
Extending the 3D City Database 5.0 to support
CityGML application in QGIS

Bing-Shiuan Tsai
 student #5511461

1st supervisor: Giorgio Agugiaro
2nd supervisor: Camilo León Sánchez

External supervisors: Claus Nagel, Zhihang Yao

January 24, 2024

1

B.Tsai@student.tudelft.nl

1 Introduction

Semantic 3D city models are commonly used for data visualisation and analyses in the realm
of the built environment. Storage and management of semantic 3D city models data can be
achieved in CityGML, which is an international standard adopted by the Open Geospatial
Consortium (OGC).

Handling large amounts of data calls for a database encoding. For CityGML, there is a
database encoding called the 3D City database (3DCityDB), an open source project developed
for PostgreSQL and Oracle databases. The 3DCityDB in use is the version of 4.X, and it is de-
rived from the CityGML v.2.0 conceptual model. Except for data storage, the database allows
for data accessibility, enabling users to convert the city object associations to relations between
predefined feature tables based on a set of mapping rules consistent to CityGML2.0 standards.

Although the 3DCityDB tool was developed to simplify the complexity of CityGML, its
structure still remains rather complex for users with basic structured query language (SQL)
skills. However, a plugin for QGIS, called “3DCityDB-Tools for QGIS”, has been recently
developed to facilitate the interaction with the 3DCityDB for a wider group of practitioners,
and therefore to expand the usability of CityGML, narrowing the gap between them and the
geo-information experts via an intuitive graphical user interface (GUI) in QGIS.

In the meanwhile, the OGC has published the CityGML v.3.0 standard in September 2021
[Kolbe et al., 2021], which introduces an improved conceptual data model and new modules
such as logical space and physical space to address the spatial characteristics and the support
of time-dependent IoT data, etc. The 3DCityDB is being updated to version 5.0 in order to add
full support for CityGML v.3.0.

The goal of this research is to investigate how the new database structure of the 3DCityDB
v. 5.0 can be coupled with the existing 3DCityDB-Tools plugin, in order to enable support not
only for the existing version 4.x, but also for the upcoming version 5.0. The research will start
from familiarising the mapping structure of the data in both CityGML v.2.0 and v.3.0 to the
new schema, performing experiments on the database modification on the server-side, and
eventually improving the user experience with the existing QGIS plugin.

2 Related work

2.1 CityGML

CityGML defines the classes and relations for the most relevant topographic objects in cities
and regional models with respect to their geometrical, topological, semantical, and appearance
properties. It not only allows visualisation for 3D models but also enables thematic queries,
analysis tasks, or spatial data mining, satisfying the information needs of various application
fields [Kolbe et al., 2021].
The CityGML v.3.0 core model defines basic concepts and the base classes, the fundamental
element of which is the abstract class “AbstractCityObject” (Figure 1). It is the superclass of
all thematic modules in CityGML, the space concepts are derived from the core, which con-
sist of two subclasses named “AbstractSpace” and “ AbstractSpaceBoundary” for volumetric
and areal extent separately. The geometry representations and its Level of Detail (LoD) are
associated with the space concepts (Figure 2).

2

AbstractFeatureWithLifespan
«FeatureType»

AbstractCityObject

«Property»
+ relativeToTerrain: RelativeToTerrain [0..1]
+ relativeTo:ater: RelativeTo:ater [0..1]
+ adeOfAbstractCityObMect: ADEOfAbstractCityObMect [0..*]

«FeatureType»
AbstractSpace

«Property»
+ spaceType: SpaceType [0..1]
+ volume: 4ualifiedVolume [0..*]
+ area: 4ualifiedArea [0..*]
+ adeOfAbstractSpace: ADEOfAbstractSpace [0..*] «FeatureType»

AbstractThematicSurface

«Property»
+ area: 4ualifiedArea [0..*]
+ adeOfAbstractThematicSurface: ADEOfAbstractThematicSurface [0..*]

«FeatureType»
Abstract3hysicaOSpace

«Property»
+ adeOfAbstractPhysicalSpace: ADEOfAbstractPhysicalSpace [0..*]

«FeatureType»
AbstractLoJicaOSpace

«Property»
+ adeOfAbstractLogicalSpace: ADEOfAbstractLogicalSpace [0..*]

«FeatureType»
Closure6urIDFe

«Property»
+ adeOfClosureSurface: ADEOfClosureSurface [0..*]

«FeatureType»
AbstractOccupiedSpace

«Property»
+ adeOfAbstractOccupiedSpace: ADEOfAbstractOccupiedSpace [0..*]

«FeatureType»
Abstract8noccupiedSpace

«Property»
+ adeOfAbstractUnoccupiedSpace: ADEOfAbstractUnoccupiedSpace [0..*]

«FeatureType»
AbstractSpace%oundary

«Property»
+ adeOfAbstractSpaceBoundary: ADEOfAbstractSpaceBoundary [0..*]

*
+boundary
«Property» *

Figure 1: Core - Space concepts of CityGML 3.0 UML diagram (Figure from [Kolbe et al., 2021])

«type»
*eometry root::

*0_Object

*0BPriPitiYe
«type»

*eometric�Srimitive::
*0BPoint

Abstract&ityObMect
«FeatureType»
AbstractSpace

AbstractSpaceBoundary
«FeatureType»

AbstractThematicSurface

«FeatureType»
Abstract3hysicaOSpace

«FeatureType»
AbstractOccupiedSpace

*0BPriPitiYe
«type»

*eometric�Srimitive::
*0BSolid

*0B0ultiPriPitiYe
«type»

*eometric�aggregates::
*0B0ultiSurIace

*0B0ultiPriPitiYe
«type»

*eometric�aggregates::
*0B0ultiCurve

«ObMectType»
ImSlicit*eometry

«Property»
+ obMectID: ID
+ transformationMatri[: TransformationMatri[�[�
+ mimeType: MimeTypeValue [0..1]
+ libraryObMect: URI [0..1]

AbstractFeature
«FeatureType»

Abstract3ointCOoud

*

+referencePoint
«Property» 1

*
+lod0MultiCurve

«Property» 0..1

*
+lod�MultiSurface

«Property»

0..1*
+lod0MultiSurface

«Property» 0..1

*

+lod1TerrainIntersectionCurve
«Property»

0..1

*
+lod�MultiCurve

«Property»

0..1

*
+lod�MultiSurface

«Property»

0..1

*

+pointCloud
«Property» 0..1

*
+lod1Solid
«Property»0..1

*

+lod�TerrainIntersectionCurve
«Property»

0..1

*
+lod�Solid
«Property»

0..1

*

+relativeGeometry
«Property»

0..1

*
+lod�TerrainIntersectionCurve

«Property»

