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Abstract. Microwave observations are sensitive to vegeta-
tion water content (VWC). Consequently, the increasing tem-
poral and spatial resolution of spaceborne microwave obser-
vations creates a unique opportunity to study vegetation wa-
ter dynamics and its role in the diurnal water cycle. How-
ever, we currently have a limited understanding of sub-daily
variations in the VWC and how they affect microwave obser-
vations. This is partly due to the challenges associated with
measuring internal VWC for validation, particularly non-
destructively, and at timescales of less than a day. In this
study, we aimed to (1) use field sensors to reconstruct di-
urnal and continuous records of internal VWC of corn and
(2) use these records to interpret the sub-daily behaviour of a
10 d time series of polarimetric L-band backscatter with high
temporal resolution. Sub-daily variations in internal VWC
were calculated based on the cumulative difference between
estimated transpiration and sap flow rates at the base of the
stems. Destructive samples were used to constrain the esti-
mates and for validation. The inclusion of continuous surface
canopy water estimates (dew or interception) and surface soil
moisture allowed us to attribute hour-to-hour backscatter dy-
namics either to internal VWC, surface canopy water, or soil
moisture variations. Our results showed that internal VWC
varied by 10 %–20 % during the day in non-stressed condi-
tions, and the effect on backscatter was significant. Diurnal
variations in internal VWC and nocturnal dew formation af-
fected vertically polarized backscatter most. Moreover, mul-
tiple linear regression suggested that the diurnal cycle of
VWC on a typical dry day leads to a 2 (HH, horizontally, and
cross-polarized) to almost 4 (VV, vertically, polarized) times
higher diurnal backscatter variation than the soil moisture

drydown does. These results demonstrate that radar observa-
tions have the potential to provide unprecedented insight into
the role of vegetation water dynamics in land–atmosphere in-
teractions at sub-daily timescales.

1 Introduction

The long heritage of research on remote soil moisture and
biophysical parameter retrieval has shown that backscatter
is sensitive to dielectric properties of vegetation, which is
strongly related to its water content (Konings et al., 2019;
Steele-Dunne et al., 2017). For a long time, this sensitiv-
ity to vegetation water content (VWC), here defined as the
weight of water captured inside the plant material above
a square metre of ground (kg m−2), was considered a bar-
rier to soil moisture retrieval. In the last decade however,
backscatter sensitivity to VWC has been used for studies on
plant hydraulics and water stress in agriculture and ecosys-
tems (e.g. Frolking et al., 2011; Steele-Dunne et al., 2012;
Schroeder et al., 2016; Emmerik et al., 2017; Konings et al.,
2017; Steele-Dunne et al., 2019; El Hajj et al., 2019).

The increasing temporal and spatial resolution of space-
borne radar observations creates opportunities for more de-
tailed and extensive (eco)hydrological studies. In addition
to the frequent C-band Synthetic Aperture Radar (SAR)
observations from Sentinel-1 (Torres et al., 2012) and
the RADARSAT Constellation Mission (Thompson, 2015),
other frequencies such as the L- and S-band mission NISAR
(launch planned in 2023), the L-band mission ROSE-
L (2028), and the P-band mission BIOMASS (2023) will
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be available within the next decade (Rosen et al., 2017;
Pierdicca et al., 2019; Quegan et al., 2019). Moreover,
commercial providers such as Capella Space and ICEYE
are building satellite constellations with X-band instruments
(Farquharson et al., 2021; Ignatenko et al., 2020). These con-
stellations will ensure multiple observations per day. As a re-
sult, the availability of spaceborne backscatter observations
in the near future will offer a unique possibility to study veg-
etation water dynamics on different spatiotemporal scales.

However, we currently lack crucial knowledge on
backscatter sensitivity to vegetation water dynamics. Soil
moisture retrieval algorithms, for example, generally con-
sider the confounding effects of vegetation water as time
invariant or seasonally variant only (Kim et al., 2017).
Well-established electromagnetic models have been devel-
oped and calibrated based on seasonally variant VWC only
(e.g. Bracaglia et al., 1995). Moreover, the effect of surface
canopy water (SCW), i.e. dew or rainfall interception, is also
usually ignored (Vermunt et al., 2020; Xu et al., 2021). The
omission of sub-daily vegetation water dynamics causes po-
tential retrieval errors (Brancato et al., 2017) and, more im-
portantly, hinders our understanding of the extent to which
radar backscatter could be used to monitor vegetation wa-
ter dynamics. Without this knowledge, the upcoming space-
borne observations cannot be used to their full potential.

Several studies have related observed diurnal backscatter
cycles to vegetation water dynamics. Clear diurnal cycles
were found in tower-based observations from forest stands
(e.g. Hamadi et al., 2014; Monteith and Ulander, 2021) and
agricultural cropland (e.g. Vermunt et al., 2020), as well
as in aggregated satellite observations from larger forested
areas (Paget et al., 2016; Emmerik et al., 2017; Konings
et al., 2017). These studies have made important contri-
butions to the understanding of sub-daily backscatter be-
haviour. However, a persistent challenge is the lack of in
situ data for ground truth validation. In situ soil moisture
can be routinely measured using a variety of sensors (Do-
briyal et al., 2012; Cosh et al., 2016). Surface canopy wa-
ter can be measured continuously using leaf wetness sensors
(Cosh et al., 2009; Vermunt et al., 2020). However, internal
VWC is still generally measured using laborious destructive
sampling, particularly in agricultural fields (e.g. Vreugden-
hil et al., 2018; Emmerik et al., 2015; Ye et al., 2021). This
is acceptable for monitoring seasonal changes, but is pro-
hibitively time-consuming and labour-intensive for sub-daily
variations. Hence, it is crucial to find a more efficient way to
obtain continuous, quantitative estimates of sub-daily VWC
variations.

For woody constituents in trees, dendrometers have been
used to infer water content non-destructively after detrend-
ing, and similarly, time- and frequency-domain reflectome-
try (TDR and FDR) and capacitance-style sensors have been
used to derive water content indirectly by measuring dielec-
tric permittivity (Konings et al., 2021). Moreover, a water
balance-style approach using sap flow sensors have been

used by the tree physiology community to estimate diurnal
changes in tree stem water storage (Goldstein et al., 1998;
Meinzer et al., 2004; Čermák et al., 2007; Phillips et al.,
2008; Köcher et al., 2013).

The objectives of this study were to test the potential of
this non-destructive sap flow approach for estimating sub-
daily VWC variations in herbaceous plants and to use these
estimates to better understand what controls sub-daily varia-
tions in L-band backscatter. Specifically, we adapted this sap
flow methodology, described in Sect. 2, to estimate 15 min
changes in corn VWC using sap flow sensors and a weather
station. An extensive data set from a field campaign in the
Netherlands in 2019 was used to evaluate the adapted method
against diurnal cycles of VWC obtained by destructive sam-
pling. Finally, the technique was applied to reconstruct sub-
daily VWC variability of multiple consecutive days from an-
other field campaign in Florida in 2018. In this campaign,
high temporal resolution tower-based polarimetric L-band
backscatter was collected. The reconstructed VWC was used,
together with simultaneously collected soil moisture and sur-
face canopy water (SCW), to gain a better understanding of
what controls sub-daily backscatter behaviour.

