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HRBF-Fusion: Accurate 3D Reconstruction from RGB-D Data Using
On-the-fly Implicits
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LIANGLIANG NAN, Delft University of Technology, The Netherlands

LAISHUI ZHOU and JUN WANG, Nanjing University of Aeronautics and Astronautics, China

CHARLIE C. L. WANG, The University of Manchester, United Kingdom / Delft University of Technology, The Netherlands

Fig. 1. Reconstruction of two large indoor scenes: (left) a study room of a university library and (right) a study platform in a grand hall of an academic

building. The original two sequences consist of 16,128 (library) and 10,930 (study platform) RGB-D image frames, and the reconstructed model consists

of 7,488,867 (library) and 7,904,727 (study platform) points, respectively. The average processing speed of our approach is around 43ms per frame, which

demonstrates a nearly real-time performance. RGB-D data in these two experiments are captured by a Microsoft Kinect v1 sensor with a resolution of

640 × 480. Progressive results of the reconstruction can be found in the supplementary video.

Reconstruction of high-fidelity 3D objects or scenes is a fundamental
research problem. Recent advances in RGB-D fusion have demonstrated
the potential of producing 3D models from consumer-level RGB-D cameras.
However, due to the discrete nature and limited resolution of their surface
representations (e.g., point or voxel based), existing approaches suffer
from the accumulation of errors in camera tracking and distortion in the
reconstruction, which leads to an unsatisfactory 3D reconstruction. In this
article, we present a method using on-the-fly implicits of Hermite Radial
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Basis Functions (HRBFs) as a continuous surface representation for camera
tracking in an existing RGB-D fusion framework. Furthermore, curvature
estimation and confidence evaluation are coherently derived from the
inherent surface properties of the on-the-fly HRBF implicits, which are
devoted to a data fusion with better quality. We argue that our continuous
but on-the-fly surface representation can effectively mitigate the impact of
noise with its robustness and constrain the reconstruction with inherent
surface smoothness when being compared with discrete representations.
Experimental results on various real-world and synthetic datasets demon-
strate that our HRBF-fusion outperforms the state-of-the-art approaches
in terms of tracking robustness and reconstruction accuracy.

CCS Concepts: • Computer systems organization → Embedded sys-

tems; Redundancy; Robotics; • Networks→ Network reliability;

Additional Key Words and Phrases: 3D reconstruction, closed-form HRBFs,
registration, camera tracking, fusion
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1 INTRODUCTION

Reconstruction of high-fidelity 3D objects or scenes is vital to
applications such as augmented/virtual reality, digital fabrication,
and robotics. With the increasing popularity of consumer-level
depth cameras (e.g., Microsoft Kinect), 3D information, in the form
of RGB-D images or point clouds, can be easily obtained. A lot
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of reconstruction systems targeting producing surface models of
small-scale objects or large scenes [Cao et al. 2018; Choi et al. 2015;
Dai et al. 2017; Keller et al. 2013; Lefloch et al. 2017; Whelan et al.
2016; Zhou and Koltun 2015] have been introduced since the pio-
neering work of KinectFusion [Newcombe et al. 2011]. Despite the
advances in 3D reconstruction in the last decade, obtaining high-
quality 3D models from consumer-grade depth cameras remains
an open problem due to the following two main issues.

• Imperfect Surface Representation: Existing approaches lack an
accurate surface representation that facilitates high-fidelity
reconstruction while being memory efficient and computa-
tionally affordable. The volumetric representation is widely
used for RGB-D reconstruction systems [Chen et al. 2013; Dai
et al. 2017; Niessner et al. 2013] following KinectFusion [New-
combe et al. 2011]. However, a commonly used implementa-
tion with fixed-size resolution lacks adaptiveness [Chen et al.
2013; Dai et al. 2017; Niessner et al. 2013], which tends to
generate over-smoothed surfaces in the regions with geomet-
ric details. The alternative surface representation [Keller et al.
2013], surfel, which predicts geometry by ray-to-plane surfel
splatting, works poorly in high-curvature regions and is also
prone to failure due to noises and outliers.
• Camera Tracking Error : Imprecision registration based on

Iterative Closest Point (ICP) or its variants [Besl and McKay
1992; Rusinkiewicz and Levoy 2001] is usually applied for
camera pose estimation between RGB-D frames, where dis-
tortion errors are accumulated and can become significant in
featureless regions. Research efforts have been paid to resolve
the problem through global optimization [Choi et al. 2015;
Zhou and Koltun 2013] or additional information provided
by the RGB-D camera (e.g., geometric [Lefloch et al. 2017;
Zhou and Koltun 2015] and photometric [Whelan et al. 2016]
information), to derive a weighted variant of the ICP scheme
to reduce camera tracking drift. In recent pipelines (e.g., Cao
et al. [2018], Dai et al. [2017], and Whelan et al. [2016]), both
strategies are applied to improve the result of reconstruction.

The issue of camera tracking also suffers from the lack of good sur-
face representation when geometric cues are employed to enhance
ICP registration.

1.1 Our Method

To address the aforementioned issues, we propose HRBF-Fusion,
a new method using on-the-fly HRBF implicits for high-accurate
camera tracking and high-fidelity 3D reconstruction. The core of
our method is a voxel-free implicit surface representation, i.e.,
the closed-form HRBF surface approximation that gracefully bene-
fits multiple key stages of the reconstruction pipeline, including
preprocessing, camera pose estimation, and depth map fusion.
The 3D reconstruction pipeline used in our tests is a variant of
ElasticFusion [Whelan et al. 2016] and ORB-SLAM2 [Mur-Artal and
Tardós 2017], in which the tracking-and-fusion steps of ElasticFu-
sion are used to generate submaps and the ORB-based local-to-
global optimization routine is used to obtain a global consistent
3D model for large scenes. In contrast, we evaluate both the global
model and the new RGB-D frames as continuous but compactly

supported HRBF surfaces to produce robust curvature estimation
and reconstruction-indicated confidence maps. With the help of
these HRBF surfaces, more reliable camera tracking and depth
map fusion can be achieved. In summary, we make the following
contributions:

• A method to evaluate a continuous surface effectively and
efficiently on both the global model and the acquired RGB-D
frame by using on-the-fly HRBF implicits.
• A robust and efficient curvature evaluation method based on

the on-the-fly HRBF implicits, leading to a dramatic improve-
ment in camera tracking based on the curvature-weighted
registration.
• A reconstruction-indicated confidence evaluation method,

also based on efficient HRBF surface evaluation, which can
significantly reduce the impact of noises and outliers in both
camera tracking and depth-image fusion.

As a consequence, we develop a more robust reconstruction system
for high-fidelity online surface reconstruction, which also shows
good scalability to large scenes.