0..1
*

+lod0Point
«Property»0..1

*

+lod�ImplicitRepresentation
«Property»

0..1

*
+lod0MultiCurve

«Property»0..1

*
+lod�MultiCurve

«Property»

0..1

*

+lod�ImplicitRepresentation
«Property»

0..1

*
+lod0MultiSurface

«Property»0..1

*
+lod1MultiSurface

«Property»

0..1

*+lod1ImplicitRepresentation
«Property»

0..1

*
+lod�Solid
«Property»

0..1

*
+pointCloud
«Property» 0..1

*
+lod�MultiSurface

«Property»

0..1

*
+lod�MultiSurface

«Property»

0..1

Figure 2: Core - Geometry and LoD concept of CityGML v.3.0 UML diagram
(Figure from [Kolbe et al., 2021])

Features in the built environment are then mapped to the corresponding space concept
based on its semantics. For example, the module “Building” contains two subclasses “build-
ing” and “buildingPart” which describe the physical volumetric extents of a building are de-
rived from the “AbstractSpace” while its roofs, walls, etc. properties referring to the thematic
surfaces are therefore derived from the areal “AbstractSpaceBoundary” (Figure 3).

3

AbstractFeature
«FeatureType»
Core::Address

«FeatureType»
AbstractBuilding

«Property»
+ class: BuildingClassValue [0..1]
+ function: BuildingFunctionValue [0..*]
+ usage: BuildingUsageValue [0..*]
+ roofType: RoofTypeValue [0..1]
+ storeysAboveGround: Integer [0..1]
+ storeysBelowGround: Integer [0..1]
+ storeyHeightsAboveGround: MeasureOrNilReasonList [0..1]
+ storeyHeightsBelowGround: MeasureOrNilReasonList [0..1]
+ adeOfAbstractBuilding: ADEOfAbstractBuilding [0..*]

AbstractOccupiedSpace
«FeatureType»
Construction::

AbstractConstruction

«FeatureType»
BuildingInstallation

«Property»
+ class: BuildingInstallationClassValue [0..1]
+ function: BuildingInstallationFunctionValue [0..*]
+ usage: BuildingInstallationUsageValue [0..*]
+ adeOfBuildingInstallation: ADEOfBuildingInstallation [0..*]

«FeatureType»
BuildingFurniture

«Property»
+ class: BuildingFurnitureClassValue [0..1]
+ function: BuildingFurnitureFunctionValue [0..*]
+ usage: BuildingFurnitureUsageValue [0..*]
+ adeOfBuildingFurniture: ADEOfBuildingFurniture [0..*]

«FeatureType»
BuildingRoom

«Property»
+ class: BuildingRoomClassValue [0..1]
+ function: BuildingRoomFunctionValue [0..*]
+ usage: BuildingRoomUsageValue [0..*]
+ roomHeight: RoomHeight [0..*]
+ adeOfBuildingRoom: ADEOfBuildingRoom [0..*]

«FeatureType»
BuildingPart

«Property»
+ adeOfBuildingPart: ADEOfBuildingPart [0..*]

«TopLevelFeatureType»
Building

«Property»
+ adeOfBuilding: ADEOfBuilding [0..*]

AbstractOccupiedSpace
«FeatureType»
Construction::

AbstractFurniture

AbstractPhysicalSpace
«FeatureType»

Core::
AbstractUnoccupiedSpace

AbstractOccupiedSpace
«FeatureType»
Construction::

AbstractInstallation

AbstractSpace
«FeatureType»

Core::
AbstractLogicalSpace

«FeatureType»
AbstractBuildingSubdivision

«Property»
+ class: BuildingSubdivisionClassValue [0..1]
+ function: BuildingSubdivisionFunctionValue [0..*]
+ usage: BuildingSubdivisionUsageValue [0..*]
+ elevation: Elevation [0..*]
+ sortKey: Real [0..1]
+ adeOfAbstractBuildingSubdivision: ADEOfAbstractBuildingSubdivision [0..*]

AbstractOccupiedSpace
«FeatureType»
Construction::

AbstractConstructiveElement

«FeatureType»
Storey

«Property»
+ adeOfStorey: ADEOfStorey [0..*]

«FeatureType»
BuildingUnit

«Property»
+ adeOfBuildingUnit: ADEOfBuildingUnit [0..*]

«FeatureType»
BuildingConstructiveElement

«Property»
+ class: BuildingConstructiveElementClassValue [0..1]
+ function: BuildingConstructiveElementFunctionValue [0..*]
+ usage: BuildingConstructiveElementUsageValue [0..*]
+ adeOfBuildingConstructiveElement: ADEOfBuildingConstructiveElement [0..*]

«DataType»
RoomHeight

«Property»
+ highReference: RoomElevationReferenceValue
+ lowReference: RoomElevationReferenceValue
+ status: HeightStatusValue
+ value: Length

AbstractSpaceBoundary
«FeatureType»

Core::
AbstractThematicSurface

*
+buildingInstallation

«Property»*

*

+buildingFurniture
«Property»*

*

+buildingConstructiveElement
«Property»

*

*

+buildingFurniture
«Property» *

* +boundary
«Property»

*

+boundary
«Property»

*

*

+buildingRoom
«Property»*

*
+address
«Property» *

*

+buildingSubdivision
«Property» *

*

+address
«Property»*

*

+boundary
«Property»

*

*

+buildingInstallation
«Property» *

*

+buildingFurniture
«Property» *

* +storey
«Property»

*

*

+boundary
«Property»

*

*

+buildingRoom
«Property»

*

*+buildingUnit
«Property»

*

1
+buildingPart
«Property» *

*

+buildingConstructiveElement
«Property»

*

*

+boundary
«Property»

*

*

+buildingInstallation
«Property»*

Figure 3: Building module of CityGML v.3.0 UML diagram
(Figure from [Kolbe et al., 2021])

The geometry and LoD concept has changed fundamentally between CityGML v.2.0 and
v.3.0. In CityGML v.2.0, geometry representations and LoD are associated with the thematic
module and the degree of semantic decomposition, thematic surfaces were only allowed start-
ing from LoD2 and the interior rooms only in LoD4 [Open Geospatial Consortium et al.,
2021]. The geometry representation in the thematic module level requires each thematic fea-
tures to have direct associations with geometries, which, for example, if building possesses
a “ lod2MultiSurface” representation, all the corresponding boundary surfaces in the same
LoD are required to be aggregated for generating this representation (Figure 4). However, in
CityGML 3.0, the geometry representations are associated with the newly added space con-
cepts in core module, which significantly simplifies the models of the thematic modules since
all features inherit the attributes of space and space boundary classes, there will only be at
most 23 combinations of geometry representation depending on different thematic modules.
As this research aims to extend the use of the current 3DCityDB developed for the CityGML
v.2.0 to facilitate the application in QGIS, differentiating the standard difference of geometry
representation is of importance. The new space concepts provide a clear scope for generating
all possible “layers” that can be viewed in QGIS at the first step.

