Extending the 3D City Database 5.0 to support
CityGML application in QGIS

Bing-Shiuan Tsai
student #5511461

1st supervisor: Giorgio Agugiaro
2nd supervisor: Camilo Leén Sdnchez
External supervisors: Claus Nagel, Zhihang Yao

January 24, 2024

B.Tsai@student.tudelft.nl

1 Introduction

Semantic 3D city models are commonly used for data visualisation and analyses in the realm
of the built environment. Storage and management of semantic 3D city models data can be
achieved in CityGML, which is an international standard adopted by the Open Geospatial
Consortium (OGC).

Handling large amounts of data calls for a database encoding. For CityGML, there is a
database encoding called the 3D City database (3DCityDB), an open source project developed
for PostgreSQL and Oracle databases. The 3DCityDB in use is the version of 4.X, and it is de-
rived from the CityGML v.2.0 conceptual model. Except for data storage, the database allows
for data accessibility, enabling users to convert the city object associations to relations between
predefined feature tables based on a set of mapping rules consistent to CityGML2.0 standards.

Although the 3DCityDB tool was developed to simplify the complexity of CityGML, its
structure still remains rather complex for users with basic structured query language (SQL)
skills. However, a plugin for QGIS, called “3DCityDB-Tools for QGIS”, has been recently
developed to facilitate the interaction with the 3DCityDB for a wider group of practitioners,
and therefore to expand the usability of CityGML, narrowing the gap between them and the
geo-information experts via an intuitive graphical user interface (GUI) in QGIS.

In the meanwhile, the OGC has published the CityGML v.3.0 standard in September 2021
[Kolbe et al., 2021], which introduces an improved conceptual data model and new modules
such as logical space and physical space to address the spatial characteristics and the support
of time-dependent IoT data, etc. The 3DCityDB is being updated to version 5.0 in order to add
full support for CityGML v.3.0.

The goal of this research is to investigate how the new database structure of the 3DCityDB
v. 5.0 can be coupled with the existing 3DCityDB-Tools plugin, in order to enable support not
only for the existing version 4.x, but also for the upcoming version 5.0. The research will start
from familiarising the mapping structure of the data in both CityGML v.2.0 and v.3.0 to the
new schema, performing experiments on the database modification on the server-side, and
eventually improving the user experience with the existing QGIS plugin.

2 Related work

2.1 CityGML

CityGML defines the classes and relations for the most relevant topographic objects in cities
and regional models with respect to their geometrical, topological, semantical, and appearance
properties. It not only allows visualisation for 3D models but also enables thematic queries,
analysis tasks, or spatial data mining, satisfying the information needs of various application
fields [Kolbe et al., 2021]].

The CityGML v.3.0 core model defines basic concepts and the base classes, the fundamental
element of which is the abstract class “AbstractCityObject” (Figure [I). It is the superclass of
all thematic modules in CityGML, the space concepts are derived from the core, which con-
sist of two subclasses named “AbstractSpace” and “ AbstractSpaceBoundary” for volumetric
and areal extent separately. The geometry representations and its Level of Detail (LoD) are
associated with the space concepts (Figure 2).

AbstractFeatureWithLifespan

(FeatureTyper
AbstractCityObject

«Property»
+ relativeToTerain: RelativeToTerrain [0..1]
+ relativeToWater: RelativeToWater [0..1]
+ adeOfAbstractCityObject: ADEOfAbstractCityObject [0..*]

b

«FeatureType» +boundary «FeatureType»

AbstractSpace «Property» * AbstractSpaceBoundary
«Property» «Property»
+ spaceType: SpaceType [0..1] + adeOf y: ADEO! y[0.4]
+ volume: QualifiedVolume [0.."]
+ area: QualifiedArea [0..] Z%
+ adeOfAbstractSpace: ADEOfAbstractSpace [0.F] pr—

AbstractThematicSurface
4 «Property»
‘ + area: QualifiedArea [0..*]
+ adeOfAbstract ADEOfAbstract 0.1
FeatureType FeatureType»
AbstractLogicalSpace AbstractPhysicalSpace Z%
«Property» «Property» «FeatureType»
+ adeOfAbstractLogi ADEOfAbstractLogi [0.4] + adeOfAbstractF ADEOfAbstractF 0.4 ClosureSurface
ZP «Property»
+ adeOfClosureSurface: ADEOfClosureSurface [0..*]
«FeatureType» «FeatureType»
AbstractOccupiedSpace AbstractUnoccupiedSpace
«Property» «Property»
+ adeOfAbstractOx ADEOfAbstractOt [0.%] + adeOfAbstractl ADEOfAbstractl [0.1]

Figure 1: Core - Space concepts of CityGML 3.0 UML diagram (Figure from [Kolbe et al.,[2021])

+lod0MultiSurface

AbstractCityObject | 0.1

Propert Proy
«FeatureType» ¢ p.ey» GM_Muti <Propertys «FeatureType»
Hod Abstract i
«Property» f(type» «Property»
+Hod1Solid +od3MultiSurface GM |
1 (Property» «Property» «Property»
GM_Primitive -
+od2Solid +od3MultiSurface
«yper Property +HodoMultiCurve Property»
Geometric primitive:: «Property» 0.1
perty) =
GM_Solid +od3Solid GM_MuttiPrimitive
«Property» Hod2MultiCurve dyper +HodOMultiCurve
Propsitys i «Property»
+lod3MultiCurve GM_MultiCurve
__ +HodOPoint «Property o
+referencePoint GM_Primitive | 0.1 Propertyn -
«Property» «ype» +od1TemainintersectionCurve
Geometric primitive:: «Property»
GM_Point N
+od2TermrainlntersectionCurve
«FeatureType» : Property» +pointCloud
AbstractPhysi e Property» [, 0.1
«Property> . AbstractFeature
+pointCloud
. «Property» 0.1 «FeatureType»
«ype» tractPointCloud
Geometry root::
GM_Object %
+relativeGeometry 0.1
«Property» «FeatureType»
AbstractOccupiedSpace
ObjectTyper +od1 \mp\}:}’éRepresema\im
« »
ImplicitGeometry perty
+od2ImplicitRepresentation
«Property» «Property»
+ objectiD: ID
+ ix: i 0.1 +od3ImplicitRepresentation
+ mimeType: MimeTypeValue [0..1] «Property»
+ libraryObject: URI[0..1]

Figure 2: Core - Geometry and LoD concept of CityGML v.3.0 UML diagram
(Figure from [Kolbe et al., 2021])

Features in the built environment are then mapped to the corresponding space concept
based on its semantics. For example, the module “Building” contains two subclasses “build-
ing” and “buildingPart” which describe the physical volumetric extents of a building are de-
rived from the “AbstractSpace” while its roofs, walls, etc. properties referring to the thematic
surfaces are therefore derived from the areal “AbstractSpaceBoundary” (Figure 3).

