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Abstract
Early detection of leprosy, a neglected tropical
disease, is crucial to preventing irreversible nerve
damage and disability. Analyzing temperature vari-
ations in hands using infrared (IR) cameras offers
a potential low-cost alternative to existing medical
equipment for early detection of leprosy. This study
explores the adaptation of hand landmark detec-
tion models, commonly used for hand pose track-
ing, to infer the hypothenar area, a critical region
for leprosy diagnosis. The research addresses the
challenge of limited ground-truth data for the hy-
pothenar keypoint by developing annotated datasets
and evaluating machine learning models like Lasso
Regression and XGBoost. These models signif-
icantly outperform the existing method of linear
interpolation, demonstrating the feasibility of ac-
curate hypothenar keypoint prediction even with
limited training data. The findings contribute to
the development of accessible, automated tools for
early leprosy diagnosis, particularly in resource-
constrained settings.

1 Introduction
Leprosy, a preventable and treatable condition, remains a sig-
nificant global concern [1]. Its persistence is strongly asso-
ciated with regions facing socioeconomic hardship. If un-
treated, it causes nerve dysfunction, also known as neuropa-
thy, resulting in loss of sensation, muscular weakness, and
potential deformities [2]. The World Health Organization
(WHO) highlights delayed case detection, limited access to
healthcare services, and insufficient research as critical chal-
lenges in the global effort to eliminate leprosy [1].

Leprosy detection can be facilitated by monitoring hand
temperature regulation [3], [4], [5]. Subclinical leprosy im-
pairs the vasomotor reflex, which regulates blood flow for
temperature control [4], [3], and this can be assessed us-
ing Laser Doppler Flowmetry (LDF). Alternatively, Abbot
et al. [4] highlight measuring skin temperature as a potential
clinical indicator, as cold fingers strongly correlate with im-
paired vasomotor control. This approach is particularly valu-
able since LDF requires costly specialized equipment.

Infrared (IR) imaging (thermography) has emerged as a
potential tool for leprosy assessment [5],[6]. Cavalheiro et
al. [5] demonstrated the feasibility of using thermography to
monitor temperature in the hands of patients with leprosy.
The process involves measuring temperatures at regions of
interest (ROIs).

The regions of interest are along the median and ulnar
nerves. The median nerve runs from the wrist through the
thenar area and innervates the thumb, index and middle fin-
ger. On the other side of the hand, the ulnar nerve runs from
the wrist, through the hypothenar area to the ring and pinky
finger. The specific definition of ROIs is different among
studies, for example, Tiago et al. [6] measure temperature at
fingertips, knuckles and rectangular areas on both thenar and
hypothenar sides of the hand. Cavalheiro et al [5] define ROIs

as points shown in Figure 2. Moreover, Cavalheiro et al [5]
have observed that the hypothenar side was more affected.

Hand tracking is a key area of study, enabling advance-
ments in human-computer interaction such as virtual reality,
sign language recognition, and surgical assistance [7]. It com-
monly involves representing the hand via 21 keypoints that
represent the hands’ joints, as shown in Figure 1. Models
like Google’s MediaPipe Hands are widely used for their ef-
ficiency and ability to run in real-time on mobile devices [8].

Schemkes [9] investigated the use of hand keypoint detec-
tion models in infrared leprosy diagnosis, utilizing the same
ROIs as Cavalheiro et al. [5]. In their process, the hands were
photographed from above, with the palms facing the camera,
as shown in Figure 2. The research [9] highlighted the time-
efficiency and reproducibility benefits of automatization of
leprosy detection. Collaborating with Dr. Arjan Knulst from
the Green Pastures Hospital in Nepal, Schemkes [9] empha-
sized the need for accurate hand keypoint detection and the
challenge posed by the lack of ground truth data.

A significant limitation of current hand landmark detec-
tion models is their inability to detect a keypoint near the hy-
pothenar eminence (hereafter referred to as the hypothenar
keypoint), annotated as R6 and L6 in Figure 2. Similarly,
existing datasets do not include the annotation of the hy-
pothenar keypoint. Schemkes [9] addressed this issue by
adapting the output of MediaPipe, inferring the hypothenar
keypoints through linear interpolation between the wrist and
pinky knuckle keypoints as shown in Figure 3. However, this
approach assumes that the hand remains completely still and
maintains the same position and pose for 15 minutes, which
limits its practical applicability.

Moreover, Schemkes [9] demonstrated that consumer-
grade smartphone compatible infrared cameras can be used
for leprosy detection. Furthermore, hand keypoint detection
models are capable of running efficiently on smartphones, en-
abling real-time analysis. Effective leprosy detection using
infrared imaging, however, requires the accurate tracking of
specific hand keypoints, including the hypothenar keypoint.