4

 Building module

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights Reserved. 11

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]
+yearOfConstruction : xs::gYear [0..1]
+yearOfDemolition : xs::gYear [0..1]
+roofType : gml:CodeType [0..1]
+measuredHeight : gml::LengthType [0..1]
+storeysAboveGround : xs::nonNegativeInteger [0..1]
+storeysBelowGround : xs::nonNegativeInteger [0..1]
+storeyHeightsAboveGround : gml::MeasureOrNullListType [0..1]
+storeyHeightsBelowGround : gml::MeasureOrNullListType [0..1]

<<Feature>>
_AbstractBuilding

<<Feature>>
_BoundarySurface

<<Feature>>
CeilingSurface

<<Feature>>
InteriorWallSurface

<<Feature>>
FloorSurface

<<Feature>>
RoofSurface

<<Feature>>
WallSurfacee

<<Feature>>
ClosureSurface

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
BuildingInstallation

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
IntBuildingInstallation

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
Room

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
BuildingFurniture

<<Feature>>
_Opening

<<Feature>>
Window

<<Feature>>
Door

<<Feature>>
Building

<<Feature>>
BuildingPart

<<Feature>>
core::_CityObject

<<Geometry>>
gml::MultiCurve

<<Geometry>>
gml::MultiSurface

<<Feature>>
core::_Site

<<Geometry>>
gml::_Solid

<<Geometry>>
gml::_Geometry

<<Object>>
core::ImplicitGeometry

<<Feature>>
GroundSurface

<<Feature>>
OuterCeilingSurface

<<Feature>>
OuterFloorSurface

<<Feature>>
core::Address

*

lod4MultiSurface

*

lod3MultiSurface

*

*

boundedBy

*

0..1

*

0..1

*

*

lod4TerrainIntersection

* *

lod3MultiSurface

*

lod2MultiSurface

*
lod4MultiSurface

*

lod4MultiCurve

*

0..1

interiorFurniture

*

*

address

0..1

*

0..1

* lod3MultiSurface

*

*

interiorRoom

0..1

*

lod2MultiSurface

*

lod4MultiSurface

*lod4Geometry

*

*

boundedBy

*

*

outerBuildingInstallation

*

lod3MultiCurve

*

0..1

*

lod3ImplicitRepresentation

0..1

*

lod4Geometry
*

*

lod4ImplicitRepresentation
0..1

*

0..1

*

lod0FootPrint

*

0..1

boundedBy

0..1

*

lod2MultiCurve

*

lod0RoofEdge

*

lod3TerrainIntersection

*

0..2

opening

0..1

*

lod1MultiSurface

*

*

boundedBy

*

0..1

roomInstallation

0..1

*

lod4MultiSurface

0..1

*

*lod3Geometry

*

*

consistsOfBuildingPart

*

*

interiorBuildingInstallation

0..1

*

lod4Geometry

*

*

*

address

0..1

*

lod1TerrainIntersection

0..1
*lod2Geometry

*

lod2TerrainIntersection

lod4ImplicitRepresentation

lod3ImplicitRepresentation

lod2ImplicitRepresentation

lod4ImplicitRepresentation

lod4ImplicitRepresentation

lod4Solid

lod4Solid

lod1Solid

lod2Solid

lod3Solid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

Figure 4: Building module of CityGML v.3.0 UML diagram
(Figure from [Gröger et al., 2012])

2.2 3D City DataBase

The ”3DCityDB is an Open Source software suite allowing to import, manage, analyze, vi-
sualize, and export virtual 3D city models according to the CityGML standard, supporting
both versions 2.0 and 1.0.” [Yao et al., 2018]. The database schema is established to accommo-
date the CityGML model for both storage and processing. However, some restrictions must
be applied in order to convert the conceptual model into compacted relational tables, other-
wise, a one-to-one mapping of CityGML data model will result in a vast number of tables and
relations in between [Pantelios, 2022]. According to [Yao et al., 2018], “the super class shall
be an abstract class that holds all attributes and associations which will be inherited by the
concrete sub- classes and every of the sub-classes shall not have any further attributes or as-
sociated with other classes”. To respond to this, certain tables are introduced to the schema

5

with the primary and foreign keys to store the relations between them. The demonstration of
converting the conceptual model to the relational tables of the building class in CityGML v.2.0
is shown in Figure 5 as an example.

Figure 5: 3DCityDB Inheritance of building feature mapping in CityGML v.2.0
(Figure from [Yao et al., 2018])

The latest release of 3DCityDB v.4.4.0 maps classes in CityGML v.2.0 to 66 database rela-
tional tables in a PostgreSQL database schema. Since the CityGML v.3.0 testing version was
released recently, 3DCityDB has been continuously updated, and by the time of writing, 3DC-
ityDB v.0.6.0-beta is used in this research for management of the spatial data in accordance
with CityGML v.3.0, which maps the classes to only 18 relational tables. Therefore, there is
a substantial change in the mapping rules between the conceptual model (in UML) and the
Entity-Relationship (ER) model of the database.

• Table Feature: It stores all general information of all features within the given dataset,
which contains primary keys like id, objectclass id for further relational join.

• Table Property: It accommodates all attributes of the existing features, which contains
foreign keys like feature id to link to corresponding features.

• Table Geometry data: It stores all the geometry representations of all existing features.
Foreign keys like id, feature id are set to link to corresponding features and properties.

• Table Implicit geometry: It stores the information of implicit geometry, which serves as
an example representation that will be scaled and shifted to the reference places while
creating viewable layers. Foreign key, relative geometry id is set to link to the correspond-
ing geometry

The other tables which are not further explained here, are those used for appearances, etc.
These tables are not currently relevant at the initial phase of this research. The details of the
relational tables can be seen in the mapping schema of 3DCityDB v.0.6.0-beta, which is shown
in Figure 6. In summary, 3DCityDB maps CityGML into a compact database schema that
reduces operational complexity without introducing semantic ambiguity [Pantelios, 2022].