+boundary +boundary

Propertys Property»
. FeatureTyper
AbstractOccupieay
racOcoupiodSpace . Core:
FeatureTyper A
Construction:: : +boundary +houndary
AbstractConstruction «Property» +boundary /I\ * (propertys AbstractSpace
«Property» «FeatureType
Core::
FeatureTyper AbstractLogicalSpace
AbstractBuilding +ouidngSubdivision \L [}
+address +address
Property» ety ArstactFeature | = o0
+ dass: BuldingClassValue [0.1] Property FectreTyen Property eRtrTpe
+ funcion: BuidingFuncionVave [0.] e
+ usage: BuidingUsageValue [0.°] X - o .
+ rofType: RoofTypeeive 0..1) + dass: BuidingSubdivisionClassValue [0..1]
g zascoind fnbosy 1] + funcion: BuidingSubdivisonFunctionValue 0.%] .
+ soreysBelowGround; Integer [0.1) + usage: BuldingSubdlvisionUsageValue [0."] f>—p
+ storeyHeightsAboveGround: MeasureOrNiReasonlist 0. 1] TosicPhyScalSpace & oo Boaton 0.1
+ Me OrilReasonList [0..1] ‘
o + sortKey: Real [0..1
+ adeOiAbstractBuiing: ADEOfADstractBuilding [0."] F“D:’iws" o Sl 0.1 [z 1
AbstractUnoccupiedSpace %
% +huiidingRoom
\ \ «Property» N «FeatureTyper «FeatureType»
«ToplevelFeatureType» stukdingPat «FeatureType» «FealureTyper BuildingUnit Storey e
Building T propety BuildingPart B BuildingRoom «Property» «Property»
Propetyy S o + adeOfBuildingUnit: ADEOuildingUnit [0."] + adeOfStorey: ADEOfStorey [0.]
+ adeOfBuiding: ADEOfBuilding [0..*] + adeOfBuidingPart: ADEOfBuildingPart [0..') + dass BuildingRoomClassValue [0.1] 7\ souidingUnit N : 1\ ey B
+ function BuidingRoomFunctonValue [0, «Property» Propertys
. |+ usage: BuidingRoomUsageValue [0..] ,*uildingRoom
+ roomHeight: RoomHeight [0..] «Property»
1+ akof ADEO o)
AbstractOccupiedSpace
FeatureTyper .
e - +tuiinginstalation
AbstractConstructiveElement «Property»
% FeatureTyper * cPropertys
FeatureTyper Propertyr + | <Propertys 7
o AbstractOccupiedt
BuildingConstructiveElement L + fassValue 0.1] el -
+ function: BuildinglnstallationFunctionValue [0.."] «FeatureType» e—oI
«Propety» + usage: BuidinginstalationUsageValue 0. ™ Constucton::
+ dass: BuldingConstructiveElementClassValue [0.1] = FoEG 4 g
+ funciion: BuidingConstuciveElementFunciionValue 0.
+ usage: BuidingConsiructveElementUsageValue [0.°] +tuidingFumiure
+ adeOfuildingCe DEOBuild 0.4 «Propertyy * «FeatureType» AbstractOccupiedSpace:
i > N
+buildingConstructiveElement . +ouildingConstructiveElement 9 ;:':::3:
ePropaty» e GREFzip AbstractFurniture
+tuildngFumitre |+ dss: BuidingFumitureClassValve 0..1]
«Propetys + [+ q o
«DataTyper + usage: [0.7] " Property
RoomHeight + adeOfBudingFumiure: ADEOBudingFuriture 0.°]
«Property»

+ highReference: RoomElevationReferenceValue:
+ lowReference: RoomEevationReferenceValue
+ siaus: HeigtSiatusValue

+ value:Length

Figure 3: Building module of CityGML v.3.0 UML diagram
(Figure from [Kolbe et al., 2021])

The geometry and LoD concept has changed fundamentally between CityGML v.2.0 and
v.3.0. In CityGML v.2.0, geometry representations and LoD are associated with the thematic
module and the degree of semantic decomposition, thematic surfaces were only allowed start-
ing from LoD2 and the interior rooms only in LoD4 [Open Geospatial Consortium et al.,
2021]. The geometry representation in the thematic module level requires each thematic fea-
tures to have direct associations with geometries, which, for example, if building possesses
a “ lod2MultiSurface” representation, all the corresponding boundary surfaces in the same
LoD are required to be aggregated for generating this representation (Figure [4). However, in
CityGML 3.0, the geometry representations are associated with the newly added space con-
cepts in core module, which significantly simplifies the models of the thematic modules since
all features inherit the attributes of space and space boundary classes, there will only be at
most 23 combinations of geometry representation depending on different thematic modules.
As this research aims to extend the use of the current 3DCityDB developed for the CityGML
v.2.0 to facilitate the application in QGIS, differentiating the standard difference of geometry
representation is of importance. The new space concepts provide a clear scope for generating
all possible “layers” that can be viewed in QGIS at the first step.

<<Feature>>
core::_CityObject
L

lod3ImplicitRepresentation "% <<Object>>
lod4ImplicitRepresentation ici y
0.1 0.1
lod4ImplicitRepresentation ™2 lod2ImplicitRepresentation
w lod3ImblicitRepresentation

