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Abstract—In building design, it is important to consider
certain materials for certain acoustical properties. Specifically,
the time it takes for an audio signal to decrease in volume
by 60 dB is important. This can be estimated with Sabine’s
and Eyring’s formula’s, which both make use of the average
absorption coefficient of the materials in a room. This absorption
coefficient indicates how much of the original audio signal is
absorbed into the material. However, measuring these absorption
coefficients for a material is difficult and time consuming. In
this study, a machine learning approach is used to estimate
the absorption coefficients, by using the room impulse response
in combination with the layout of a room. A room impulse
response is the characterizing sound of a room. These two
pieces of data are processed through a convolutional neural
network and a multilayer perceptron, respectively, and combined
to make the final prediction of absorption coefficients. A novel
approach of simulating the data is used, and a real dataset is
used in conjunction with the simulations to use a state-of-the-art
regression loss function made for domain adaptation. The results
show that the machine learning approach still has a large error
compared to using Eyring’s formula, and that machine learning
is not yet a viable option to use instead of conventional methods.

Index Terms—Room impulse response, machine learning,
acoustical parameters, absorption coefficient, domain adaptation.

I. INTRODUCTION

In building design, it is important to take the acoustics
of your building into account. Among other articles in the
building regulations in the Netherlands, there are certain
standards a building has to meet, such as a sound decrease of
at least 20 dB with respect to the outside world [1]. In order
to comply with these standards, careful selections have to be
made, as making a wall too thin or out of the wrong material
could lead to not complying to the Building Regulations.

A major component in determining the acoustic quality in
a room, are the absorption coefficients of the walls, floor and
ceiling in a room. These can be used to calculate certain
properties of the room, such as the decay time it takes for a
signal to diminish 60 dB below the original sound, otherwise
known as the T60 or RT60 [2]. In current building acoustics,
Sabine’s reverberation equation is used to estimate the T60(f),
given the room volume and surface area, and the absorption
coefficients, assuming room temperature at 20 degrees Celsius.

T60(f) = 0.163
V

Sα(f) + 4mV
(1)

where V is the volume of the room, S is the surface area of
the room, m is an air attenuation constant and α(f) is the
average absorption coefficient of the room as a function of
frequency [2]. For small rooms, the term 4mV (air attenuation)
can be ignored due to it’s small size. More specifically, α(f)
is defined as

α(f) =
1

S

∑
i

Siαi(f) (2)

where
∑

i counts all the surfaces in a room, and Si, αi are
the surface area and absorption coefficient of that surface.
However, α(f) is a frequency dependent property of a surface.
This means the room surfaces can impact the sound or
character of a room.

Depending on the use case, it is vital to know the absorption
coefficients at certain frequencies. When making a concert
hall, one might want to aim for a different T60 in the high
frequency range than in a classroom. However, these values
are not known for all materials, and still remains a challenge
to calculate [3].

Currently, the state of the art formula for calculating the
T60 formulaically is Eyrings formula, which is a more exact
decay formula than Sabines formula (Eq. (1)) [2].

T60(f) = −0.163
V

S ln(1− α(f)) + 4mV
(3)

where α(f) is calculated from equation (2), and again, the air
attenuation can be ignored. This equation can be rewritten to
extract the absorption coefficient from a known T60(f):

α(f) = 1− exp

(
−0.163

V

ST60(f)

)
(4)

However, this estimation is not perfect, as the actual T60 of
equation 3 can vary by ±10% [4]. In this study, the following
research question arises:

Can a machine learning approach estimate the ab-
sorption coefficient better than the inverted Eyring’s
formula? Specifically, can an augmented data ap-
proach be applied to a ML model in combination
with a state-of-the-art approach to domain adaptation
for regression problems [5]?

A. Related work

Parameter extraction based on room impulse responses is
an active field of study. However, just as there is research on
parameter extraction, there are studies which simulate room
impulse responses based on parameters. A commonly used
method is the Image Source Method [6], which uses the idea
that you can model the reflections in a room as virtual sources
beyond the walls of the room. The more virtual sources are
used to model the real reflections, the more accuracy can be
achieved. The amount of reflections against a wall, or similarly
said, the amount of times a virtual source passes through a
wall, is called the reflection order. This method is computa-
tionally expensive, and this has lead to research to optimize
these simulations [7], [8]. More recent work tries to achieve
higher reflection orders and high accuracy, especially in the
lower frequencies [9]. Ray-tracing approaches are also being
used, with recent advancements using hardware ray-tracing
[10]. Another method is proposed using kernel regressions
methods [11], [12]. There are also data driven approaches
to RIR simulation, such as in [13] and [14]. This approach
has the advantage of not needing assumptions about sound
wave propagation, acoustic environment or measuring setting.
The realism of simulations is also tested. It has been shown
that different T60 approximation formula’s, such as Sabine’s
or Eyring’s, have different errors for different scenario’s [15].

Similar to room impulse response generation, there are also
multiple approaches to parameter extraction [16]–[18]. Mul-
tiple studies have been done regarding absorption coefficient
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estimation through different means, such as a geometry based
estimation [19], and machine learning [20]–[22]. The main
differences between machine learning studies on absorption
coefficient extraction can be seen in:

1) If the estimation is blind [18], [21]–[23] or augmented
with data [19], [24].

2) The type of machine learning model applied (e.g. a
convolutional neural network [21], [23]–[25], a multi
layer perceptron [23], [24], or other [18], [19]).

3) If the estimation is on simulated datasets only [19], [21],
[22], [24] or also on real RIR’s [18], [23].

4) If the room size is fixed [24], or is varied throughout
the training process [18], [19], [22], [23], [26].

5) If the parameters are extracted from just the RIR [19],
[22]–[24], or audio convolved with the RIR [18], [21].

6) If the RIR is multichannel [26] or single channel [18],
[19], [22]–[24].

7) If the absorption coefficients are estimated per wall [19],
[22], [24] or as an average [23], [26].

8) If the absorption coefficients are estimated as a function
of frequency [19], [22]–[24], and if yes, which frequency
bands are used.

In Section II the methodology of the study is explained,
followed by Section III on responsible research. Next, we
discuss the results of the study in Section IV, and draw
conclusions on the experiment in Section V.