The objective of this study is to improve hypothenar key-
point inference. This improvement could contribute to the de-
velopment of a robust, automatic solution utilizing available
hardware. By reducing reliance on expensive medical equip-
ment, such a solution has the potential to make early leprosy
detection more accessible in resource-constrained regions, di-
rectly addressing challenges highlighted by the World Health
Organization [1].

The primary contributions of this work are: (1) a novel IR
and RGB image dataset of 160 manually annotated images
with the hypothenar keypoint and 21 standard keypoints (2)
another dataset of 800-image hand palm dataset with manu-
ally annotated hypothenar keypoint and 21 keypoints anno-
tated by the MediaPipe model; and (3) a comparative evalua-
tion of machine learning models and training data volume for
robust hypothenar keypoint inference.

2



Figure 1: Visualisation of 21 standard keypoints and their names as
produced by MediaPipe [17].

Figure 2: Regions of interest (red circles) for leprosy detection using
infrared imaging. Hand breadth indicated as distance between points
P1 and P2 (blue points). Adapted from [9].

2 Related Work
2.1 Hand Keypoint Detection Methods
Hand keypoint detection in RGB images is a popular area
of research in computer vision, resulting in a variety of ap-
proaches [10], [11], [12]. Among them, MediaPipe Hands,
OpenPose, and YOLOv11-pose are the most widely used in
practice. MediaPipe Hands, developed by Google [8], and
YOLOv11-pose, developed by Ultralytics [13], offer imple-
mentation tools that simplify their deployment on mobile de-
vices. This is a significant advantage over OpenPose, devel-
oped at Carnegie Mellon University [14], which lacks such
readily available tooling. However, MediaPipe Hands is ar-
guably the most adopted solution. This is evident in the nu-
merous hand image datasets that utilize MediaPipe-generated
keypoint annotations [15], [16]. As such, this paper uses the
MediaPipe Hands model.

Infrared Native Hand Keypoint Detection Methods
Compared to hand keypoint detection in RGB images, hand
keypoint detection in infrared (IR) is less developed, though
research in this area exists. Some studies have adapted body
keypoint detection for IR [18], [19], but specific focus on
hands is limited. Park et al. [20] detect hand keypoints in
IR images for hand pose estimation, focusing on the 21 stan-
dard keypoints but excluding the hypothenar keypoint. How-
ever, the IR images used by Park et al. resemble near-infrared
(NIR) images, which are commonly utilized for night vision
and may not be suitable for temperature measurement.

2.2 Regions of Interest Definition
According to Schemkes [9], the keypoints 4, 6, 8, 18, and 20
can be used directly as regions of interest. In a study by Tiago
et al. [6], the hypothenar-side region of interest is defined as
a large rectangle, while some studies [5], [9] consider it as a
point. In this paper, the point is defined in line with Caval-
heiro et al. [5]. Moreover, the rectangular definition could be
inferred from the hypothenar keypoint and the knuckle key-
points of the pinky and ring finger. Therefore, in this paper,
the problem of inferring the rectangular area is reducible to
inferring the hypothenar keypoint.

Schemkes [9] explicitly states that the radius of the L6
and R6 regions is 20% of the palm breadth, annotated as
P1 and P2 in Figure 2. However, the visual representation
in Schemkes’ figures suggests a radius closer to 10% of the
palm breadth. To err on the side of caution, this paper adopts
a radius of 10% of the handbreadth as benchmark.

2.3 Inference Adaptation Methods
The main problem is the lack of annotated datasets with the
hypothenar keypoint while there is ample data for other key-
points. The inference of the hypothenar point is essentially a
regression task, relying on inherent spatial relationships be-
tween existing keypoints and the hypothenar keypoint. In
hand gesture detection tasks, the spatial relationships between
hand keypoints are assumed to be nonlinear due to stretching
and curving of the hands during various hand poses. In con-
trast, Schemkes [9] studied hands in a flat pose, in which the
spatial relationships between keypoints can be assumed to be
linear.

Therefore, a linear and nonlinear models were selected for
comparison and evaluation of the extent of the linearity as-
sumption. The models chosen for this study include a gen-
eralization of Schemkes’s interpolation method, k-Nearest
Neighbors (k-NN), Random Forest, XGBoost, and Lasso re-
gression.

K-Nearest Neighbors Regression
The k-Nearest Neighbors (k-NN) algorithm was explored as
a baseline model. The k-NN model is particularly appealing
in this case because of its simplicity. Although k-NN can
achieve high accuracy with sufficient training data, it cannot
learn the importance of the features [21]. In the context of
keypoint matching, k-NN has demonstrated effectiveness in
previous studies [22]. The regression is just the interpolation
of closest matching keypoint sets. Therefore, k-NN could
potentially capture the hypothenar point given a certain hand
shape and pose.