l lod4ImplicitRepresentation

L.l

0.1 0.1 <<Feature>>
lod4Geometr - *
<<Geometry>> lod2Geometry Buildinglnstallation
lod4Geometry gml::_ y lod3Geometry *_|+class : gml::CodeType [0..1]
0.1 l lod4Geometry = |+function : gml::CodeType [0..]
+usage : gml::CodeType [0..*]
outerBuildingInstallation
<<Feature>>
IntBuildinglInstallation meriorBuld: - address <<Feature>> address
+class : gml::CodeType [0..1] « interiort ! « | core::Address | ~«
L1 * [+function : gml::CodeType [0..*] K .
+usage : gml::CodeType [0..*] <<Featuros>
AbstractBuilding
T) +class : gml::CodeType [0..1]
+function : gml::CodeType [0..*] []
+usage : gml::CodeType [0..*]
+yearOfConstruction : xs::gYear [0..1]
L | <<Feature>> +yearOfDemolition : xs::gYear [0..1] bl
* BuildingFurniture +roofType : gml:CodeType [0..1] <
lass : gml::CodeType [0..1] +measuredHeight : gml::LengthType [_0"1]
+function : gml::CodeType [0..*] +storeysAboveGround ': xsl:.:nonNegat.lvelnteger [0..1]
+usage : gml::CodeType [0.."] +storeysBelowGround : xs::nonNegativelnteger [0..1]
+storeyHeightsAboveGround : gml::MeasureOrNullListType [0..1]
interiorFurniture +storeyHeightsBelowGround : gml::MeasureOrNullListType [0..1] Pa—
0.1 <<Feature>> <<Feature>>
<<Feature>> Building BuildingPart [+
Room
+class : gml::CodeType [0..1] consistsOfBuildingPart
+function : gml::CodeType [0..*] interiorRoom
HETRGIECTERTR (] lod1Salid lod1MultiSurface lod1Terrainintersection
0.1 * lod2Solid lod2MultiSurface lod2TerrainIntersection
lod3Solid lod3MultiSurface | | lodOFootPrint lod3TerrainIntersection
IodaSalid lod4MultiSurface lodORoofEdge lod4Terrainintersection
0.1 0..1 _
lod4Salid <<Geometry>> <<Geometry>> lod2MultiCurve
R gml::_Solid gml::MultiSurface lod3MultiCurve
0.1 0"14\) o1 lod4MultiCurve
. 0.1 0.1
« [<<Feature>> lod4MultiSurface lod2MultiSurface <<IG;7T?gy>>
_Opening B lod3MultiSurface lod3MultiSurface AT
¥ opening lod4MultiSurface lod4MultiSurface
’ <<Feature>> <<Feature>> boundedBv * A * boundedB
Window Door <<Feature>> oundedby.
> boundedBy
_ Y
0.2 boundedBv
r T T T 1 T 1
<<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feature>>
RoofSurface WallSurfacee GroundSurface ClosureSurface CeilingSurface InteriorWallSurface FloorSurface
<<Feature>> <<Feature>>
OuterCeilingSurface OuterFloorSurface

Figure 4: Building module of CityGML v.3.0 UML diagram
(Figure from [Groger et al.,[2012])

2.2 3D City DataBase

The ”3DCityDB is an Open Source software suite allowing to import, manage, analyze, vi-
sualize, and export virtual 3D city models according to the CityGML standard, supporting
both versions 2.0 and 1.0.” [Yao et al., 2018]. The database schema is established to accommo-
date the CityGML model for both storage and processing. However, some restrictions must
be applied in order to convert the conceptual model into compacted relational tables, other-
wise, a one-to-one mapping of CityGML data model will result in a vast number of tables and
relations in between [Pantelios, 2022]. According to [Yao et al,, |2018], “the super class shall
be an abstract class that holds all attributes and associations which will be inherited by the
concrete sub- classes and every of the sub-classes shall not have any further attributes or as-
sociated with other classes”. To respond to this, certain tables are introduced to the schema

with the primary and foreign keys to store the relations between them. The demonstration of
converting the conceptual model to the relational tables of the building class in CityGML v.2.0
is shown in Figure|5/as an example.

<<abstract>> B cimyossecT
_GML ID : NUMBER <<PK>>
OBJECTCLASS_ID : NUMBER <<FK>>
GML Classes —J GMLID : STRING
GMLID_CODESPACE : NUMBER
<<abstract>> mapsTo NAME : STRING
Feature . NAME_CODESPACE : STRING
L DESCRIPTION: STRING
ENVELOPE: GEOMETRY
--------------------------- sSFsSssSSisss= CREATION_DATE: TIMESTAMP
’_ TERMINATION_DATE: TIMESTAMP
<<abstract>>
" GityObject RELATIVE_TO_TERRAIN: STRING
RELATIVE_TO_WATER: STRING
- 1 ID
-
CityGML Classes ? 01l °
<<abstract>> mapsTo % B,
_AbstractBuilding [| ID:NUMBER <<PK~>

Figure 5: 3DCityDB Inheritance of building feature mapping in CityGML v.2.0
(Figure from [Yao et al., 2018]))

The latest release of 3DCityDB v.4.4.0 maps classes in CityGML v.2.0 to 66 database rela-
tional tables in a PostgreSQL database schema. Since the CityGML v.3.0 testing version was
released recently, 3DCityDB has been continuously updated, and by the time of writing, 3DC-
ityDB v.0.6.0-beta is used in this research for management of the spatial data in accordance
with CityGML v.3.0, which maps the classes to only 18 relational tables. Therefore, there is
a substantial change in the mapping rules between the conceptual model (in UML) and the
Entity-Relationship (ER) model of the database.

* Table Feature: It stores all general information of all features within the given dataset,
which contains primary keys like id, objectclass_id for further relational join.

¢ Table Property: It accommodates all attributes of the existing features, which contains
foreign keys like feature_id to link to corresponding features.

* Table Geometry_data: It stores all the geometry representations of all existing features.
Foreign keys like id, feature_id are set to link to corresponding features and properties.

¢ Table Implicit_geometry: It stores the information of implicit geometry, which serves as
an example representation that will be scaled and shifted to the reference places while
creating viewable layers. Foreign key, relative_geometry_id is set to link to the correspond-
ing geometry

The other tables which are not further explained here, are those used for appearances, etc.
These tables are not currently relevant at the initial phase of this research. The details of the
relational tables can be seen in the mapping schema of 3DCityDB v.0.6.0-beta, which is shown
in Figure [l In summary, 3DCityDB maps CityGML into a compact database schema that
reduces operational complexity without introducing semantic ambiguity [Pantelios, 2022].

Figure 6: 3DCityDB schema of v.0.6.0-beta (Figure from [Nagel et al.,[2023]]

2.3 3DCityDB-Tools for QGIS

The existing plugin named “3DCityDB Tools for QGIS” to facilitate the use of CityGML data
in QGIS is available through Github [Agugiaro et al., [2023]. According to the manual, the
current 3DCityDB Tools v.0.8.7 supports the management and visualisation of data stored in
the 3DCityDB with regard to the CityGML v.1.0 and v.2.0.