II. METHODOLOGY

The absorption coefficient estimator developed in this paper
is restricted to only shoe box-type rooms, that is rectangular
rooms with a length, width and height. This is chosen because
of the relatively low complexity level for the simulator, and
more options for the real data, as the recordings of real
RIR’s are predominantly made in shoe box-type rooms. The
machine learning model used for the estimation is summarized
in figure 1. The model has two inputs: the input of the room
impulse response (RIR) and the input of the numerical data.
Having additional data outside of the RIR itself makes this
an estimator with augmented data instead of a blind estimator.
The room layout data provided are the dimensions of the room
(Lx, Ly, Lz), the position of the microphone (Mx,My,Mz)
and the position of the speaker (Sx, Sy, Sz). These values were
chosen because of the relative ease of getting this information
in a real-world setting, as it is straightforward to accurately
measure your the distances of your equipment and dimensions.

The output of the model corresponds to the 10 frequency
bands considered in this study. These bands were determined
as follows: The range of human hearing is standardized as
20-20000 Hz [27]. In architecture, common convention is to
measure the absorption coefficient in octave bands, centered
around 1000 Hz. Extrapolating this to fit to the hearing range,
the frequency bands’ centers are 31.25, 62.5, 125, 250, 500,
1000, 2000, 4000, 8000 and 16000 Hz. For each of these
centers, the band contains the frequency of a square root below
it, and a square root above it, due to it being an octave band.

The microphone and speaker placement is done by ensuring
the position is at least 0.5 meter away from any surface, and
at least 1 meter from each other [28].

A. Preprocessing

All RIR’s undergo preprocessing to have standardize all
inputs. First, every RIR is resampled to 48 kHz. Then, the
response is normalized, and convolved with a bandpass filter,
to isolate the frequencies of that band. A Butterworth filter
is chosen for this task with 5 poles, as a Butterworth filter
provides a maximally flat frequency response in the passband
[29], which in this case, is the octave band we are trying to
measure. After the RIR has been split into frequency bands,
the length of the RIR is set to 1 second. 1 second has been
chosen because it keeps the number of inputs for the model
low, and most of the real data has a T60 below 1 second (figure
2). The RIRs are then saved to file, and their filename with
the room layout data is written to a csv file.

B. Layer design

The RIR response is going through a convolutional neural
network (CNN), as the current literature suggests better per-
formance for CNN’s as opposed to multi layer perceptrons
(MLP’s) in the context of absorption coefficient estimation
[24]. The layer design is visualised in figure 1. To expand upon
the existing research, the CNN layer design is very similar to
the existing literature [24], [23]. There are 3 one-dimensional
convolutional hidden layers with output channels of size 64,
32, 16 and kernel size 33, 17, 9 respectively. After each layer
is a ReLU, batch normalization [30] and a Maxpooling layer
of size 4. This results in 16 channels with 746 numbers, which
then goes into a fully connected layer with 125 outputs. This
is then reshaped into 1 layer of 2000 outputs.

The room layout data goes through a relatively simple MLP
with two fully connected layers: from 9 to 64, and from 64 to
500.

Together, the RIR data and room layout data are concate-
nated to the same feature space, where the first 2000 logits
of information come from the RIR and the last 500 logits
come from the numerical data. This goes into a fully connected
layer with an output of 500 channels, which are in turn fully
connected into 10 outputs, which corresponds to the absorption
coefficient per frequency band.

C. Loss functions

The loss function calculation is summarized in figure 1. The
feature space is the space with which the DAREGRAM loss
[5] is calculated. The DAREGRAM loss is a loss function
for domain adaptation in regression problems. Summarized,
it computes a measure of similarity from the feature space
Z between real data and simulated data. It does this by
computing the Gram matrix (ZTZ)−1 of both the simulated
data and the real data, and tries to align features in that space
by measuring the cosine simularity of that space and the scale
simularity. The representation of the feature space as a Gram
matrix is motivated by the ordinary least squares closed form,
as seen in equation 5 which uses that same representation.

β̂ = (ZTZ)−1ZTY (5)
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Fig. 1. The layout for the machine learning model. This model combines the audio signal of the room impulse response with the room layout data. The
layers consist of a CNN for the input data, a MLP for the room layout data, and finally the mapping to the feature space and the output layer. In the bottom
left, the loss calculation is pictured: The model trains with DAREGRAM loss [5], which tries to minimise the difference at the feature space layer. From
there, the model estimates the absorption coefficient in the output layer. The total loss is equal to the DAREGRAM loss plus the MSE loss.
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Fig. 2. The distribution of decay times per dataset. For this graph, the T30

was measured for all recordings, and plotted as a histogram. These amounts
are normalized, which means that the histograms for each dataset are rescaled
so the area under all these graphs is equal to 1.

where β̂ are the optimal coefficients, Z is the feature space,
and Y is the output. The DAREGRAM loss is complemented
with a main loss function. For regression problems, the mean
absolute error (MAE), the mean squared error (MSE) and the
root mean squared error (RMSE) loss functions are regarded
as standard loss functions for regression problems. However,
there is no clear consensus on which loss function is better in
general, as it also depends on the input data [31]. The MAE
is defined as follows:

L =
1

n

n∑
i=1

|Yi − Ŷi| (6)

where L is the loss, n is the length of all data points in a
batch, Y is the actual output, and Ŷ is the predicted output.
Similarly, the MSE is the error squared:

L =
1

n

n∑
i=1

|Yi − Ŷi|2 (7)

And the final loss function takes the square root of the entire
expression:

L =

√√√√ 1

n

n∑
i=1

|Yi − Ŷi|2 (8)

For this study, initially the MAE was chosen, as research
indicates that this loss function can perform better than the
MSE in deep neural network-based vector-to-vector problems
[32]. However, a vector of length 10 is not necessarily the
same as the vector size in this paper, so for completeness,
the same model has also been trained on the MSE and the
RMSE. The MAE had a significantly worse outcome, with
a final MAE error of 0.47, while the MSE and RMSE gave
much lower similar results, which are discussed in Section IV.
Since the results of the RMSE and the MSE were so similar,
the choice of loss function was arbitrary between the two. The
MSE was ultimately chosen.

D. Real data

For real data, the dEchorate dataset was used [33]. This
dataset was chosen because of the fact that absorption coeffi-
cient estimation has been done on this dataset earlier [23], it is
recent, and has correct room layout data.. Only the omnidirec-
tional sources were used in this study, as directional speakers
add another layer of complexity. Furthermore, the numerical
data doesn’t include the direction of the microphone, so this
would add a degree of blindness which is unnecessary. Ideally,
the RIR is the same no matter which directivity the speaker
has. This would mean that the measuremnts of a RIR are more
reproducable [34]. This has been formalized in the current
acoustic standards [35].
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Fig. 3. The ground truth from an aggregation of applying formula 4. On the
vertical axis, the center of the frequency bands is displayed, with the room
number on the horizontal axis. In the dEchorate dataset, the room number
corresponds to a specific configuration of the room.