2 Estimating diurnal variations in tree water content
using sap flow probes

Diurnal variations in internal VWC have been estimated in
trees before, mainly in studies focused on understanding the
functional role of stem water reserves on daily tree water use.
A well-established in situ method uses sap flow probes at the
base of the stem and in the crown (e.g. Goldstein et al., 1998;
Meinzer et al., 2004; Čermák et al., 2007; Phillips et al.,
2008; Köcher et al., 2013). This method is based on the time
lag between transpiration and basal sap flow, as a result of
a tree’s hydraulic capacitance, which is the change in water
content per unit change in water potential (e.g. kg MPa−1;
Goldstein et al., 1998; Oguntunde et al., 2004). Morning
transpiration, driven by the atmospheric evaporative demand,
causes the depletion of internal VWC in the crown and, de-
pending on the hydraulic capacitance, a drop in water poten-
tial. In response to the resulting potential gradient, sap flow
rates increase to replenish the depleted VWC. As long as
transpiration rates exceed basal sap flow rates, water is with-
drawn from internal VWC, and when basal sap flow exceeds
transpiration, internal VWC is refilled. Consequently, the di-
urnal variation in tree VWC could be calculated from the
cumulative differences between basal sap flow and whole-
crown transpiration (see the second term of Eq. 1).

VWC(t)= VWC(t0)+
t∑

i=t0

(Fi − Ti)1t, (1)

where VWC(t) is the estimated VWC at time t , VWC(t0) is
a reference VWC at t = 0, F is basal sap flow, T is whole-
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crown transpiration, both in mass per unit of time, and 1t is
the duration of a time step.

In these studies on trees, whole-crown transpiration was
estimated from branch and basal sap flow based on two
assumptions. First, time lags between branch sap flow in
the crown and transpiration were assumed to be negligible
compared to time lags between branch and basal sap flow.
Hence, the averaged daily cycles of sap flow in the moni-
tored branches were assumed to approximate the cycles of
whole-crown transpiration. Second, most studies assumed
that the 24 h sums of whole-crown transpiration and basal sap
flow were equal (Goldstein et al., 1998; Čermák et al., 2007;
Phillips et al., 2008; Köcher et al., 2013). This assumption
made it possible to estimate whole-crown transpiration rates
by first dividing averaged branch sap flow by its daily sum
and then multiplying by the daily sum of basal sap flow. The
corresponding assumption is that all water that is withdrawn
from internal VWC is replaced within 24 h.

3 Data and methods

Section 3.1 relates to the adjustments and data required to
make the sap flow approach (Sect. 2) applicable to corn.
Data from a field campaign in the Netherlands in 2019 were
used to evaluate the adjusted method. Section 3.2 relates
to the methodology and data used from our field campaign
in Florida in 2018 for interpreting sub-daily backscatter be-
haviour.

3.1 Applying the sap flow approach to estimate diurnal
variations in corn VWC

3.1.1 Adjustments and evaluation of the sap flow
approach

We investigated the potential of the sap flow method (Sect. 2)
for estimating diurnal VWC variations in corn plants. The
largest differences between corn plants and trees are re-
lated to hydraulic capacitance and structure. Corn plants have
much lower hydraulic capacitance than most trees (Langen-
siepen et al., 2009) and, hence, shorter time lags between
transpiration and basal sap flow. As a consequence, installing
a sap flow sensor as a surrogate for transpiration would be
problematic, since the assumption of a negligible time lag
between transpiration and upper sap flow, compared to the
lag with basal sap flow, is invalid. Moreover, transpiring corn
leaves are somehow evenly distributed across the stem, in
contrast to trees with a crown, which makes the placement
of a second sensor to represent transpiration nearly impossi-
ble. For these reasons, we estimated transpiration using indi-
rect estimates of reference evapotranspiration (ET0) instead.
Details from sap flow measurements and ET0 estimates are
given in Sect. 3.1.2.

A widely used approach to derive transpiration from ET0
is a linear conversion using crop factors, e.g. the FAO 56

dual-crop coefficient model (Allen et al., 1998). However,
in many cases, these estimations systematically over- or un-
derestimate direct observations of transpiration (Ding et al.,
2013; Rafi et al., 2019) or sap flow (Langensiepen et al.,
2009), while basal sap flow and transpiration at the leaves
must equal over a sufficiently long time period (Swanson,
1994). For our data sets, Penman–Monteith-derived transpi-
ration (Allen et al., 1998) is systematically lower than mea-
sured sap flow. Because sap flow is our most direct measure-
ment, we chose to estimate transpiration by rescaling ET0 es-
timates using sap flow measurements. This means that in-
formation on the diurnal shape of ET0 is derived from the
Penman–Monteith equation and that these ET0 estimates are
then scaled so that the resulting transpiration estimates are
consistent with sap flow over a given period of time.

We tested three different approaches to rescale ET0 esti-
mates using sap flow measurements. The first approach was
similar to the rescaling of branch sap flow to whole-crown
transpiration in trees, described in Sect. 2. Transpiration was
assumed to equal basal sap flow during a 24 h period, and
15 min ET0 estimates were divided by their 24 h sum and
then multiplied by the 24 h sum of basal sap flow (see Eq. 2
in Table 1).

However, the assumption of complete replacement of
withdrawn water within 24 h may not always hold. This is,
for example, the case when water accumulates as a result of
growth or when a plant is unable to replace the transpired wa-
ter within a day as a result of stress. Therefore, we also tested
the effect of either relaxing this assumption or using multiple
days instead, i.e. 3, 5, or 7 consecutive days surrounding the
day of interest or all measured days in the data set. Both ap-
proaches assume a simple, linear relation between ET0 and
transpiration. It will be shown that this assumption can cause
an offset between the timing of the diurnal cycles of sam-
pled and reconstructed VWC. This issue was addressed by
adopting the cumulative distribution function (CDF) match-
ing method, previously used to rescale satellite-derived sur-
face soil moisture to observations (Reichle and Koster, 2004;
Drusch et al., 2005; Brocca et al., 2011). This nonlinear ap-
proach removes systematic differences between two data sets
by matching the CDFs of both data sets (Brocca et al., 2011).
Here, we matched the CDFs of the ET0 and sap flow data.
This was achieved by first ranking all 15 min data from both
data sets from low to high values and then fitting a second-
order polynomial function through the scatterplot of both
ranked data sets. Subsequently, this function was used to
convert the 15 min ET0 data to transpiration estimates. CDF
matching was also performed for 1, 3, 5, and 7 consecutive
days and all available days. Figure 4 illustrates CDF match-
ing and its results for 3 d of our data.

VWC samples obtained by destructive sampling during
the 2019 campaign (Sect. 3.1.2) were used to validate the
method. For the selected days (Fig. 1), we used one of the
five sampling times to constrain the daily cycle (VWC(t0)
in Eq. 1). The other four independent samples were com-
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Table 1. The three tested approaches to estimate transpiration (T ) using Penman–Monteith-derived ET0 estimates and sap flow measure-
ments.

Approach Assumptions Equations

Linear – 24 h Withdrawn water is replaced within 24 h; T (t)= ET0(t)F24 h/ET024 h∗ (2)
T is linearly related to ET0

Linear – multiple days Withdrawn water is replaced within n days; T (t)= ET0(t)Fnd/ET0nd∗ (3)
T is linearly related to ET0

Nonlinear – CDF matching Withdrawn water is replaced within n days; T (t)= a∗∗ET0(t)+ b
∗∗ET0(t)

2 (4)
CDF of T equals CDF of F

∗ Subscripts 24 h and nd relate to the 24 h sum and n number of days sum, respectively. ∗∗ a and b are found by a second-order polynomial fit through
ranked F and ET0 data, as illustrated in Fig. 4c.