The plugin allows users to connect the local and remote 3DCityDB instances for PostgreSQL /PostGIS
and load the data into QGIS. to create viewable layers, which are designed to facilitate users
from different fields and expertise in their interaction with CityGML data encoded in the 3DC-
ityDB. Once data layers are available in QGIS, the users can perform analyses, access and edit
associated attributes, explore and visualise the data in 2D and 3D based on the built-in func-
tions of QGIS and its other plugins.

The server-side part of the plugin, called “QGIS Package”, provides capability for man-
agement of database users and data layers. It allows the users to define and create a layer
by extracting a specific, selectable geometry (according to its LoD) of a feature and relate to
its corresponding attributes. This structure of such a layer is in compliance with the Simple
Feature Model (SFM). The client-side part of the plugin provides different tools for different
uses:

e The QGIS Package Administrator tools allows database administrators to install the
server-side part of the plug-in, as well as to set up database user access and user privi-
leges.

¢ The Layer Loader tool allows users to load and interact with data in the 3D City Database
directly from QGIS.

e The Bulk Delete tool allows users to delete features from the database, either at all at
once, or by means of spatial and feature-related filters.

Users have the access to connect to the database using a friendly graphical user interface
(GUI), set up the schema and grant privileges to the users in the server-side, building up all the
functionalities for users and layers management. Since the current version of 3DCityDB-Tool
plugin only supports 3DCityDB v.4.x. This research will mainly focus on extending the func-
tionality of the plugin to support 3DCityDB v.5.0, and as consequence, to support CityGML
3.0. The work can be subdivided into two parts:

The first regards the server-side part, including creating feature geometries called views
or materialized views and linking the feature attributes with the corresponding feature ge-
ometries to form the QGIS-usable SFM “layers”. Views here are referring to the SQL trans-
formation from a set of base tables to a derived table in PostgreSQL, which are recomputed
every time when they are referenced or queried. The geometries of the features managed by
3DCityDB v.5 are stored in the geometry column of the geometry_data table, which then can
be query via the primary keys of “objectclass_id” and other foreign keys, resulting in tables
containing all the geometry with regard to each feature type.

Note that, since querying the geometry table on the fly would be time-consuming regarding
the scale to join several tables. For efficiency reasons, the layer created by the 3DCityDB-
Tools plugin is the result of linking a view with attributes to the materialized view with the
geometries ([Pantelios, 2022], [Agugiaro et al., 2024]). Materialized views here are referring to
the temporary virtual table which is used to store the proactively computed result of views in
PostgreSQL. Index structures can be built on the materialized view to boost the performance
while it is accessed in the database, the query execution time could be much faster compared
to that of querying from a view.

The second regards the client-side part, including managing the 3DCityDB layers that are
created by the process mentioned above and dealing with layers interaction functions such as
updating attributes or features deletion etc.

o0 e QGIS Package Administrator ece 3DCityDB Layer Loader

W QGIS Package Installation | @ Installation settings

PostgreSQL connection

Select an existing connection: Define a new one:
citydb_v4 v New Connection
Connect to database 'alderaan'

Main installation

5 Uninstall from ‘alderaan’

r(s) (not yet in the QGIS Package user group)

2 > Add to group

5 Drop schema
th (484827.5760

3) User priviges West 218316.0490 East |238195.8560
South |469916.1000

Action: Citydb schema(s)

Revoke ALL privileges ~ Select schema(s) ~ LAl

Set privileges.

th_bdg_vé_bdg_ 1) - Iy lected I
Close current connection _bdg_v4_bdg_ lod2 (29511) port selected layers.

Figure 7: 3DCityDB-Tools GUI
(left: screenshot of the QGIS Package Administrator tool, right: Layer Loader tool)

3 Research questions

3.1 Objectives

This main goal of the research is to investigate how to add support for CityDB 5.x (and as a
consequence CityGML v.3.0) to the 3DCityDB Tools plugin for QGIS. To achieve this goal, the
following research questions need to be addressed.

¢ How does the new database structure of 3DCityDB v.5 affect the current methodology
of the plugin to create layers which contain both geometries and attributes for a selected
teature type following the SFS. In particular,

— How do the new CityGML 3.0 concepts of space, LoD affect the process?

With regards to geometries, can the same or a similar approach be reproduced?
— Is it still necessary to rely on materialized views?

— What are the performance differences between 3DCityDB 4.x and 5.x when retriev-
ing geometries from the database?

- How does the QGIS Package need to be restructured?

With regards to attributes, can the same or a similar approach be reproduced?
- Is it still necessary to rely on updatable views?
— What alternatives are there?

— How does the plugin front-end need to be restructured?

How is the CityGML v.2.0 data mapped to the new schema of 3DCityDB v.5.0?

- Can we deal with CityGML2.0 data as CityGML 3.0 data as long as it is stored in
the 3DCityDB 5.x?

3.2 Scope of research

The scope of the research will focus on the thematic features of “Appearance”, “Building”,
“Bridge”, “CityObjectGroup”, “generic”, “Tunnel”, “Vegetation”, “Transportation”, “Relief”,
“CityFurniture”, “WaterBody”, “Landuse” and their attributes, detail level and types of ge-
ometries. As the above-mentioned 12 features are the most frequently accessed information of
a city, and they already existed in the CityGML v.2.0, understanding the layer creation process
of these modules will facilitate the functions adaptation in compliance with CityGML v.3.0.

Consider the , “Dynamizer”, “PointCloud” and “Versioning” are threenewly added mod-
ules in new CityGML standards. The 3DCityDB v.5.0 currently does not support these mod-
ules mapping to relational tables, and its development is still in progress. The research will
take its development into consideration and attempt to offer conceptual suggestions of how
to support the application of features from these modules in QGIS.

4 Methodology

The proposed methodology consists of two phases. The first phase focuses on the Plugin
server-side in PostgreSQL, which takes the “objectclass_id” as the feature identifier, search in
the 3DCityDB for its all possible geometry presentations and perform the SQL query among
the 18 relational tables that are mapped by the 3DCityDB v.5.0 (see to create the loadable
layers with the corresponding attributes for further application in QGIS.

The second phase emphasises on the Plugin client-side in QGIS, which deals with the layer
management of all available layers, testing and adapting the relative layers functions, e.g.,
inserts, updates and deletions. Although the two phases are described separately, they are
highly interrelated since certain adjustments on the layer creation part could be necessary
while working on the compatibility part and vice versa. The overview methodology is shown
in Figure[8|

e e e e e m e mmmm e mmmm e mEEEmmmm e e mm e mmm e m e —————————

3DCityDB-Tools plugin with
3DCityDB v.5 support Q]

CityGML

- N Lo N

Plugin Server-side ! Plugin Client-side l
in PostgreSQL i in QGIS '
. J :

/ N7 NG

Feature geometry Layer management :

Layer management Testing / Adaptation

. IL, I i
Feature attributes ayer Interaction

: (e.g. read only / read-write) !