1.2 Related Work

1.2.1 Geometric Representation. 3D reconstruction within
a commodity RGB-D camera has been extensively studied
in the past decade. A key ingredient toward a high-quality 3D
reconstruction system is the underlying representation for camera
pose estimation and depth map fusion. Different representations
have been proposed, including volumetric representation [Curless
and Levoy 1996; Dai et al. 2017; Newcombe et al. 2011; Niessner
et al. 2013; Zhang and Hu 2017], surfel-based representation [Cao
et al. 2018; Keller et al. 2013; Weise et al. 2009; Whelan et al. 2016],
height field [Meilland and Comport 2013], probability-based
representation [Dong et al. 2018], and 2.5D depth map [Gallup
et al. 2010]. A recent trend is to solve the problem by using
neural implicit representation for shape generation [Huang et al.
2021b, a; Liu et al. 2020; Sucar et al. 2021, 2020] and using a
learning-based method for depth fusion [Bozic et al. 2021; Weder
et al. 2020, 2021]. Here we provide a compact solution by using a
closed-form representation for the on-the-fly implicits.

Following the pioneering work of KinectFusion [Newcombe
et al. 2011] that applied a Truncated Signed Distance Field (TSDF)
[Curless and Levoy 1996] for modeling integration, volumetric
representation has demonstrated promising results for reconstruct-
ing small-scale scenes. Because of its implementation on GPU
for real-time tracking and fusion, volumetric representation has
become more and more popular [Chen et al. 2013; Dai et al. 2017;
Meerits et al. 2018; Niessner et al. 2013]. The original uniform-
grid KinectFusion has a fundamental limitation (i.e., the lack of
scalability), which leads to expensive memory consumption for
reconstructing fine details. Recently, a learning-based TSDF was
adopted to represent the geometry under reconstruction [Sun et al.
2021]. Although methods have been developed to alleviate this
by exploiting sparsity in the TSDF representation [Chen et al.
2013; Niessner et al. 2013], the quality of local reconstruction still
depends on the resolution to partition the space that is related to
the scale of the scene.
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Kelly et al. [2013] proposed a surfel-based representation
method to solve the scalability issue and has presented comparable
results against volumetric methods on flat or smooth regions.
In their method, a ray-to-plane surfel rendering algorithm is
used to predict the model for real-time camera tracking. The
method has been applied to real-time reconstruction systems
[Cao et al. 2018; Lefloch et al. 2017; Whelan et al. 2016]. However,
the linear ray-to-plane-based shape prediction is sensitive to
noises in particular on the high-curvature surface regions. Hence,
reconstructed models are often distorted when there are noises
in high-curvature regions. Implicit moving least-squares (IMLS)
surface was employed in Liu et al. [2021] to achieve a better
shape representation in their learning-based 3D reconstruction.
However, the evaluation of IMLS is less efficient. Differently,
we predict the shape from surfels by using closed-form HRBF
implicits, which makes our system memory efficient and robust.

Radial Basis Functions were employed in Carr et al. [2001] for
surface reconstruction. In this method, however, the computation
is very time-consuming, and it also requires the provision of
auxiliary “off-surface” points. Liu et al. [2016] introduced closed-
form HRBF implicits using quasi-interpolation, which has demon-
strated its capability of generating surface reconstruction in high
quality and high efficiency. Inspired by this work, we explore
the possibility to incorporate the closed-form HRBF implicits
with the inherent surface properties for noise-resistant camera
tracking and high-quality 3D reconstruction. It is also worthy to
notice that Schöps et al. [2020] recently developed an online mesh
construction method for reconstruction refinement; nevertheless,
camera poses are required as additional input for their method.
Differently, our on-the-fly HRBF implicits are directly devoted to
camera tracking and RGB-D reconstruction.

1.2.2 Camera Tracking. An important issue in the real-time
RGB-D surface reconstruction system is the drift of camera track-
ing caused by the instability of the frame-to-model registration.

One of the reasons for the instability of registration is the
presence of noise and outliers. To mitigate the impact of noise
and outliers, Jian and Vemuri [2011] proposed to use the Gaussian
Mixture Model (GMM) to describe the distribution of both template
and point set. Not only geometric but also color information has
been conducted for probabilistic registration [Danelljan et al. 2016].
Although robust, these probabilistic registration approaches are
time-consuming, which makes them ineligible for real-time recon-
struction from a sequence of input RGB-D frames. Others tend to
evaluate the reliability of an input raw depth map by analyzing the
inherent property of depth cameras (e.g., Reynolds et al. [2011]).
Similarly, a distortion-based model is employed in Keller et al.
[2013], which weights measurements based on the assumption
that the depth data captured near the center of a sensor are more
accurate. Recently, a voting mechanism was introduced in Cao et al.
[2018] to evaluate the confidence of depth map for generalized ICP
[Segal et al. 2009] by using the time coherence between nearby
frames. In this article, we propose a novel reconstruction-indicated
confidence metric to exploit the underlying uncertainty on each
depth map.

Another reason for tracking drift is the lack of salient geometric
features in the scene, which leads to slippery registration. As depth

cameras are commonly equipped with an additional RGB camera,
colors are used as additional information to form a joint optimiza-
tion problem [Godin et al. 1994; Whelan et al. 2016] or to pre-align
the depth map with color-based features [Henry et al. 2012]. Yang
et al. [2017] incorporated visual saliency into a volumetric fusion
pipeline to achieve high-quality object reconstruction. Other geo-
metric features have also been considered in other approaches to
add weights in the optimization for registration, including contour
cues [Zhou and Koltun 2015], planar structures and repeated
objects [Zhang et al. 2015], patch co-planarity [Shi et al. 2018], and
curvatures [Lefloch et al. 2017]. Among them, the curvature is very
general and can be evaluated in all regions. Several methods of
curvature estimation have been discussed in Lefloch et al. [2017],
among which the method of adjacent-normal cubic approximation
[Goldfeather and Interrante 2004] is concluded as the most robust
curvature estimator. However, this method needs to solve a 7 × 7
linear system at every point, which hinders its usage for real-time
applications even with the implementation on GPU [Lefloch et al.
2017]. By the requirement of real-time performance, Lefloch et
al. [2017] selected the chord-and-normal-vectors (CAN) approach
[Zhang et al. 2008] for curvature estimation. The camera drift
can be reduced by integrating curvature information into the
ICP framework with higher weights in high-curvature regions
[Lefloch et al. 2017]. However, the curvature evaluation in their
approach is not robust when input RGB-D data becomes noisy.
This is crucial as the input frames from consumer-level RGB-D
cameras are often contaminated with noises and outliers. In our
approach, we use curvature as additional information in both track-
ing and fusion stages—but differently, curvature in our approach
is robustly extracted from the continuous surfaces represented by
HRBF implicit.