The ground truth of the absorption coefficients is not anno-
tated with the dEchorate dataset, or with any dataset of real
RIRs to the best of our knowledge. Instead, we will estimate
the absorption coefficient by acquiring the average absorption
coefficient generated by equation 4 as the absorption coeffi-
cient should be the same in each room configuration of the
dEchorate dataset, regardless of where the source and receiver
are placed. This approach is the same as used in [23].

To achieve the average absorption coefficient per frequency
band, the T60(f) therefore necessary from the RIR’s. This is
calculated using the Schroeder curve [36]. After splitting the
RIR into octave bands (see Section II-A), the T60 is estimated
using this curve. Because the amplitude of the RIR is not
always large enough to measure 60 dB’s of difference, a
tradeoff has been made. The compromise is to estimate the
T30 if possible, and if this isn’t possible, the T20 is estimated.
Finally, if that is not possible, the T15 is estimated. This is
an approximation, as in general, T60 ̸= 2T30 ̸= 3T20 ̸= 4T15.
However, these lower decay times can estimate the T60 if the
decay curve is log-linear. In general, the noise floor in the
dEchorate dataset is below 60 decibels, as can be seen in figure
8, but not by a lot. If the noise floor is at -45 dB or lower, the
T30 is recommended [37] [28]. For this reason, the T30 was
chosen as the starting point for the estimation.

In contrast to the values achieved by [23], only omnidirec-
tional sources were considered in the aggregation of absorption
coefficients. Therefore, the values of ground truth are slightly
different. This results in the ground truth table visualized in
figure 3.

E. RIR Simulation

For the simulated data, the library pyroomacoustics [38]
is used. This library was chosen for the reason that it has
the option to specify the absorption coefficient per wall, per

frequency band, as opposed to other implementations such as
gpuRIR [39] or Habets [40]. This uses a reflection coefficient,
which is defined as the complement to 1 of the absorption
coefficient:

β = 1− α (9)

where β is the reflection coefficient, and α is the absorption
coefficient. Written in this form, these are not frequency-
dependent values, rather they are complex values, so α, β ∈
C. The frequency response is translated into the phase of
these quantities. Pyroomacoustics has no implementation for
complex-valued reflection coefficients, or absorption coeffi-
cients, but rather chooses the approach of specifying the
absorption coefficients in the frequency domain. This way, the
frequency specific behaviour of a material is preserved, in a
similar manner to how gpuRIR can implement frequency spe-
cific behaviour in the time domain. While the complex valued
reflection coefficient specified in such an implementation can
be derived from the magnitudes of the absorption coefficient
per octave band, this was deemed outside of the scope of this
paper.

The dimensions of the room are uniformly sampled within
predetermined bounds: Lx ∈ [4, 10], Ly ∈ [2, 10], Lz ∈
[2.5, 5], where are the units are in meters. The materials for
a surface are constructed with the dimensions of the surface
and the absorption coefficient.

In this study, the original method was to base the simu-
lated surface material on real rooms, but to the best of our
knowledge, there is no data with the current material usage of
buildings. There is a standardized dataset for some building
materials [41], however this contains too little information
about which materials are on which surface in a room,
which is essential information for the proper modelling of
the absorption parameters. As a compromise, we implement
the reflection biased technique from [23]. This technique
approximates real rooms by modeling each surface as either
an absorbent surface or reflective surface. For each surface,
the chance of the surface being reflective is set to p = 1

2 .
If the surface is reflective, the surface absorption parameter

is sampled from the reflective surface profile. The materials
with an average absorption coefficient α ≤ 0.15 are considered
to be reflective, as most of the materials could be easily be
placed above or below this threshold, but future research could
potentially improve realism by evaluating if 0.15 is a good
threshold value.

If the surface is absorbent, the absorption coefficient is
sampled from the absorbent material profile per surface. This is
also frequency dependent, so for each octave band, a maximum
and a minimum value are chosen. In contrast to the reflection
biased sampling method of [23], the absorption profile is
extended to all the frequency bands of human hearing, by
keeping the same minimum and maximum absorption coef-
ficient of the lowest frequency band for all frequency bands
lower than that. Similarly, the frequency bands higher than the
highest known frequency band have the same minimum and
maximum absorption coefficient.
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Fig. 4. The absorption profiles per type of surface. The upper bounds, lower bounds, and mean value are plotted against the frequency bands. The blue stroke
is one standard deviation above and below the mean.

The distributions for the reflection biased sampling method
can be seen in figure 4. It is worthy to note that the profiles
of the 92 materials in the paper of [23] do not have a source.
This means these numbers are difficult to reproduce, as we
don’t know which materials were placed into which category.
To remedy this, the same approach was recreated by using a
materials dataset with more materials [42], and this full dataset
can be found in the appendix. Some parts of the data were not
included, for various reasons. Moreover, some materials fall
into multiple categories, such as glass wool, which can be used
for all types of surfaces. The reasons for excluding some data
points or the categorization into one or multiple categories is
also annotated and available in the appendix.

Instead of sampling uniformly between the maximum and
minimum value, the distribution is sampled with a truncated
normal distribution. The reason for this is because the maxi-
mum and minimum values for absorption coefficients is in a
large range, which could give rise to the problem encountered
in [22], where the data still was not realistic due to the large
sampling window. In an effort to improve the realism of the
simulations, the mean and standard deviation of the data points
was calculated, and the simulated data now samples with a
truncated normal distribution. This does assume that all the
materials in the material database are used for buildings in an
equal quantity, which might not be the case.

The simulated room impulse responses are made with the
presumption that the room is empty. In real life, that is often
not the case. However, the real dataset which is used as a
reference, is also nearly empty. This means the estimator is
trained to be more alike to the real dataset. Picking a dataset
with objects in the room is reflected on in section V-A.

III. RESPONSIBLE RESEARCH

This study, the datasets used, the data generated and the
code to create the results will all be publicly accessible. No
proprietary software or hardware has been used in the making
of this study. All results of the data are included. The software,
written in python, has been provided with ample comments.
Generating new results can be done with a single command.
More technical information about the software is written in

the 4TU repository 1. The code base has an MIT license, as
the dEchorate dataset also has an MIT license. All plots were
made with colors from Paul Tol [43] which are designed to
have enough contrast for people with colourblindness. To the
best of our knowledge, the findings in this study can not be
used for malicious applications.

IV. RESULTS

To answer the research question, it is best to verify the
performance of the model with a second real dataset. This
dataset has been recorded in a near empty room by supervisor
D. de Groot, with approximate room layout data. The dataset is
not yet finished, but has enough information for validating my
model. Something to note is that these room impulse responses
were made with directional loudspeakers, which isn’t what the
model has trained on. For this study, it has been given the name
inHouse, as it was made in house.

