNC shown in
Fig. 18 demonstrates that longer horizons will probably be
beneficial to avoid excessive switching of the wake steering
direction.

For large inter-turbine spacing without intermediate down-
stream turbines, long wakes will need to be simulated with
long prediction horizons to be able to properly account for
the downstream effects and reach wake steering yaw control
solutions. This limitation is apparent in the lack of perfor-
mance improvement for turbines 9 and 10 in all the HKN
cases. For most of the wind directions under consideration,
they are too far downstream to be accounted for in the
finite-horizon optimisation with the FVW. Very long pre-
diction horizons would be necessary to account for down-
stream effects, but long prediction horizons come at consid-
erable computational cost as simulating both longer wakes
and longer prediction horizons increases computational ex-
pense. Doubling both the length of the wake and the pre-
diction horizon would lead to roughly an 8-fold increase in
computation time. Maintaining a similar degree of freedom
in the control signal by also doubling the number of free
spline coefficients then yields an optimisation problem that
is approximately 16× more expensive. Additionally, longer
wakes stretch the limits of what can be predicted with the
physical model due to inherent instabilities in the free-vortex
methods.

The steady-state optimisation with FLORIS does include
these long wakes because it essentially solves a mean-flow,
infinite-horizon version of the control problem. For steady
wind directions, the optimal yaw angles for wake steering
from the steady optimisation can yield higher power produc-
tion than those found through receding horizon control with
finite-horizon optimisation.

Furthermore, due to the bimodal nature of wake steering,
the receding horizon controller may end up implementing
yaw offsets in the suboptimal direction, where the cost to
switch directions may not outweigh the gain in power over
the finite horizon, even though that may be optimal in an
infinite-horizon sense. The steady-state optimisation does not
suffer from this limitation but will lose power when atmo-
spheric conditions violate the mean steady-state assumptions
too much. The LUT approach might then apply yaw mis-
alignment to redirect wakes around turbines which will not
propagate there due to variations in wind direction. This sac-
rifices power generated for an expected return that is never
achieved. This is the result of a lack of inclusion of dynamic
effects such as continuously varying wind conditions and
propagation of wakes.

The optimal control approach might combine aspects from
both receding horizon control and infinite-horizon optimisa-
tion. This could enable synthesis of a controller that consis-
tently converges to optimal solutions in steady state while
incorporating the dynamics of wake propagation for power
gains during inflow transients.

5.5 Closing the loop

The current performance achievements are realised with
an open-loop controller architecture by assuming a reason-
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ably accurate model and wind speed and velocity predic-
tions. However, Fig. 2 already highlights differences between
the simulation framework and modelled wake deflection. It
shows that the incorporation of secondary effects of wake
steering is only an approximation. Furthermore, the modelled
deflection is symmetric for positive and negative yaw mis-
alignment, whereas a clear asymmetry appears in the LES
data.

For adaptation of model errors and incorporation of mea-
surements into the model state, a closed-loop control frame-
work is required. This would allow the control strategy to
adapt to varying atmospheric conditions such as veer, shear,
and turbulence intensity, as well as tune model parameters
such as the turbulent growth parameter δ or the yaw expo-
nents βp or βt.

One strategy that is promising for closing the loop is
the ensemble Kalman filter (EnKF), which has previously
been developed for state estimation adaptation of steady-state
models (Howland et al., 2020; Doekemeijer et al., 2020).
Becker et al. (2022a) developed the EnKF for wind field esti-
mation in a model-based setting with a dynamic engineering
wake model. Additionally, Shapiro et al. (2019) showed that
closing the loop allows inclusion of unmodelled dynamics.

5.6 Towards real-time control

In order to verify the potential for real-time control, a small
benchmark is run on a regular laptop running Windows 10
on an i7-8650 CPU at 1.90 GHz with 8 GB of RAM. The
benchmark is run in Julia 1.8.0 using the BenchmarkTools
module.

The results of the benchmark are shown in Fig. 19 to il-
lustrate the scaling of the computational cost for solving the
optimisation problem. The optimisation time scales linearly
with the length of the prediction horizon and quadratically
with the wake length, which is determined by the number of
rings nr in the wake simulation. The cost of the optimisa-
tion also scales linearly with the number of control degrees
of freedom, which is set to three as is done throughout the
current work.

