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Abstract
Generative Adversarial Networks are widely used
as a tool to generate synthetic data and have pre-
viously been applied directly to time-series data.
However, relying solely on the binary adversarial
loss is not sufficient to ensure the model learns
the temporal dynamics of the data. TimeGAN [1]
introduces an additional reconstruction and super-
vised loss to tackle this issue and efficiently and ef-
fectively capture the step-wise dependencies of the
data. We have been able to reproduce results simi-
lar to those of the original TimeGAN paper [1], af-
ter fixing several issues in the provided implemen-
tation by the authors of TimeGAN. Furthermore,
we propose two novel improvements to TimeGAN.
Firstly we updated its implementation to Tensor-
flow 2 to ensure compatibility across systems. Sec-
ondly by re-weighting the training iterations over
the three training phases we are able to reduce the
overall training time up to 29% and produce results
equal or better compared to the benchmark.

1 Introduction
Nowadays data is one of the most valuable resources for a
lot of companies. The business insights gained are extremely
useful and can be crucial to success. However, big data of-
ten impedes personal privacy [2]. This creates a challenge to
find a way to adhere to government regulations such as the
European General Data Protection Regulation (GDPR) [3].

One of the solutions that addresses this problem is the
generation of synthetic data that statistically represents real
data. General Adversarial Networks [4] (GANs) are a way to
achieve this generation of synthetic data. GANs are networks
of a discriminator and a generator which compete with each
other in a min-max game in order to learn. The discrimina-
tor tries to separate real data (from the training set) from fake
data (generated by the sequence generator). The generator
tries to fool the discriminator by creating data samples from
random noise. By competing against each other they both try
to improve and this can result in an optimised generator that
can create very realistic looking synthetic data.

Time-series data is dependent on time and often has step-
wise dependencies; variables can have a certain relationship

across time. For example, stock data contains correlations be-
tween variables over time. These temporal dynamics should
be preserved when learned by a GAN in order to generate
good synthetic data. There have been several approaches to
use GANs to generate time-series data such as RCGAN [5],
C-RNN-GAN [6] and WaveGAN [7] [8]. However, these ap-
proaches rely solely on the standard GAN loss, which is not
sufficient to guarantee that the model will learn the temporal
dynamics of the data efficiently and effectively [1].

This paper is about utilizing GANs to generate time-series
data and mainly centers around the TimeGAN algorithm [1]
which was recently developed for this purpose. The first
goal of this research is to reproduce the results achieved for
TimeGAN in the original TimeGAN paper [1]. Furthermore,
we will propose novel improvements to the existing algo-
rithm to ensure compatibility across systems and to reduce
the overall training time. We found that by re-weighting the
iterations used for training over the different training phases
of TimeGAN the overall performance can be increased. We
are able to achieve speedups up to 29% without loss in
quality of results. Choosing a smaller speedup with corre-
sponding weights, based on computational resources avail-
able, can even produce better results compared to the original
TimeGAN configuration benchmark.

This paper is divided into five sections. First, the Related
work section will dive deeper into the components and un-
derlying concepts of TimeGAN and alternative approaches.
The method used to conduct this research will be discussed
in the Methodology section. The Reproducing results section
will present the results obtained by reproducing the results of
the TimeGAN paper [1]. Then we will propose two novel
improvements to the TimeGAN algorithm in the following
section. Finally we will conclude by summing up the results
of the research and suggesting follow-up research.

2 Related work
In this section we will cover the basic concepts of Generative
Adversarial Networks [4] and illustrate how this framework
has been utilized for time-series synthesis [6] [5]. Then we
will give a preliminary of TimeGAN [1] by going over the
different components and losses it depends on. The training
process and its different stages will be discussed as well, since
this is relevant for our proposed improvements.
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2.1 Generative Adversarial Networks
Generative Adversarial Networks consist of two main com-
ponents; a generator and a discriminator [4]. Both are im-
plemented by a neural network. The generator takes random
noise as input and outputs synthetic data. This synthetic data
is mixed with real training data and used as input for the
discriminator. The job of the discriminator is then to tell if
the data presented to it is either real or fake. In this manner
the discriminator and the generator act as adversaries as the
generator tries to fool the discriminator and the discriminator
tries to learn whether the provided data is real or fake. This
creates a min-max game where two parties try to respectively
minimize and maximize a loss function. By using this adver-
sarial loss to train both components the generator can create
high fidelity synthetic data.