Schemkes Interpolation
Schemkes uses linear interpolation of the coordinate values
of two keypoints to infer the target hypothenar keypoint[9].
Schemkes uses the pinky finger knuckle joint (PINKY MCP)
and the wrist joint. As seen in Figure 3, the vertical
and horizontal distances between keypoints WRIST (0) and
PINKY MCP (17) are multiplied by weights of 1/3 and 2/3
respectively. This can be generalized as α and β, which
can be empirically determined as an average. This leads to
the definition of Schemkes interpolation, which will use the
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Figure 3: Hypothenar keypoint inference by linear interpolation
of WRIST and PINKY MCP keypoints. Regions of interest high-
lighted in blue [9].

WRIST and some MCP keypoint to predict a point on the
palm. The parameters of this model are the keypoints used
for interpolation.

With wrist and knuckle keypoints as uwr, vmcp, the point
P is obtained by their weighted interpolation. Therefore, the
coordinates of point P are:

P =

[
Px
Py

]
=

[
(1− α)xwr + αxmcp
(1− β)ywr + βymcp

]
Its effectiveness is dependent on the assumption of rela-

tively flat hand positions, where nonlinear influences are min-
imized. Despite these limitations, Schemkes interpolation
provides a valuable baseline benchmark for assessing the per-
formance of more sophisticated models.

Lasso Linear Regression
Lasso linear regression employs L1 regularization which
shrinks unimportant predictors’ coefficients to zero [21]. This
is beneficial because many x-axis values might be poor pre-
dictors for y-axis values. Unlike linear interpolation, which
operates within a single axis, lasso regression models the in-
fluence between different axes. For example, in Figure 1, the
y-coordinate of keypoint 4 could be positively correlated with
the x-coordinate of keypoint 1, a relationship L1 regulariza-
tion can help uncover.

Random Forest Regression
A random forest (RF) is an ensemble learning method that
combines the outputs of multiple regression trees to produce
a single prediction. For hand keypoint coordinate prediction,
Random Forests are robust to outliers due to feature subsam-
pling. For instance, if an important predictor e.g. pinky
knuckle y-value contains outliers, the outliers impact is re-
duced because the feature is not present in all tree despite
the importance. Therefore, if only few features are anoma-
lous, the predicted value can still be accurate. Another key
advantage of RFs is their ability to yield relatively accurate
predictions even with small sample sizes, and increasing the
number of trees generally improves accuracy without causing
overfitting [23]. However, the random selection of features
might be detrimental to the result due to noisy data of finger
keypoints.

XGBoost
XGBoost [24], an advanced gradient boosting framework, it-
eratively builds trees, with each new tree trained to minimize

the residual errors of its predecessors. Compared to Random
Forest, the adaptive neighborhood property of XGBoost al-
lows flexibility in predictions for hands with some shared
properties [25]. This means that if the hypothenar keypoint
has high variance when the thumb and pinky keypoints’ x-
values are close to 0, XGBoost can capture this variance for
this particular feature space e.g. increased yaw of the hand
- appearing slimmer to the camera. Furthermore, regular-
ization prioritizes the most influential variables, such as pal-
mar instead of fingertip keypoints. Given sufficient data and
appropriate hyperparameter tuning, XGBoost is expected to
outperform Random Forest.

3 Methodology
This study investigates the comparative accuracy of regres-
sion models for the task of hypothenar keypoint prediction.
The main challenge is the absence of ground-truth data. Large
hand image datasets with standard keypoint annotations are
available or can be annotated with hand keypoint detectors
such as MediaPipe. Due to the absence of hypothenar key-
point datasets, the models are compared in performing a sim-
ilar prediction task with large datasets available in order to
investigate the data quantity requirements for keypoint pre-
diction tasks.

3.1 Experimental Design
Each dataset inherently carries biases introduced during its
creation, such as camera types, instructions given to subjects,
or the subjects themselves. The difference between datasets
is commonly referred to as ”dataset shift” [26], a factor that
must be considered when analyzing results. The reduction
in prediction accuracy caused by this difference is known as
”generalization error” [26].

This study is structured around two experiments. The
first experiment investigates model performance on a larger,
publicly available dataset for a similar keypoint prediction
task. This allows for an evaluation of the impact of data size
on predictive accuracy and provides insights into the effects
of dataset shift on model generalization error between the
datasets. The second experiment aims to identify the optimal
model for hypothenar keypoint prediction using the datasets
created for this study.

3.2 Thumb Keypoint Prediction Experiment
How accurately can a hand keypoint be predicted with-
out data volume constraints? For the task of prediction
of a similar keypoint, the THUMB CMC keypoint was omit-
ted during model training and designated as the predic-
tion target. This experiment allows for an assessment of
model performance with increasing training data sizes. The
THUMB CMC keypoint shown in Figure 1 was selected due
to its proximity to the hypothenar keypoint.

