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ON THE STOCHASTIC MODEL FOR INSAR SINGLE ARC POINT SCATTERER TIME
SERIES

Wietske S. Brouwer, Yuqing Wang, Freek J. van Leijen, and Ramon F. Hanssen

Delft University of Technology, Department of Geoscience and Remote Sensing
Delft, 2628 CN, The Netherlands

ABSTRACT

InSAR enables the estimation of displacements of (objects
on) the earth’s surface. To provide reliable estimates, both a
stochastic and mathematical model are required. However,
the intrinsic problem of InSAR is that both are unknown.
Here we derive the Variance-Covariance Matrix (VCM) for
double differenced phase observations for an arc, i.e., the
phase difference between two points relative to a reference
epoch. Using the Normalized Amplitude Dispersion we sub-
divide the time series in multiple partitions. The method
results in a more realistic stochastic model, and consequently
more realistic and reliable displacement parameters. The
stochastic model also allows to make statements on the preci-
sion and reliability of the estimated parameters.

Index Terms— InSAR, Point Scatterers, stochastic
model, parameter estimation

1. INTRODUCTION

InSAR (SAR Interferometry) can be used to provide displace-
ment estimates for an arc, formed by two coherent scatterers.
Since the original observation is the double-differenced (DD)
phase, i.e., the phase difference between the two scatterers,
relative to a reference epoch [1], both a proper functional and
stochastic model are required to estimate displacement pa-
rameters. However, the intrinsic problem of InSAR is that
both are unknown.

Using Point Scatterers (PS), it is generally never known
exactly from what object the main signal originates, resulting
in an unknown kinematic behavior, i.e., functional model.
This problem is especially important in the built environ-
ment [2]. Regarding the stochastic model, the quality of a
phase observation at a single epoch is intrinsically unknown,
and each scatterer will have unique scattering properties. In
current PSI approaches the quality of the observations is of-
ten based on the residuals between the observations and the
model evaluated from the estimates [3], [4], which introduces
an intricate dependency on the correctness of the functional
model. Conceptually, the stochastic model should be known

before the estimation since it influences the result. Moreover,
an independent stochastic model is essential for testing the
entire mathematical model [4]. A stochastic model that is
chosen too conservatively may lead to sustaining the null hy-
pothesis while it should be rejected. Thus, a proper stochastic
model is essential to provide reliable displacement estimates.

2. THE MATHEMATICAL MODEL

The double-differenced phase observation for an arc is the
phase difference between two point scatterers i and j, and im-
age d relative to mother image m (where d relates to daugh-
ter), and is the sum of different components:

φmd
ij

=φmd
j

− φmd
i

(1)

=− 2πamdij + φmdij,D + φmdij,H + φmdij,T + φmdij,S + φmdij,n,

where a ∈ Z is the integer ambiguity, φD the displacement
phase, and φH , φT , φS , and φn the phases due to the (resid-
ual) height, temperature, atmospheric delay, and noise, re-
spectively. The signals of interest to be estimated are the
(residual) height, displacement and thermal phase. The math-
ematical model (for the absolute phase) therefore becomes

E{


φm1
ij
...

φmD
ij

} =(DA|BT )︸ ︷︷ ︸
φmdij,D

+(αLL|Bth)︸ ︷︷ ︸
φmdij,T

+(Hij |B⊥)︸ ︷︷ ︸
φmdij,H

; (2)

D{


φm1
ij
...

φmD
ij


︸ ︷︷ ︸

y

} =Qφij = Qφij ,atm︸ ︷︷ ︸
φmdij,S

+Qφij ,TVC +Qφij ,thn︸ ︷︷ ︸
φmdij,n

, (3)

whereE{.} is the expectation of the model consisting of three
unknown parameters: the relative displacement DA, relative
thermal expansion αLL, and (residual) heightHij . The defor-
mation phase is a function of the temporal baseline BT . The
thermal phase is caused by thermal expansion of the scatter-
ing object, as a function of the thermal expansion coefficient
αL and temperature (or thermal baseline Bth). The (residual)
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height phase, is a function of the perpendicular baseline B⊥.
D{.} is the dispersion of the model, described by the Vari-
ance Covariance Matrix (VCM) Qφij , which is the sum of i)
the atmospheric noise Qφij ,atm, ii) the thermal noise Qφij ,thn,
and iii) the Time Variant Clutter (TVC) Qφij ,TVC.

2.1. Derivation of the VCM for an arc

With one mother and D daughter acquisitions, the VCM of
the SLC phase observations, ψ, for PS i, can be written as

Qψi =


σ2
ψ0
i

0 . . . 0

0 σ2
ψ1
i

...
...