6

Main Layout 6-11-2023 by DbSchema.com - Wise Coders

Geometry

MetadataCore

Appearance

aggregation_info_child_fk
aggregation_info_parent_fk

aggregation_info_namespace_fk

appear_to_surface_data_fk1
appear_to_surface_data_fk2

appearance_feature_fk
appearance_implicit_geom_fk

codelist_entry_codelist_fk

datatype_ade_fk
datatype_namespace_fk

datatype_supertype_fk

feature_objectclass_fk

geometry_data_feature_fk

implicit_geometry_fk

fk_namespace_ade

objectclass_ade_fk

objectclass_superclass_fk

objectclass_namespace_fk

property_appearance_fk

property_feature_fk

property_val_feature_fk

property_val_implicitgeom_fk

property_parent_fk
property_root_fk

property_val_geometry_fk

property_namespace_fk
property_datatype_fk

property_val_address_fk

surface_data_objclass_fk

surface_data_tex_image_fk

surface_data_mapping_fk1
surface_data_mapping_fk2

address

id bigint
objectid text
identifier text
identifier_codespace text
street text
house_number text
po_box text
zip_code text
city text
state text
country text
free_text json
multi_point geometry(MULTIPOINTZ)
content text
content_mime_type text

ade

id integer
name text
description text
version text

aggregation_info

child_id integer
parent_id integer
property_name text
property_namespace_id integer
min_occurs integer
max_occurs integer
is_composite numeric

appear_to_surface_data

id bigint
appearance_id bigint
surface_data_id bigint
val_reference_type integer

appearance

id bigint
objectid text
identifier text
identifier_codespace text
theme text
creation_date timestamptz
termination_date timestamptz
valid_from timestamptz
valid_to timestamptz
is_global numeric
feature_id bigint
implicit_geometry_id bigint

codelist

id bigint
codelist_type text
url text
mime_type text

codelist_entry

id bigint
codelist_id bigint
code text
definition text

database_srs

srid integer
srs_name text

datatype

id integer
supertype_id integer
typename text
is_abstract numeric
ade_id integer
namespace_id integer

feature

id bigint
objectclass_id integer
objectid text
identifier text
identifier_codespace text
envelope geometry(GEOMETRYZ)
last_modification_date timestamptz
updating_person text
reason_for_update text
lineage text
creation_date timestamptz
termination_date timestamptz
valid_from timestamptz
valid_to timestamptz

geometry_data

id bigint
geometry geometry(GEOMETRYZ)
implicit_geometry geometry(GEOMETRYZ)
geometry_properties json
feature_id bigint

implicit_geometry

id bigint
objectid text
mime_type text
mime_type_codespace text
reference_to_library text
library_object bytea
relative_geometry_id bigint

namespace

id integer
alias text
namespace text
ade_id integer

objectclass

id integer
superclass_id integer
classname text
is_abstract numeric
is_toplevel numeric
ade_id integer
namespace_id integer

property

id bigint
feature_id bigint
parent_id bigint
root_id bigint
datatype_id integer
namespace_id integer
name text
val_int bigint
val_double double precision
val_string text
val_timestamp timestamptz
val_uri text
val_codespace text
val_uom text
val_array json
val_lod text
val_geometry_id bigint
val_implicitgeom_id bigint
val_implicitgeom_refpoint geometry(GEOMETRYZ)
val_appearance_id bigint
val_address_id bigint
val_feature_id bigint
val_reference_type integer
val_content text
val_content_mime_type text

surface_data

id bigint
objectid text
identifier text
identifier_codespace text
is_front numeric
objectclass_id integer
x3d_shininess double precision
x3d_transparency double precision
x3d_ambient_intensity double precision
x3d_specular_color text
x3d_diffuse_color text
x3d_emissive_color text
x3d_is_smooth numeric
tex_image_id bigint
tex_texture_type text
tex_wrap_mode text
tex_border_color text
gt_orientation json
gt_reference_point geometry(POINT)

surface_data_mapping

surface_data_id bigint
geometry_data_id bigint
material_mapping json
texture_mapping json
world_to_texture_mapping json
georeferenced_texture_mapping json

tex_image

id bigint
image_uri text
image_data bytea
mime_type text
mime_type_codespace text

Figure 6: 3DCityDB schema of v.0.6.0-beta (Figure from [Nagel et al., 2023]

2.3 3DCityDB-Tools for QGIS

The existing plugin named “3DCityDB Tools for QGIS” to facilitate the use of CityGML data
in QGIS is available through Github [Agugiaro et al., 2023]. According to the manual, the
current 3DCityDB Tools v.0.8.7 supports the management and visualisation of data stored in
the 3DCityDB with regard to the CityGML v.1.0 and v.2.0.

The plugin allows users to connect the local and remote 3DCityDB instances for PostgreSQL/PostGIS
and load the data into QGIS. to create viewable layers, which are designed to facilitate users
from different fields and expertise in their interaction with CityGML data encoded in the 3DC-
ityDB. Once data layers are available in QGIS, the users can perform analyses, access and edit
associated attributes, explore and visualise the data in 2D and 3D based on the built-in func-
tions of QGIS and its other plugins.

The server-side part of the plugin, called “QGIS Package”, provides capability for man-
agement of database users and data layers. It allows the users to define and create a layer
by extracting a specific, selectable geometry (according to its LoD) of a feature and relate to
its corresponding attributes. This structure of such a layer is in compliance with the Simple
Feature Model (SFM). The client-side part of the plugin provides different tools for different
uses:

• The QGIS Package Administrator tools allows database administrators to install the
server-side part of the plug-in, as well as to set up database user access and user privi-
leges.

7

• The Layer Loader tool allows users to load and interact with data in the 3D City Database
directly from QGIS.

• The Bulk Delete tool allows users to delete features from the database, either at all at
once, or by means of spatial and feature-related filters.

Users have the access to connect to the database using a friendly graphical user interface
(GUI), set up the schema and grant privileges to the users in the server-side, building up all the
functionalities for users and layers management. Since the current version of 3DCityDB-Tool
plugin only supports 3DCityDB v.4.x. This research will mainly focus on extending the func-
tionality of the plugin to support 3DCityDB v.5.0, and as consequence, to support CityGML
3.0. The work can be subdivided into two parts:

The first regards the server-side part, including creating feature geometries called views
or materialized views and linking the feature attributes with the corresponding feature ge-
ometries to form the QGIS-usable SFM “layers”. Views here are referring to the SQL trans-
formation from a set of base tables to a derived table in PostgreSQL, which are recomputed
every time when they are referenced or queried. The geometries of the features managed by
3DCityDB v.5 are stored in the geometry column of the geometry data table, which then can
be query via the primary keys of “objectclass id” and other foreign keys, resulting in tables
containing all the geometry with regard to each feature type.

Note that, since querying the geometry table on the fly would be time-consuming regarding
the scale to join several tables. For efficiency reasons, the layer created by the 3DCityDB-
Tools plugin is the result of linking a view with attributes to the materialized view with the
geometries ([Pantelios, 2022], [Agugiaro et al., 2024]). Materialized views here are referring to
the temporary virtual table which is used to store the proactively computed result of views in
PostgreSQL. Index structures can be built on the materialized view to boost the performance
while it is accessed in the database, the query execution time could be much faster compared
to that of querying from a view.