How does difference in datasets impact hand keypoint
prediction accuracy? Model predictions were assessed un-
der two conditions: first, on data sampled from the same
dataset as the training data, and second, on data sampled from
a different dataset.
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3.3 Hypothenar Keypoint Prediction Experiment
How accurately can the hypothenar keypoint be predicted
with limited data volume? For the prediction of the hy-
pothenar keypoint, the standard 21 keypoints were used as
input and the hypothenar keypoint was set as the prediction
target.

3.4 Data Preprocessing
Keypoint Normalization Pipeline
The keypoint coordinate values in the datasets are normal-
ized relative to the width and height of the image. However,
bounding box information is not provided in some datasets.
Although hand poses remain consistent, variations in hand
rotation and apparent size, due to proximity to the camera,
introduce high variance in the keypoints’ location, rotation,
and scale. As a result, a preprocessing normalization step is
required.

(a) Image space (b) Rotated bounding box space

Figure 4: Keypoint normalization before (a) and after (b).

To address this, a data processing pipeline was developed.
Raw keypoint coordinates in image space (as shown in Fig-
ure 4a) are used to generate a bounding box. The bounding
box center is defined as the new origin, and the keypoint co-
ordinates are scaled relative to the bounding box. The palm
of the hand is then aligned cardinally north using the wrist
and middle finger knuckle keypoints, a process expressible
through linear transformations. This is applied to every set
of keypoints, representing a hand. By training models on the
normalized keypoints, the predictions can be therefore trans-
formed into useful predictions back into image space to dis-
play on an image.

3.5 Error Function
Definition
For predicting hand keypoints, Euclidean distance was cho-
sen as the primary metric due to its simplicity. While the
Object Keypoint Similarity (OKS) metric accounts for scale,
shape, and segmentation, it requires empirically determined
parameters, making it unnecessarily complex for this study’s
goals. Instead, normalized Euclidean distance in bounding
box space provides a straightforward and reliable measure.

The normalized keypoint error function is essentially the
sum of distances per keypoint:

Ekpts =
1

Nkpts

Nkpts∑
i=1

Dbb(ki) (1)

Where:

• Ekpts: Mean Euclidean distance error.

• Nkpts: Total number of keypoints evaluated.

• Dbb(ki): Distance between predicted and ground truth
locations for the i-th keypoint, in bounding box space.

The loss function is calculated as the mean of these errors,
with M being the number of hands in the dataset. This results
in a singular value for evaluating how a model performs on a
particular dataset.

L =
1

M

M∑
i=1

E
(i)
kpts (2)

For single-point prediction tasks, Nkpts = 1, reducing the
loss function to the mean Euclidean distance between the tar-
get and predicted point.

4 Experimental Setup
4.1 Data Collection and Annotation
For leprosy diagnosis, the regions of interest need to be visi-
ble for taking measurements. Therefore the primary require-
ment for data is that it contains images of hands in similar
positions during leprosy assessment and annotations of the
hypothenar keypoint.

Studies [9][5] have shown that it is sufficient to take tem-
perature measurements from the front (palmar) side of the
hand, while Tiago et al. [6] additionally took measurements
from the back (dorsal) side of the hand. In this study, hand-
edness and face of the hand is neglected and not considered
during training. A palm-facing left hand in keypoint repre-
sentation is considered to be equivalent to back-facing right
hand and vice-versa. Thus, three categories of hand poses
as defined in the HaGRID [16] dataset are used as reference.
The hand poses are shown in Figure 6.

Construction of RGB/IR keypoints dataset
In collaboration with other research team members, we have
created a dataset of palmar hand images in RGB and infrared.
The hands of 5 subjects were photographed under various
conditions and backgrounds. The dataset contains manual
annotations of 22 keypoints (21 standard and hypothenar key-
point) illustrated in Figure 5. The RGB and IR camera was
placed 70cm above the hands which were laid out open on
the table with palms facing up, towards the camera. In both
domains, 80 images were taken which totals 160 annotated
images for the purpose of this paper. However, the number
of subjects is too low despite variance in poses. Thus, more
ground-truth data of the hypothenar keypoint is required.

Annotation Quality
The quality of annotations was evaluated using Google’s
mean palm size normalized absolute error (MNAE) [8], com-
paring MediaPipe’s detections to our manual annotations.
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Figure 5: Visualisation of RGB/IR dataset annotations. Standard
keypoints are numbered, hypothenar point is annotated with letter
”P”

The dataset achieved a MNAE of 1.25, significantly lower
than Google’s reported 10.09 [27], likely due to the poses in
our dataset, which lacks occlusions and complex gestures.