. . .
0 . . . σ2

ψDi

 , (4)

where σ2
ψdi

is the variance of the SLC phase observation for PS
i at epoch d. All three noise components are uncorrelated in
time, i.e., the off-diagonal terms are zero. Extending this to an
arc, the SLC observations of PS i and j should be combined:

D{

[
(ψ0

i
, . . . , ψD

i
)T

(ψ0

j
, . . . , ψD

j
)T

]
} =

[
Qψi Qψi,ψj
Qψi,ψj Qψj

]
︸ ︷︷ ︸

Qψij

, (5)

where Qψi,ψj describes the covariance between PS i and j.
The VCM for the single difference phase observations in time,
i.e., the phases of the interferogram of the daughter acquisi-
tion relative to the mother, is then defined as

QIFGij = Λ Qψij Λ, with (6)

Λ = I2 ⊗
[
−Ip eD 0
0 −Iq

]
, (7)

I the identity matrix, and eD a vector of ones. p and q depend
on the index of the mother image in the stack. With mi the
index of the mother image, p = mi − 1, and q = D − p.

The VCM of the DD interferometric phases ϕ is now

Qφij = Ω QIFGij Ω, with (8)

Ω =
[
−1 1

]
⊗ ID. (9)

This shows that given the VCMs of the SLC phase observa-
tions, and the covariance between the the two PS, the VCM
of the DD interferometric phases can easily be derived.

2.2. Atmospheric noise

The atmosphere causes a phase delay on the observed SLC
phases mainly depending on turbulent mixing and vertical
stratification [1]1. Since the turbulent atmospheric delay is
completely uncorrelated between different acquisitions, all

Fig. 1. Approximation ofQφij as the sum ofQφij ,TVC (above)
and Qφij ,atm (below). Column 1: VCM of the SLC phases of
point i and j separately, with 11 epochs. For point i the time
series was subdivided into three partitions, with one value
σψ,TVC per partition. Qψij shows the correlation between two
points, where we see correlation in theQψij ,atm because of the
simulated short arc. QIFGij is the VCM of the single differ-
ence (phase difference in time). The difference between the
two points result in the Variance-Covariance Matrix (VCM),
Qφij , of the double difference phase observations for one arc.

off-diagonal terms in Qψi,atm are zero [1], see Fig. 1. While
the atmosphere is uncorrelated in time, it is correlated in
space and therefore Qψi,ψj ̸= 0, and it depends on the dis-
tance between the two PS. The covariance values can be
approximated with [1]

Catm(l) = σ2
atm exp(−l2ω2), (10)

where l is the arc length (the distance between the two PS) and
ω relates to the correlation length of the atmospheric signal
lc, and is defined as ω2 = ln(2)/l2c . The lower row of Fig.1
shows the theoretical derivation of Qφij ,atm for a short arc.
While the atmospheric phase delay for the SLC observations
can be quite significant, the variance of the atmospheric phase
delay is close to zero for the DD phases sinceQψi,ψj is almost
equal to the variances of the SLC phase delays.

2.3. Thermal noise

The thermal noise is caused by the radar instrument itself
and is represented by the Noise Equivalent Sigma Nought
(NESN). For Sentinel-1 the NESN has a value around −25 dB
[5]. In Fig. 2 the thermal noise is represented by the red ar-
rows.

2.4. Time Variant Clutter

SLC observations of a PS consist of three components i) sig-
nal, ii) Time Invariant Clutter (TIC), and iii) Time Variant

1For this work, we ignored the influence of the ionosphere.
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Fig. 2. SLC observation of two PS over time. The black
arrow represents the signal of interest, that for this particular
case does not change over time. The PS at the left has only
Time Invariant Clutter but since the thermal noise differs per
acquisition, the observations change over time. The PS at the
right has also Time Variant Clutter.

Clutter (TVC). The observed SLC phase for one PS is the
sum of all reflective objects within the same resolution cell.
For strong PS, there is often one dominant scatterer in the
resolution cell with a, by definition, coherent signal.2 Thus,
signals from other reflective objects within the same resolu-
tion cell can be regarded as noise, or clutter, as they are not
necessarily related to the behavior of the main scatterer.

The clutter can be divided in two parts: the Time Invari-
ant Clutter (TIC) and Time Variant Clutter (TVC). The TIC
is the clutter that does not change between different acquisi-
tions. An extreme example would be a Corner Reflector (CR)
on top of a rough concrete plate. The signal of interest is
strong and relates to the CR. However, the concrete plate also
causes reflections that do not belong to the signal of interest.
When no displacements occur over time, the clutter caused
by the concrete plate does not change over time, i.e., it is time
invariant, see Fig. 2. From the observations it is impossi-
ble to distinguish between the signal of interest and the TIC,
since both are time invariant. Consequently, both terms are
attributed to the signal that belongs to the functional model.

The Time Variant Clutter (TVC) does change over time.
An example would be a CR in the middle of a meadow. As
long as the CR is not moving, the signal does not change over
time, whereas the reflections caused by the grass differ per
acquisition, see Fig. 2.