1.2.3 Accumulated Error. Apart from focusing on the error
sourced from the frame-by-frame registration, methods have been
developed to correct the error accumulation in camera pose esti-
mation and global 3D model in both online [Cao et al. 2018; Dai
et al. 2017; Wang and Guo 2017; Wasenmüller et al. 2016; Whelan
et al. 2012] and offline [Choi et al. 2015; Li et al. 2013; Zhou and
Koltun 2013; Zhou et al. 2013] modes, where the offline methods
are time-consuming.

For online correction, Whelan et al. [2016] proposed a system
that divides the reconstructed model into active (recently captured
frames) and inactive parts. When the registration between active
and inactive parts is successful, an optimization-based deforma-
tion is applied to deform the active part to fuse into the inactive
part. However, the routine does not provide a way to fix the errors
that have already been inherited into the inactive part. Yang et
al. [2020] proposed a noise-resilient panoramic scanning approach
that uses robot-mounted multiple RGB-D cameras to obtain high-
quality 3D models of the scene. A different strategy is applied in
the area of simultaneous localization and mapping (SLAM) [Engel
et al. 2013; Forster et al. 2014; Klein and Murray 2007; Mur-Artal
et al. 2015; Mur-Artal and Tardós 2017], where drift-free pose
estimation has been extensively studied. The basic idea of these
approaches is to minimize the reprojection error across frames
or distribute camera pose estimation error across the pose-graph
constructed by the co-visibility between frames. While focusing

ACM Transactions on Graphics, Vol. 14, No. 3, Article 35. Publication date: March 2022.



35:4 • Y. Xu et al.

Fig. 2. Framework of the proposed RGB-D reconstruction system.

on different problems, these approaches do not provide a method
to correct dense 3D models generated from depth map fusion. To
solve this problem, submap-based online reconstruction systems
(e.g., Cao et al. [2018] and Dai et al. [2017]) are proposed to
correct the camera poses and minimize the geometric error of 3D
models in an integrated manner. In our system, we adopt a similar
submap-based hierarchical optimization for the steps of closed-
loop detection, camera pose, and 3D model correction.

2 OVERVIEW

We utilize closed-form HRBF implicits for on-the-fly surface eval-
uation for the global model, which replaces the commonly used
discrete surface representations of existing reconstruction sys-
tems and plays a vital role in the key stages of the pipeline
to improve tracking robustness and reconstruction accuracy. We
adopt a computational framework similar to prior systems [Dai
et al. 2017; Keller et al. 2013; Lefloch et al. 2017; Newcombe et al.
2011; Niessner et al. 2013] for reconstruction (see Figure 2). The
functionality of closed-form HRBF implicits is utilized in various
stages of the framework.

The global model M is represented by a set of unorganized
points where each point is associated with attributes1 including
its position v̄ ∈ R3, normal n̄ ∈ R3, support size r̄ ∈ R, confidence
value c̄ ∈ R, and two principal curvature values κ̄1, κ̄2 ∈ R. This
is a highly scalable representation, which can be considered as an
enriched surfel representation [Cao et al. 2018; Keller et al. 2013].

When capturing a new RGB-D frame F = {D,C} with D and C

denoting the depth map and the color map, respectively, the RGB-
D frame F is fused into the global model by applying the following
key steps:

• Preprocessing: Continuous surfaces are evaluated in the input
RGB-D frame and on the global model by using the on-the-
fly HRBF implicits, respectively (Section 3.1). Note that the
HRBF surface for the global model is evaluated in the previous
frame of the scanning sequence. With the help of robust
HRBF surface evaluation, a curvature map (Section 3.2) and
a reconstruction-indicated confidence map (Section 3.3) are
evaluated in the input frame to enhance the robustness of our
reconstruction pipeline.
• Camera pose estimation: The purpose of this step is to obtain

the transformation between the input frame and the current
global model. We adopt a variant ICP algorithm based on the
point-to-plane metric with specially designed searching and

1Variables evaluated on the global model are represented by symbols with “̄ ” head
throughout the article.

weighting schemes to align it to the surface predicted from
its last pose. Unlike existing RGB-D reconstruction systems
based on discrete surface representations, our accurate and
robust local surface reconstruction based on HRBF implicits
improves the robustness in both the correspondence search
(Section 4.1) and the optimization of registration (Section 4.2).
On-the-fly calculated curvatures and normals are stored in
local but "dense" maps for camera pose estimation, which can
avoid the problem caused by sparsity in a global map.
• Depth map fusion: To integrate a new frame into the global

model with a valid pose, correspondences between vertices
of the input frame and the points in the global model are es-
tablished based on an index map that is obtained by rendering
the index of each model point into a texture [Keller et al. 2013].
After that, the input vertices with their attributes are merged
into the global model using a confidence-weighted average
(Section 5). Similar to other surfel-based approaches (e.g., Cao
et al. [2018] and Keller et al. [2013]), attributes stored on the
global model are employed to conduct the fusion.

These steps are repeated until the relative translation between the
first frame and the current frame exceeds a certain threshold. Then,
the global model formed by already registered and fused frames
will be treated as a submap.

With reliable geometric and photometric enhanced registra-
tion, high-quality camera tracking and surface reconstruction can
be achieved for relatively small objects. When reconstructing
large scenes by long-range scanning, a local-to-global optimization
scheme similar to Cao et al. [2018] is applied between submaps to
further alleviate the accumulation of errors in camera tracking by
using the ORB features [Rublee et al. 2011].

3 GEOMETRIC CUES BY HRBF IMPLICITS

In this section, we first introduce the method of surface prediction
with closed-form HRBF implicits. After that, the robust curvatures
and the reconstruction-indicated confidence map can be generated
from the on-the-fly HRBF surfaces.

HRBF implicits have been used to reconstruct an implicit func-
tion from scattered Hermite points [Macêdo et al. 2011]. Given a
point set P = {p1, p2, . . . , pn } with corresponding normals N =

{n1,n2, . . . ,nn }, a function f interpolating the positions and the
normals can be defined as

f (x) =
n∑

j=1

{α jψ (x − pj )− < βj ,�ψ (x − pj ) >}, (1)

where 〈·, ·〉 denotes the dot-product of two vectors, and � is the
gradient operator. The Compactly Supported Radial Basis Functions

(CSRBFs) [Wendland 1995] are applied as the kernels because of
their numerical stability and the on-the-fly nature. Specifically, we
have