The absorption coefficient of the final simulated dataset is
plotted in figure 5, against the absorption coefficient of the
dEchorate dataset, and the inHouse dataset. The absorption
coefficient of the simulated data is on average way higher
than that of the dEchorate dataset, and the standard deviation
is as well. What is also noteworthy, is that the 16k frequency
band has quite low absorption coefficients.

After 500 epochs, the result against the dEchorate dataset
can be seen in figure 6. The results have been plotted as a
boxplot, per frequency band, against the absolute error on the
vertical axis. The estimator developed in this study has quite
a large error, especially in the frequency bands of 31.25, and
16000 Hz, as compared to the Eyring error. If we compare
these results to the state of the art, we can see the estimator
performs worse than the estimator of Yu, W [22]. The RMSE
for full band RIRs averages at 0.09, while this estimator has
an RMSE of 0.18. In [23], the MAE achieved per room on
average is more or less 0.17, as read from figure 9 in that
research. This includes only error from octave bands with
center frequencies 500, 1000, 2000, and 4000 Hz. For these
frequencies, the accuracy of the model in this paper is 0.123.

1The DOI of the code base is 10.4121/220c9304-6a1e-44c6-8c8b-
f3a7b635d418
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V. CONCLUSIONS

The answer to the research question is that the estima-
tor indeed can estimate the absorption coefficients, but it
doesn’t perform nearly as good as the Eyring error. This
can be attributed to the choice of real dataset: Among the
research group, it was anecdotally found that the room impulse
responses of the dEchorate dataset sounded different from
other room impulse responses. This might be attributed to
the relatively high amplitude in the lower frequencies. There
are however, to the best of our knowledge, no other datasets
available which correctly annotate the room layout. It is
possible that the ML model error becomes lower if a different
real dataset is used, or if an aggregation of datasets is used.

What is probably a larger difference, is the difference in
T60 times between the datasets. The simulated dataset has on
average a longer T60 and is distributed very evenly among the
decay times, while the real data has a much lower decay time,
as can be seen in figure 2.

Another possible attribute to high errors is the simulation
software used. If there is not enough essential information in
the simulated dataset, the model cannot accurately estimate
the absorption coefficients. The results could be different if a
different simulator is used such as Habets [40]. However, as
mentioned in Section II-E, it was out of scope for this project
to create our own function which transforms the octave band
absorption coefficients to the proper time-domain reflection
coefficients.

A. Future work

This model shows that even when using state-of-the-art
machine learning techniques, the models for absorption coeffi-
cient estimation are still not accurate enough. Some next steps
in this field could be to try a similar machine learning setup,

but trying different deep learning models, instead of CNN’s
and MLP’s. Different auxiliary data could be supplied, such
as only the room volume for instance. This would be easier to
set up, as the locations of the speaker and microphone don’t
need to be annotated. Additionally, there are more datasets
which can be used and rooms with an arbitrary shape could be
evualated by this metric. To increase the realism of the model,
a promising result could be had for choosing and simulating
RIR datasets with furniture and people inside the room. Lastly,
for this model specifically, more real datasets could be made
to train this network, which could make it more accurate.
A more realistic threshold value for the reflective surfaces
could be determined, or a different ratio of reflective to non-
reflective. The optimal hyperparameters for such a project is
also something that could be exhaustively tested.
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Fig. 6. The absolute error of the machine learning model against the dEchorate dataset, plotted per frequency band. The results are presented as a boxplot.
The mean absolute error is 0.161
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Fig. 7. The absolute error of the ML model against the inHouse dataset, plotted per frequency band. The results are presented as a boxplot. There are some
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APPENDIX

This appendix is an annotated version of an original dataset
by Acoustic Traffic LLC [42]. These materials are used to
model the materials of all the surfaces in the room simulations.
The full process of modelling the materials is described in
Section II-E. The annotations are made by the researcher. The
categorization into reflective, wall, ceiling and floor is made
based upon the material. If the average absorption coefficient
of all frequency bands is less than 0.15, it categorizes as
reflective. For non-obvious categorizations, the reasoning is
in the notes.
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Masonry walls
Rough concrete 0.02 0.03 0.03 0.03 0.04 0.07 ✓
Smooth unpainted con-
crete

0.01 0.01 0.02 0.02 0.02 0.05 ✓

Smooth concrete, painted
or glazed

0.01 0.01 0.01 0.02 0.02 0.02 ✓

Porous concrete blocks
(no surface finish)

0.05 0.05 0.05 0.08 0.14 0.2 ✓

Clinker concrete (no sur-
face finish)

0.1 0.2 0.4 0.6 0.5 0.6 ✓ Outlier in the reflective
set, maybe not represen-
tative?

Smooth brickwork with
flush pointing

0.02 0.03 0.03 0.04 0.05 0.07 ✓

Smooth brickwork with
flush pointing, painted

0.01 0.01 0.02 0.02 0.02 0.02 ✓

Standard brickwork 0.05 0.04 0.02 0.04 0.05 0.05 ✓
Brickwork, 10mm flush
pointing

0.08 0.09 0.12 0.16 0.22 0.24 ✓ Outlier in the reflective
set, maybe not represen-
tative?

Lime cement plaster on
masonry wall

0.02 0.02 0.03 0.04 0.05 0.05 ✓

Glaze plaster on masonry
wall

0.01 0.01 0.01 0.02 0.02 0.02 ✓

Painted plaster surface on
masonry wall

0.02 0.02 0.02 0.02 0.02 0.02 ✓

Plaster on masonry wall
with wall paper on back-
ing paper

0.02 0.03 0.04 0.05 0.07 0.08 ✓

Ceramic tiles with
smooth surface

0.01 0.01 0.01 0.02 0.02 0.02 ✓

Breeze block 0.2 0.45 0.6 0.4 0.45 0.4 ✓
Plaster on solid wall 0.04 0.05 0.06 0.08 0.04 0.06 ✓
Plaster, lime or gypsum
on solid backing

0.03 0.03 0.02 0.03 0.04 0.05 ✓

Studwork and
lightweight walls
Plasterboard on battens,
18mm airspace with glass
wool