2.2 Generative Adversarial Networks for
time-series data

The architecture of GANs has been applied directly to gener-
ate synthetic time-series data. C-RNN-GAN [6] has used the
concept of recurrent neural networks, implemented by LSTM
networks [9], for the generator and discriminator. In this way
the outputted synthetic data relies on the previous steps and
is thus generated recurrently. Another similar approach is
Recurrent Conditional GAN (RCGAN) [5] which has a very
similar architecture compared to C-RNN-GAN, but has some
minor differences. These differences include no longer rely-
ing on previous input but adding a dependency on additional
input [5].

2.3 Preliminary of TimeGAN
The TimeGAN algorithm [1] was chosen for this research be-
cause it was published fairly recently. In addition, the results
the authors presented were significantly better than that of al-
ternative approaches such as C-RNN-GAN [6], RCGAN [5]
and WaveGAN [7]. According to the TimeGAN authors rely-
ing solely on the binary adversarial feedback of the sequence
discriminator of the GAN framework may not be enough for
the sequence generator to learn the temporal dynamics of the
data. Therefore, TimeGAN combines the concepts of gen-
erative adversarial networks, auto-regressive models for se-
quence prediction and time-series representation learning [1]
to create a model that efficiently and effectively can create
high fidelity synthetic data.

Besides consisting of a sequence discriminator and a se-
quence generator, TimeGAN makes use of two other main
components: an embedding and recovery function [1]. The
first maps from feature into latent space, which allows the
adversarial components to train in a lower-dimensional space
and learn the step-wise dependencies in the data. The recov-
ery function allows to convert back into the feature space.
Note that the discriminator and generator train (and thus
take input and output) using the latent vector representations.
These mapping functions (embedding and recovery) are re-
spectively implemented by a recurrent neural network and a
feed-forward network.

Another addition to the normal GAN framework is the use
of a supervised loss for the generator. The generator receives

actual data in the latent space and has to generate the next
step (also in the latent space). This ensures that the generator
learns the step-wise dependencies and can generate synthetic
data with similar step-wise transitions.

TimeGAN relies on three different loss functions. First
there is the reconstruction loss for the embedding and recov-
ery functions which ensures that data is efficiently encoded
and decoded into and from the latent vector space [1]. Sec-
ondly, the unsupervised adversarial loss for the generator and
discriminator forces the generator to create realistic data se-
quences. Lastly, the supervised loss where the generator is
trained in closed-loop mode ensures that the generator learns
the temporal dynamics of the time-series data, by forcing the
generator to generate realistic next-step sequences. This su-
pervised loss is also applied to the embedding function to
preserve the temporal dynamics in the encoding of real se-
quences. A block diagram of the training of TimeGAN can
be found in Figure 1. In this figure the way to generate syn-
thetic data after training is illustrated as well, where the gen-
erator produces sequences from random noise in the latent
vector space which is then translated to the feature space by
the recovery function.

The TimeGAN algorithm learns over three different phases
of training as shown in Figure 2. First, only the embedding
and recovery networks are trained in the Embedding Phase.
In the second phase, the Supervised Phase, the generator is
trained with the supervised loss only. In the last phase all the
components are trained in joint fashion. In this Joint Phase
the algorithm jointly learns to encode, iterate and generate
time-series data. Since this last phase combines the first two
phases and adds the additional adversarial loss training it is
the most time-consuming phase. All phases are trained over
the same amount iterations, as all phases have equal weight-
ing in the original TimeGAN implementation [1].

Compared to the previously mentioned alternative ap-
proaches utilizing the GAN framework, like RCGAN [5] and
C-RNN-GAN [6], TimeGAN naturally has computational
overhead by adding components to the architecture. By op-
timizing additional losses for these components (embedding
loss, recovery loss, supervised loss) it logically follows that
TimeGAN differs in training time.