Figure 1. Availability of the data required to evaluate the adjusted methodology for estimating 15 min VWC variations. The availability of
the sap flow, ET0, and sampling data matched on 25 July and 23 and 28 August.

pared against the estimated diurnal cycle of VWC varia-
tions. For each day, we calculated the root mean square er-
ror (RMSE) between the four independent samples and re-
constructed VWC on these four times. All five samples were
used as (VWC(t0)) once to determine the best time to con-
strain the reconstruction.

In summary, we adapted and evaluated the sap flow
methodology to estimate diurnal cycles of corn VWC
through the following three steps.

1. The diurnal cycle of transpiration was estimated
from ET0 and sap flow data, using three different ap-
proaches (Table 1).

2. Sub-daily variations in VWC were estimated by calcu-
lating the cumulative difference between 15 min basal
sap flow and transpiration estimates (Eq. 1).

3. The resulting estimates of diurnal VWC variations were
compared against destructive measurements of VWC.

3.1.2 Experimental site and data collection

Experimental site 2019

The field campaign in The Netherlands was conducted in
Reusel (51.319◦ N, 5.173◦ E), at Van Den Borne Aardappe-
len. There, field corn was planted on a sandy soil with a den-
sity of eight plants per square metre (hereafter m−2), and har-
vested, for silage after the required senescence, 148 d after
planting. The Netherlands has a temperate maritime climate.
However, maximum national temperature records were bro-
ken close to the field site during the growing season of 2019,
and it was the second anomalously dry summer in a row
(Bartholomeus et al., 2020).

Sap flow

Sap flow was monitored near the base of the stem using
stem flow gauges produced by Dynamax Inc. (Houston, TX,
USA). The measurement is based on the stem heat balance
theory (Sakuratani, 1981). A flexible collar strap with built-
in heater strip and thermocouples is wrapped around a corn
stem, about 20 cm above the ground, and is then isolated and
protected from environmental conditions such as rain and ra-
diation. The entire circumference of the stem receives a con-
stant heat input from the heater strip. As sap movement car-
ries heat, thermal dissipation corresponds to the sap flow rate.
Therefore, the change in temperature is used as a tracer for
sap flow (g h−1), thereby taking into account the heat trans-
fer to the stem tissue and the ambient air. Conversion to mil-
limetres per 15 min (mm 15 min−1) was performed using the
density of liquid water and the planting density. Because the
collar straps are designed to fit a certain range of stem diam-
eters, we collected data in the mid- and late season.

In 2019, a maximum of two sensors were installed due to
power limitations. Because one sensor failed, the used data
are from a single sensor. Gaps in the time series were caused
by disturbances in the connection with the battery.

Reference evapotranspiration

A weather station was installed at the edge of the experimen-
tal site, with a ECH2O rain model ECRN-100 rain gauge,
Apogee SP-212 pyranometer (solar radiation), a Davis Cup
anemometer (wind and gust speed and wind direction), and a
HOBO Temperature/RH Smart Sensor model S-THB-M008
(temperature and relative humidity). Reference evapotranspi-
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ration (ET0) was estimated using the Penman–Monteith ap-
proach described by Zotarelli et al. (2010).

Sampling

Vegetation water content (VWC) was measured by de-
structive sampling. For each sampling time, six field-
representative samples were taken from designated sampling
areas. Any present dew or interception was removed with pa-
per towels before the samples were weighted to determine
the average fresh biomass per plant in kilograms (mf). Sam-
ples were oven-dried at 60 ◦C for 4–8 d, depending on the
growth stage. These dried samples were weighed again to
determine average dry biomass per plant in kilograms (md).
Field-representative VWC (kg m−2) was estimated by multi-
plying the evaporated water per plant (kg) with the number
of plants per m2 (ρplant; see Eq. 5).

VWC= (mf−md)ρplant. (5)

In 2019, we aimed to capture full diurnal cycles of VWC.
Hence, we sampled at five equally distributed times, between
sunrise and sunset, on 12 d spread throughout the season.
Seasonal VWC variations were monitored by predawn sam-
pling only.

Figure 1 shows the availability of the data required to eval-
uate the adjusted methodology for estimating 15 min VWC
variations. The availability of sap flow, ET0, and VWC sam-
pling data matched on 25 July and 23 and 28 August.

Surface canopy water and soil moisture

Measurements of surface canopy water (dew and intercep-
tion) and root zone soil moisture were used as ancillary data
sets to support the evaluation of the reconstructed VWC es-
timations. Surface canopy water (SCW) was monitored us-
ing PHYTOS 31 leaf dielectric wetness sensors. A total of,
three sensors were installed on different heights in the veg-
etation layer, and one sensor failed during the season. Mea-
sured leaf areas were used to convert sensor output to full-
canopy SCW (kg m−2). Details of this conversion and sensor
properties are described in Vermunt et al. (2020).

Soil moisture (θ ) was observed in two pits with 15 min res-
olution, using EC-5 sensors at 5, 10, 20, 40, and 80 cm depth.
These measurements were averaged based on depth. Root
zone soil moisture was estimated by integrating the measure-
ments from all depth over a soil column of 100 cm, based on
the thickness of the soil layer associated with the depth of the
sensor.

3.2 Interpreting the behaviour of sub-daily L-band
backscatter

3.2.1 Approach and data requirement

To gain a better understanding of what controls sub-daily L-
band backscatter behaviour, we analysed tower-based obser-

vations using continuous time series of the three moisture
stores in the corn field, namely (1) VWC, (2) SCW, and
(3) surface soil moisture (θ ). Details of the collection of these
time series are given in Sect. 3.2.2. The longest period for
which we had all data available was from 4 June 00:00 LT to
13 June 10:15 LT. During this period, the corn is at maximum
height and leaf area index (LAI) and is 1–2 weeks before har-
vest on 18 June. All analyses were conducted for this period.

Insights in the separate effects of the three different mois-
ture stores on sub-daily backscatter (σ 0) variations were
gained by quantifying their relations through multiple linear
regression. The relation between sub-daily backscatter vari-
ations and changes in these dynamic moisture stores was de-
scribed as follows:

σ 0(t)= σ 0
t0
+ a

(
θt − θt0

)
+ b

(
VWCt −VWCt0

)
+ c

(
SCWt −SCWt0

)
, (6)

where t0 is the first radar acquisition time of the day
(01:00 LT) and assumes linear relations between σ 0

and the individual moisture stores. The regression
coefficients a (dB m−3 m−3), b (dB kg−1 m−2), and
c (dB kg−1 m−2) were used to quantify the change in
backscatter within a day as a result of change in moisture
and were derived for each polarization separately.

3.2.2 Experimental site and data collection

Experimental site 2018

The field campaign in Florida, USA, was conducted in Citra
(29.410◦ N, 82.179◦W), at the Plant Science Research and
Education Unit (PSREU) of the University of Florida and
the Institute of Food and Agricultural Sciences (UF/IFAS).
Sweetcorn was planted in a sandy soil, with a density of
7.9 plants per m−2, and harvested after 66 d, in mid-June,
for human consumption. The climate of this area in Florida
is humid subtropical, and the 2018 spring growing season
was characterized by high temperatures, high-intensity rain-
fall, and thunderstorms.