The second regards the client-side part, including managing the 3DCityDB layers that are
created by the process mentioned above and dealing with layers interaction functions such as
updating attributes or features deletion etc.

Figure 7: 3DCityDB-Tools GUI
(left: screenshot of the QGIS Package Administrator tool, right: Layer Loader tool)

8

3 Research questions

3.1 Objectives

This main goal of the research is to investigate how to add support for CityDB 5.x (and as a
consequence CityGML v.3.0) to the 3DCityDB Tools plugin for QGIS. To achieve this goal, the
following research questions need to be addressed.

• How does the new database structure of 3DCityDB v.5 affect the current methodology
of the plugin to create layers which contain both geometries and attributes for a selected
feature type following the SFS. In particular,

– How do the new CityGML 3.0 concepts of space, LoD affect the process?

• With regards to geometries, can the same or a similar approach be reproduced?

– Is it still necessary to rely on materialized views?

– What are the performance differences between 3DCityDB 4.x and 5.x when retriev-
ing geometries from the database?

– How does the QGIS Package need to be restructured?

• With regards to attributes, can the same or a similar approach be reproduced?

– Is it still necessary to rely on updatable views?

– What alternatives are there?

– How does the plugin front-end need to be restructured?

• How is the CityGML v.2.0 data mapped to the new schema of 3DCityDB v.5.0?

– Can we deal with CityGML2.0 data as CityGML 3.0 data as long as it is stored in
the 3DCityDB 5.x?

3.2 Scope of research

The scope of the research will focus on the thematic features of “Appearance”, “Building”,
“Bridge”, “CityObjectGroup”, “generic”, “Tunnel”, “Vegetation”, “Transportation”, “Relief”,
“CityFurniture”, “WaterBody”, ”Landuse” and their attributes, detail level and types of ge-
ometries. As the above-mentioned 12 features are the most frequently accessed information of
a city, and they already existed in the CityGML v.2.0, understanding the layer creation process
of these modules will facilitate the functions adaptation in compliance with CityGML v.3.0.

Consider the , “Dynamizer”, “PointCloud” and “Versioning” are threenewly added mod-
ules in new CityGML standards. The 3DCityDB v.5.0 currently does not support these mod-
ules mapping to relational tables, and its development is still in progress. The research will
take its development into consideration and attempt to offer conceptual suggestions of how
to support the application of features from these modules in QGIS.

4 Methodology

The proposed methodology consists of two phases. The first phase focuses on the Plugin
server-side in PostgreSQL, which takes the “objectclass id” as the feature identifier, search in
the 3DCityDB for its all possible geometry presentations and perform the SQL query among
the 18 relational tables that are mapped by the 3DCityDB v.5.0 (see 2.2) to create the loadable
layers with the corresponding attributes for further application in QGIS.

9

The second phase emphasises on the Plugin client-side in QGIS, which deals with the layer
management of all available layers, testing and adapting the relative layers functions, e.g.,
inserts, updates and deletions. Although the two phases are described separately, they are
highly interrelated since certain adjustments on the layer creation part could be necessary
while working on the compatibility part and vice versa. The overview methodology is shown
in Figure 8.

3DCityDB-Tools plugin with
3DCityDB v.5 support

Layer management

 Plugin Server-side
in PostgreSQL

Feature geometry

Feature attributes

Testing / Adaptation

 Plugin Client-side
in QGIS

Layer management

Layer Interaction
(e.g. read only / read-write)

Figure 8: Overview of the proposed methodology

4.1 Plugin Server-side in PostgreSQL

4.1.1 Feature geometry

According to the CityGML v.3.0 UML diagram (Figure 2), the core geometry and LoD concept
defines all the possible geometry representation of the abstract features of “AbstractSpace”
and “AbstractSpaceBoundary”. Since all the features in CityGML v.3.0 are derived from either
two of the superclasses, there are only 23 possible combinations of geometry representation
(Table 1) for each feature. This step will only take on the feature identifier, “objectclass id”,
stored in the FEATURE table in 3DCityDB v.5.0 to gather its corresponding geometry views
via SQL query.

At the first step of the research, both views and materialized view will be created among all
feature types using the new relational table structure generated by 3DCityDB v.5.0 in order to
test the time efficiency of performing a query from them.

4.1.2 Corresponding attributes attachment

According to the CityGML v.3.0 UML diagram (Figure 3), thematic features like buildings pos-
sess attributes such as class, usage and roofType, etc. These entity attribute values (EAV) are
stored in the PROPERTY table and they are also able to be queried by sets of keys across differ-
ent tables. The 3DCityDB-Tools plugin currently associates these attributes via the hierarchical

10

relation class called Table Of Content (TOC) in QGIS, which sets upa Many-to-One relation-
ship between fields of referenced and referencing layers [Pantelios, 2022]. The TOC relation
class in QGIS is proposed to link the attributes in the property table to their corresponding
main features, which will be investigated in the future work.

lod representation class lod representation class
0 lod0point space 0 lod0multisurface boundary
0 lod0multisurface space 0 lod0multicurve boundary
0 lod0multicurve space 1 lod1multisurface boundary
1 lod1solid space 2 lod2multisurface boundary
1 lod1terrainintersectioncurve space 3 lod3multisurface boundary
1 lod1implicitrepresentation space x pointcloud boundary
2 lod2solid space x envelope boundary
2 lod2multisurface space
2 lod2multicurve space
2 lod2terrainintersectioncurve space
2 lod2implicitrepresentation space
3 lod3solid space
3 lod3multisurface space
3 lod3multicurve space
3 lod2terrainintersectioncurve space
3 lod3implicitrepresentation space
x pointcloud space
x envelope space

Table 1: Possible geometry representations of the two superclasses in CityGML v.3.0

4.2 Plugin Client-side in QGIS

4.2.1 Layer management

The concept of geometry representation has significantly changed between the CityGML v.2.0
and v.3.0, it was elevated to a higher core level not associated with the thematic level. Al-
though the modification simplifies the thematic model representation, it also introduces some
potential incompatibilities. For example, “lod2MultiSurface” of the building class used to be
bounded by all its thematic surfaces, the geometry is represented by the aggregation of the
corresponding LoD thematic surface (see Figure 4), which is then used to associated with
the LoD-relating attribute in CityGML v.2.0. However, in the relational table mapped by
the 3DCityDB v.5.0 in accordance with the CityGML v.3.0, building feature does not have
“lod2MultiSurface” geometry representation initially, the “bounded by” relation is mapped
to the “has” relation, indicating that building features possess thematic boundaries which are
different features other than building. These potential incompatibilities arise as building fea-
tures still have attributes like “LoD2 volume” but it has no geometry representation to be as-
sociated, which requires further solution to answer the research question in terms of attribute
attachment.