ψ (x − pj ) =
⎧⎪⎨⎪⎩

(1 − d
r )4 ( 4d

r + 1), d ∈ [0, r ],

0, otherwise,
(2)

where d = ‖x − pj ‖ is the Euclidean distance between the query
point and the corresponding CSRBF kernel and r is the support
size. The coefficients α j ∈ R and βj ∈ R3 can be computed
from the following constraints: f (pi ) = 0 and �f (pi ) = ni on
all given points pi = 1, . . . ,n. Instead of solving a 4n × 4n linear
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Fig. 3. An illustration of the surfel splatting (left) [Cao et al. 2018; Keller

et al. 2013] and our HRBF-based (right) surface prediction methods. The

red cross in each figure represents the intersection between the ray (red

dashed line) and the global model points (blue dots).

system, a closed-form function was proposed in Liu et al. [2016] to
approximate the HRBF implicits as

f̂ (x) = −
n∑

j=1

〈 r2
j

20 + ηr2
j

nj ,�ψ (x − pj )

〉
, (3)

where r j is the support size of the kernel centered at pj . The value
of r j should be determined to cover at least eight neighboring
kernels for constructing a locally continuous surface [Liu et al.
2016] around pj . η = 1.0 × 106 is employed as the regularization
coefficient for points evaluated in the unit of meter [Liu et al. 2016].
With such a closed-form surface representation, solving the linear
system can be avoided. This enables a method for efficient and on-
the-fly surface evaluation, which is very important for real-time
reconstruction.

3.1 Surface Evaluation

In our approach, continuous surfaces are evaluated for both the
newly captured depth image and the global model by using the on-
the-fly HRBF implicits. Specifically, two surfaces are evaluated on
all pixels of two frames: the input RGB-D frame for a local model
and the previous frame in the scanning sequence for the global
model. Similar to the raycasting method of Newcombe et al. [2011],
we predict the surface points for a pixel u at the current pose by
intersecting the HRBF local surface with the ray from the camera
optical center to the corresponding point in the image plane (see
Figure 3). In contrast to the popular surfel-based surface prediction
method [Cao et al. 2018; Keller et al. 2013] that searches for the
nearest (from the viewpoint) discrete point within a radius (see
the left of Figure 3 for illustration), our method takes advantage of
the smooth nature of the surface and thus is more robust to noise
and outliers.

For the surface evaluation in a frame by HRBF implicits, we
choose the kernels that are closer to the viewpoint while discard-
ing kernels that have greater depth deviation from the nearest
model point due to depth discrepancy. After obtaining a local set of
kernels that define the HRBF surface on a viewing ray, we project
the kernels’ centers onto the ray to form a searching interval
[pn , pf ], where pn is the nearest point and pf is the furthest one
along the viewing ray. The model point pm is supposed to lie in the

interval to satisfy f̂ (pm ) = 0, which can be obtained by a binary
searching algorithm (see the right of Figure 3 for an illustration).
After determining the position of a surface point, other attributes
at pm such as colors can be predicted from its nearest kernel.
Note that this ray-intersection-based surface evaluation can run
in highly parallel mode on the many cores of GPU. Specifically, we

Fig. 4. Comparison of the predicted vertex map generated by surfel

splatting (middle column) and HRBF local surface reconstruction (right

column) on the same global model (left column). The test is conducted on

the lr kt1 example from ICL-NUIM [Handa et al. 2014] by adding three

levels of Gaussian noise with the standard deviations as σ = 3.0, σ = 6.0,
and σ = 12.0, respectively, where the ground truth of the geometry and

camera poses are provided. Note that the global models are generated

by fusing multiple RGB-D frames (i.e., 1–68) using the same strategy of

Keller et al. [2013] and the ground-truth camera poses. Colors indicate the

unsigned distances from the points to the ground-truth 3D model.

implement the surface evaluation of HRBF implicits in a fragment
shader that is used for per-pixel operation with each viewing ray
defined on pixels. The input vertex map and normal map are bound
with the fragment shader for local searching. The HRBF implicits
are constructed and evaluated within the fragment shader. The
outputs are the texture maps bound with a frame buffer, which are
the predicted surface points and their corresponding attributes.

For surface evaluation on a global model M, the stored points
{v̄} will be used as the kernels of HRBF implicits. The resultant
intersection points are stored in a 3D vertex map V̄. The normal at
each intersection point pm can also be obtained from the gradient

as � f̂ (pm )/‖� f̂ (pm )‖. The resultant normal map is denoted by N̄.
With the help of the closed-form HRBF implicits, we are able to pre-
dict V̄ more accurately—see the comparison with surfel splatting
on a model with ground-truth geometry (Figure 4). The experiment
is conducted on the lr kt1 example from the synthetic dataset ICL-

NUIM [Handa et al. 2014] with the ground-truth geometry and
camera poses provided. To evaluate the sensitivity to noise, the
input RGB-D frames are contaminated by adding different levels of
Gaussian noise. The global models are obtained by fusing multiple
(i.e., 1–68) input frames with the ground-truth camera poses, while
the same strategy of Keller et al. [2013] is adopted for depth
map fusion. As can be observed from the cross-sectional views
in Figure 4, the increased level of noise makes the points in the
global model corrupt gradually. The surfel splatting method results
in imprecise prediction of the underlying surface when highly
noisy input is given. In contrast, the vertex map predicted by our
method can properly represent the underlying surface. Moreover,
smoother normal maps can be generated by our method (Figure 5).
Note that an accurate and robust prediction of geometry is the
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Fig. 5. Comparison of the normal maps generated by the ray-to-plane

surfel splatting method (top row) and our HRBF-based prediction method

(bottom row) on the stone wall from 3D Scene Data [Zhou and Koltun

2015].

Fig. 6. Comparison of registration between the global model and the input

vertices under different noise levels. Similar to what was already discussed

in Figure 4, the global model is obtained by fusing multiple RGB-D frames

(i.e., 1–68) using the same strategy of Keller et al. [2013] and the ground-

truth camera poses. The left column shows the initial alignment of the

global model and the input vertices, whereas the other two columns show

registration results based on surfel splatting (the middle column) and our

HRBF-based method (the right column).

key ingredient to the high accuracy in camera pose estimation
(Section 4). With our HRBF-based local surface reconstruction,
the accuracy of geometry prediction and thus the registration is
dramatically improved (see Figure 6 for an example).

The kernels for surface evaluation in the input RGB-D frame are
determined differently. Preprocessing is needed before applying
the HRBF-based surface evaluation. Given an input frame with the
depth map and the color map, its corresponding 3D vertex map V

is computed using the camera intrinsic matrix K by following the
same steps as KinectFusion [Newcombe et al. 2011]. After applying
a bilateral filter to reduce noise while preserving discontinuity
in the depth map D, the corresponding 3D vertex for each pixel
u = (x ,y)T ∈ R2 is computed as V(u) = D(u)K−1 (u�, 1.0)T . The
corresponding normal map N can be derived from V by central
difference. Besides, we assign each vertex with a support size S(u)
for local HRBF surface evaluation. To construct a continuous HRBF
surface, the support size of a kernel should cover at least k other
kernels (i.e., k = 8 according to Liu et al. [2016]). The k-nearest
neighbor for each pixel u is first obtained by searching the vicinity

Fig. 7. Comparison of principal curvature estimated by Lefloch et al.