0.3 0.2 0.15 0.05 0.05 0.05 ✓

Plasterboard on frame,
100mm airspace

0.3 0.12 0.08 0.06 0.06 0.05 ✓

Plasterboard on frame,
100mm airspace wool

0.08 0.11 0.05 0.03 0.02 0.03 ✓

Plasterboard on 50mm
battens

0.29 0.1 0.05 0.04 0.07 0.09 ✓ High abs coef for lower
frequencies

Plasterboard on 25mm
battens

0.31 0.33 0.14 0.1 0.1 0.12 ✓ ✓ High abs coef for lower
frequencies

2 x plasterboard on
frame, 50mm airspace
with mineral wool

0.15 0.1 0.06 0.04 0.04 0.05 ✓

Plasterboard on cellular
core partition

0.15 0.07 0.04 0.05 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Plasterboard on frame
100mm cavity

0.08 0.11 0.05 0.03 0.02 0.03 ✓

Plasterboard on frame,
100mm cavity with min-
eral wool

0.3 0.12 0.08 0.06 0.06 0.05 ✓

2 x 13mm plasterboard
on steel frame, 50mm
mineral wool in cavity,
surface painted

0.15 0.01 0.06 0.04 0.04 0.05 ✓

Glass and glazing
4mm glass 0.3 0.2 0.1 0.07 0.05 0.02 ✓
6mm glass 0.1 0.06 0.04 0.03 0.02 0.02 ✓
Double glazing, 2-3mm
glass, 10mm air gap

0.15 0.05 0.03 0.03 0.02 0.02 ✓
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Wood and wood pan-
elling
3-4mm plywood, 75mm
cavity containing mineral
wool

0.5 0.3 0.1 0.05 0.05 0.05 ✓

5mm plywood on
battens, 50mm airspace
filled

0.4 0.35 0.2 0.15 0.05 0.05 ✓

12mm plywood over
50mm airgap

0.25 0.05 0.04 0.03 0.03 0.02 ✓

12mm plywood over
150mm airgap

0.28 0.08 0.07 0.07 0.09 0.09 ✓

12mm plywood over
200mm airgap containing
50mm mineral wool

0.14 0.1 0.1 0.08 0.1 0.08 ✓

Plywood mounted solidly 0.05 0.05 0.05 0.05 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

12mm plywood in
framework with 30mm
airspace behind

0.35 0.2 0.15 0.1 0.05 0.05 ✓

12mm plywood in
framework with 30mm
airspace containing glass
wool

0.4 0.2 0.15 0.1 0.1 0.05 ✓

Plywood, hardwood pan-
els over 25mm airspace
on solid backing

0.3 0.2 0.15 0.1 0.1 0.05 ✓

Plywood, hardwood pan-
els over 25mm airspace
on solid backing with ab-
sorbent material in air
space

0.4 0.25 0.15 0.1 0.1 0.05 ✓

12mm wood panelling on
25mm battens

0.31 0.33 0.14 0.1 0.1 0.12 ✓

Timber boards, 100mm
wide, 10mm gaps,
500mm airspace with
mineral wool

0.05 0.25 0.6 0.15 0.05 0.1 ✓

t & g board on frame,
50mm airspace with min-
eral wool

0.25 0.15 0.1 0.09 0.08 0.07 ✓

16-22mm t&g wood on
50mm cavity filled with
mineral wool

0.25 0.15 0.1 0.09 0.08 0.07 ✓

Cedar, slotted and pro-
filed on battens mineral
wool in airspace

0.2 0.62 0.98 0.62 0.21 0.15 ✓

Wood boards on on joists
or battens

0.15 0.2 0.1 0.1 0.1 0.1 ✓

20mm dense veneered
chipboard over 100mm
airgap

0.03 0.05 0.04 0.03 0.03 0.02 ✓

20mm dense veneered
chipboard over 200mm
airgap

0.06 0.1 0.08 0.09 0.07 0.04 ✓

20mm dense veneered
chipboard over 250mm
airgap containing 50mm
mineral wool

0.12 0.1 0.08 0.07 0.1 0.08 ✓

6mm wood fibre board,
cavity ¿ 100mm, empty

0.3 0.2 0.2 0.1 0.05 0.05 ✓

22mm chipboard, 50mm
cavity filled with mineral
wool

0.12 0.04 0.06 0.05 0.05 0.05 ✓

Acoustic timber wall
panelling

0.18 0.34 0.42 0.59 0.83 0.68 ✓

Hardwood, mahogany 0.19 0.23 0.25 0.3 0.37 0.42 ✓
Chipboard on 16mm bat-
tens

0.2 0.25 0.2 0.2 0.15 0.2 ✓
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Chipboard on frame,
50mm airspace with
mineral wool

0.12 0.04 0.06 0.05 0.05 0.05 ✓

Mineral wool and foams
Melamine based foam
25mm

0.09 0.22 0.54 0.76 0.88 0.93 ✓ ✓ ✓ Isolation can be applied
on any surface

Melamine based foam
50mm

0.18 0.56 0.96 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 25mm 16
kg/m3

0.12 0.28 0.55 0.71 0.74 0.83 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 50mm, 16
kg/m3

0.17 0.45 0.8 0.89 0.97 0.94 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 75mm, 16
kg/m3

0.3 0.69 0.94 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 100mm, 16
kg/m3

0.43 0.86 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 25mm, 24
kg/m3

0.11 0.32 0.56 0.77 0.89 0.91 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 50mm, 24
kg/m3

0.27 0.54 0.94 1 0.96 0.96 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 75mm, 24
kg/m3

0.28 0.79 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 100mm, 24
kg/m3

0.46 1 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 50mm, 33
kg/m3

0.2 0.55 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 75mm, 33
kg/m3

0.37 0.85 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 100mm, 33
kg/m3

0.53 0.92 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 50mm, 48
kg/m3

0.3 0.8 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 75mm, 48
kg/m3

0.43 0.97 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool 100mm, 48
kg/m3

0.65 1 1 1 1 1 ✓ ✓ ✓ Isolation can be applied
on any surface

Rock wool 50mm, 33
kg/m3 direct to masonry

0.15 0.6 0.9 0.9 0.9 0.85 ✓ ✓ ✓ Isolation can be applied
on any surface

Rock wool 100mm, 33
kg/m3 direct to masonry

0.35 0.95 0.98 0.92 0.9 0.85 ✓ ✓ ✓ Isolation can be applied
on any surface

Rock wool 50mm, 60
kg/m3 direct to masonry

0.11 0.6 0.96 0.94 0.92 0.82 ✓ ✓ ✓ Isolation can be applied
on any surface

Rock wool 75mm, 60
kg/m3 direct to masonry

0.34 0.95 0.98 0.82 0.87 0.86 ✓ ✓ ✓ Isolation can be applied
on any surface

Rock wool 30mm, 100
kg/m3 direct to masonry

0.1 0.4 0.8 0.9 0.9 0.9 ✓ ✓ ✓ Isolation can be applied
on any surface

Rock wool 30mm, 200
kg/m3 over 300mm air
gap

0.4 0.75 0.9 0.8 0.9 0.85 ✓ ✓ ✓ Isolation can be applied
on any surface

Glass wool or mineral
wool on solid backing

0.2 0.7 0.9 0.8 ✓ ✓ ✓ Isolation can be applied
on any surface. 0 was re-
moved at frequency 250
and 1000 Hz. This is due
to suspicion of not having
measured the material at
these frequencies