Backscatter

High temporal resolution L-band backscatter data were col-
lected with the polarimetric University of Florida L-band Au-
tomated Radar System (UF-LARS) throughout the growing
season of 2018. This system was mounted on a Genie aerial
work platform at a height of 14 m above the ground. The
scatterometer scanned the cornfield, with an incidence angle
of 40◦, and acquired 16 observations spread throughout the
day in the late season. The installation of sensors and vege-
tation sampling was performed outside the arc swept by the
radar. A comprehensive description of the observations and
the UF-LARS system can be found in Vermunt et al. (2020)
and Nagarajan et al. (2014), respectively. Cross-polarization
(cross-pol) is used to refer to the average of the HV- (horizon-
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tal transmit and vertical receive) and VH-polarized (vertical
transmit and horizontal receive) backscatter.

Reconstruction of diurnal VWC variations for multiple
consecutive days

To support the analysis of variations in the L-band backscat-
ter, a 10 d time series of diurnal VWC variations was recon-
structed for the 2018 data. The methodology used for the re-
construction was based on adjustments and evaluation of the
sap flow approach presented in Sect. 3.1.1. The required sap
flow and ET0 data sets were similar but slightly different.
In 2018, four sap flow sensors were installed simultaneously
on four different plants, and the data were averaged. Gaps in
the time series were caused by disturbances in the connection
with the battery or solar panel.

Meteorological data with 15 min resolution were ob-
tained from the nearby Florida Automated Weather Net-
work (FAWN) weather station, located within 600 m from the
experimental field. Observations of rainfall, air temperature
(2 m), solar radiation, relative humidity, and wind speed were
downloaded from the Report Generator (https://fawn.ifas.ufl.
edu/data/reports/, last access: 10 October 2018). ET0 was
estimated using the same Penman–Monteith approach de-
scribed by Zotarelli et al. (2010).

In contrast to the 2019 data set, VWC samples were not
collected to capture the full diurnal cycle. Instead, these sam-
ples were obtained 4 times per week, i.e. 3 d at 06:00 LT,
and also at 18:00 LT on one of these days, originally to cap-
ture differences between morning and evening passes for a
sun-synchronous satellite such as SMAP (Soil Moisture Ac-
tive Passive; Entekhabi et al., 2010). Moreover, the presented
VWC data for 2018 are averages of eight plants instead of
six. The samples were used to constrain the reconstructed
VWC variations.

The period of consecutive days for the analysis was lim-
ited by the availability of sap flow data. A 10 d time series
was found in mid- to late season which contained continuous
sap flow and weather data, L-band backscatter, and 5 sam-
pling days. On these days, samples were used to constrain the
VWC record. On the 5 d without sampling, the VWC records
were constrained either at the end of previous sampling day
(forward reconstruction) or at the start of next sampling day
(backward). In case there was a gap between the forward and
backward reconstructions, the average of both was consid-
ered the best estimate of VWC.

Soil moisture and surface canopy water

For the analysis of sub-daily variations in the L-band
backscatter, we also collected 15 min variations in surface
soil moisture, at 5 cm depth, and SCW. Together with VWC,
they form the moisture stores of a cornfield which are consid-
ered to affect sub-daily backscatter. Details of the sensors and

measurements are described in Sect. 3.1.2 and extensively in
Vermunt et al. (2020).

4 Results

4.1 Seasonal and diurnal variation of vegetation water
content

Figure 2 illustrates the seasonal and diurnal variations of
VWC (kg m−2) from destructive sampling in the 2018 and
2019 campaigns. From the early to mid-season, VWC in-
creased as a result of biomass accumulation. The field corn
from 2019 was allowed to senesce before harvest, resulting
in a significant reduction in water storage in the plants from
23 August onward. The sweetcorn from 2018 was harvested
before considerable senescence.

The open markers are the non-predawn measurements,
which were at 18:00 LT (2018), and at four evenly distributed
times between sunrise and sunset (2019). The range of these
latter diurnal measurements gives an indication of the am-
plitude of the daily cycle of VWC. On most days, the diurnal
minimum was 10 %–20 % lower than the predawn water stor-
age. An exception was 23 July, when predawn water storage
was depleted by 35.4 % during the day. Figure 3 magnifies
the mid-season measurements and illustrates the difference
between water depletion in the non-stressed conditions com-
pared to the stressed date. The photograph was taken around
the third measurement on 23 July. This picture shows leaf
rolling, which is a mechanism to reduce the leaf area exposed
for transpiration and a sign of drought stress. Normal-shaped
leaves were observed again as a result of irrigation, which
was applied right after the last sampling on 23 July, in order
to ensure the crop’s survival.

4.2 Reconstructions of continuous, sub-daily variations
in vegetation water content

As described in Sect. 3.1.1, we tested three approaches to
estimate transpiration from ET0 and sap flow. As an alterna-
tive to the straightforward linear conversions, we proposed
to test the nonlinear CDF matching principle (Table 1). Fig-
ure 4 illustrates the procedure of estimating transpiration us-
ing this principle, using 3 d of sap flow and ET0 data. We take
25 July 2019 as an example and use the data from 24 and
26 July as well (Fig. 4a). On 25 July, which was particu-
larly warm and sunny, we measured a maximum tempera-
ture of 39.0 ◦C in the field. Figure 4b illustrates the differ-
ence between the CDFs of sap flow and ET0, which is par-
ticularly evident at the 35 % highest rates. At lower rates
(< 0.07 mm 15 min−1), ET0 rates were slightly higher than
sap flow rates. As these systematic differences between both
rates may be unrealistic, a second-order polynomial was fit-
ted through the scatterplot with ranked ET0 and sap flow data
(Fig. 4c) and was used to match the CDFs (Fig. 4d). The re-
sulting CDF-matched transpiration estimate (T-cdf; Fig. 4e)
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Figure 2. Vegetation water content (VWC), crop height, and leaf area index (LAI) from the field experiments in Citra (2018)
and Reusel (2019). Filled red markers indicate predawn measurements, while open markers indicate non-predawn measurements at
18:00 LT (2018) and morning to sunset (2019).

Figure 3. Sampled vegetation water content (VWC) in the mid-season, 2019 (a), and a picture of rolled leaves (b), taken around the third
measurement on 23 July, as a sign of drought stress.

was used to estimate 1VWC at any point in time using the
approach described in Fig. 5.