Figure 8: Overview of the proposed methodology

4.1 Plugin Server-side in PostgreSQL
4.1.1 Feature geometry

According to the CityGML v.3.0 UML diagram (Figure[2), the core geometry and LoD concept
defines all the possible geometry representation of the abstract features of “AbstractSpace”
and “AbstractSpaceBoundary”. Since all the features in CityGML v.3.0 are derived from either
two of the superclasses, there are only 23 possible combinations of geometry representation
(Table [1) for each feature. This step will only take on the feature identifier, “objectclass_id”,
stored in the FEATURE table in 3DCityDB v.5.0 to gather its corresponding geometry views
via SQL query.

At the first step of the research, both views and materialized view will be created among all
feature types using the new relational table structure generated by 3DCityDB v.5.0 in order to
test the time efficiency of performing a query from them.

4.1.2 Corresponding attributes attachment

According to the CityGML v.3.0 UML diagram (FigureB), thematic features like buildings pos-
sess attributes such as class, usage and roofType, etc. These entity attribute values (EAV) are
stored in the PROPERTY table and they are also able to be queried by sets of keys across differ-
ent tables. The 3DCityDB-Tools plugin currently associates these attributes via the hierarchical

10

relation class called Table Of Content (TOC) in QGIS, which sets upa Many-to-One relation-
ship between fields of referenced and referencing layers [Pantelios| 2022]. The TOC relation
class in QGIS is proposed to link the attributes in the property table to their corresponding
main features, which will be investigated in the future work.

lod representation class lod representation class

0 lodOpoint space 0 lodOmultisurface boundary
0 lodOmultisurface space 0 lodOmulticurve boundary
0 lodOmulticurve space 1 lod1multisurface boundary
1 lod1solid space 2 lod2multisurface boundary
1 lod1terrainintersectioncurve space 3 lod3multisurface boundary
1 lodlimplicitrepresentation space X pointcloud boundary
2 lod2solid space X envelope boundary
2 lod2multisurface space

2 lod2multicurve space

2 lod2terrainintersectioncurve space

2 lod2implicitrepresentation space

3 lod3solid space

3 lod3multisurface space

3 lod3multicurve space

3 lod2terrainintersectioncurve space

3 lod3implicitrepresentation space

X pointcloud space

X envelope space

Table 1: Possible geometry representations of the two superclasses in CityGML v.3.0

4.2 Plugin Client-side in QGIS
4.2.1 Layer management

The concept of geometry representation has significantly changed between the CityGML v.2.0
and v.3.0, it was elevated to a higher core level not associated with the thematic level. Al-
though the modification simplifies the thematic model representation, it also introduces some
potential incompatibilities. For example, “lod2MultiSurface” of the building class used to be
bounded by all its thematic surfaces, the geometry is represented by the aggregation of the
corresponding LoD thematic surface (see Figure @), which is then used to associated with
the LoD-relating attribute in CityGML v.2.0. However, in the relational table mapped by
the 3DCityDB v.5.0 in accordance with the CityGML v.3.0, building feature does not have
“lod2MultiSurface” geometry representation initially, the “bounded by” relation is mapped
to the “has” relation, indicating that building features possess thematic boundaries which are
different features other than building. These potential incompatibilities arise as building fea-
tures still have attributes like “LoD2 volume” but it has no geometry representation to be as-
sociated, which requires further solution to answer the research question in terms of attribute
attachment.

The above-mentioned case is just an example, these potential incompatibilities derived from
standard differences need to be solved in order to extend the use of CityGML data in 3DCi-
tyDB. The proposal is to discuss it case by case, as a possible solution to the example case
could be performing the aggregation or including the geometry such as the envelope of the
features as an alternative.

11

4.2.2 Layer interaction

The current 3DCityDB-Tools plugin sets up trigger functions that allow users to handle “up-
date”, “insert” and “delete” operations when creating the layers. The “insert” function is
currently forbidden as its implementation does not handle new geometries while “update”
operation is only available for updating attributes but not geometries ([Pantelios, 2022], [Agu-
giaro et al., 2024]). Considering the potential incompatibilities mentioned above, these func-
tions could be modified to allow users to create aggregation of the building geometry in
“lod2MultiSurface” and insert into the geometry table while simultaneously updating the
property to assign “lod2MultiSurface” attribute to the building feature. This could be a possi-
ble solution to satisfy the association need of attributes with missing geometry. The function
could be adjusted according to the potential incompatibilities.

5 Preliminary results

5.1 Querying geometries from the 3DCityDB v.5.0

In order to reproduce the layer creation procedure of the current 3DCityDB-Tools plugin, we
need ideally to first deal with geometries (e.g. create views), then to attach attributes to them.

In other words, a geometry view is intended as a view (or a materialized view) associated to
a query that extracts geometries from the geometry_data table according to the “objectclass_id”
and its geometry representation - if data for such feature exists in the database. It is also
relevant to investigate whether it is reasonable to create simple views or materialized views,
as in the current implementation of the QGIS Plugin for CityDB 4.x [Agugiaro et al., 2024].

The pipeline shown in Figure [10|is built in Python to call and execute the SQL queries for
creating views and materialized views of the geometries. The user first sets up the database
connection, and executes the main function, which will ask for the user’s input to create, delete
or terminate. For creating views, the code runs the query to search for all possible “object-
class_id” from the date stored in the user-specified schema. For all “objectclass_id”, the user
chooses the view types, the code continues to call the query to search for all the possible ge-
ometry representations of the feature identified by the “objectclass_id” and the type of view will
be created correspondingly.

The pipeline is currently capable of creating features from “Building”, “Vegetation” and
“Relief” modules, which are the most commonly used features in the built environment realm.
The test dataset used for (materialized) views creation is the Rijsen-Holten and Vienna 3D
models (see section @, the outcome of the view creation is shown in Figure 12| and The
detail of the SQL queries for each testing feature module is explained as the following.