3 Methodology
This section will illustrate the approach used in order to re-
produce the results from the TimeGAN paper [1] and to eval-
uate our improvement. We will first cover the metrics used to
evaluate the performance of TimeGAN and to reproduce the
results of the original paper [1]. The metrics used to measure
the performance of the novel improvements will also be dis-
cussed in the first part of this section. Then we will go into
detail on the different data sets used in our research. Finally,
we will discuss the implementation and method used for re-
producing the results of TimeGAN, which is also the base for
our improvements to the existing algorithm.

Exactly reproducing the results of the TimeGAN paper [1]
is not very likely, since Generative Adversarial Networks in-
herently have a sense of randomness [4]. One would not be
able to have the same trained GAN model after two sepa-
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Figure 1: Block diagram of training (left) and generating (right) synthetic data for TimeGAN. Dashed arrows indicate to which components
loss functions are applied to. Normal arrows indicate the data flow through and out of the different components.

Figure 2: Different phases of training of TimeGAN.

rate runs of training, even when using exactly the same hyper
parameters/configuration. Therefore the goal is not to have
exactly the same results, but rather results that are similar and
in the same range.

3.1 Metrics
To evaluate the TimeGAN algorithm [1] we will resort to the
use of a discriminative and a predictive score, as proposed
in the TimeGAN paper [1]. The discriminative score is used
to indicate the similarity between the synthetic and original
data. We first label each sequence in the original data set
real and label each sequence in the synthetic data set as not
real. We then train a classification model to distinguish be-
tween the the real and synthetic data as a standard supervised
machine learning task. The classification error is then calcu-
lated on a test set, which gives a measurement of similarity
between the synthetic and original data. The classification
model should be compatible with time-series data, therefore
it is implemented by optimizing a 2-layer LSTM.

This discriminative score is a measurement that could be
applied to any GAN in general, since it reflects how good
the synthetic generated data is. The predictive score is more
unique to time-series data GANs as it shows how well the
model captured the temporal dynamics/step-wise dependen-

cies of the data. This metric is based on the train on synthetic,
test on real framework [10] [6]. To calculate this metric we
first train a a sequence-prediction model on the generated data
set. After training this model (like the discriminative score
implemented by optimizing a 2-layer LSTM) we evaluate its
performance on the original data set. We obtain the predictive
score by calculating the mean absolute error.

Note that the discriminative and predictive score are both
obtained by calculating the mean of iterating over multiple
post-hoc trained networks. For both the discriminative and
predictive score holds the lower the better.

Since we are interested in reducing the time for the im-
provement we also consider the time it takes to train the
TimeGAN algorithm over the different phases as a metric.
Besides the total time the training takes, for each phase we
calculate the time metric by timestamp of the end of that
phase minus the timestamp of the start of that phase.

Besides using these three metrics we also use PCA [11]
and t-SNE [12] analyses to visualize how well the synthetic
data distribution resembles that of the original data set in 2-
dimensional space. By visualizing the results we get a better
insight in how well the model learns the distribution of the
data, rather than just a numeric metric. These visualization
also allow us to observe how a model evolves over any arbi-
trary number of training iterations.

3.2 Data sets
We will consider three different time-series data sets to eval-
uate the performance of TimeGAN. They differ in the com-
bination they have of various properties like periodicity, reg-
ularity of time steps, level of noise and the correlation across
time and features. Note that these data sets have also been
used in the TimeGAN paper [1]:

• Sines: This data set consists of multivariate sinusoidal
sequences which have different frequencies and phases.
Therefore this data is periodic, continuous-valued and
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the features are independent of each other. This data set
is generated and takes a dimension value and a sample
number as its arguments.

• Stocks: This data set consists of the Google stocks data
from 2004 to 2019 [13]. Opposed to the sines data set
this set is not periodic and features are not independent
of each other. The data set has six features, consisting
of high, low, volume, opening price, closing price and
adjusted closing price.

• Energy: The last data set we use is the UCI Appliances
energy prediction data set [14]. This data set has a higher
level of noise compared to the previous two. It also con-
sists of a lot more features compared to the stock data
set and thus has a higher number of dimensions.

Using these different data sets will allow to evaluate
TimeGAN on different domains with a variety of characteris-
tics.