Glass wool or mineral
wool on solid backing

0.3 0.8 0.95 0.9 ✓ ✓ ✓ Isolation can be applied
on any surface. 0 was re-
moved at frequency 250
and 1000 Hz. This is due
to suspicion of not having
measured the material at
these frequencies

Glass wool or mineral
wool over air space on
solid backing

0.4 0.8 0.9 0.8 ✓ ✓ ✓ Isolation can be applied
on any surface. 0 was re-
moved at frequency 250
and 1000 Hz. This is due
to suspicion of not having
measured the material at
these frequencies

Fibreglass super fine mat 0.15 0.4 0.75 0.85 0.8 0.85 ✓ ✓ ✓ Isolation can be applied
on any surface
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Fibreglass scrim-covered
sewn sheet

0.4 0.8 0.95 0.95 0.8 0.85 ✓ ✓ ✓ Isolation can be applied
on any surface

Fibreglass bitumen
bonded mat

0.1 0.35 0.5 0.55 0.7 0.7 ✓ ✓ ✓ Isolation can be applied
on any surface

Fibreglass bitumen
bonded mat

0.3 0.55 0.8 0.85 0.75 0.8 ✓ ✓ ✓ Isolation can be applied
on any surface

Fibreglass resin-bonded
mat

0.1 0.35 0.55 0.65 0.75 0.8 ✓ ✓ ✓ Isolation can be applied
on any surface

Fibreglass resin-bonded
mat

0.2 0.5 0.7 0.8 0.75 0.8 ✓ ✓ ✓ Isolation can be applied
on any surface

Fibreglass resin-bonded
board

0.1 0.25 0.55 0.7 0.8 0.85 ✓ ✓ ✓ Isolation can be applied
on any surface

Flexible polyurethane
foam 50mm

0.25 0.5 0.85 0.95 0.9 0.9 ✓ ✓ ✓ Isolation can be applied
on any surface

Rigid polyurethane foam
50mm

0.2 0.4 0.65 0.55 0.7 0.7 ✓ ✓ ✓ Isolation can be applied
on any surface

12mm expanded
polystyrene on 45mm
battens

0.05 0.15 0.4 0.35 0.2 0.2 ✓ ✓ ✓ Isolation can be applied
on any surface

25mm expanded
polystyrene on 50mm
battens

0.1 0.25 0.55 0.2 0.1 0.15 ✓ ✓ ✓ Isolation can be applied
on any surface

Wall treatments & Con-
structions
Cork tiles 25mm on solid
backing

0.05 0.1 0.2 0.55 0.6 0.55 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

Cork board, 25mm on
solid backing

0.03 0.05 0.17 0.52 0.5 0.52 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

Cork board, 25mm,
2.9kg/m2, on battens

0.15 0.4 0.65 0.35 0.35 0.3 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

Glass blocks or glazed
tiles as wall finish

0.01 0.01 0.01 0.01 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Muslin covered cotton
felt

0.15 0.45 0.7 0.85 0.95 0.85 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

Pin up boarding- medium
hardboard on solid back-
ing

0.05 0.1 0.1 0.1 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Fibreboard on solid back-
ing

0.05 0.1 0.15 0.25 0.3 0.3 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
25mm thick hair felt,
covered by scrim cloth on
solid backing

0.1 0.7 0.8 0.8 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possi-
ble to mount them on a
ceiling. 0 was removed
at frequency 250 and
1000 Hz. This is due to
suspicion of not having
measured the material at
these frequencies

Fibreboard on solid back-
ing

0.05 0.15 0.3 0.3 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possi-
ble to mount them on a
ceiling. 0 was removed
at frequency 250 and
1000 Hz. This is due to
suspicion of not having
measured the material at
these frequencies

Fibreboard on solid back-
ing - painted

0.05 0.1 0.15 0.15 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Fibreboard over airspace
on solid wall

0.3 0.3 0.3 0.3 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possi-
ble to mount them on a
ceiling. 0 was removed
at frequency 250 and
1000 Hz. This is due to
suspicion of not having
measured the material at
these frequencies

Fibreboard over airspace
on solid wall - painted

0.3 0.15 0.1 0.1 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possi-
ble to mount them on a
ceiling. 0 was removed
at frequency 250 and
1000 Hz. This is due to
suspicion of not having
measured the material at
these frequencies

Plaster on lath, deep air
space

0.2 0.15 0.1 0.05 0.05 0.05 ✓

Plaster decorative panels,
walls

0.2 0.15 0.1 0.08 0.04 0.02 ✓

Acoustic plaster to solid
backing

0.03 0.15 0.5 0.8 0.85 0.8 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

9mm acoustic plaster to
solid backing

0.02 0.08 0.3 0.6 0.8 0.9 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
9mm acoustic plaster
on plasterboard, 75mm
airspace

0.3 0.3 0.6 0.8 0.75 0.75 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

12.5mm acoustic plaster
on plaster backing over
75mm air space

0.35 0.35 0.4 0.55 0.7 0.7 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

Woodwool slabs, unplas-
tered on solid backing

0.1 0.4 0.6 0.6 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possi-
ble to mount them on a
ceiling. 0 was removed
at frequency 250 and
1000 Hz. This is due to
suspicion of not having
measured the material at
these frequencies

Woodwool slabs, unplas-
tered on solid backing

0.1 0.2 0.45 0.8 0.6 0.75 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

Woodwool slabs, unplas-
tered on solid backing

0.2 0.8 0.8 0.8 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possi-
ble to mount them on a
ceiling. 0 was removed
at frequency 250 and
1000 Hz. This is due to
suspicion of not having
measured the material at
these frequencies

Woodwool slabs, unplas-
tered over 20mm airspace
on solid backing

0.15 0.6 0.6 0.7 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possi-
ble to mount them on a
ceiling. 0 was removed
at frequency 250 and
1000 Hz. This is due to
suspicion of not having
measured the material at
these frequencies