2.4.1. VCM for the TVC

As can be seen in Fig. 2, the TVC and thermal noise together
contribute to the noise in the SLC phase observations. How-
ever, it is not possible to distinguish between the two compo-
nents from the complex SLC phase observations only. There-
fore, from now on the two components will modeled together
in Qφij ,TVC. Since the TVC and thermal noise vary with time
by definition, there is no correlation in time and Qψi,TVC re-
duces to a diagonal matrix with variances values for the SLC
phases on the diagonal.

2A coherent signal is required to estimate the residual height, displace-
ment, and thermal expansion.

To estimate σψ,TVC, not only the TVC and thermal noise
but also the strength of the signal itself is important. The ef-
fect of both components will be larger on weak reflections
compared to strong reflections. When the contribution of the
TVC or thermal noise is significant, this results in a variation
in amplitude but the effect on the observed phases depends on
the strength of the signal. Therefore the Normalized Ampli-
tude Dispersion (NAD) [6] is a good proxy to estimate σψ,TVC,
with

σψ,TVC ≈ σA
µA

= NAD, (11)

where µA is the mean amplitude and σA its standard devia-
tion. However, the amplitude of a scatterer may actually vary
over time, and consequently so does σψ,TVC [7]. Therefore, the
time series can be subdivided into multiple partitions, where
each partition may have its own behavior, see Fig. 3b. As long
as there are enough observations per partition, the NAD and
quality of the phase can be estimated for each partition of the
time series.

Added to this, the assumption of σψ,TVC ≈ NAD only
holds when NAD < 0.2 [6], and therefore we derived an em-
pirical relation between the NAD and σψ,TVC based on simu-
lations as [3, 6, 8], see Fig. 4. The empirical relation is

σψ,TVC = a+ b NAD + c NAD2 + d NAD3, (12)

with a = −7.66∗10−3, b = 1.33, c = −3.18, and d = 9.35.
As a result, for each partition of the time series the NAD

is calculated with Eq. (11) and accordingly a value for σψ,TVC

can be approximated with Eq. (12), which can be used to fill
the diagonal of Qψ,TVC. In Fig. 1 we show a theoretical ex-
ample of the derivation of the VCM containing of the sum of
Qφij ,TVC (upper row) and Qφij ,atm (lower row). The first col-
umn of Fig. 1 shows this for two points (i and j) defining one
arc with different partitions.

3. RESULTS, IMPACT, AND CONCLUSION

Fig. 3 shows an example of the approach applied on real
data. The two points of the arc have a distance of 40 meters,
and therefore, as is shown in Fig. 1, Qφij ,atm = 0, and only
Qφij ,TVC is important.

For both points the time series was divided into two parti-
tions (see Fig. 3a and b), with new partitions starting at epoch
235 and 60 for point i and j respectively. Consequently,
the NAD and σψ,TVC were estimated for each partition, and
Qψi,TVC and Qψj ,TVC, and subsequently Qφij ,TVC could be de-
rived, see Fig. 3c. Note the differences in the diagonal terms.
The inscribed blue lines represent the values for σφij , using
the right axis. It shows that the approximated quality of the
DD phase observations for the first 60 epochs (σφij = 0.72
rad) is approximately 1.6 times worse as the phase quality for
the other epochs (σφij ≈ 0.45 rad).

As a last step, the Line-of-Sight (LoS) velocity of the arc
was estimated usingQ−1

φij as the weight matrix, and compared
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Fig. 3. (a) and (b): amplitude time series for points i and j. For both points two partitions are detected. For each partition, the
NAD is estimated and visualized by the horizontal black line. From the NAD values, the values for σψ,TVC could be calculated
with Eq. (12), and consequently the VCM for the arc observations is constructed, (c). We separately visualized the diagonal of
Qφij , as values represented by the horizontal blue lines, see the right axis. (d) Estimated displacements and estimated velocity
using the proper stochastic model (weighted) and conventional model with equal weights for all observations.

Fig. 4. The relation between the NAD and σψ,TVC. The blue
line shows the values (and error bars) based on simulations of
time series with 300 SAR scenes and different noise levels.
The striped orange line shows the derived empirical relation
between the NAD and σψ,TVC from Eq. (12). Figure based on
[6].

with the conventional unit weight matrix, see Fig. 3d. We
found LoS velocities of 0.25 mm/yr and 0.67 mm/yr for the
weighted and non-weighted case respectively.

It can be concluded that using a more realistic stochas-
tic model improves the result. For the first 60 epochs, the
spread of the LoS displacements seems to be larger, which
is in accordance with the stochastic model. The fitted trend,
using weights, is a better representation of the observations.
Moreover, using a proper stochastic model allows us to make
statements on the precision and reliability of the estimated
parameters, which is essential when the results are used for
monitoring purposes. Finally, a proper stochastic model is
essential for testing purposes.
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