3.3 Implementation
To reproduce the results of the TimeGAN paper [1] we make
use of an execution script which takes all hyper parameters
of TimeGAN and a data set as input, trains the TimeGAN us-
ing these parameters and provided data set and subsequently
generates synthetic data and uses it to calculate the previously
mentioned metrics. These measures are then saved to text
files and image files for respectively the numeric metrics and
visualization analyses.

To evaluate the proposed improvement we further extended
this execution script by adding additional hyper parameters
needed as input and adding additional output for calculating
the time metrics. All implementations used in this research
are coded based on the Tensorflow platform [15]. For the
implementations mentioned in the following two sections us-
ing Tensorflow 2 we were able to run our experiments using
a GPU. For the older implementations using Tensorflow we
were forced to use CPUs, as the GPU support in combination
with CUDA (on the machine availabe for our research) only
applied to Tensorflow 2.2+.

4 Reproducing results
To evaluate the performance of the TimeGAN algorithm,
our research goal was to reproduce the results achieved for
TimeGAN in Table 2 of the research paper [1]. As discussed
in the Methodology section, these results consist of a discrim-
inative and a predictive score. These metrics are calculated
for the trained TimeGAN model on different domains. Origi-
nally, the authors of TimeGAN evaluated its performance on
four different data sets in the research paper [1]: sine, stock,
energy and an events data set. As mentioned in the TimeGAN
paper [1], the events data set consisting of lung cancer path-
ways is private and is not accessible for our research. There-
fore reproducing has been limited to the first three data sets,
which are also mentioned in the Methodology section. This
section further discusses the difficulties we faced reproduc-
ing the results and the differences across multiple implemen-
tations of TimeGAN we used. Finally, the obtained results
are presented and compared to the original TimeGAN paper
results [1].

4.1 Observations on two implementations
Reproducing the results achieved for TimeGAN by the orig-
inal authors was complicated. The authors provided a code
base with their TimeGAN implementation on GitHub [16].
However, running this implementation did not provide any
good results for any of the data sets. Figure 3 shows the re-
sults that have been visualized for the stock data set and as
can be seen the synthetic data is not diverse and does not fit
the real data distribution at all at any number of epochs. In
Figure 4 the discriminative and predictive score have been
plotted every 5000 training iterations. We observed that there
is no learning curve and the scores appear to be random and
validated this with the research of others on TimeGAN [17].
Writing our own implementation of TimeGAN would not be
feasible, due to lack of experience and time.

Figure 3: t-SNE analyses for original TimeGAN implementation at
20000, 30000, 40000 and 50000 epochs for stock data set.

Figure 4: Discriminative and predictive score plotted every 5000
epochs for original TimeGAN implementation for stock data set.

Another implementation of TimeGAN is provided by
YData on GitHub [18] [19]. This implementation used Ten-
sorflow 2, just like the orignal implementation of the authors
of TimeGAN [1]. However, this code base is highly opti-
mised for and centered around the stock data set in the input
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used for the general GAN/loss parameters. We have adapted
this implementation to fit in our execution script and produce
the metrics needed for reproducing. We found that this model
of TimeGAN suffers from over-fitting when training more
than 25.000 - 30.000 epochs as can been observed from the
visualisation of the results for the stock data set in Figure 5.

Figure 5: PCA anlyses for alternative implementation for stock data
set every 5000 epochs. (Blue is synthetic data, red is original data)

From here on, the original implementation will refer to the
code base provided by the authors of the TimeGAN paper
and the alternative implementation will refer to the code base
provided by YData [19]. We found that the model obtained
by the alternative implementation is able to capture the tem-
poral dynamics of the data quite effectively as we found that
the predictive score of the synthetic data is within fairly close
range of the predictive score of the original data and that of
the experiments of the TimeGAN paper [1]. However, the
discriminative scores obtained were not quite as consistent
and similar compared to the results achieved in the paper, but
still far more accurate than the results produced by the orig-
inal implementation. The visualization of the synthetic data
in Figure 6 of those results shows that the model has indeed
learned the data distribution of the real training data.