The procedure to reconstruct 15 min changes in VWC is
depicted in Fig. 5, again with 25 July as an example. Fig-
ure 5a illustrates the effects of the three approaches on es-
timate transpiration from ET0 and sap flow (Table 1). T-cdf
and T-3 d represent the CDF-matched and linear estimates of
transpiration, for which 3 d of data were used, i.e. 24–26 July.
What stands out is that the CDF-matched rescaling (T-cdf)
provides a significantly higher peak compared to the lin-
ear rescaling (T-24 h and T-3 d). On the other hand, when
ET0 rates are 0.09 mm 15 min−1 or lower, T-cdf was lower
than the linear estimates. Both linear transpiration estimates
were close in this particular case, which means that the ratio
of the 24 h sum of sap flow over ET0 was close to the ratio of
the 3 d sum of sap flow over ET0. Figure 5b shows the diur-
nal cycles of basal sap flow (F ) and transpiration. Here, the
simplest linear transpiration estimate (T-24 h) was depicted
as an example. The difference between sap flow and transpi-
ration gave the estimated depletion and refilling of internal

water storage (Fig. 5c). If transpiration rates exceeded sap
flow rates at some point in time, the line is below zero, which
indicates a depletion of water storage. Positive values indi-
cate refilling. Finally, the cumulative difference between sap
flow and transpiration represents the diurnal change in plant
water storage or 1VWC (Fig. 5d). The minimum VWC was
reached around 12:45 LT, when 0.87 kg m−2 of the predawn
water storage was depleted. This is close to the maximum
diurnal difference of 0.82 kg m−2 observed on that day from
destructive sampling (Fig. 3).

Diurnal cycles of VWC were reconstructed for both linear
and nonlinear transpiration estimates, using1VWC (Fig. 5d)
and one destructive sample (Figs. 2 and 3) per day as a con-
straint. Results were compared against the other destructive
samples. The effect of both the time of the constraint and the
number of days considered for the transpiration estimation
on the VWC reconstructions were evaluated. The RMSEs of
the 2019 data are presented in Tables A1–A2. A general opti-
mal combination of the time of the constraint and the number
of days to consider could not be found. Using CDF-matched
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Figure 4. Example of ET0 rescaling to approximate transpiration (2019 campaign), using the CDF matching approach. (a) Sap flow (F ) and
reference evapotranspiration (ET0) data from 24–26 July 2019. (b) Cumulative distribution function (CDF) of both data sets in this period.
(c) Second-order polynomial fit through ranked F and ET0 data, used to derive the CDF-matched transpiration estimate (T-cdf), which was
added to the CDF plot in panel (d). Panel (e) shows the final result of the CDF matching.

Figure 5. A four-step procedure to reconstruct the diurnal variation in VWC. An example for 25 July 2019. Panel (a) shows the diurnal cycles
of reference evapotranspiration (ET0) and the three transpiration estimates (see Table 1). Panel (b) shows the diurnal cycles of sap flow (F )
and one of the transpiration estimates (T-24 h). Panel (c) is the difference between sap flow and transpiration, where negative values indicate
depletion of water storage, and positive values indicate refill. Panel (d) illustrates the resulting cumulative change in stored water (1VWC)
during the day.

transpiration estimates resulted in a better agreement with
the destructive sampling data than using linear correction in
80 % of the cases. The best reconstructions from 2019 (Ta-
bles A1 and A2) are presented in Fig. 6 and differentiated by
the approach to estimate transpiration. Differences between
environmental conditions are shown in Fig. 7. Figure 6 il-
lustrates the improvement of the reconstruction when using
more than 1 d of data for the estimation of transpiration (sec-
ond and third rows). The upper row clearly shows that the lin-
ear 24 h approach does not allow for a difference between the
start- and end-of-day VWC, while the inclusion of multiple
days does. Besides, the reconstruction on 25 July illustrates
the possible improvement that CDF matching can have. On
25 July and 28 August, the RMSEs of the lowest plots were

8 % and 12 % of the amplitude of the diurnal cycles, respec-
tively. On 23 August, the agreement is poor, especially later
in the day, and this percentage is 36.9 %. On this day, re-
constructions and samples disagree for all three approaches
to estimating transpiration but less so for the CDF matching
procedure.

For the 2018 campaign, we had a maximum of two VWC
samples per day. Table A3 shows the offset between one of
the samples and the reconstructed VWC, which was con-
strained by the other sample for 4, 8, and 11 June. The lowest
offsets were found when transpiration was estimated using
all data (12 d), and when CDF matching was applied. Con-
sequently, we used the transpiration calculated based on this
combination for further use of reconstructed VWC.
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Figure 6. Best diurnal VWC reconstructions for 25 July and 23 and August 28 (2019) for three different methods of estimating transpiration.
The upper row shows the results for using the simplest, linear estimate of transpiration. The middle row shows the reconstructions using
linear estimates of transpiration but now considering 3, 5, and 7 d rather than 24 h. The lower row shows the results after CDF matching,
considering all data, and 5 and 3 d for the CDF matching, respectively. The dashed green lines represent one RMSE above and one RMSE
below the reconstructed VWC. The measurement which is used to constrain the reconstructed line is accentuated with an open marker.

Figure 7. Environmental conditions on the sampling days of 25 July and 23 and 28 August (2019). The upper row shows air temperature (T )
and solar radiation (Rs), and the lower row shows root zone soil moisture (θ ) and surface canopy water (SCW).

4.3 Reconstructing a record of multiple days

Figure 8 shows the procedure for reconstructing the 10 d
VWC record from 2018 data. On 4, 8, and 11 June, evening
samples (18:00 LT) were used as constraints rather than
predawn samples (06:00 LT), which resulted in smaller gaps
between consecutive days (Fig. 8c). On days without sam-
pling, VWC records were the averages of forward or back-
ward reconstructions. On 9 and 10 June, the weighted aver-

age based on the distance to the sampling date was consid-
ered as the best estimate of VWC.

The diurnal VWC pattern on 5 and 6 June seems physi-
cally implausible because one would not expect an enormous
increase in VWC on the warmest and driest day (5 June) and
a drop on the most rainy/cloudy day (6 June). Despite the
advantage of CDF matching, as opposed to linear conversion
to better reflect diurnal extremes, the anomalous dynamics of
5 and 6 June are not captured sufficiently.
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Figure 8. A 10 d reconstruction of VWC, with (a) sap flow (F ) and estimated transpiration (ET0-cdf). (b) The difference between sap flow
and transpiration and (c) the sampled and reconstructed VWC is shown. In between sampling days, VWC estimates are the weighted average
between forward and backward reconstructions from the consecutive sampling days (based on the time to the closest sampling day). The
measurements which are used to constrain the reconstructed line are accentuated with open markers.

4.4 The effect on sub-daily L-band backscatter

Figure 9 illustrates the potential value of reconstructing
VWC records for interpreting the time series of microwave
remote sensing data, in this case L-band backscatter. The up-
per three panels show the VV- (vertically), HH- (horizon-
tally) and cross-polarized backscatter coefficients, respec-
tively. Figure 9d shows the sampled and reconstructed VWC,
together with the total canopy water (CW), which is the sum
of the reconstructed VWC and SCW (kg m−2). The latter is
either rainfall interception, which is characterized by rapid
increases and is often transient because of daytime evapo-
ration, or dew formation, which accumulates gradually dur-
ing the night and dissipates quickly after sunrise. Figure 9e
shows the volumetric soil moisture at −5 cm depth.