[2017] versus our method. The black points indicate the corresponding

curvature values are out of a range of [−300, 300]. Note that |κ1 |, |κ2 | >
300 means the radius of curvature is already less than 3mm. These

are geometric details that cannot be captured by RGB-D cameras—i.e.,

unreliable estimation.

of u in a window patch (i.e., 7 × 7) of the filtered vertex map D.
The support size is assigned as the distance between a kernel and
its kth nearest neighbor. Lastly, the ray-intersection-based surface
evaluation is conducted in the input RGB-D frame to update its
vertex map D and normal map N.

3.2 Robust Curvature

The principal curvature map κ is evaluated by the on-the-fly HRBF
implicits in an input RGB-D frame, which provides important
clues in the registration step (Section 4.2). Benefiting from the
continuous surface representation provided by HRBF implicit, the
mean curvature H and the Gaussian curvature G can be reliably

computed by the gradient and Hessian matrix of the function f̂ (·).

H =
� f̂ Hess( f̂ )� f̂ T − |� f̂ |2Trace (Hess( f̂ )))

2|� f̂ |3
,

G =

�����
Hess( f̂ ) � f̂ T

� f̂ 0

�����
|� f̂ |4

,

(4)

where � and Hess(·) are the gradient and Hessian operator, re-
spectively. After that, the principal curvatures can be obtained by
solving the quadratic equation of normal curvature derived con-
structed from the first and second fundamental forms [Patrikalakis

2002]. That is, κ1 = H +
√
H2 −G and κ2 = H −

√
H2 −G.

To evaluate the reliability of curvature estimation, a comparison
between the prior approach [Lefloch et al. 2017] based on quadratic
surface fitting and our method is given in Figure 7. As can be ob-
served in the zoom view, curvature estimation applied by Lefloch
et al. [2017] is quite unstable in noisy regions (see the undefined
points shown in black). In contrast, our approach based on local
HRBF approximate is robust to noise. The result of curvature
evaluation is stored in a map co-aligned with the vertex map D.
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3.3 Reconstruction-indicated Confidence Map

For each new input RGB-D frame, a confidence map is usually
constructed to indicate the level of confidence at each vertex for
the camera pose estimation and the depth fusion. In the previous
reconstruction systems [Keller et al. 2013; Lefloch et al. 2017;
Whelan et al. 2016], the confidence map ϒ for each raw input
is derived from the radial decreasing quality [Keller et al. 2013]
according to the distortion model of the camera [Sarbolandi et al.
2015]; i.e., the depth values on pixels closer to the center of
the camera are more accurate. The distortion-based method can
improve the reconstruction quality to some extent, but it still
ignores the uncertainty of the input data. Hence, we evaluate the
input depth map by a reconstruction-indicated method based on
the observation that the implicit surface reconstruction relies on
the density and reliability of the acquired points.

The confidence is higher in regions where dense points exist
to construct an implicit surface and vice versa [Wu et al. 2014].
Specifically, we evaluate the magnitude of the function gradient

� f̂ (v) and its consistency to the normal ñD indicated by the depth
map D. This is because a reliable local shape described by HRBF im-
plicits will (1) be commonly defined by more kernels and (2) have
its gradient pointing toward the similar direction as ñD . Therefore,
the reconstruction-indicated confidence can be evaluated by

cr = exp �
�
− ε

| |� f̂ (v) · ñD | |
	



(5)

with ñD being the unit normal obtained by applying central-
difference on the bilateral filtered depth values of D. ε is a
coefficient to reflect the resolution of RGB-D cameras. For all our
experimental tests taken on a Microsoft Kinect v1 sensor, ε = 1000
gives the best results. For each pixel u, its final confidence is
commonly determined by the reconstruction-indicated term cr

and the distortion-based term cd as

c = cr cd , (6)

where cd = exp (−γ 2/2σ 2) is the same as Keller et al. [2013]. Here
γ is the radial distance between the current pixel and the camera
center normalized by the diagonal length of the frame image, and
σ = 0.6 is derived empirically according to Keller et al. [2013].

We compare our method of confidence map evaluation with the
camera-distortion-based method [Keller et al. 2013] on the human

model from the CoRBS benchmark [Wasenmüller et al. 2016]
(Figure 8). In contrast to the method of Keller et al. [2013] that
generates weights according to the optical direction of the cam-
era, our method of confidence evaluation properly reflects the
underlying uncertainty of the input frames (see the left column
of Figure 8 for an illustration). Moreover, we further evaluate
the reconstruction results by using different confidence maps as
shown in the right column of Figure 8. As can be found in the
zoom views, misalignment occurs by using the camera-distortion-
based method (see the double layers in the zoom views of Figure 8’s
top right). Differently, our method can effectively reflect the un-
stable measurement in those regions with large depth variation
by assigning smaller weight values. As a result, the registration
based on our HRBF-based confidence evaluation provides better-
aligned results (see the bottom right of Figure 8). We also measure

Fig. 8. Comparison of different methods for generating confidence maps

in registration: the camera-distortion-based [Keller et al. 2013] (top left)

versus our reconstruction-indicated method (bottom left), where the test is

conducted on the human model from the CoRBS benchmark [Wasenmüller

et al. 2016]. The reconstructed models by using different confidence maps

are shown in the right column, where zoom views highlight the quality

difference in reconstruction. The reconstruction errors are measured by

the distance between each point to the surface of the ground-truth model

and are plotted in heat color with the corresponding histogram.

the errors of reconstruction by the distance between each point
to the ground-truth surface model, which are plotted in heat color
with the corresponding histogram. In summary, our method leads
to a more accurate 3D model with less artifact.

4 CAMERA POSE ESTIMATION

We estimate the camera pose of each newly captured RGB-D frame
by registering it onto the global model, which highly depends
on the underlying registration algorithm and is a key to 3D
reconstruction in high accuracy. Our registration method consists
of two steps:

(1) Searching the correspondence between each point of the
input frame and its corresponding point in the vertex map
predicted from the global model in the previous frame.

(2) Updating the registration transformation by minimizing the
weighted point-to-plane geometric metric and the photomet-
ric difference between the pairs of points with correspon-
dence determined in the first step.

These two steps are repeatedly applied until the registration con-
verges to obtain the relative transformation between the neighbor-
ing frames. With the help of on-the-fly HRBF surfaces proposed
in our approach, curvatures and confidence maps can be reliably
estimated to improve the robustness of registration.