Figure 6: PCA anylysis (left) and t-SNE anlysis (right) of alternative
implementation for stock data set.

4.2 Explanations on differences
To further investigate the difference in performance between
the alternative and original implementation and to be able
explain the difference in results, we came up with three hy-
potheses we put to the test.

Hypothesis 1. First of all, the implementation of
TimeGAN depends on several hyper parameters such as num-
ber of layers, batch size and hidden dimensions. In our re-
search we could have been using badly optimised hyper pa-
rameters and as the configurations used were not mentioned

in the TimeGAN paper or in its supplemental materials, this
could have been the cause for the bad performance. To test
this hypothesis we first tried running TimeGAN with a lot of
different configurations and evaluated the performance with
the discriminative and predictive score metrics. Through the
joint effort with [17], we found that the parameter search can
not improve the performance of the original implementation.
Indeed, authors of TimeGAN later on confirm that the correct
hyper parameters are provided in the original implementation.

Hypothesis 2. Secondly, upon further investigation and
comparison between the original and alternative implementa-
tion we found that the loss functions used for the adversarial
loss of the generator and discriminator differ. The original
implementation used the sigmoid cross entropy loss function
whereas the alternative implementation used binary cross en-
tropy loss function. Loss functions play a major role in GANs
and can greatly affect the performance of a GAN and could
thus be a possible cause for the bad results. However, this
appears to be no more than a Tensorflow version difference.
In the version used by the original implementation the binary
cross entropy loss function is not available and in the version
used by the alternative implementation the sigmoid cross en-
tropy loss function is not available. After looking into the
source code implementation of both those loss functions, we
found that they are equivalent and this difference was not the
cause for the bad results.

Hypothesis 3. Lastly, the original implementation did not
seem to take the input time information into account, whereas
the alternative implementation did use this input. Although
provided in all the components of the original implementa-
tion as input T, this information was not used in any of these
networks. When further investigating this with the authors of
the TimeGAN paper [1] and an independent researcher, we
found that due to insufficient code review a pull request to
update the original implementation to Tensorflow 2 had been
incorrectly accepted. Continuing from this pull request the
time information was not longer taken into account in all of
the five components of TimeGAN, which was the core cause
for the poor results. After reverting these changes, we were
not only able to reproduce results close to the results in the pa-
per [1], but also significantly better than the results obtained
by the alternative implementation. In Table 1 the discrim-
inative and predictive scores are shown for respectively the
(unfixed) original implementation, the alternative implemen-
tation and the fixed original implementation and the results of
the original TimeGAN paper [1].

4.3 Final results
Using the fixed original implementation was fairly simple for
the sine and stock data set. For these first two data sets the
authors provided the hyper parameters in the Github reposi-
tory of TimeGAN [16]. However, for the energy data set they
did not provide any configuration they used for their research.
When tweaking all the hyper parameters of TimeGAN, we
discovered that the number of layers used for each compo-
nent of the algorithm has the most impact when working with
higher dimensional data, such as the energy data set. Using
trial and error we jointly found that TimeGAN performed best
on the energy data set when using 6 as input parameter for the
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Original implementation Alternative implementation Fixed implementation TimeGAN paper

Discriminative score
(Lower the better) 0.250 0.161 0.141 0.102

Predictive score
(Lower the better) 0.323 0.038 0.039 0.038

Table 1: Discriminative and predictive scores for stock data set of respectively the original (unfixed) original implementation, the alternative
implementation and the fixed original implementation and the results from the TimeGAN paper.

number of layers [17], although not providing results similar
to the TimeGAN paper [1] for the discriminative score.

In the end, we were able to successfully reproduce results
reasonably similar to the results of the TimeGAN paper [1]
with the fixed original implementation. However, we found
that results can be quite inconsistent and tend to fluctuate.
This variance in results is also depicted in Figure 8 and will
be touched upon again in the Proposed improvements section.
The results of reproducing are showcased next to the original
results from the TimeGAN paper [1] in Table 2.

Sine Stock Energy

Discriminative score Our results 0.036 0.141 0.402

(Lower the better) TimeGAN paper 0.011 0.102 0.236

Predictive score Our results 0.097 0.039 0.252

(Lower the better) TimeGAN paper 0.093 0.037 0.273

Table 2: Discriminative and predictive scores for sine, stock and
energy data set compared to results of TimeGAN paper.