Annotation of Human Palm Images (HPI) Dataset
The HPI [28] dataset contains 800 human palm images. The
standard annotatations were generated using MediaPipe and
the hypothenar point was manually annotated. It includes 400
male and 400 female palm images, with 200 subjects of each
gender providing images of both left and right palms [28].

HaGRID dataset
The HaGRID dataset comprises approximately 30,000 im-
ages per gesture category, with keypoint annotations gener-
ated using MediaPipe [16]. The dataset features a diverse set
of human subjects performing various hand gestures. The se-
lected gesture categories are shown in Figure 6.

Figure 6: Selected HaGRID gestures. Adapted from [16].

11k Hands Dataset
The 11K Hands dataset provides top-down view images of the
dorsal and palmar sides of the hands [29]. All hand gestures
in this dataset fall under the categories selected in the Ha-
GRID dataset. This dataset is a subset of an annotated dataset
which was annotated using MediaPipe by Dsilva [15]. The
size of the dataset is about 11 000 images of 190 subjects’
hands.

Average Hand Dimensions
The values for average hand length and hand breadth, 17.48
cm and 8.04 cm respectively, are taken from the results of a
study by Khazri [30]. In this study, hand length is defined as
the distance between the wrist and the tip of the middle fin-
ger, while hand breadth is as shown in Figure 2. Using the

Hypothenar ROI sizing defined by Schemkes [9], the result-
ing real-world radius is 0.8 cm, which serves as a benchmark
value.

Tuned Hyperparameters
Negative MSE was selected as the tuning score for simplicity
and efficiency during implementation using the scikit-learn
Python library [31]. The Euclidean distance can be derived
from its squared error by taking the square root of twice
the squared error value, aligning the objective of maximiz-
ing negative squared error with minimizing Euclidean dis-
tance. For Random Forest, the number of trees, maximum
tree depth, minimum samples required to split a node, mini-
mum samples required at a leaf node, and the proportion of
features considered for each split were adjusted. For XG-
Boost, the parameters tuned included the number of boost-
ing rounds, maximum tree depth, learning rate, minimum
child weight, subsample ratio, column subsample ratio, and
the minimum loss reduction required for further partitioning.
In the k-Nearest Neighbors model, the number of neighbors,
weighting scheme, distance metric, and the power parameter
for the Minkowski metric were optimized. Finally, for Lasso
Regression, the regularization strength parameter was tuned.

4.2 Thumb Keypoint Prediction Experiment
Data Preparation and Partitioning
The HaGRID dataset used its predefined training, validation,
and test partitions (Table 1). For the 11k Hands dataset, a test
set was created by splitting the set into 80% training and 20%
test without shuffling to prevent data leakage, as consecutive
entries belong to the same subject. Partition sizes are detailed
in Table 1. The combined training set comprises 57,837 sam-

Table 1: Hand pose composition of the combined dataset

Subset Train Test
Hagrid Palm 18,536 3,974
Hagrid Stop 18,224 3,953
Hagrid Stopinv 17,364 4,007
11k Hands 3,713 929

Total 57,837 12,863

ples, and the combined test set comprises 12,863 samples.
Hypothenar Dataset The RGB/IR and HPI dataset anno-
tations were processed and combined, hereafter referred to as
the Hypothenar set. After cleaning, the total size is 927.

4.3 Datasets Used for Evaluation
Two testing sets are used to evaluate models trained on the
combined training set, with the THUMB CMC keypoint as
the prediction target. The first evaluation scenario utilizes the
large test partition, as outlined in Table 1, hereafter referred
to as the ”test set.” The second evaluation scenario uses the
whole Hypothenar set.

Tuning Data
To prevent tuning the parameters to overfit on the same vali-
dation set, k-fold cross-validation with k = 3 was used with
a 50% randomly subsampled training set.
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Experimental Procedure
First, all data is ingested and pre-processed as described in
Section 3.4. Then, hyperparameters are tuned for each model.
The models with tuned hyperparameters are then trained on
increasing volumes of training data. The experiment consists
of 11 rounds. For each round a training size is determined
and the loss as described in 2 of each model is evaluated for
both test sets.

Model Settings
Lasso Regression without proximity bias Given the prox-
imity of the THUMB CMC to the wrist and other thumb key-
points, a standard Lasso regression model may exhibit bias
by relying heavily on these features. To address this, an alter-
native Lasso regression model is evaluated, excluding infor-
mation from nearby thumb keypoints to simulate a scenario
where the target keypoint lacks close-proximity features.

The generalized Schemkes linear interpolation is set to in-
terpolate between the WRIST and INDEX FINGER MCP
keypoints, displayed in Figures 1.