Sub-daily variability of > 2 dB was found in all three po-
larizations. A sharp backscatter increase after rainfall was
observed in all polarizations. Slow downward trends were
also found, corresponding with the drydown in soil moisture.
However, on a sub-daily timescale, the backscatter variabil-
ity shows strong similarities with diurnal patterns of canopy
water (Fig. 9d). These diurnal cycles are most clearly visible
in VV-pol. Figure 10 magnifies the diurnal variations for 3 d
without rainfall, i.e. 7, 9, and 11 June. These days demon-
strate clear similarities between the diurnal behaviour of the
backscatter, mainly VV- and cross-pol, and canopy water.
These similarities are particularly present in the period be-
tween midnight and mid-afternoon, when surface soil mois-
ture is relatively stable. In fact, when randomly occurring
rain events are excluded, the sub-daily backscatter behaviour
can be analysed using the following three distinct sub-daily

periods: (1) from midnight to early morning, (2) from early
morning to afternoon, and (3) from afternoon to midnight.
The aggregated data in Fig. 11 help to visualize the dynam-
ics in these periods. Because rain fell more often in the after-
noon and evening, the exclusion of periods with rainfall led
to data aggregation across 9, 6, and 4 d in these three peri-
ods, respectively. Around midnight, dew started to form until
its peak between 07:00 and 07:30 LT, which is within 1 h af-
ter sunrise around 06:30 LT. In this same period, VWC was
stable and surface soil moisture decreased slightly. VV- and
cross-polarized backscatter increased, following dew for-
mation, while HH-polarized stayed relatively stable. From
early morning (07:30 LT) to afternoon (14:00 LT), dew dis-
sipated and VWC dropped significantly. The same holds for
backscatter in all polarizations, while surface soil moisture
was still relatively stable. Finally, the last period of the day
is characterized by the refilling of the plant’s internal wa-
ter storage and a decrease in soil moisture. The fact that
backscatter in all polarizations remains relatively constant
between 15:00 and 19:30 LT suggests the counterbalancing
effects of soil moisture and VWC on backscatter in this pe-
riod. During the last four aggregated acquisitions between
19:00 and 21:30 LT, VV- and cross-polarized backscatter
show a slightly increasing trend similar to VWC.

The separate effects of the different moisture stores on
backscatter (σ 0) were quantified through multiple linear re-
gression. Because we considered the VWC reconstructions
from 5 and 6 June as being less reliable, the period be-
tween 7 and 13 June was used for the regression. Table 2
presents the estimated regression coefficients found for this
period (see Eq. 6). A summary of the multiple linear regres-
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Figure 9. Full polarimetric L-band backscatter and separated effects for a 10 d period near the end of the growing season in 2018, with (a) VV-
polarized scattering coefficient, (b) HH-polarized scattering coefficient, and (c) averaged VH- and HV-polarized scattering coefficients,
(d) sampled and reconstructed VWC, total canopy water, which is the sum of reconstructed VWC and SCW, and (e) soil moisture at 5 cm
depth. The measurements which are used to constrain the reconstructed line are accentuated with open markers.

Table 2. Estimated regression coefficients per polarization for the
period 7–13 June 2018 (Eq. 6).

VV-pol HH-pol Cross-pol

a (dB m3 m−3) 24.06 39.47 38.83
b (dB kg−1 m−2) 2.93 2.29 2.45
c (dB kg−1 m−2) 0.62 0.38 0.73

sion statistics is given in Table A4 in the Appendix. The re-
gression coefficients suggest that, from all polarizations, VV-
pol was most sensitive to internal vegetation water storage
and least sensitive to soil moisture. Compared to other polar-
izations, HH-pol was least sensitive to VWC and SCW and
most sensitive to soil moisture. Cross-pol was more sensitive
to SCW than the other polarizations. Note that the coeffi-

cients from soil and vegetation water stores (Table 2) have
non-homogeneous physical units. Nonetheless, these coeffi-
cients indicate that, for a typical dry day during the campaign
of 2018, e.g. 9 June, the soil moisture reduction of 0.015
m3m−3 translates to a −0.4, −0.6, and −0.6 dB change
in VV-, HH-, and cross-polarized backscatter, respectively.
During the same day, VWC changed by 0.5 kg m−2, which
would translate to a change of 1.5 dB (VV), 1.2 dB (HH)
and 1.2 dB (cross). This indicates that, on this typical dry
day, a diurnal variation in VWC leads to an almost 4 times
higher change in VV-polarized backscatter (dB) than a di-
urnal change in soil moisture does. On the same day, the
changes in HH- and cross-polarized backscatter (dB) were
2 times higher for the diurnal VWC variations than for the
soil moisture drydown. The 0.4 kg m−2 dew formation and
dissipation caused σ 0 to vary by 0.2 dB (VV), 0.2 dB (HH),
and 0.3 dB (cross).
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Figure 10. Diurnal behaviour of backscatter (VV-, HH-, and cross-pol) and moisture (soil moisture, VWC, and SCW) for 3 individual days
without rainfall. These days were selected from the period presented in Fig. 9.

Figure 11. Backscatter (VV-, HH-, and cross-pol) and moisture (VWC, CW, and θ ) data aggregated across multiple days and separated by
part of the day, i.e. midnight–morning, morning–afternoon, and afternoon–midnight. Periods with disturbing rain events are excluded, which
means that data in panels (a, d), (b, e), and (c, f) are aggregated across 9, 6, and 4 d, respectively. Canopy water (CW) is SCW displayed on
top of VWC.

Figure 12 presents the results of using the regression coef-
ficients (Table 2) and the time series of VWC, SCW, and soil
moisture to describe diurnal variations in backscatter. Each
day is constrained by the first radar observation of the day at
01:00 LT. Note, from the R2 values in Table A4, that 68 %–
71 % of the variance in backscatter is explained by the three
predictors. The P values for SCW are always higher than

those for VWC and soil moisture. Nonetheless, with the ex-
ception of the SCW coefficient in the case of HH backscatter
(P > |t | = 0.286), all P values are < 0.05, indicating statis-
tical significance. However, note from Fig. 12a and c that the
observed nocturnal backscatter increase as a result of dew
formation is barely visible in the calculated backscatter. This
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Figure 12. Observed and calculated (a) VV-, (b) HH-, and (c) cross-polarized σ 0 from 7–13 June 2018. The observations which are used
to constrain the predictions of sub-daily σ 0 variability, σ 0

t0
, are accentuated with open markers. Sub-daily backscatter variation is calculated

using Eq. (6), the coefficients found by multiple linear regression (Table 2), and the time series of VWC, SCW, and soil moisture.

suggests that the regression underestimates the effect of dew
on backscatter.

5 Discussion

5.1 Sub-daily vegetation water content estimates:
observations and reconstructions

Our results showed that, in non-stressed conditions, VWC
depleted by 10 %–20 % during the day. This internal VWC
withdrawal is approximately 10 %–20 % of the total daily
transpiration, which is similar to findings from tropical and
temperate broadleaved trees (Meinzer et al., 2004; Köcher
et al., 2013). In stressed conditions, we found a 35 % drop of
VWC during the day.