We learned that in this field of research providing the hyper
parameters/configuration used is equally important as provid-
ing the original code used to be able to reproduce results.
Therefore, we added the hyper parameters used for our re-
sults in the README.md of our published code base. Further-
more, we experienced that code review is crucial and should
be taken seriously to ensure the quality and correctness of the
code.

5 Proposed improvements
In this section our proposed improvements will be illustrated
and discussed. We propose two novel improvements to the
existing TimeGAN algorithm [1]. The first improvement only
concerns compatibility and does not alter the TimeGAN al-
gorithm. The second improvement centers around the com-
putational overhead and longer total training time due to the
architectural changes of TimeGAN compared to alternative
approaches. For both improvements we made use of and built
upon the original fixed TimeGAN implementation GitHub
repository [16].

5.1 Tensorfow 2 compatibility
As a first improvement to the TimeGAN algorithm we con-
verted the original code base to be compatible with Tensor-
flow 2. As mentioned in the Reproducing Results section
the previous attempt to update the code base to Tensorflow
2 was incorrect as it did not produce the correct results any

longer. After these breaking changes were reverted we con-
verted all necessary parts in the code to Tensorflow 2 in the
correct manner. All the layers and activation functions used
for the components of TimeGAN were converted to the corre-
sponding Tensorflow 2 implementation or an external library
implementation.

This improvement allows the algorithm to be compatible
with more modern systems which support the use of Tensor-
flow 2. Since Tensorflow 2 enables the developer to make use
of multiple widely used libraries, such as Keras, TimeGAN
can more easily be extended and improved in the future. In
addition, also GPU support (e.g. using CUDA) is easier to
setup using Tensorflow 2. For our research this meant we
could now successfully run the correct original TimeGAN
implementation with using a GPU.

5.2 Re-weighting the iterations over training
phases

TimeGAN adds a several components and losses to the stan-
dard GAN framework. As mentioned in the Related Work
section, a supervised loss is introduced to ensure that the gen-
erator learns the temporal dynamics of the data. Furthermore,
TimeGAN makes use of an embedding and recovery network
to translate sequence vectors from feature space into latent
space and vice versa. This reconstruction network yields the
reconstruction loss, which forces TimeGAN to effectively ac-
curate encode and decode data.

Observation. These additional losses yield three different
training phases (covered in the Related work section); Em-
bedding Phase, Supervised Phase and Joint Phase. In Fig-
ure 2 the different phases are depicted with the correspond-
ing losses trained in that particular phase. All these different
phases use the same amount of epochs to train as they have
equal weights (e.g. when provided 50000 iterations as a hy-
per parameter, all phases will train for 50000 iterations). The
last phase is significantly more time-consuming than the first
two phases, as can be observed from the time distribution in
Figure 7. The authors of TimeGAN did not mention anything
about training time of TimeGAN in the original TimeGAN
paper [1] nor about the way the training iterations are propor-
tioned over the different phases of training, which made it an
interesting topic for our improvement research.

Hypothesis. We propose that the iterations each phase uses
are weighted differently with respect to the others. Since the
first two phases are relatively fast, we researched the impact
in results of decreasing the iterations used in the last (most
time-consuming) phase. Our hypothesis is that by distribut-
ing the reduced iterations of the last phase over the first two
phases of training, we can compensate and achieve equal or
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Figure 7: Time in minutes for TimeGAN for every phase of training
for a run of 50000 iterations for each training phases.

better results. TimeGAN adds the reconstruction and super-
vised loss [1] (compared to alternative approaches [5] [6]) to
ensure that the model learns the temporal dynamics of the
data. By increasing the amount of iterations for the first two
phases, that train these additional losses, we focus more on
those additions and gives us reason to believe this will im-
prove the overall performance of TimeGAN. Because the first
two phases of training are less time-consuming the overall
training time can be reduced. We set up 9 different config-
urations which all use 150000 iterations in total, but are dis-
tributed in different ways over the three training phases. All
combinations have in common that they reduce the training it-
erations for the Joint Phase. These configurations are shown
in Table 3.