12

DB connection
setup

&
<
4

Create/ Delete

T delete—P| Delete views

stop €—terminate

create

Search for unique existing
objectclass_id in Table feature

\ 4

For each unique objectclass_id
check for available in Table property

Create
(Materialized)
view

A Materialized
View .
view

(Materialized) view of objectclass_id
feature

I
teminate

stop

Figure 9: Layers creation pipeline

5.1.1 Building

In the test data, there are 6 different features with “textitobjectclass_id” relate to the build-
ing module, which are: Building (901), BuildingPart (902), RoofSurface (712), GroundSurface
(710), WallSurface (709) and ClosureSurface (15). Building is derived from Abstract Space,
which can have both geometry and implicit geometry representation while thematic surface is
derived from Abstract Space boundary, which can only have geometry. The process is shown
as the following pseudo-code with query blocks are shown in Figure

13

Algorithm .1: Building views creation

Input: objectclass_id of building (901)
Output: view or materialized view of objectclass_id of 901

1 for objectclass_id = 901 do

2 execute (geometry query) <— gather geometry
3 U
4 execute (implicit geometry query) <— gather implicit geometry;

5 for objectclass_id = 15 or 709 or 710 or 712 do
6 L execute (geometry query) «<— gather thematic surface geometry

SELECT

f.1d AS co_id, Building query Available LoD and geometry query
g.geometry AS geom
FROM {_schema}.property p SELECT DISTINCT(p.name)
JOIN {_schema}.feature AS f ON p.feature_id = f.id FROM {_schema}.property AS p

AND f.objectclass_id = {objectclass_id}

JOIN {_schema}.geometry_data AS g ON p.val_geometry_id = g.id JOIN {_SChema}' feature AS f ON [= feature_ld = f.id

AND g.geometry IS NOT NULL WHERE f.objectclass_id={objectclass_id}
WHERE p.val_geometry_id IS NOT NULL AND p.datatype_id IN (8, 9)
AND p.name = {geometry_name}
UNION
SELECT p.1d AS co_id, Thematic surfaces query
st_setsrid

st_translate SELECT f.id AS co_id,

st_affinel
g.implicit_geometry, 9-geometry AS geom
val_array->>0) : :double precision, FROM feature AS f
val_array->>1)::double precision, JOIN property AS p ON
val_array->>2)::double precision, p.feature id = f.id
val_array—>>4)::double precision, -
val_array—>>5)::double precision, AND p.name = {geometry—name}
val_array—>>6)::double precision,)
val_array—>>8)::double precision, JOIN geometry_data AS g ON
val_array->>9)::double precision, N .
val_array->>10)::double precision, p.val_geometry_id = g.id
val_array->>3)::double precision, AND p.val_geometry_id IS NOT NULL
val_array—>>7)::double precision, AND g.geometry IS NOT NULL

val_array->>11)::double precision

st_x(p.val_implicitgeom_refpoint), WHERE f.objectclass_id = {objectclass_id};
st_y(p.val_implicitgeom_refpoint),
st_z(p.val_implicitgeom_refpoint

28992
)::geometry(MultiPolygonZ, 28992) AS geom
FROM {_schema}.property p
JOIN {_schema}.feature AS f ON p.feature_id = f.id
AND f.objectclass_id = {objectclass_id}
JOIN {_schema}.implicit_geometry AS ig ON p.val_implicitgeom_id = ig.id
JOIN {_schema}.geometry_data AS g ON ig.relative_geometry_id = g.id
AND g.implicit_geometry IS NOT NULL
WHERE p.val_implicitgeom_id IS NOT NULL
AND p.name = {geometry_name};

Figure 10: SQL query blocks for Building views creation

5.1.2 Vegetation

In the test data, only one tree feature with the “objectclass_id” of 1301 is available. According
to the CityGML v.3.0 [Kolbe et al 2021], vegetation is derived from Abstract Space, which can
have both geometry and implicit geometry representation. Therefore, the view creation query
is identical to that of the building. The process is shown as the following pseudo-code with
the query shown in Figure[10}

14

Algorithm .2: Vegetation views creation
Input: objectclass_id of vegetation (1300)
Output: view or materialized view of objectclass_id of 1300

1 for objectclass_id = 1300 do
2 L execute (geometry query query) U execute (implicit geometry query)

5.1.3 Relief

In the test data, there are two different features with “objectclass_id” related to the relief mod-
ule, which are: Relief feature (500), Relief (502). They are derived from the Abstract Space
boundary that can only have geometry with LoD from 0 to 3 and no implicit geometry. No-
tice that the relief feature does not have corresponding geometry, its geometry representation
is only available via the envelope of the feature. The relief component can have 4 different
types of representation. The process is shown as the following pseudo-code with query blocks
shown in Figure

Algorithm .3: Relief feature views creation
Input: objectclass_id of relief feature (500)
Output: view or materialized view of objectclass_id of 500

1 for objectclass_id = 500 do
2 | execute (search lods query)
3 | execute (envelope query)

Algorithm .4: Relief component views creation

Input: objectclass_id of relief component (502)
Output: view or materialized view of objectclass_id of 502

1 for objectclass_id = 502 do

2 execute (search lod and types query) <— get available lods pairs
3 for lod_type_pair do
4 L execute (geometry query)

15

Available LoD and geometry (Relief feature)

SELECT DISTINCT (p.val_int) AS lod
FROM {_schema}.feature AS f
JOIN {_schema}.property AS p ON(
f.id = p.feature_id
AND f.objectclass_id = {objectclass_id})
WHERE p.name = 'lod'

Relief feature query

SELECT
f.id AS co_id,
f.envelope AS geom
FROM {_schema}.property p
JOIN {_schema}.feature f ON p.feature_id = f.id
AND f.objectclass_id = {objectclass_id}
AND p.name = 'lod'
WHERE p.val_int = {lodx}

Available LoD and geometry (Relief component)

SELECT DISTINCT (p.name),
p.val_lod AS lod
FROM citydb_dtm.feature AS f
JOIN citydb_dtm.property AS p ON(
f.id = p.feature_id AND f.objectclass_id = 502)
WHERE p.datatype_id = 8

Relief component query

SELECT
f.id AS co_id,
g.geometry AS geom
FROM {_schema}.property AS p
JOIN {_schema}.feature AS f ON p.feature_id = f.id
AND f.objectclass_id = {objectclass_id}