The above-mentioned case is just an example, these potential incompatibilities derived from
standard differences need to be solved in order to extend the use of CityGML data in 3DCi-
tyDB. The proposal is to discuss it case by case, as a possible solution to the example case
could be performing the aggregation or including the geometry such as the envelope of the
features as an alternative.

11

4.2.2 Layer interaction

The current 3DCityDB-Tools plugin sets up trigger functions that allow users to handle “up-
date”, “insert” and “delete” operations when creating the layers. The “insert” function is
currently forbidden as its implementation does not handle new geometries while “update”
operation is only available for updating attributes but not geometries ([Pantelios, 2022], [Agu-
giaro et al., 2024]). Considering the potential incompatibilities mentioned above, these func-
tions could be modified to allow users to create aggregation of the building geometry in
“lod2MultiSurface” and insert into the geometry table while simultaneously updating the
property to assign “lod2MultiSurface” attribute to the building feature. This could be a possi-
ble solution to satisfy the association need of attributes with missing geometry. The function
could be adjusted according to the potential incompatibilities.

5 Preliminary results

5.1 Querying geometries from the 3DCityDB v.5.0

In order to reproduce the layer creation procedure of the current 3DCityDB-Tools plugin, we
need ideally to first deal with geometries (e.g. create views), then to attach attributes to them.

In other words, a geometry view is intended as a view (or a materialized view) associated to
a query that extracts geometries from the geometry data table according to the “objectclass id”
and its geometry representation - if data for such feature exists in the database. It is also
relevant to investigate whether it is reasonable to create simple views or materialized views,
as in the current implementation of the QGIS Plugin for CityDB 4.x [Agugiaro et al., 2024].

The pipeline shown in Figure 10 is built in Python to call and execute the SQL queries for
creating views and materialized views of the geometries. The user first sets up the database
connection, and executes the main function, which will ask for the user’s input to create, delete
or terminate. For creating views, the code runs the query to search for all possible “object-
class id” from the date stored in the user-specified schema. For all “objectclass id”, the user
chooses the view types, the code continues to call the query to search for all the possible ge-
ometry representations of the feature identified by the “objectclass id” and the type of view will
be created correspondingly.

The pipeline is currently capable of creating features from “Building”, “Vegetation” and
“Relief” modules, which are the most commonly used features in the built environment realm.
The test dataset used for (materialized) views creation is the Rijsen-Holten and Vienna 3D
models (see section 7), the outcome of the view creation is shown in Figure 12 and 13. The
detail of the SQL queries for each testing feature module is explained as the following.

12

DB connection
setup

Create/ Delete
geometry views delete

stop

create

Delete views

Search for unique existing
objectclass_id in Table feature

(Materialized) view of objectclass_id
feature

teminate

stop terminate

Create
(Materialized)

view

For each unique objectclass_id
check for available in Table property

Materialized
view

View

Figure 9: Layers creation pipeline

5.1.1 Building

In the test data, there are 6 different features with “textitobjectclass id” relate to the build-
ing module, which are: Building (901), BuildingPart (902), RoofSurface (712), GroundSurface
(710), WallSurface (709) and ClosureSurface (15). Building is derived from Abstract Space,
which can have both geometry and implicit geometry representation while thematic surface is
derived from Abstract Space boundary, which can only have geometry. The process is shown
as the following pseudo-code with query blocks are shown in Figure 10.

13

Algorithm .1: Building views creation
Input: objectclass id of building (901)
Output: view or materialized view of objectclass id of 901

1 for objectclass id = 901 do
2 execute (geometry query)← gather geometry
3 ∪
4 execute (implicit geometry query)← gather implicit geometry;

5 for objectclass id = 15 or 709 or 710 or 712 do
6 execute (geometry query)← gather thematic surface geometry

Figure 10: SQL query blocks for Building views creation

5.1.2 Vegetation

In the test data, only one tree feature with the “objectclass id” of 1301 is available. According
to the CityGML v.3.0 [Kolbe et al., 2021], vegetation is derived from Abstract Space, which can
have both geometry and implicit geometry representation. Therefore, the view creation query
is identical to that of the building. The process is shown as the following pseudo-code with
the query shown in Figure 10.

14

Algorithm .2: Vegetation views creation
Input: objectclass id of vegetation (1300)
Output: view or materialized view of objectclass id of 1300

1 for objectclass id = 1300 do
2 execute (geometry query query) ∪ execute (implicit geometry query)

5.1.3 Relief

In the test data, there are two different features with “objectclass id” related to the relief mod-
ule, which are: Relief feature (500), Relief (502). They are derived from the Abstract Space
boundary that can only have geometry with LoD from 0 to 3 and no implicit geometry. No-
tice that the relief feature does not have corresponding geometry, its geometry representation
is only available via the envelope of the feature. The relief component can have 4 different
types of representation. The process is shown as the following pseudo-code with query blocks
shown in Figure 11.

Algorithm .3: Relief feature views creation
Input: objectclass id of relief feature (500)
Output: view or materialized view of objectclass id of 500

1 for objectclass id = 500 do
2 execute (search lods query)
3 execute (envelope query)

Algorithm .4: Relief component views creation
Input: objectclass id of relief component (502)
Output: view or materialized view of objectclass id of 502

1 for objectclass id = 502 do
2 execute (search lod and types query)← get available lods pairs
3 for lod type pair do
4 execute (geometry query)

15

Figure 11: SQL query for Relief layers creation

Figure 12: Layers created by the test pipeline loaded in QGIS (Rijsen-Holten dataset)

16

Figure 13: Layers created by the test pipeline loaded in QGIS (Rijsen-Holten dataset)

5.2 Views and Materialized views execution time comparison

The query execution time comparison between 3DCityDB v.4 and v.5 is established by per-
forming a query to select features within a given extent on the views (V) and materialized
views (MV) separately. It aims to test the time efficiency for querying them to understand
whether it is reasonable to create simple views or materialized views as implemented by the
current 3DCityDB-Tools Plugin. The result shown in Table 2 for the Rijsen-Holten and Vienna
dataset. Since the space concept is associated with the core module but not thematic module
in CityGML v.3.0, the pre-aggregate process of all the features like vegetation and relief tin
model is not necessarily needed. The view query times of vegetation and relief with higher
LoD show a huge improvement which also happens in the materialized view query times.
The next stage of this research is to look into those time efficiency differences, and discuss the
strategies for attaching attributes with the geometries for the layers creation.