Embedding Supervised Joint
C1 72500 72500 5000
C2 70000 70000 10000
C3 67500 67500 15000
C4 65000 65000 20000
C5 62500 62500 25000
C6 60000 60000 30000
C7 57500 57500 35000
C8 55000 55000 40000
C9 52500 52500 45000

Benchmark 50000 50000 50000

Table 3: Different configurations for distributing 150000 iterations
over the different training phases of TimeGAN.

Implementation. We implemented the distribution over
phases by adding parameters to the TimeGAN algorithm
which are used to specify the iterations for each training
phase. To evaluate the performance of our proposed im-
provement we made use of the discriminative and predictive
metrics. In addition, we measure the total training time of
TimeGAN to show the overall decrease in training time. The
total time training depends on the number of epochs and other

hyper parameters such as number of layers. In addition, the
system used and its capabilities hugely affect the overall train-
ing time. Therefore, we will measure the increase or decrease
in time (and the other metrics as well) in percentages for the
same hyper parameters (other than the given configurations
for distributing the iterations).

As a benchmark to compare the results of our experiments
to, we will use the results we obtained for reproducing the
results of the TimeGAN paper [1] presented in Table 2. These
results were obtained with 50000 iterations of training for all
three phases. This benchmark is also represented in Table 3.

Evaluation results. We found that the overall performance
can be increased by not equally distributing the iterations over
respectively the Embedding Phase, the Supervised Phase and
the Joint Phase. The results obtained for the different config-
urations can be found plotted in Figure 8 for the stock data
set. Qualitative results for configurations C1 up to C5 are
not consistent, especially the discriminative scores (e.g. they
have a huge variance), due to lack of training on the Joint
Phase. Furthermore, those results do not improve the overall
performance of TimeGAN, even though they provide a enor-
mous speedup for training the algorithm.

Figure 8: Increase or decrease in percentages of TimeGAN of three
performance metrics compared to benchmark configuration for the
different configurations of Table 3 for the stock data set.

However, configurations C6 up to C8 provide quite consis-
tent results equal or better compared to the benchmark con-
figuration. An average speedup for the training of TimeGAN
ranging from 9% up to 29% can be achieved using these con-
figurations. Moreover, the discriminative scores improve sig-
nificantly and are more consistent compared to the bench-
mark. We believe that this is because the model starts over-
fitting after training the Joint Phase for more than 40000 iter-
ations, which will cause more inconsistent and possibly worse
results.

The predictive scores do not improve or decrease a lot for
any of the configurations. This is mostly due to the fact that
we train the Supervised Phase more in all configurations,
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which can compensate for the reduced training in the Joint
Phase. In the Supervised Phase the model learns to produce
similar step-wise transitions, which is exactly what is evalu-
ated in the predictive score.

Validation on sine data set. We evaluated the perfor-
mance of our proposed optimal configurations on the sine
data set to further validate our hypothesis. The speedups ob-
tained ranged from 15% up to 24%, although the qualitative
metric scores stayed roughly the same ranging from 5% de-
crease up to 4% increase. However, to achieve a maximal
speedup configuration C6 still remains the best option.

In addition, we applied linear regression to all obtained
results to calculate the re-weighting factor to be used when
using the benchmark results from Table 2 as a threshold to
compare to. We used the linear equations to find the intersect
point with the benchmark results. This confirmed that indeed
the maximal speedup achieved while still having consistent
and equal results compared to the benchmark is at a ratio of 2
: 2 : 1 respectively for the Embedding, Supervised and Joint
Phase, which we also obtained by our results plotted in Fig-
ure 8. Using ratios that allow more iterations for the Joint
Phase (up to 11 : 11 : 8) can produce even better qualitative
results compared to the benchmark but do not provide large
speedups in training time. However, it should be noted that
using linear regression analysis on our results is limited due
to having relatively few data points.