JOIN {_schema}.geometry_data AS g ON p.val_geometry_id = g.id

AND g.geometry IS NOT NULL

WHERE p.val_geometry_id IS NOT NULL AND p.name = {form}
AND p.val_lod = {lodx}

GROUP BY f.id, g.geometry

Figure 11: SQL query for Relief layers creation

| tayers @0
& s
il

[VIED

jsen_holten_bdg_roof_surface_lod2_multisurface

v | _g_rijsen_holten_bdg_closure_surface_lod2_multisurt:
3 v [_g_rijsen_holten_bdg_ground_surface_lod2_multisurfa

v [_g_riisen_holten_bdg_lod0_multisurface

v [] _g_rijsen_holten_bdg_part_lodo_multisurface

v _g_rijsen_holten_bdg_wall_surface_lod2_multisurface
jsen_holten_veg_lod3_implicitrepresentation
_a_rijsen_holten_dtm_rel_tin_lod1
_g_rijsen_holten_veg_lod1_implicitrepresentation
_g_rijsen_holten_veg_lad2_implicitrepresentation
» [@ Vienna

R (Kl »
Browser a®
aemre
G- 3 [Type here to filter visible items.]
Dv ~|» [Project Home E
» [a) Home

» [[(Macintosh HD)
@ GeoPackage
/7 SpatiaLite

~ @ PostgreSQL
» = alderaan
» = citydb_va
» = citydb_v5
b = vienna_vd
~ = vienna_v

» B citydb

b B citydb_pkg

» & public

» 5 vienna_bdg_vs

») vienna_dtm_v5

+ © vienna_veg_v6
i AP HANA

» I MS SQL Server

» @ Oracle

» @ WMSWMTS
@ Scenes

» B8 Vector Tiles

£ XYZ Tiles

wes

» &2 WFS [OGC API - Features

b & ArcGIS REST Servers

Figure 12: Layers created by the test pipeline loaded in QGIS (Rijsen-Holten dataset)

16

Layers L

=

@ vawTe-30 4
» || (il Rijsen-Holten i

[v _g_vienna_bdg_v5_bdg_wall_surface_lod2_multisurfa

z V| [l _o_vienna_bdg_v5_bdg_roof_surface_lod2_multisurfa

V. _g_vienna_veg_v5_veg_lod2_implicitrepresentation
_g_vienna_bdg_v5_bdg_ground_surface_lod2_multisu

L v/
v/ _9_vienna_dtm_v5_dtm_rel_tin_lod2

G | 5, [1ype here tofiter visbe tems
«|» [Project Home <
b [&) Home
» [f (Macintosh HD)
@ GeoPackage
SpatiaLite
~ @ postgresQL.
» < alderaan
» = citydb_w4
b = citydb_v5
» = vienna_v4
v = vienna_vs
» & citydb
») citydb_pkg
» & public
» & vienna_bdg_v5
» B vienna_dtm_v5
») vienna_veg_v5
W SAP HANA
» B Ms saL Server
» @ Oracle
b @ WMS/WMTS
@ Scenes
» B8 vector Tiles
b XYZ Tiles
@ wes
» () WFS | OGC API - Features
» & ArcGIS REST Servers

Figure 13: Layers created by the test pipeline loaded in QGIS (Rijsen-Holten dataset)

5.2 Views and Materialized views execution time comparison

The query execution time comparison between 3DCityDB v.4 and v.5 is established by per-
forming a query to select features within a given extent on the views (V) and materialized
views (MV) separately. It aims to test the time efficiency for querying them to understand
whether it is reasonable to create simple views or materialized views as implemented by the
current 3DCityDB-Tools Plugin. The result shown in Table 2] for the Rijsen-Holten and Vienna
dataset. Since the space concept is associated with the core module but not thematic module
in CityGML v.3.0, the pre-aggregate process of all the features like vegetation and relief tin
model is not necessarily needed. The view query times of vegetation and relief with higher
LoD show a huge improvement which also happens in the materialized view query times.
The next stage of this research is to look into those time efficiency differences, and discuss the
strategies for attaching attributes with the geometries for the layers creation.

6 Time planning

The schedule for the tasks related to the thesis is presented with a Gantt diagram in Figure[14]

17

S'SSIWIWI :JIun awiry

SI8°1 9°62:00 €°6€:00 6°0€:00 0'82:00 89170 $°10:20 u3 ¥
SI8°1 8°¢1:00 9°60:00 £°91:00 €'91:00 1°10:€0 ¥°8C:10 ug ¢ (3uauodwo)) Jarey
SI8°1 8°60:00 £°£0:00 €°60:00 0790:00 8°01:20 8'90'10 ug g
SI8°T 1°00:00 1°00:00 1°00:00 ¥°00:00 1°00:00 1°00:00 oeymg ¢
(9myedy) Joray
SI8°T 1°00:00 1°00:00 1°00:00 <°00:00 °00:00 1°00:00 eymg g BUUSIA
65€°/81 €710:00 0°I1:00 8°¢0:00 $°10:00 T'LT:00 6'80:00 uonejussaiday prdwy g (s9a13) uonye3adan
£VE9T0’S 9°80:00 0°91:20 1°T€:00 8'60-00 0°T1:20 €'6€:00 NeJMS M T aoepms” [[em
€81°€81°T 9°20:00 0°T¥:10 $72S:00 9720:00 0°£42°T0 §'9¢:00 NeJMS UM T S0BJINS JOOI 2deJmS DR],
VT LLY S'10:00 T°9€:00 8°81:00 9°10-:00 1°C1:10 G'£T00 MG UM ¢ 9doeyms punoid
awr) A1ond aswm ysagay dwr} And awr A1anQ awIr} YSaryay awn A1anQ
paparas Palqo MIIA PIZI[eLIdICI MIIA MIIA PIZI[eLIdJCIN MIIA Anow0an ao1 (OD)armead wseed
Jo R qUNN
g'a gafimae ¥'a gafinag saNquUpRy
S"SSILUUT :JTUN JUUT}
¥16% 0°€0:00 °C0:00 £720:00 £°20:00 T'ST:00 £790:00 ug 1 (yuauodwio)) Jorey
G188 1°£0:00 07C€:00 671:00 T°£0:00 LYT10 6°0%:00 uonejuasarday prdwy ¢
S1S68S S°00:00 €70:00 S'10:00 9°00:00 €790:00 8°€0-00 uonejuasaiday prdwy g (s9913) uoneIaZIA
S168S £°00:00 °50:00 'C0:00 8°00:00 €'60:00 0%0:00 uonejuasarday yprdwy [
29868 0°10:00 $°80:00 0°€0:00 1°10:00 ¢91:00 €'90:00 oepms NN ¢ aoeyms em
_ ua)oH-uas(ny