4.4 Hypothenar Point Prediction Experiment
The experiment for direct hypothenar point prediction largely
mirrored the procedure of the thumb keypoint prediction ex-
periment, with key modifications.

This experiment utilized the Hypothenar set, partitioned
into an 80/20 split. K-fold cross-validation was used during
tuning. Tuning was done with Kt = 10 due to low amounts
of data. Unlike the thumb keypoint prediction experiment,
this experiment leveraged all 21 keypoints as input features
to predict the location of the hypothenar point. This setup
enables a direct assessment of the feasibility of accurate hy-
pothenar point prediction using the hypothenar set.

5 Results
5.1 Thumb Keypoint Prediction Results
The results are illustrated in Figure 7, showing steady im-
provements in prediction for XGBoost, Random Forest and
KNN with increasing training data volumes. Lasso regression
and Schmemkes’ interpolation as parametric models, have es-
sentially constant loss throughout.

A summary of the results is shown in Table 2 which con-
tains the loss when training data has 1000 and 57837 data-
points, the resulting reduction in loss and mean generalisa-
tion error (MGE) which is the sum of absolute differences
between the losses from the Test Set and Hypothenar Set di-
vided by number of evaluation rounds, essentially the mean
distance between the Hypothenar Set and Test Set curves in
shown Figure 7.

The best prediction models are XGBoost and Lasso regres-
sion in that respective order. XGBoost is the only model
which performs worse on the Hypothenar Set with higher
training data volumes while other non-parametric models im-
proved. The Thumbless Lasso regression performs worse
than regular Lasso regression with absolute difference of
0.0172. At all training volumes, all models outperform the
generalized Schemkes’ linear interpolation of two points.

Figure 7: Comparison of models’ THUMB CMC prediction losses
with increasing training data size on Test and Hypothenar Set.

5.2 Hypothenar Keypoint Prediction Results
The result for Schemkes [9] interpolation using the original
ratios, as shown in Figure 3, was 0.234. However, this re-
sult was omitted from the plots for clarity. A clear elbow
is observed in the training curves in Figure 8, occurring at a
training size of 222.

As summarized in Table 3, all models consistently outper-
formed the generalized linear interpolation by Schemkes [9]
for Hypothenar keypoint prediction. The loss reduction was
calculated from the elbow point to the maximum training data
size. Among the models, XGBoost achieved the best perfor-
mance, followed closely by Lasso regression. The resulting
training curves for all models are plotted in Figure 8.

Lasso regression uniquely exhibits a valley in its training
curve, with a global minimum loss of 0.064 at a training size
of 518. Additionally, Lasso regression achieves the lowest
loss at smaller training sizes. Across all models, the training
curves are steep at low training set sizes and plateau beyond
the elbow point. This trend is particularly evident for Lasso
regression, which demonstrates a modest loss reduction of
0.37% between the elbow point and the maximum training
volume.

Feature Importances
Lasso regression model’s intercepts for the x and y coor-
dinates were -0.08 and -0.66, respectively. The strongest
predictors of the Hypothenar keypoint’s x and y coor-
dinates were the x-coordinates of the PINKY MCP and
PINKY TIP keypoints, with coefficients of 0.82 and 0.05, re-
spectively. The Schemkes’ interpolation model achieved the
lowest loss when using the WRIST and PINKY MCP key-
points. The most important features for XGBoost were the
x-coordinates of THUMB MCP, RING FINGER MCP and
PINKY FINGER MCP in the respective order.

5.3 Residual Error Analysis
The 2D residual distributions for hypothenar prediction are
visualized in Figure 9. The residuals for most models exhibit
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Table 2: Performance metrics for thumb keypoint prediciton on Test and Hypothenar Sets at low and high training data volume

Model Test [10−2] Hypothenar [10−2] Loss Reduction [%] MGE [10−2]
Loss1k Loss57k Loss1k Loss57k Test Hypoth.

Schemkes 6.46 6.43 9.06 8.96 0.37 1.05 2.55
RandomForest 3.57 2.34 6.97 5.73 34.56 17.74 3.47
XGBoost 2.87 1.86 5.69 6.28 35.28 -10.41 3.72
KNN 5.28 3.63 8.53 7.32 31.38 14.15 3.52
Lasso 2.06 2.04 5.47 5.34 1.08 2.48 3.33
Lasso no thumb 3.78 3.76 9.05 8.56 0.57 5.35 4.91

Table 3: Performance metrics for Hypothenar keypoint prediction.