The non-dimensionalisation of the FVW by rotor diame-
ter and wind speed leads to a dependency on wind speed in
measuring the performance relative to real time. Therefore,
we report values for rotor diameter D= 178.3 m and relative
to the inflow wind speeds u∞= 4 ms−1 and u∞= 9 ms−1.
With the configuration as used in the current work, a sim-
ple forward run of the wake model with power predictions
for two downstream neighbours over the full prediction hori-
zon requires approximately 0.7 s. This means predictions can
be made 1528× faster than real time at 4 ms−1 and 679×
faster than real time at 9 ms−1. The current update rate in the
model-predictive controller is fixed at every five discrete time
steps; this is equivalent to an update every 67 s at 4 ms−1

or 30 s at 9 ms−1. With the current optimiser settings, every
re-optimisation step takes about 21 s per wake, which is, re-

Figure 19. The benchmark for the computational cost of control
optimisation shows how the optimisation time scales approximately
linearly with the number of steps in the prediction horizon. The
computational expense scales quadratically with the wake length,
determined by the number of rings nr in the wake simulation. The
horizontal lines provide an indication of the level below which
real-time control optimisation is achieved for u∞= 4 ms−1 and
u∞= 9 ms−1 with an update every five discrete time steps.

spectively, 3.2× and 1.4× faster than real time for optimising
control updates.

This means that the current optimisation set-up realises
real-time optimisation for model-predictive wind farm flow
control in below-rated conditions. For that, a single proces-
sor per wake needs to be available to distribute the optimisa-
tion problems. Faster wind speeds require faster optimisation
to achieve real-time model-predictive control. This might be
within reach with improvements in the numerical algorithm
or using a better performing processor.

5.7 Preview-enabled look-up table control

Under the realistic wind variations that drive the HKNB and
HKNC cases, our simple preview implementation combines
the effectiveness of the steady-state optimal yaw offsets with
a simple strategy for accounting for wake propagation. The
PLUT controller achieves a further increase in power produc-
tion over the FVW controller, whereas, in the HKNA case,
it underperforms significantly. The difference between these
cases appears to originate from the magnitude of wind direc-
tion changes, where the FVW controller is more flexible to
adapt to a broader range of circumstances.

Despite the lack of flexibility, the results demonstrate that
a simple preview approach may realise power gains equal to
or greater than a more complex, economic model-predictive
controller with limited simulated wake length and prediction
horizon. Further refinement is required to maximise the gains
that may be achieved by preview-enabled look-up table con-
trol and realise consistent performance, avoiding the losses
on downstream turbines and from large-magnitude wind di-
rection variations.
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Such further refinements should consider tuning the pre-
view window to the wind farm layout, where a dependence
on the wind direction would allow the preview controller to
account for variable turbine spacing along different rows.
Additionally, the LUT should be referenced without pre-
view for turbines whose wake does not impinge on down-
stream rotors, which means that yaw-aligned operation is op-
timal. These adjustments are already naturally included in the
economic model-predictive control optimisation, which may,
therefore, provide a foundation for refining preview control.

6 Conclusions

A novel distributed, model-based approach to dynamic wind
farm flow control is presented with a focus on yaw control
for wake redirection. Previous optimisation results with the
FVW are extended to economic model-predictive control at
the wind farm scale by parallelising optimisation, connect-
ing individual models into a directed graph network, and
incorporating secondary steering effects. The low computa-
tional cost enables real-time optimisation in below-rated con-
ditions.

The novel controller is tested in a large-eddy simulation
environment and compared against the industry state-of-the-
art approach to wake steering, which is based on look-up ta-
bles, as well as an extension with wind direction preview.
Given two wind farm configurations under synthetic wind
direction variations, the FVW controller achieves improve-
ments in power production during wind direction transients.
In the simple three-turbine wind farm, equivalent gains are
achieved by the PLUT, whereas it underperforms in a 10-
turbine subset of the HKN wind farm. Under realistic inflow
variations, the PLUT controller yields the largest improve-
ment in power production over the LUT. The FVW yields a
smaller power gain because some undesired effects still ap-
pear in the control signal. However, in most cases, the FVW
controller reduces the increased demand on yaw actuation for
wake steering which is advantageous for practical application
in large wind farms.

The results with the FVW and PLUT both emphasise
the value of including the dynamics of wake propagation
for wake steering control. Further refinements in preview-
enabled control are worth investigating, and perhaps insights
from the model-predictive control solutions can guide the de-
velopment of preview strategies for look-up table controllers.

Improvements in the FVW control strategy could be
achieved by considering longer prediction horizons to ac-
commodate wake steering for longer wakes. However, this
comes at a significant computational cost for the receding
horizon optimisation. The FVW dynamics are a simplified
representation of reality, in this case the LES, resulting in
model errors that may be minimised. For example, the in-
clusion of asymmetry in wake steering is also important for

maximising the potential gains in wind farm power produc-
tion.

Lastly, closing the loop with state feedback is an essential
next step to realising dynamic yaw control in a realistic set-
ting as it enables adaptation of model parameters to changing
environmental conditions. Furthermore, the results should be
extended to use realistic forecasting of future inflow condi-
tions.
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