01Z%6 €°00:00 6°€0:00 8°10:00 $°00:00 S$0:00 S'10:00 NeymMS PMN - T eyms joor

, _ 30BJINS dIJRWAY],
819°6C °00:00 6720:00 8°10:00 <°00:00 9°20:00 0°10:00 MepmMG UM ¢ odeyms punosd
20605 1°00:00 S'10:00 $°10:00 <°00:00 6°20:00 1'10:00 VMG UM T 90LFNS 2IMSOP
£01 1°00:00 1°00:00 1°00:00 1°00:00 1°00:00 1°00:00 DeyMS UM 0 e Surpimg
6v70€ °00:00 £°€0°00 0720:00 <°00:00 1°€0:00 0°70:00 DeJMS UM 0 Surpymg

awn) A1onQd dwn yYsaydy dwr Arond awny A1anQ auir) ysaxyay) A1ond

papapas P3lqo MITA PIZITeTdIEN MITA MBITA PIZI[EHdIEA MITA Anamoas a1 (Oo)mIEad yeseed

Jo _qUINN

¢'a gafioas

¥'a gafioas

sanquny

1me comparison

t

ion

t

1ew execu

Query on view and materialized vi

Table 2

(Rijsen-Holten & Vienna dataset)

18

M em M
aun(

M M eM M

M FM €M M

¥e/¥e/9 ve/¥e/9 [euy pue uor d>1qng - sa
¥T/€T/9 ve/LiT/s uonejuesard g aredarg
¥e/Ll9 we/€e/s sisou astreuL]
¥e/e/s ve/ee/s (Judwssasse [eunog) 08-0u/09 - pq
vZ/1c/s ve/et/v UoneIuasaId PUE UOHEIUAWNI0P fd aedarg
vZ/1z/s ¥2/9/ Sunsa, Aunqeis
¥/1T/s we/oz/€ woneidepe winig
9 ve/oz/e vT/oz/e Sunaow ssarSord WIAPIA - €4
] $T/0T/€ ¥T/PT/T sossep jo8re; 03 ssaoord uoneand kel dopas
] s s/ owdoprop fauoniuns
o ¥O/¥T/T ve/ve/1 ued uoenpeIn Judwssasse [PULOY - 7d
|] vo/ec/l sc/sT/cl oneIuesaId puE UOREIPWNI0P g aTedarg
] vo/61/1 ¥T/1/1 3593 oWy uonNAXe A1onb 1oAe| Areuruuar
[] €z/6T/Tl €T/¥/TL OSSP € YIIM UON LA 19K 13,
[] €7/8/T1 €2/0T/1L ¢'a gakndag ay) ssuerue]
o €T/L1/11 €T/LL/TL ued uonjenpern maiaar ssardord - T4
I i s s G
TM PM EMm M M FM M TM M M €M TM M FM M ZM [M FM €M gM M PM gM M M PM gm gm IM
Seppug oyep Helg SIser

Ae

mdy

yrep

Arenigag

Arenue(

QUL

I2qUIDAON]

129010

1oquidag

1S

Gannt diagram of the thesi

Figure 14

19

7 Tools and datasets used

7.1 Tools

For this research, Python v.3.12 is selected as the programming language executed with Vi-
sual Studio Code as the development environment. Python is used in combination with Post-
greSQL v.15 supported by the pgAdmin 4 for data processing executing SQL query for testing.
The development of the 3DCityDB is going to be bound on QGIS 3.34.2-Prizren, 3DCityDB
v.0.6.0-beta and 3DCityDB-Tools v.0.8.7. These versions are chosen based on their stability and
are widely adopted. The operating system in which all the above tools are installed and the
plugin is developed is macOS Ventura v.13.6.3.

7.2 Datasets

For the datasets that are going to be used in this research is the complete collection of buildings
in the wider area of Rijsen-Holten, which is derived from the spatial portal of 3D Basisregis-
tratie Adressen en Gebouwen (BAG) in the Netherlands. The 3D city model of Rijsen-Holten
comes in GML format and is imported into 3DCityDB via its command line tool (v.0.6.0-beta).
Moreover, other open datasets are going to be used for test purposes, such as the 3D models of
Vienna available via Open Government Data Wien catalogue in Austria. Lastly, since this re-
search is working on the CityGML v.3.0, the GML data stored with the new standard provided
by the other sources is going to be tested if it is available.

References

Agugiaro, G., Pantelios, K., Leén-Sanchez, C., Yao, Z., and Nagel, C. (2024). Introducing the
3DCityDB-Tools plug-in for QGIS.

Agugiaro, G., Pantelios, K., Mbwanda, T., and Sanchez, C. L. (2023). 3DCityDB-Tools-for-
QGIS. https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS.

Groger, G., Kolbe, T. H., Nagel, C., and Hifele, K.-H. (2012). OGC city geography markup
language (CityGML) encoding standard.

Kolbe, T. H., Kutzner, T., Smyth, C. S., Nagel, C., Roensdorf, C., and Heazel, C. (2021). OGC
City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard. http:
//www.opengis.net/doc/IS/CityGML-1/3.0.

Nagel, C., Willenborg, B., Yao, Z., and Schwab, B. (2023). citydb-tool. https://github.com/
3dcitydb/citydb-tool/releases!

Open Geospatial Consortium et al. (2021). OGC city geography markup language (CityGML)
3.0 conceptual model users guide. https://docs.ogc.org/guides/20-066.html.

Pantelios, K. (2022). Development of a QGIS plugin for the CityGML 3D City Database.

Yao, Z., Nagel, C., Kunde, F., Hudra, Donaubauer, A., Adolphi, T., and Kolbe, T. H. (2018).
3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization of
semantic 3D city models based on CityGML. Open Geospatial Data, Software and Standards,
3(1):1-26.

20

https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS
http://www.opengis.net/doc/IS/CityGML-1/3.0
http://www.opengis.net/doc/IS/CityGML-1/3.0
https://github.com/3dcitydb/citydb-tool/releases
https://github.com/3dcitydb/citydb-tool/releases
https://docs.ogc.org/guides/20-066.html

	Introduction
	Related work
	CityGML
	3D City DataBase
	3DCityDB-Tools for QGIS

	Research questions
	Objectives
	Scope of research

	Methodology
	Plugin Server-side in PostgreSQL
	Feature geometry
	Corresponding attributes attachment

	Plugin Client-side in QGIS
	Layer management
	Layer interaction

	Preliminary results
	Querying geometries from the 3DCityDB v.5.0
	Building
	Vegetation
	Relief

	Views and Materialized views execution time comparison

	Time planning
	Tools and datasets used
	Tools
	Datasets