4.1 Correspondence Search

Given a point vi = Vi (u) from the ith frame (the input RGB-
D frame), it is required to find its most similar point v̄i−1 on
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the global model in the (i − 1)-th frame’s vertex map predicted
by on-the-fly HRBF implicits. Assuming the motion between two
consecutive frames is very small, the projective data association
algorithm [Blais and Levine 1995] can be applied to speed up the
search of correspondence [Keller et al. 2013; Newcombe et al. 2011].
Specifically, the estimated transformation Ti to the global model,
which is initialized as Ti−1 and will be updated during the iteration
of registration, is used to transfer 3D points of the ith frame into
the previous frame by T−1

i−1Ti . After that, we use a small window
with a fixed size of 5×5 to search compatible points in the predicted
vertex map of the global model.

We measure the dissimilarity of a point pair using the following
metric similar to Lefloch et al. [2017]:

γd = μd Id + μa Ia + μc Ic , (7)

which is determined by the distance variation term Id , the angle
variation term Ia , and the curvature variation term Ic together
with equal weight (i.e., μd = μa = μc =

1
3 works well in all our

experiments).

Id = ‖vi − v̄m ‖/Rmax,

Ia = 1 − ni · n̄m/(‖ni ‖‖n̄m ‖),

Ic = 1 − exp
(
−
|κ1,i − κ1,m | + |κ2,i − κ2,m |

max{|κ1,m |, |κ2,m |}

)
,

(8)

where v̄m , n̄m , κ1,m , and κ2,m are from the candidate points
obtained from the global model. Rmax is the distance between vi

and the farthest point that can be found in the search window.
A point pair with the smallest values of γd is considered as

the valid corresponding points. Moreover, we apply a pruning
strategy similar to Newcombe et al. [2011] to discard outliers in the
correspondence pairs. A reliable correspondence search depends
on a robust normal and curvature estimation, which has been
improved by using our on-the-fly HRBF surface evaluation. The
pairs of compatible points are stored in a set Ψ = {(u, ū)} for
computing the updated transformation Ti .

4.2 Transformation Update

The transformation is updated by minimizing an objective func-
tion considering both geometric and photometric information.

4.2.1 Geometric Term. A curvature-based weight scheme
[2017] is employed here to enhance the point-to-plane metric
[Newcombe et al. 2011] for aligning an input RGB-D frame to the
global model. The objective function to be minimized is defined as

Eдeom (Ti ) =
∑

(u, ū)∈Ψ

w (ū) ((Ti vi − v̄i−1) · n̄i−1)2 , (9)

where the curvature-based scheme [Lefloch et al. 2017] is em-
ployed to determine the weight w (ū) by incorporating the con-
fidence coefficient, the depth value, and most importantly the
principal curvatures at the point v̄i−1 (ū). Figure 9 demonstrates
the performance improvement when using on-the-fly HRBF to
evaluate curvatures (Section 3.2) and confidence map (Section 3.3)
as proposed in this article. In this experiment, the routine and the
weighting scheme of registration are the same as Lefloch et al.
[2017]. We evaluate the camera tracking accuracy by computing
Mean Camera Center Error and Standard Deviation (SD) between
the estimated poses with the corresponding reference poses, as

Fig. 9. Comparison of tracking robustness on the Lego-PAMI-TT Noise

Benchmark [Lefloch et al. 2017]. The mean error (top) and standard de-

viation for the estimated camera center (bottom left) and rotation (bottom

right) are evaluated with different levels of (Gaussian) noise. The noisy

levels successively increase with standard deviation by integer factors (i.e.,

1–13). Note that the camera-distortion-based confidence maps [Keller et al.

2013] are employed in Lefloch et al. [2017].

described in Lefloch et al. [2017]. This comparison indicates that
our method significantly improves the accuracy of registration
(therefore camera pose estimation) when high-level noise is pre-
sented.

4.2.2 Photometric Term. Following the approach of ElasticFu-
sion [Whelan et al. 2016], color information provided by an RGB-D
camera is used to further enhance registration. This complemen-
tary information is encoded in a photometric term as

Ecolor (Ti ) =
∑

(u, ū)∈Ψ

(C̄i−1 (π (T−1
i−1Ti vi )) − Ci (u))2, (10)

where C̄i−1 and Ci denote the RGB color value in the predicted
map of the previous frame and the color in the current input
frame. π is the projection function between 3D objects and the
corresponding image frame.

The final objective function to be minimized is

E (Ti ) = wдeomEдeom (Ti ) + Ecolor (Ti ), (11)

where wдeom is the weight of the geometric term. wдeom = 10 is
suggested in Whelan et al. [2016] and works well in all our tests.
We employ the Gauss-Newton nonlinear least-squares method
[Björck 1996] to minimize this energy function, which leads to a
reliable alignment between the current input frame and the global
model usually after around 20 steps of iteration.

5 DEPTH MAP FUSION

Given a valid camera pose (Section 4), the depth map fusion step
integrates the input points and their attributes into a global model
as an enriched surfel representation (Section 2).

Let Ti ∈ SE3 denote the pose of the ith input frame; we
transform both points and their normals into the (i − 1)-th frame
to conduct the data fusion. Points of the global model are also
projected into the (i−1)-th frame with their vertex ID stored in the
texture map. After that, for each transformed point of the ith frame,
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we follow the scheme of Cao et al. [2018] and Keller et al. [2013]
to search its valid neighbors in a 5 × 5 window by using the same
position/normal compatibility condition. When there are multiple
valid neighbors, the closest one is chosen to conduct fusion by a
confidence-weighted averaging. That is,

v̄←
c̄v̄ + cvд,i

c̄ + c
, n̄←

c̄n̄ + cnд,i

c̄ + c
,

κ̄1 ←
c̄κ̄1 + cκ1,i

c̄ + c
, κ̄2 ←

c̄κ̄2 + cκ2,i

c̄ + c
,

r̄ ← c̄r̄ + cr , c̄ ← c̄ + c, t̄ ← ti ,

(12)

with vд,i and nд,i being the position and normal of an input
point in the global model’s coordinate, respectively. c̄ , κ̄1, and κ̄2

are the stored confidence and curvature values of a point on the
global model, and c , κ1,i , and κ2,i are the values on an input point
evaluated by using the on-the-fly HRBF implicits (Sections 3.2
and 3.3).

Points of global model with confidence above a threshold σconf

are considered as stable points (e.g., σconf = 5.0 is employed by
following Cao et al. [2018] and Keller et al. [2013]), and only stable
points are used for HRBF surface prediction (Section 3.1). If no
corresponding model point is identified, we add the current vertex
with its attributes to the global model as an unstable point. Besides,
we remove points with confidence values below this threshold for
a period of time (i.e., 200 frames) by considering them as noises or
outliers.