Plasterboard backed with
25mm thick bitumen-
bonded fibreglass on
50mm battens

0.3 0.2 0.15 0.05 0.05 0.05 ✓

Curtains hung in folds
against soild wall

0.05 0.15 0.35 0.4 0.5 0.5 ✓

Cotton Curtains
(0.5kg/m2),draped to
75% area approx.
130mm from wall

0.3 0.45 0.65 0.56 0.59 0.71 ✓

Lightweight curtains (0.2
kg/m2) hung 90mm from
wall

0.05 0.06 0.39 0.63 0.7 0.73 ✓

Curtains of close-woven
glass mat hung 50mm
from wall

0.03 0.03 0.15 0.4 0.5 0.5 ✓
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Curtains, medium velour,
50% gather, over solid
backing

0.05 0.25 0.4 0.5 0.6 0.5 ✓

Curtains (medium fab-
rics) hung straight and
close to wall

0.05 0.25 0.3 0.4 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Curtains in folds against
wall

0.05 0.15 0.35 0.4 0.5 0.5 ✓

Curtains ( medium fab-
rics ) double widths in
folds spaced away from
wall

0.1 0.4 0.5 0.6 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Acoustic banner, 0.5
kg/m2 wool serge,
100mm from wall

0.11 0.4 0.7 0.74 0.88 0.89 ✓ ✓ While maybe unconven-
tional, these materials are
light and don’t support
the main construction of
a building. It is possible
to mount them on a ceil-
ing

Floors
Smooth marble or ter-
razzo slabs

0.01 0.01 0.01 0.01 0.02 0.02 ✓

Raised computer floor,
steel-faced 45mm chip-
board 800mm above con-
crete floor, no carpet

0.08 0.07 0.06 0.07 0.08 0.08 ✓

Raised computer floor,
steel-faced 45mm chip-
board 800mm above con-
crete floor, office-grade
carpet tiles

0.27 0.26 0.52 0.43 0.51 0.58 ✓

Wooden floor on joists 0.15 0.11 0.1 0.07 0.06 0.07 ✓
Parquet fixed in asphalt,
on concrete

0.04 0.04 0.07 0.06 0.06 0.07 ✓

Parquet on counterfloor 0.2 0.15 0.1 0.1 0.05 0.1 ✓
Linoleum or vinyl stuck
to concrete

0.02 0.02 0.03 0.04 0.04 0.05 ✓

Layer of rubber, cork,
linoleum + underlay, or
vinyl+underlay stuck to
concrete

0.02 0.02 0.04 0.05 0.05 0.1 ✓

5mm needle-felt stuck to
concrete

0.01 0.02 0.05 0.15 0.3 0.4 ✓

6mm pile carpet bonded
to closed-cell foam un-
derlay

0.03 0.09 0.25 0.31 0.33 0.44 ✓

6mm pile carpet bonded
to open-cell foam under-
lay

0.03 0.09 0.2 0.54 0.7 0.72 ✓

9mm pile carpet, tufted
on felt underlay

0.08 0.08 0.3 0.6 0.75 0.8 ✓

Composition flooring 0.05 0.05 0.05 0.05 0.05 0.05 ✓
Haircord carpet on felt
underlay

0.05 0.05 0.1 0.2 0.45 0.65 ✓

Medium pile carpet on
sponge rubber underlay

0.5 0.1 0.3 0.5 0.65 0.7 ✓

Thick pile carpet on
sponge rubber underlay

0.15 0.25 0.5 0.6 0.7 0.7 ✓

Rubber floor tiles 0.05 0.05 0.1 0.1 0.05 0.05 ✓
Carpet, thin, over thin felt
on concrete

0.1 0.15 0.25 0.3 0.3 0.3 ✓

Carpet, thin, over thin felt
on wood floor

0.2 0.25 0.3 0.3 0.3 0.3 ✓

Carpet, needlepunch 0.03 0.05 0.05 0.25 0.35 0.5 ✓



17

Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Stone floor, plain or
tooled or granolithic
finish

0.02 0.02 0.05 0.05 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Corkfloor tiles 0.05 0.15 0.25 0.25 ✓ 0 values removed at fre-
quency range 125 and
4000. This is due to the
suspicion that there was
no measurement at that
frequency range.

Sheet rubber ( hard ) 0.05 0.05 0.1 0.05 ✓ 0 values removed at fre-
quency range 125 and
4000. This is due to the
suspicion that there was
no measurement at that
frequency range.

Woodblock/linoleum/rubber/cork
tiles (thin) on solid floor
(or wall)

0.02 0.04 0.05 0.05 0.1 0.05 ✓

Floor tiles, plastic or
linoleum

0.03 0.03 0.05 0.05 ✓ 0 was removed at fre-
quency 250 and 1000 Hz.
This is due to suspicion
of not having measured
the material at these fre-
quencies

Steel decking 0.13 0.09 0.08 0.09 0.11 0.11 ✓

Panels and doors
Wood hollowcore door 0.3 0.25 0.15 0.1 0.1 0.07 ✓
Solid timber door 0.14 0.1 0.06 0.08 0.1 0.1 ✓
Acoustic door, steel
frame, double seals,
absorbant in airspace,
Double sheet steel skin.

0.35 0.39 0.44 0.49 0.54 0.57 ✓

Ceilings
Mineral wool tiles,
180mm airspace

0.42 0.72 0.83 0.88 0.89 0.8 ✓

Mineral wool tiles,
glued/screwed to soffit

0.06 0.4 0.75 0.95 0.96 0.83 ✓

Gypsum plaster tiles,
17% perforated, 22mm

0.45 0.7 0.8 0.8 0.65 0.45 ✓

Metal ceiling, 32.5% per-
forated, backed by 30mm
rockwool

0.12 0.45 0.87 0.98 1 1 ✓

Perforated underside of
structural steel decking
(typical, depends on per-
forations)

0.3 0.7 0.85 0.9 0.7 0.65 ✓

12% perforated plaster
tiles, absorbent felt glued
to back, 200mm ceiling
void

0.45 0.7 0.88 0.52 0.42 0.35 ✓

100mm woodwool slabs
on 25mm cavity, pre-
screeded surface facing
cavity

0.5 0.75 0.85 0.65 0.7 0.7 ✓

50mm woodwool slabs
on 25mm cavity, pre-
screeded surface facing
cavity

0.3 0.4 0.5 0.85 0.5 0.65 ✓

100mm woodwool fixed
directly to concrete, pre-
screeded surface facing
backing

0.25 0.8 0.85 0.65 0.7 0.75 ✓

75mm woodwool fixed
directly to concrete, pre-
screeded surface facing
backing

0.15 0.4 0.95 0.6 0.7 0.6 ✓

Plasterboard 10mm thick
backed with 25mm thick
bitumen

0.3 0.2 0.15 0.05 0.05 0.05 ✓
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Plasterboard 10mm thick,
perforated 8mm diameter
holes 2755m2 14% open
area backed with 25mm
thick bitumen- bonded fi-
breglass on 90mm bat-
tens