Model Loss74 [10−2] Loss222[10−2] Loss741[10−2] Loss Reduction222-741 (%)
Schemkes 11.07 11.149 11.17 -0.18
RandomForest 10.04 7.57 6.61 12.74
XGBoost 9.81 6.96 6.24 10.33
KNN 10.86 8.66 7.11 17.97
Lasso 8.66 6.54 6.52 0.37

Figure 8: Comparison of models’ Hypothenar keypoint prediction
losses with increasing training data size.

a normal distribution, validating the use of bivariate normal
modeling for confidence radius estimation. The exception is
Schemkes Interpolation, which shows a non-normal residual
pattern. Based on the residual distributions, a 95% confidence
ellipses from covariances are derived. A circular approxima-
tion is used by taking the mean of width and height of ellipses
as circle diameter.

5.4 Real World Estimates
The mean distance between the corresponding keypoints in
the Hypothenar set is 1.88 corresponding to 17.48 cm. Since
the keypoints normalization step first scales and then orients
the hands keypoints, the axes of the residual plots do not
necessarily align with hand length and breadth. As a conse-
quence, an assumption of isotropic scaling by the larger value
(hand length) is used to calculate an approximate radius of the
95% confidence circle.

The resulting 95% confidence ellipses and approximated
circle radii are featured in Table 4. The best prediction
model is XGBoost with a corresponding real-world radius of
1.19cm, indicating that 95% of predictions lie within 1.19cm
of ground-truth, higher than 0.8cm benchmark value.

The dataset shift manifests as loss delta of 0.0372, corre-
sponding to 0.34cm and 0.3cm for XGBoost and Lasso re-
gression respectively.

Table 4: Comparison of 95% confidence ellipse parameters. Aster-
isk (*) denotes real-world estimate.

Model width height angle radius radius* [cm]
Schemkes 0.51 0.33 160 0.21 1.94
R. Forest 0.28 0.27 -177 0.14 1.27
XGBoost 0.26 0.25 146 0.13 1.19
KNN 0.31 0.27 171 0.15 1.36
Lasso 0.27 0.26 -154 0.13 1.23

Sample prediction visualizations are shown in Figure 10
across three cases: variable predictions, successful model
agreement, and unsuccessful predictions. It is important to
note that the circle centers are placed at the model predictions
for the sake of illustrating the predictions, the circles do not
represent the prediction area. The actual 95% confidence cir-
cle would be placed center on the ground-truth to indicate the
area where 95% of the predictions would lie. As highlighted
in Figure 10c, all circles do not contain the ground-truth Hy-
pothenar keypoint, indicating an anomalous case. Figure 10b
shows a success case of predictions across all models. De-
spite overall worst accuracy, there are cases where Schemkes
interpolation performs the best amongst the models as shown
in Figure 10a where the other models, although still within
circle bounds, predict towards the edge of the hand.

6 Discussion
This study demonstrates the feasibility of inferring the hy-
pothenar keypoint despite limited data. XGBoost and Lasso
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Figure 9: Hypothenar keypoint prediction residual errors with 95% confidence ellipses highlighted.

(a) Model disagreement. (b) Model agreement. (c) Low-quality input.

Figure 10: Comparison of Hypothenar Keypoint (21) Prediction with 95% Confidence Circles

regression, applied to MediaPipe outputs, proved most effec-
tive for inferring the hypothenar region. Lasso’s performance
highlights the linear spatial relationships between keypoints,
primarily using the y-value of e.g. PINKY MCP. For XG-
Boost, x-values were most important, likely due to the inclu-
sion of both hands and faces in the data.

Consistent with Schemkes [9], a generalized interpola-
tion model using average ratios outperformed interpola-
tion with original ratios. The best interpolation model
used WRIST and PINKY MCP, aligning empirically with
Schemkes’ choice [9].

Dataset shift impacted thumb keypoint prediction accu-
racy for XGBoost and Lasso by 0.34 cm and 0.3 cm, respec-
tively. The thumb experiment suggests a potential 35% loss
reduction with more data for XGBoost, though increased Hy-
pothenar Set loss indicates overfitting. While not directly ap-
plicable, the observed MGE could serve as a lower bound for
generalization error on new data. XGBoost achieved the best
result of 1.19cm but might be prone to overfitting.

6.1 Limitations
Normalization in pre-processing limits real-world conclu-
sions. Ideally, loss should have been calculated after trans-
forming keypoints back to the original space, and an alter-
native loss function like Google’s palm-normalized MNAE
could have been used for comparison. However, these choices
do not negatively impact prediction accuracy.

MediaPipe annotations of the HPI dataset were sometimes
poor, as seen in WRIST keypoint detection in Figure 10c.
Manual annotations for infrared images and the hypothenar
keypoint were not validated with MediaPipe. Lower contrast
in some infrared images increased annotation difficulty. Since
this dataset served as ground truth, it could negatively impact
the results.