Proposed improvement. To conclude, we found that our
addition to TimeGAN not only reduces the training time
but also significantly improves the overall performance of
TimeGAN for using configurations C6 up to C8. Therefore,
we propose re-weighting the first two phases with respect to
the last phase with a factor between 1.4 and 2 based on the
available computational resources, in order to achieve opti-
mal and consistent results for TimeGAN and reduce training
time. This range of factors corresponds to respectively the
evaluated configurations and calculated ratios, C6 and 2 : 2 :
1 up to C8 and 11 : 11 : 8. Using re-weighting factor 2 will
provide the greatest speedup but will not improve the overall
qualitative results, whereas re-weighting factor 1.4 will pro-
vide a smaller speedup and overall better results. This im-
provement is not simply hyper parameter tuning, since in the
original TimeGAN paper [1] the weighting of training itera-
tions over the different training phases was not even noticed
as a possibility.

6 Responsible Research
In the field of artificial intelligence reproducibility and trans-
parency can be a major issue [20], since the results heavily
depend on the algorithm code and the setup used. Especially
in the case of Generative Adversarial Networks it can be even
more complicated, since GANs inherently have a sense of
randomness due to the fact they take random noise as input to
generate synthetic data [4].

A major part of our research centered around reproducing
results from the TimeGAN paper [1]. As discussed in the Re-
producing Results section we found that it was hard to repro-
duce the results of the paper due to human error, insufficient
code review on a pull request which caused the implementa-

tion to no longer produce good results, the fact that not all
hyper parameters originally used were provided.

To prevent these issues to arise when reproducing this pa-
per, we have published the entire code base containing all
implementations used in this research. Furthermore, we pro-
vided all hyper parameters used in our experiments to pro-
duce results in this paper in the README.md of our repository.
In addition, all data sets used in this research are publicly
available [13] [14].

However, naturally GANs still have a lot of randomness to
them, since to obtain the synthetic data the generator model
still takes random noise as input [4], which will most likely
result in slightly different results. The post-hoc classifier
model for the discriminative score and the post-hoc sequence-
prediction model for the predictive score are both models that
still need to be trained on the outputted synthetic data set.
This is also a cause that results may slightly differ.

7 Conclusion
To conclude, we found that TimeGAN [1] effectively learns
the temporal dynamics of time-series data and is able to gen-
erate realistic looking synthetic data. While trying the repro-
duce results from the original paper [1], we found that the
provided code base [16] was not producing the correct re-
sults. Different causes for the inconsistent results compared
to an alternative implementation [19] were discussed, such as
seemingly different loss functions and bad hyper parameters.
However, due to human error a pull request had wrongly been
accepted and the time information was neglected by different
components of TimeGAN. After correcting necessary parts in
the implementation, we were able to reproduce results simi-
lar to the results achieved in the TimeGAN paper [1] for the
sine and stock data set. For the energy data set we could not
produce similar discriminative score, as we were not able to
find good hyper parameters for this data set. Providing not
only the code but the hyper parameters used as well and suffi-
cient code review is crucial to successfully reproduce results
achieved elsewhere.

We proposed two separate novel improvements to the ex-
isting algorithm. Firstly, we updated the existing code base
to Tensorflow 2, in order to be compatible across multiple
systems and easier allow for improvements and extensions
to TimeGAN in the future. Furthermore, we proposed the
re-weighting of iterations across the three different phases of
training of TimeGAN (Embedding Phase, Supervised Phase,
Joint Phase) opposed to the normal ratio 1 : 1 : 1 with
which the iterations are distributed. We found that the Joint
Phase is the most time-consuming and by decreasing the it-
erations used for this phase and increasing the iterations over
the other phases, the overall performance of TimeGAN can
be improved. For a maximal speedup in training time (29%)
the iterations should be weighted in a 2 : 2 : 1 ratio for re-
spectively the Embedding, Supervised and Joint Phase. Other
ratios up to 11 : 11 : 8 which allow slightly more training for
the Joint Phase can be used, based on the computational re-
sources available, to produce consistent and better or equal
results compared to the original 1 : 1 : 1 ratio.

Further research could be conducted into the importance
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of the different components of TimeGAN and swapping out
several components, such as the reconstruction networks and
supervised network. Another suggestion, we unfortunately
could not work on due to a lack of time, is applying the con-
cepts of differential privacy [21] to the TimeGAN algorithm.
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