6 RESULTS AND DISCUSSION

We have implemented our algorithm2 in the framework of Elastic-
Fusion [Whelan et al. 2016] by C++, CUDA, and OpenGL Shading
Language. Moreover, we have incorporated ORB-SLAM2 [Mur-
Artal and Tardós 2017] into our system for the implementation
of submap-based hierarchical optimization for large-scale scan-
ning. Our system has been evaluated on both synthetic datasets
and raw sequences captured by various depth cameras, including
structured light cameras (e.g., Asus XTion PRO LIVE, PrimeSense

Carmine, and Microsoft Kinect v1) as well as Time-of-flight cameras
(e.g., Microsoft Kinect v2). We carried out all our experiments
on a desktop PC equipped with an Intel Core i7-9700K CPU
@3.60GHz with 16GB RAM and a GeForce RTX 2070 GPU with
8GB memory. In this section, we first briefly describe the datasets.
Then we present our visual results, followed by the evaluation of
our method on different datasets. The output of our system can
be either a point cloud or a triangular mesh extracted from the
iso-surface maintained by the closed-form HRBF representation
using the dual-contouring method [Liu et al. 2016]. Figure 10
shows some small and middle-sized objects rendered in meshes.
In all other figures, we directly render point clouds for the sake of
efficiency. All reconstructed 3D models are visualized by Easy3D
[Nan 2021], which is an open source library for 3D modeling,
geometry processing, and rendering.

6.1 Test Datasets

We tested our method on the following datasets.

2The source code is available at https://github.com/YabinXuTUD/HRBFFusion3D.

Fig. 10. Reconstructed 3D individual models with different geometric

properties and scalability from the Object Scans [Choi et al. 2016] dataset.

Here the models are rendered by polygonal meshes extracted from the

iso-surfaces of HRBF implicits.

6.1.1 Object Scans [Choi et al. 2016]. This dataset provides
more than 10,000 individual 3D object scans that contain a diver-
sity of objects with different geometric properties and scalability.
The scans are captured by unprofessional operators with a Prime-
Sense Carmine RGB-D camera.

6.1.2 ICL-NUIM Benchmark [Handa et al. 2014]. This is a syn-
thetic benchmark dataset with geometric and camera pose ground
truth. We selected four scenes of living rooms (including synthetic
noise) commonly used in the previous work to evaluate the track-
ing accuracy and reconstruction quality of our results.

6.1.3 TUM Benchmark [Sturm et al. 2012]. It is a dataset cap-
tured by a Microsoft Kinect v1 with motion-captured camera poses
as ground truth, which is widely used to evaluate the tracking
accuracy of a reconstruction method. We select four frequently
used sequences (i.e., fr1/desk, fr2/xyz, fr3/office, fr3/nst) for the
evaluation.

6.1.4 CoRBS Benchmark [Wasenmüller et al. 2016]. This is
a benchmark dataset of Microsoft Kinect v2 providing both the
motion-captured camera poses and the 3D models acquired
by a high-precision commercial scanner as ground truth. We
select the human model (Figure 8) and the racing car model (in
supplementary video) to demonstrate the performance of our
approach.

6.1.5 CuFusion Dataset [Zhang and Hu 2017]. This dataset con-
tains both synthetic and real-world sequences for object scanning.
Both ground-truth trajectories and 3D models are provided on the
synthetic examples. We select the synthetic sequence Armadillo

(that does not have color information) for the evaluation.

6.1.6 ScanNet Dataset [Dai et al. 2017]. This dataset is an RGB-
D video dataset captured by structure sensors, which consists of
2.5 million views in more than 1,500 scanned sequences. We
randomly selected 200 sequences to test the performance of our
approach.
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6.1.7 Our Dataset. We scanned a few objects and large in-
door scenes using a Microsoft Kinect v1 and these are shown in
Figures 12, 16, 13, 20, and 21. This is mainly used to evaluate
the detail recovery and the scalability of our method. For the
evaluation of reconstruction accuracy, we obtain the ground-truth
models shown in Figure 13 by a commercial hand-held structure
light scanner, Artec Eva, with the precision of 0.1mm.

6.2 Visual Results

6.2.1 Individual Objects. We first tested our method on a va-
riety of objects from the Object Scans dataset [Choi et al. 2016].
Figure 10 shows the reconstruction results of 18 objects of dif-
ferent sizes and characteristics. Among these objects, (1), (2), (3),
and (4) are small toys, where the average size is about 0.56m ×
0.30m × 0.36m; small geometric features are presented (i.e., the
handlebar in (1) with a radius of 0.01m, the ear in (3) with a
thickness of 0.02m (as shown in zoom views of Figure 10)). It is
intractable for the methods based on a volumetric representation
to reconstruct such geometric details while still adapting to the
scale of its background. On the contrary, our HRBF-based on-the-
fly surface representation has addressed such limitation since the
reconstruction quality only depends on the local kernels and the
corresponding support radius (Section 3.1).

Apart from the small-sized toys, we also tested our system on
middle-sized objects, including indoor furniture ((5), (6), (7), (8),
(9)), sculpture ((10), (11), (12), (13)), and outdoor equipment ((14),
(15), (16)). The average size is around 0.89m × 0.60m × 1.03m. The
chair (9), the sculpture ((10), (11)), and the outdoor equipment
(15) mainly demonstrate curved surfaces, while the tables ((5), (6),
(8)) contain large planar regions. Besides, the chair (7) and the
horse models (12) have dense tube-like structures, which poses
challenges for RGB-D reconstruction systems. Thanks to the high
adaptivity provided by the HRBF on-the-fly surface representation,
such fine geometric features (i.e., the decoration on the legs of table
(6), the small crease on the desktop in (8), and the concave part in
(15) (see the zoom views in Figure 10)) are faithfully recovered by
our system.

At last, we tested our system with relatively large vehicles ((17)
and (18)), the sizes of which are 4.94m×1.97m×1.94m and 3.33m×
1.68m × 1.94m, respectively. Our system can reconstruct not only
global consistent models but also fine geometric details. This can
be observed from the crease of the tires on both objects (as shown
in the zoom view in Figure 10).

6.2.2 Large Scenes. Figure 1 presents two large-scale indoor
scenes reconstructed by our system. The left shows the recon-
structed results of a study room in a university library, while the
right shows a study platform in a grand hall of an academic build-
ing. Please note that the length of both scenes is above 21m. Due
to the complexity of the scene layout, the camera trajectories are
extremely complicated, posing challenges to both camera tracking
and reconstruction. The detailed camera trajectories can be found
in our supplementary video. Our system managed to capture and
reconstruct both scenes with high fidelity.