7 Conclusions and Future Work

This study investigated the feasibility of adapting existing
hand landmark detection models and datasets to predict key-
points essential for leprosy diagnosis. The results demon-
strate the capability of achieving sufficiently high accuracy
in predicting the hypothenar keypoint, even with limited
training data. Among the models evaluated, Lasso regres-
sion proved effective in capturing general relationships with
smaller data volumes, while XGBoost achieved the highest
accuracy at larger scales.

The contribution of this study lies in improving a compo-
nent of a larger automatic early leprosy detection solution.
If methods for detecting hand keypoints in infrared images,
such as adapting existing tools like MediaPipe, achieve suffi-
cient accuracy, the inference of the hypothenar keypoint en-
ables tracking of regions not natively supported by such tools.
This would facilitate automatic temperature measurements
using smartphones and infrared cameras, offering a practi-
cal solution for aiding leprosy diagnosis in resource-limited
settings.

7.1 Recommendations for Future Research

Future research could focus on several areas. First, an inves-
tigation into data imputation and correction using anomaly
detection on missing or incorrectly detected keypoints by Me-
diaPipe such as the wrist keypoint as observed in this study.
Second, investigation of methods to obtain and detect hand
keypoints in infrared images. Third, future research should
address the limitations of this study by incorporating a more
diverse dataset that includes hands with missing fingers or de-
formities for patients with leprosy relapse.
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8 Responsible Research
This research has several ethical considerations. Firstly, it re-
lies heavily on the fairness of the MediaPipe model. While
the MediaPipe model card addresses fairness considerations
[27], Google advises against its use in life-critical applica-
tions. This is acceptable in this context, as the study focuses
on preliminary assessment as a potential indicator for diagno-
sis, not as a definitive diagnostic tool.

However, a crucial limitation is the lack of diversity in the
datasets. Hands with missing fingers or deformities, which
are potential manifestations of leprosy, were not included.
This exclusion raises concerns about the accessibility and
generalizability of the proposed method.

Regarding transparency and reproducibility, the code will
be added to TU Delft repository containing all exploratory
and data visualization steps. Furthermore, the creation of the
dataset gathered consent from the subjects and followed ethi-
cal practices. The datasets used in this are under licenses that
permit their adaptation and use in non-commercial settings.

Given the time limitation, the literature review and the
research process might not be exhaustive or comprehensive
enough to influence decisions in development of healthcare
tools. Nonetheless, this study addresses a research gap of a
global healthcare problem and can serve to provide a founda-
tion for future work in improving healthcare tools.

Lastly, large-language models (LLMs) were used during
the writing of this paper. Gemini 1.5 Pro Flash was used for
summarization and length reduction of paragraphs and aided
the configuration of code required for plotting data and vi-
sualisation. All design decisions and technical consideration
were made without the use of LLMs. Sample prompts in-
clude ”Rewrite this paragraph to reduce redundant definition
and descriptions of [...]” or ”Given this plotly code:[...], in-
crease xticks font to 24, increase the legend font size...”.
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A Appendix
A.1 Data Processing Definition
A hand is represented by its keypoint set. Let P = {pi}ni=1 be
a set of n points on the hand, where each point is represented
as:

pi =

[
xi

yi

]
, with 0 ≤ xi ≤ 1 and 0 ≤ yi ≤ 1. (3)

The width (wbb) and height (hbb) is padded by a constant C
to make it more consistent with datasets that already contain
bounding box data. The bounding box is defined by its centre
and dimensions as follows:

wbb = max
i

{xi} −min
i
{xi}+ Cx

hbb = max
i

{yi} −min
i
{yi}+ Cy

xc = min
i
{xi}+

wbb

2

yc = min
i
{yi}+

hbb

2

Using the bounding box, the scaling matrix S and transla-
tion vector t are defined. Thus, translated and scaled point p′i
is obtained by:

p′i = Spi + t =

[ 2
wbb

0

0 2
hbb

] [
xi

yi

]
+

[
− 2cx

wbb

− 2cy
hbb

]
=

[
x′
i

y′i

]
(4)

The vector from the translated and scaled wrist to the trans-
lated and scaled middle finger knuckle is defined as:

v1 = p′m − p′w

Let v2 represent the basis vector of the positive y-axis. The
angle θ between v1 and v2 is then calculated as:

v2 =

[
0
1

]
, θ = arccos

(
v1 · v2
∥v1∥

)
,

The angle θ defines the rotation matrix R which results in
the final transformed point p′′i (translated, scaled, and rotated)
as follows:

p′′i = Rp′i =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x′
i

y′i

]
=

[
x′′
i

y′′i

]
(5)

with − 1 ⪅ x′′
i ⪅ 1 and − 1 ⪅ y′′i ⪅ 1.

The result is a set of normalized keypoints P ′′ = {p′′i }ni=1.
This transformation is applied to each hand as part of pre-
processing.
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