We tested the potential of a non-destructive sap flow ap-
proach to estimate sub-daily VWC variations in corn with
data from our 2019 campaign. The results confirm the possi-
bility to estimate 15 min variations in corn VWC with only
sap flow sensors and a weather station. While the indirect es-
timation of transpiration could be considered a drawback of
the method, Fig. 6 has shown that the diurnal VWC cycle
was represented generally well. In general, we found the best
agreement between reconstructed and sampled VWC when

the daily cycle of transpiration was estimated from multi-day
sap flow observations and ET0 estimates. Moreover, the ap-
plication of CDF matching improved the reconstruction sub-
stantially on 25 July, while, on 28 August, a good agree-
ment was already found after linear correction (Fig. 6). This
difference could partly be explained by the suppressing ef-
fect that dew, observed on 25 July (Fig. 7), has on tran-
spiration (Dawson and Goldsmith, 2018), which is not cap-
tured by ET0 (Langensiepen et al., 2009). When ET0 rates
are low, estimated transpiration is lower after CDF match-
ing than after linear correction (see Fig. 4d). Consequently,
CDF matching mimicked the suppressing effect of dew due
to the reduction in transpiration rates in the morning. When
we look at the period between the peak of dew (06:00 LT)
and full dissipation (08:15 LT) on 25 July in Fig. 6, we see
that1VWC is 0.17 kg m−2 in the second row, while1VWC
is 0.1 kg m−2 in the third row. This means that CDF matching
in this case led to reduction in transpiration of 0.07 kg m−2.
This is comparable to the estimated dew evaporation in this
period, which was 0.09 kg m−2 (Fig. 7). The same holds for
23 August, when we found a transpiration reduction of about
0.18 kg m−2 between 06:45 and 09:45 LT after CDF match-
ing and an estimated dew evaporation of 0.20 kg m−2 in the
same period. On 28 August, all dew had already dissipated

https://doi.org/10.5194/hess-26-1223-2022 Hydrol. Earth Syst. Sci., 26, 1223–1241, 2022



1236 P. C. Vermunt et al.: Extrapolating continuous vegetation water content

before sunrise and did, thus, not affect transpiration. There-
fore, a reduction in transpiration rates did not improve the
reconstruction of VWC. These results illustrate that the sup-
pressing effect of dew on transpiration should be taken into
account when one estimates transpiration with a weather sta-
tion or flux tower.

Another effect of CDF matching was that the highest
ET0 rates resulted in higher estimates of transpiration com-
pared to those obtained using linear corrections (see Fig. 4d).
This was particularly apparent under sunny conditions such
as those on 25 July and 23 August. This means that tran-
spiration rates exceeded sap flow rates for a longer period.
Together with the gradual depletion of internal VWC in
the morning, this led to a much better agreement and a
shift in a diurnal minimum towards the afternoon. However,
the poor agreement between the sampled and reconstructed
VWC in the evening of 23 August could not be explained by
the extreme hydrometeorological conditions, growth stage,
or drought stress. Other potential contributors to the poor
agreement could be unaccounted for errors in the sap flow,
weather data, or samples. The cloudier conditions on 28 Au-
gust (Fig. 7) could explain the small difference between lin-
ear corrections and CDF matching.

When the methodology with CDF matching was applied to
the 10 d period from our 2018 campaign, the diurnal minima
of reconstructed VWC matched excellently with the diurnal
minima in the backscatter in most cases (Fig. 9). This could
be explained by the daily dew formation and high tempera-
tures in this period. However, discontinuities were observed
between consecutive days (Fig. 8), which might be related
to the temporal resolution of the observations and the es-
timation of transpiration fluxes. The temporal resolution of
the sensor observations was 15 min. At the same time, we
found phase differences between ET0 and sap flow of the or-
der of 15–45 min, which was consistent with previous studies
on corn (e.g. Langensiepen et al., 2009). Increasing the ratio
between phase difference and observation resolution would
increase the robustness of the method. A potential solution
would therefore be to increase the temporal resolution of the
sensor observations. Another potential solution is related to
the estimation of transpiration fluxes. Ideally, a flux tower
would be used for ET estimates through the eddy covari-
ance method, as it is a more direct measurement and widely
considered as the most accurate technique for ET measure-
ments at field scale (Zhang et al., 2014; Maltese et al., 2018;
Oguntunde et al., 2004). Improved ET estimates may also
reduce or eliminate the need to include CDF matching. As
direct ET measurements also include evaporation from SCW
and soil, it is advised to include leaf wetness sensors and
micro-lysimeters (Ding et al., 2013) to provide quantitative
estimates of evaporation and determine transpiration from
ET measurements. Including several in situ sensors of each
type (leaf wetness, sap flow, etc.) ensures that the quantities
capture field-scale dynamics.

5.2 Interpreting sub-daily backscatter

In Vermunt et al. (2020), sub-daily L-band backscatter varia-
tions were attributed to VWC, SCW, and soil moisture. How-
ever, the lack of sub-daily VWC data points complicated
quantifying the relation between backscatter and the indi-
vidual moisture stores. The VWC records generated in the
current study allowed us to understand sub-daily backscatter
variations with unprecedented detail and to describe the rel-
ative backscatter sensitivity to the different moisture stores.

The results presented here indicate that the effects of sub-
daily variations in VWC on backscatter are considerable. Our
regression analysis suggested that, on a typical dry day, the
diurnal cycle of VWC led to a 2 (HH- and cross-pol) to al-
most 4 (VV-pol) times higher change in backscatter than the
soil moisture drydown did. Note that these ratios can be dif-
ferent when either VWC or soil moisture content substan-
tially change (Brisco et al., 1990) or when the crop struc-
ture changes during the day (Kimes and Kirchner, 1983).
Backscatter sensitivity to VWC dynamics was most clearly
observed in the period between sunrise and mid-afternoon,
when both dropped significantly. During mid-afternoon to
sunset, we observed a constant to slightly increasing VV- and
cross-polarized backscatter, which illustrated the opposite ef-
fects of VWC refilling and soil moisture drop on backscatter.
Nocturnal backscatter dynamics demonstrated the sensitivity
of VV- and cross-pol to SCW.

In general, our results showed that VV-pol was more sen-
sitive to variations in VWC than HH-pol and less sensitive to
variations in soil moisture. This is in agreement with Joseph
et al. (2010), who described a larger attenuation of the soil re-
turn by vegetation for VV-pol compared to HH-pol in a study
on the L-band backscattering of corn. An explanation for this
difference was given by Stamenković et al. (2015), who de-
scribed that, at VV and HV polarizations, vertical corn stems
attenuate the double-bounce scattering at L-band, which re-
sults in lower contribution from the soil. As a consequence,
volume scattering and the corresponding contribution from
vegetation becomes dominant. At HH-pol, there is less atten-
uation of the double bounce effect, which explains a higher
sensitivity to soil moisture (Table 2).

Moreover, the nocturnal VV- and cross-polarized
backscatter increase in Figs. 9 and 11 could be attributed
to dew formation only because VWC was stable during the
night, and soil moisture was constant or decreased slightly.
Stable nocturnal VWC can be expected for crops with a
hydraulic capacitance similar to or lower than corn and
sufficient soil moisture availability. For vegetation with a
larger hydraulic capacitance or low soil moisture availability,
nocturnal refilling of VWC could be expected (Maltese et al.,
2018), which could complicate the separation of signals
from VWC and SCW.

Figures 9–11 and Table 2 showed that, compared to HH-
pol, VV- and cross-polarized backscatter were not only more
sensitive to changes in VWC but also to changing SCW.
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This is in agreement with previous findings from Bran-
cato et al. (2017), who found a stronger effect of SCW
on S- and C-band differential interferometric observables
in VV polarization compared to other polarizations, partic-
ularly for vertically oriented crops as corn. This could be
related to increased scattering from wet leaves in combina-
tion with the dominance of volume scattering in VV and
cross-polarizations. However, it seems that the SCW coef-
ficients (c) for VV- and cross-pol in Table 2 underestimate
the effect of dew on backscatter, as the nocturnal increases in
calculated σ 0

VV and σ 0
cross in Fig. 12 are lower than observed.