6 Time planning

The schedule for the tasks related to the thesis is presented with a Gantt diagram in Figure 14.

17

Q
ue

ry
 ti

m
e

R
ef

re
sh

 ti
m

e
Q

ue
ry

 ti
m

e
Q

ue
ry

 ti
m

e
R

ef
re

sh
 ti

m
e

Q
ue

ry
 ti

m
e

0
M

ul
ti

Su
rf

ac
e

00
:0

1.
0

00
:0

3.
1

00
:0

0.
2

00
:0

2.
0

00
:0

3.
7

00
:0

0.
2

 3
0,

44
9

0
M

ul
ti

Su
rf

ac
e

00
:0

0.
1

00
:0

0.
1

00
:0

0.
1

00
:0

0.
1

00
:0

0.
1

00
:0

0.
1

 1
07

cl

os
ur

e_
su

rf
ac

e
2

M
ul

ti
Su

rf
ac

e
00

:0
1.

1
00

:0
2.

9
00

:0
0.

2
00

:0
1.

4
00

:0
1.

5
00

:0
0.

1

 5

0,
90

2
gr

ou
nd

_s
ur

fa
ce

2
M

ul
ti

Su
rf

ac
e

00
:0

1.
0

00
:0

2.
6

00
:0

0.
2

00
:0

1.
8

00
:0

2.
5

00
:0

0.
2

 2
9,

61
8

ro
of

_s
ur

fa
ce

2
M

ul
ti

Su
rf

ac
e

00
:0

1.
5

00
:0

4.
5

00
:0

0.
4

00
:0

1.
8

00
:0

3.
5

00
:0

0.
3

 9
4,

21
0

w
al

l_
su

rf
ac

e
2

M
ul

ti
Su

rf
ac

e
00

:0
5.

3
00

:1
6.

2
00

:0
1.

1
00

:0
3.

0
00

:0
8.

4
00

:0
1.

0

55

8,
36

2
1

Im
pl

ic
it

Re
pr

es
en

ta
tio

n
00

:0
4.

0
00

:0
9.

3
00

:0
0.

8
00

:0
2.

2
00

:0
5.

2
00

:0
0.

7

 5

8,
51

5
2

Im
pl

ic
it

Re
pr

es
en

ta
tio

n
00

:0
3.

8
00

:0
6.

3
00

:0
0.

6
00

:0
1.

5
00

:0
4.

3
00

:0
0.

5

 5

8,
51

5
3

Im
pl

ic
it

Re
pr

es
en

ta
tio

n
00

:4
0.

9
01

:2
4.

7
00

:0
7.

2
00

:1
4.

9
00

:3
2.

0
00

:0
7.

1

 5

8,
51

5
1

tin
00

:0
6.

7
00

:1
5.

2
00

:0
2.

7
00

:0
2.

7
00

:0
2.

2
00

:0
3.

0

 4
,9

14

Q
ue

ry
 ti

m
e

R
ef

re
sh

 ti
m

e
Q

ue
ry

 ti
m

e
Q

ue
ry

 ti
m

e
R

ef
re

sh
 ti

m
e

Q
ue

ry
 ti

m
e

gr
ou

nd
_s

ur
fa

ce
2

M
ul

ti
Su

rf
ac

e
00

:2
7.

5
01

:1
2.

1
00

:0
1.

6
00

:1
8.

8
00

:3
6.

2
00

:0
1.

5

47

7,
24

3
ro

of
_s

ur
fa

ce
2

M
ul

ti
Su

rf
ac

e
00

:3
6.

5
01

:2
7.

0
00

:0
2.

6
00

:5
2.

4
01

:4
1.

0
00

:0
2.

6

 1
,1

83
,1

83

w
al

l_
su

rf
ac

e
2

M
ul

ti
Su

rf
ac

e
00

:3
9.

3
02

:1
1.

0
00

:0
9.

8
00

:3
1.

1
02

:1
6.

0
00

:0
8.

6

 5
,0

46
,3

43

2
Im

pl
ic

it
Re

pr
es

en
ta

tio
n

00
:0

8.
9

00
:1

7.
2

00
:0

1.
4

00
:0

3.
8

00
:1

1.
0

00
:0

1.
3

18
7,

35
9

2
Su

rf
ac

e
00

:0
0.

1
00

:0
0.

2
00

:0
0.

2
00

:0
0.

1
00

:0
0.

1
00

:0
0.

1

 1
,8

15

3
Su

rf
ac

e
00

:0
0.

1
00

:0
0.

1
00

:0
0.

4
00

:0
0.

1
00

:0
0.

1
00

:0
0.

1

 1
,8

15

2
tin

01
:0

6.
8

02
:1

0.
8

00
:0

6.
0

00
:0

9.
3

00
:0

7.
7

00
:0

5.
8

 1

,8
15

3

tin
01

:2
8.

4
03

:0
1.

1
00

:1
5.

3
00

:1
6.

7
00

:0
9.

6
00

:1
3.

8

 1
,8

15

4
tin

02
:0

1.
4

04
:1

6.
8

00
:2

8.
0

00
:3

0.
9

00
:3

5.
3

00
:2

5.
6

 1

,8
15

tim

e
un

it:
 m

m
:s

s.
s

N
um

be
r o

f
ob

je
ct

 s
el

ec
te

d

N
um

be
r o

f
ob

je
ct

 s
el

ec
te

d

V
ie

nn
a

Re
lie

f (
C

om
po

ne
nt

)

G
eo

m
et

ry

tim
e

un
it:

 m
m

:s
s.

s

V
ie

w
M

at
er

ia
li

ze
d

V
ie

w

3D
C

it
yD

B
v.

5

D
at

as
et

Fe
at

ur
e(

C
O

)
Lo

D
V

ie
w

M
at

er
ia

li
ze

d
V

ie
w

V
ie

w
M

at
er

ia
li

ze
d

V
ie

w

V
ie

w
M

at
er

ia
li

ze
d

V
ie

w

3D
C

it
yD

B
v.

4

Lo
D

G
eo

m
et

ry
Fe

at
ur

e(
C

O
)

D
at

as
et

3D
C

it
yD

B
v.

4

Re
lie

f (
fe

at
ur

e)

V
eg

et
at

io
n

(t
re

es
)

Th
em

at
ic

 s
ur

fa
ce

Re
lie

f (
C

om
po

ne
nt

)

Bu
ild

in
g

Pa
rt

A
tt

ri
bu

te
s

3D
C

it
yD

B
v.