0.25 0.7 0.85 0.55 0.4 0.3 ✓

Plywood, 5mm, on bat-
tens 50mm airspace filled
with glass wool

0.4 0.35 0.2 0.15 0.05 0.05 ✓

Plywood, 12mm, with
30mm thick fibreglass
backing between 30mm
battens

0.4 0.2 0.15 0.1 0.1 0.05 ✓

Plywood 12mm thick
perforated 5mm diameter
holes 6200 m2 11% open
area with 60mm deep air
space behind

0.2 0.35 0.55 0.3 0.25 0.3 ✓

Plywood 12mm thick
perforated 5mm diameter
holes 6200 m2 11% open
area backed with 60mm
thick fibreglass between
mounting battens

0.4 0.9 0.8 0.5 0.4 0.3 ✓

Hardboard, 25% perfo-
rated over 50mm mineral
wool

0.27 0.87 1 1 0.98 0.96 ✓

0.8mm unperforated
metal panels backed with
25mm thick resin bonded
fibreglass, mounted on
22mm diameter pipes
135mm from wall.

0.5 0.35 0.15 0.05 0.05 ✓ 0 values removed at fre-
quency range 4000. This
is due to the suspi-
cion that there was no
measurement at that fre-
quency range.

0.8mm perforated metal
tiles 2mm diameter
holes 29440/m2. 13%
open area backed with
25mm thick resin-
bonded fibreglass slab.
No airspace.

0.1 0.3 0.6 0.75 0.8 0.8 ✓

50mm mineral wool ( 96
kg/m3 ) behind 25% open
area perforated steel.

0.2 0.35 0.65 0.85 0.9 0.8 ✓

Wood panels, 18mm al-
ternate 15mm slot &
35mm wooden slat

0.1 0.36 0.74 0.91 0.61 0.5 ✓

25mm rockwool backing,
32mm airspace behind
Plaster decorative panels,
ceilings

0.2 0.22 0.18 0.15 0.15 0.16 ✓

Audience and seating
Children, standing (per
child) in m2 units

0.12 0.22 0.37 0.4 0.42 0.37 ✓ We will only consider
empty rooms for this
study.

Children, seated in plas-
tic or metal chairs (per
child) in m2 units

0.28 0.33 0.37 0.37 ✓ We will only consider
empty rooms for this
study.

Students seated in tablet
arm chairs

0.3 0.41 0.49 0.84 0.87 0.84 ✓ We will only consider
empty rooms for this
study.

Adults per person seated 0.33 0.4 0.44 0.45 0.45 0.45 ✓ We will only consider
empty rooms for this
study.

Adults per person stand-
ing

0.15 0.38 0.42 0.43 0.45 0.45 ✓ We will only consider
empty rooms for this
study.

Empty plastic or metal
chairs (per chair) in m2
units

0.07 0.14 0.14 0.14 ✓ We will only consider
empty rooms for this
study.

Seats, leather covers, per
m2

0.4 0.5 0.58 0.61 0.58 0.5 ✓ We will only consider
empty rooms for this
study.
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Material 125 250 500 1000 2000 4000 Reflective Wall Floor Ceiling Excluded Notes
Cloth-upholstered seats,
per m2

0.44 0.6 0.77 0.89 0.82 0.7 ✓ We will only consider
empty rooms for this
study.

Floor and cloth-
upholstered seats, per
m2

0.49 0.66 0.8 0.88 0.82 0.7 ✓ We will only consider
empty rooms for this
study.

Adults in plastic and
metal chairs in m2 units

0.3 0 0.4 0 0.43 0.4 ✓ We will only consider
empty rooms for this
study.

Adults in wooden or
padded chairs or seats
(per item) in m2

0.16 0 0.4 0 0.44 0.4 ✓ We will only consider
empty rooms for this
study.

Adults on timber seats, 1
per m2 per item

0.16 0.24 0.56 0.69 0.81 0.78 ✓ We will only consider
empty rooms for this
study.

Adults on timber seats, 2
per m2 per item

0.24 0.4 0.78 0.98 0.96 0.87 ✓ We will only consider
empty rooms for this
study.

Wooden or padded chairs
or seats (per item) in m2

0.08 0 0.15 0 0.18 0.2 ✓ We will only consider
empty rooms for this
study.

Seating, slighty uphol-
stered, unoccupied

0.07 0.12 0.26 0.42 0.5 0.55 ✓ We will only consider
empty rooms for this
study.

Seating, slighty uphol-
stered, occupied

0.32 0.62 0.74 0.76 0.81 0.9 ✓ We will only consider
empty rooms for this
study.

Fully upholstered seats
(per item) in m2

0.12 0 0.28 0 0.32 0.37 ✓ We will only consider
empty rooms for this
study.

Upholstered tip-up the-
atre seats, empty

0.33 0.51 0.64 0.71 0.77 0.81 ✓ We will only consider
empty rooms for this
study.

Areas with audience, or-
chestra, or seats, includ-
ing narrow aisles

0.6 0.74 0.88 0.96 0.93 0.85 ✓ We will only consider
empty rooms for this
study.

Auditorium seat, unoccu-
pied

0.13 0.33 0.59 0.58 0.61 0.62 ✓ We will only consider
empty rooms for this
study.

Auditorium seat, occu-
pied

0.37 0.48 0.68 0.73 0.77 0.74 ✓ We will only consider
empty rooms for this
study.

Orchestra with
instruments on podium,
1.5 m2 per person

0.27 0.53 0.67 0.93 0.87 0.8 ✓ We will only consider
empty rooms for this
study.

Orchestral player with in-
strument (average) per
person

0.37 0.8 1 1 1 1 ✓ We will only consider
empty rooms for this
study.

Prosenium opening with
average stage set per m2
of opening

0.2 0 0.3 0 0.4 0.5 ✓ We will only consider
empty rooms for this
study.

Wood platform with large
space beneath

0.4 0.3 0.2 0.17 0.15 0.1 ✓ We will only consider
empty rooms for this
study.

Adult office furniture per
desk

0.5 0.4 0.45 0.45 0.6 0.7 ✓ We will only consider
empty rooms for this
study.

Other
Water surface, ie swim-
ming pool

0.01 0.01 0.01 0.01 0.02 0.02 ✓ We exclude pools inside.

Ventilation grille per m2 0.6 0.6 0.6 0.6 0.6 0.6 ✓ This is too niche for a
generic material
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