This could partly be addressed by improved SCW estimates,
for example, through the inclusion of more leaf wetness sen-
sors distributed in the canopy (Vermunt et al., 2020). More-
over, additional research is needed to provide more insight
into the scattering mechanisms under the presence of SCW,
for example, by considering SCW in physical backscattering
models.

6 Conclusions

The potential of using radar for (eco)hydrological studies is
limited by the challenge to separate signals from soil and
vegetation on a sub-daily timescale. To gain a better under-
standing of what controls sub-daily backscatter behaviour,
we analysed tower-based polarimetric L-band observations
from a cornfield using unique estimates of moisture fluctua-
tions in vegetation and soil.

A method developed by the tree physiology community
was adapted to estimate continuous variations in corn plant
water content with unprecedented detail. The adaptations
were related to the estimation of transpiration. The best
agreement between sampled and estimated VWC was found
when transpiration estimates were obtained after the removal
of systematic differences between ET0 and sap flow. In non-
stressed conditions, predawn VWC decreased by 10 %–20 %
during the day.

Complementing the resulting record of VWC with records
of soil moisture and previously estimated surface canopy wa-
ter allowed us to interpret the sub-daily behaviour of po-
larimetric L-band observations. The results showed a sig-
nificant effect of diurnal VWC cycles on L-band backscat-
ter when the plants reached their maximum size. The high-
est and lowest sensitivity to VWC was found in VV- and
HH-polarized backscatter, respectively. The regression re-
sults suggested that the backscatter behaviour on a typical
dry day was 2 (HH- and cross-pol) to 4 (VV) times more
determined by the VWC cycle than by soil moisture. Night-
time increases in VV- and cross-polarized backscatter were a
result of dew formation only.

The results presented here provide unique insight into
the potentially confounding influence of surface and inter-
nal vegetation water content variations on backscatter, par-
ticularly in the interpretation of sub-daily radar observations.
These findings are directly relevant for current and upcoming
L-band missions, but also for the design of future spaceborne
SAR missions for land applications. In particular, this study
highlights the potential difference in relative importance of
VWC, SCW, or soil moisture dynamics, depending on the
overpass time. This is particularly relevant given the immi-
nent availability of sub-daily observations from, e.g., the IC-
EYE and Capella Space constellations.

As radar observations are increasingly used to study plant
water status, the presented sap flow method is a promis-
ing way to validate sub-daily satellite observations with just
meteorological data and sap flow sensors, without labori-
ous sub-daily destructive sampling. The method is expected
to be most robust when the temporal resolution of the sap
flow and ET observations are significantly smaller than the
phase difference between the two, which depends on the
species. The number of sensors required to capture VWC
variations at footprint scale is expected to depend on the
footprint size, the spatial heterogeneity of vegetation type,
and factors influencing moisture supply and demand. Poten-
tially, global database networks for sap flow measurements,
i.e. SAPFLUXNET (http://sapfluxnet.creaf.cat, last access:
2 June 2021), and flux tower measurements, e.g. FLUXNET
(https://fluxnet.org/, last access: 2 June 2021) and AmeriFlux
(https://ameriflux.lbl.gov/, last access: 2 June 2021), can play
an important role here.

Moreover, the utility of the tested sap flow method goes
well beyond radar remote sensing. It also has huge poten-
tial for validating and interpreting a wide range of other re-
mote sensing techniques that are sensitive to vegetation wa-
ter, such as passive microwave remote sensing, global nav-
igation satellite systems (GNSSs), and cosmic ray neutron
sensors.
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Appendix A

Table A1. Root mean squared error (RMSE) between reconstructed and sampled VWC. The rows represent time of constraining the recon-
struction, while the columns represent the considered period for linear ET0 correction.

25 July 23 August 28 August

1 d 3 d All data 1 d 3 d 5 d 7 d All data 1 d 3 d 5 d 7 d All data

Predawn 0.212 0.272 1.107 0.369 0.310 0.256 0.282 0.547 0.178 0.097 0.095 0.063 0.352
Morning 0.314 0.369 1.082 0.500 0.444 0.389 0.416 0.655 0.176 0.110 0.108 0.078 0.315
Afternoon 0.187 0.220 0.704 0.375 0.346 0.318 0.331 0.468 0.129 0.090 0.089 0.075 0.227
Evening 0.266 0.321 1.036 0.446 0.392 0.337 0.364 0.601 0.206 0.138 0.136 0.106 0.351
Sunset 0.247 0.311 1.131 0.516 0.448 0.379 0.413 0.706 0.150 0.074 0.072 0.047 0.317

Table A2. Root mean squared error (RMSE) between reconstructed and sampled VWC. The rows represent time of constraining the recon-
struction, while the columns represent the considered period for CDF matching.

25 July 23 August 28 August

1 d 3 d All data 1 d 3 d 5 d 7 d All data 1 d 3 d 5 d 7 d All data

Predawn 0.155 0.140 0.070 0.303 0.380 0.295 0.310 0.458 0.135 0.112 0.153 0.149 0.379
Morning 0.114 0.104 0.124 0.296 0.390 0.313 0.331 0.508 0.121 0.078 0.100 0.088 0.286
Afternoon 0.140 0.136 0.125 0.309 0.351 0.311 0.319 0.402 0.091 0.060 0.075 0.067 0.212
Evening 0.094 0.081 0.113 0.244 0.333 0.259 0.276 0.451 0.142 0.084 0.103 0.083 0.306
Sunset 0.177 0.162 0.083 0.471 0.548 0.460 0.474 0.623 0.102 0.070 0.106 0.097 0.325

Table A3. Offset between reconstructed and sampled VWC. The rows represent the method used for transpiration estimation, while the
columns represent the considered period.

4 Jun 8 June 11 June

1 d 3 d 5 d All data 1 d 3 d 5 d 7 d All data 1 d 3 d 5 d All data

Linear 0.202 0.250 0.149 0.055 0.412 0.071 0.241 0.022 0.022 0.556 0.790 0.739 0.543
CDF 0.134 0.180 0.185 0.063 0.292 0.106 0.209 0.147 0.128 0.456 0.476 0.521 0.267

Table A4. Summary of multiple linear regression results.

VV-pol HH-pol Cross-pol

θ VWC SCW θ VWC SCW θ VWC SCW

Coeff. 24.0643 2.9340 0.6190 39.4680 2.2879 0.3759 38.8273 2.4463 0.7293
SE 2.600 0.262 0.302 3.019 0.304 0.350 2.906 0.293 0.337
t 9.254 11.203 2.051 13.075 7.526 1.073 13.363 8.360 2.163
P > |t | 0.000 0.000 0.043 0.000 0.000 0.286 0.000 0.000 0.033
(0.025 18.900 2.414 0.020 33.474 1.684 −0.320 33.058 1.865 0.060
0.975) 29.228 3.454 1.218 45.462 2.892 1.072 44.597 3.027 1.399

R2 0.686 0.690 0.715
Adj. R2 0.675 0.680 0.706
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Code and data availability. Meteorological data with 15 min reso-
lution were obtained from the nearby Florida Automated Weather
Network (FAWN) weather station, downloaded from the Report
Generator (https://fawn.ifas.ufl.edu/data/reports/; FAWN, 2018).

The data from field measurements are not publicly available yet.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-26-1223-2022-supplement.
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