5

A
tt

ri
bu

te
s

Ri
jse

n-
H

ol
te

n

Bu
ild

in
g

Th
em

at
ic

 s
ur

fa
ce

V
eg

et
at

io
n

(t
re

es
)

Table 2: Query on view and materialized view execution time comparison
(Rijsen-Holten & Vienna dataset)

18

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

w
1

w
2

w
3

w
4

Pr
el

im
in

ar
y

re
se

ar
ch

9/
25

/2
3

12
/1

1/
23

P1
 -

Pr
og

re
ss

 re
vi

ew
 G

ra
du

at
io

n
pl

an
11

/1
7/

23
11

/1
7/

23
♢

Fa
m

ili
ar

is
e

th
e

 3
D

C
ity

D
B

v.
5

11
/2

0/
23

12
/8

/2
3

Te
st

 la
ye

r c
re

at
io

n
w

ith
 3

 c
la

ss
es

12
/4

/2
3

12
/2

9/
23

Pr
el

im
in

ar
y

la
ye

r q
ue

ry
 e

xe
cu

tio
n

tim
e

te
st

1/
1/

24
1/

19
/2

4
Pr

ep
ar

e
P2

 d
oc

um
en

ta
tio

n
an

d
pr

es
en

ta
tio

n
12

/2
5/

23
1/

23
/2

4
P2

 -
Fo

rm
al

 a
ss

es
sm

en
t G

ra
du

at
io

n
pl

an
1/

24
/2

4
1/

24
/2

4
♢

Fu
nc

tio
na

lit
y

de
ve

lo
pm

en
t

11
/2

0/
23

5/
22

/2
4

D
ev

el
op

 la
ye

r c
re

at
io

n
pr

oc
es

s
to

 ta
rg

et
 c

la
ss

es
1/

24
/2

4
3/

20
/2

4
P3

 -
M

id
te

rm
 p

ro
gr

es
s

m
ee

ti
ng

3/
20

/2
4

3/
20

/2
4

♢
Pl

ug
in

 a
da

pt
at

io
n

3/
20

/2
4

5/
21

/2
4

St
ab

ili
ty

 T
es

tin
g

5/
6/

24
5/

21
/2

4
Pr

ep
ar

e
P4

 d
oc

um
en

ta
tio

n
an

d
pr

es
en

ta
tio

n
4/

29
/2

4
5/

21
/2

4
P4

 -
G

o/
no

-g
o

(f
or

m
al

 a
ss

es
sm

en
t)

5/
22

/2
4

5/
22

/2
4

♢
Fi

na
lis

e
th

es
is

5/
23

/2
4

6/
7/

24
Pr

ep
ar

e
P5

 p
re

se
nt

at
io

n
5/

27
/2

4
6/

23
/2

4
P5

 -
Pu

bl
ic

 p
re

se
nt

at
io

n
an

d
fi

na
l a

ss
es

sm
en

t
6/

24
/2

4
6/

24
/2

4
♢

St
ar

t d
at

e
Ta

sk
M

ar
ch

A
pr

il
M

ay
Ju

ne
En

d
da

te
Se

pt
em

be
r

O
ct

ob
er

N
ov

em
be

r
D

ec
em

be
r

Ja
nu

ar
y

Fe
br

ua
ry

Figure 14: Gannt diagram of the thesis

19

7 Tools and datasets used

7.1 Tools

For this research, Python v.3.12 is selected as the programming language executed with Vi-
sual Studio Code as the development environment. Python is used in combination with Post-
greSQL v.15 supported by the pgAdmin 4 for data processing executing SQL query for testing.
The development of the 3DCityDB is going to be bound on QGIS 3.34.2-Prizren, 3DCityDB
v.0.6.0-beta and 3DCityDB-Tools v.0.8.7. These versions are chosen based on their stability and
are widely adopted. The operating system in which all the above tools are installed and the
plugin is developed is macOS Ventura v.13.6.3.

7.2 Datasets

For the datasets that are going to be used in this research is the complete collection of buildings
in the wider area of Rijsen-Holten, which is derived from the spatial portal of 3D Basisregis-
tratie Adressen en Gebouwen (BAG) in the Netherlands. The 3D city model of Rijsen-Holten
comes in GML format and is imported into 3DCityDB via its command line tool (v.0.6.0-beta).
Moreover, other open datasets are going to be used for test purposes, such as the 3D models of
Vienna available via Open Government Data Wien catalogue in Austria. Lastly, since this re-
search is working on the CityGML v.3.0, the GML data stored with the new standard provided
by the other sources is going to be tested if it is available.

References

Agugiaro, G., Pantelios, K., León-Sánchez, C., Yao, Z., and Nagel, C. (2024). Introducing the
3DCityDB-Tools plug-in for QGIS.

Agugiaro, G., Pantelios, K., Mbwanda, T., and Sánchez, C. L. (2023). 3DCityDB-Tools-for-
QGIS. https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS.

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K.-H. (2012). OGC city geography markup
language (CityGML) encoding standard.

Kolbe, T. H., Kutzner, T., Smyth, C. S., Nagel, C., Roensdorf, C., and Heazel, C. (2021). OGC
City Geography Markup Language (CityGML) Part 1: Conceptual Model Standard. http:
//www.opengis.net/doc/IS/CityGML-1/3.0.

Nagel, C., Willenborg, B., Yao, Z., and Schwab, B. (2023). citydb-tool. https://github.com/

3dcitydb/citydb-tool/releases.

Open Geospatial Consortium et al. (2021). OGC city geography markup language (CityGML)
3.0 conceptual model users guide. https://docs.ogc.org/guides/20-066.html.

Pantelios, K. (2022). Development of a QGIS plugin for the CityGML 3D City Database.

Yao, Z., Nagel, C., Kunde, F., Hudra, Donaubauer, A., Adolphi, T., and Kolbe, T. H. (2018).
3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization of
semantic 3D city models based on CityGML. Open Geospatial Data, Software and Standards,
3(1):1–26.

20

https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS
http://www.opengis.net/doc/IS/CityGML-1/3.0
http://www.opengis.net/doc/IS/CityGML-1/3.0
https://github.com/3dcitydb/citydb-tool/releases
https://github.com/3dcitydb/citydb-tool/releases
https://docs.ogc.org/guides/20-066.html

	Introduction
	Related work
	CityGML
	3D City DataBase
	3DCityDB-Tools for QGIS

	Research questions
	Objectives
	Scope of research

	Methodology
	Plugin Server-side in PostgreSQL
	Feature geometry
	Corresponding attributes attachment

	Plugin Client-side in QGIS
	Layer management
	Layer interaction

	Preliminary results
	Querying geometries from the 3DCityDB v.5.0
	Building
	Vegetation
	Relief

	Views and Materialized views execution time comparison

	Time planning
	Tools and datasets used
	Tools
	Datasets