6.3 Evaluation

In addition to the above visual results, we also conducted a com-
prehensive analysis of our method in terms of tracking robustness,

Fig. 11. Comparison of the influence of different representations on track-

ing robustness with Kintinuous [Whelan et al. 2012], PointFusion [Keller

et al. 2013], and VoxelHashing [Niessner et al. 2013] on two noisy scanning

sequences: (top row) the Armadillo model of the CuFusion Dataset [Zhang

and Hu 2017] and (bottom row) the scene sequence lr kt1 of the ICL-NUIM

dataset [Handa et al. 2014]. From left to right, noises are added into the

depth maps in different levels of normal distribution: σ = 3.0, σ = 6.0,
and σ = 12.0. Note that we clip tracking error larger than 0.05m and

consider it as tracking lost. The insets show the ground-truth geometry of

test data.

detail recovery, scalability, reconstruction accuracy, ablation study,
parameter discussion, memory consumption, and processing times.
Details are given below.

6.3.1 Tracking Robustness. The camera tracking of RGB-D re-
construction systems generally tends to drift due to the noise and
sparsity in the input frames, which also accumulates noise in the
global model. We evaluated the performance of our HRBF-based
surface evaluation in tracking robustness below.

Three state-of-the-art reconstruction systems are selected to
compare the influence of different representations on tracking
robustness, including Kintinuous [Whelan et al. 2012], PointFu-

sion [Keller et al. 2013], and VoxelHashing [Niessner et al. 2013].
Kintinuous is an extended version of the original KinectFusion

[Newcombe et al. 2011] by exploiting a dynamic volume. Voxel-

Hashing utilizes a hashing structure to maintain a sparse represen-
tation with voxel grids. PointFusion uses a surfel representation for
camera tracking. The experiment is conducted on two synthetic
sequences with ground-truth camera poses: the Armadillo of the
CuFusion Dataset [Zhang and Hu 2017] and the lr kt1 of the ICL-

NUIM dataset [Handa et al. 2014]. Noises are added in different
levels of normal distribution (i.e., σ = 3.0, σ = 6.0, and σ = 12.0) to
test the robustness of different systems. We evaluated the camera
pose error for all frames and the results are shown in Figure 11. It
can be found that the point-based representation is more sensitive
to noise, while our HRBF-based method demonstrates consistently
low errors in camera tracking.

We further evaluated our system in terms of accuracy in trajec-
tory estimation on the TUM benchmark [Sturm et al. 2012] (Mi-

crosoft Kinect v1), where ground-truth trajectories are provided by
a highly accurate calibrated motion-capture system. We chose a set
of widely used sequences (i.e., fr1/desk, fr2/xyz, fr3/office, fr3/nst)
and compared our methods with state-of-the-art online recon-
struction systems, including DVO-SLAM [Kerl et al. 2013], RGBD

SLAM [Endres et al. 2012], MRSMap [Stückler and Behnke 2014],
Kintinuous [Whelan et al. 2012], ElasticFusion [Whelan et al. 2016],
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Fig. 12. Comparison of reconstruction results generated by Redwood [Choi et al. 2016], BundleFusion [Dai et al. 2017], ElasticFusion [Whelan et al. 2016],

UncertaintyAware [Cao et al. 2018], and our method on five objects with different geometric shapes and details. Models from left to right are Fertility,

Plant, Human, Pillar, and Car Frame. Note that the Redwood and the BundleFusion methods generate mesh surfaces from volume representation as results

(displayed in the first two rows), while the results of the other three methods as point clouds are rendered by surfel splatting.

BundleFusion [Dai et al. 2017], and UncertaintyAware [Cao
et al. 2018]. To make a complete comparison, the offline
reconstruction system, Redwood [Choi et al. 2015], is also
included. We recorded the absolute trajectory error (ATE) of
root-mean-square error (RMSE) for camera tracking accuracy.
The results are summarized in Table 1. We can see that our
method consistently outperformed (or demonstrated comparable)
results to the most promising methods in the comparison. To
analyze camera tracking drift, we separately evaluated our
method with and without global optimization (i.e., similar to
UncertaintyAware [Cao et al. 2018] to which both local and
global bundle adjustment (BA) are applied in global optimization).
Most existing systems have applied different global optimization
techniques to alleviate the accumulated errors in camera pose
estimation.

• DVO SLAM, RGBD SLAM, and MRSMap first apply a pose
graph optimization to achieve a global consistent trajectory
and then the global model is constructed by integrating all

depth maps in a volumetric representation (i.e., DVO SLAM

and RGBD SLAM) or merging key surfel views (i.e., MRSMap).
• Kintinuous and ElasticFusion achieve a globally consistent

model in a map-centric manner by deforming the global
model according to global or local constraints.
• Redwood, BundleFusion, and UncertaintyAware divide the

global model into submaps and obtain a globally consistent
model by optimizing between submaps.

Our system outperforms most of these systems. There is one
exception that BundleFusion achieved the best result on fr3/nst.
The main reason lies in its combined sparse visual features and
dense photometric and geometric objective, which enables it to
obtain a tighter alignment on textured scenes. Global optimization
techniques such as local or global BA can help significantly reduce
the tracking errors in practice. It is interesting to compare the
errors after removing either local or global BA (see the last two
parts of Table 1). We can find that our results are more accurate
than those of UncertaintyAware in most cases.
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Table 1. ATE RMSE on the TUM Benchmark (Unit: m)

fr1/desk fr2/xyz fr3/office fr3/nst

DVO SLAM 0.021 0.018 0.035 0.018

RGBD SLAM 0.023 0.008 0.032 0.017

MRSMap 0.043 0.020 0.042 2.018

Kintinuous 0.037 0.029 0.030 0.031

ElasticFusion 0.020 0.011 0.017 0.016

BundleFusion 0.016 0.011 0.022 0.012

Redwood 0.027 0.091 0.030 1.929

UncertaintyAware 0.015 0.006 0.009 0.014

Ours 0.014 0.005 0.007 0.016

Comparison of only applying local BA

UncertaintyAware 0.015 0.006 0.037 0.014

Ours 0.014 0.005 0.015 0.016

Comparison of only applying global BA

UncertaintyAware 0.033 0.009 0.025 0.093

Ours 0.018 0.007 0.014 0.030

Fig. 13. Comparison of the reconstruction accuracy with ElasticFusion

[Whelan et al. 2016] (third column), BundleFusion [Dai et al. 2017] (fourth

column), Redwood [Choi et al. 2015] (fifth column), and UncertaintyAware

(sixth column). The ground-truth models (second column) were obtained

by a high-precision structure light 3D scanner. The color map presents the

distance error on the reconstructed models. Models from top to bottom

are Faces, Head, Upper Body, Small Chair.

6.3.2 Detail Recovery. With the help of on-the-fly HRBF sur-
face representation, our method is able to recover finer geometric
details. To demonstrate this capability, we compared our method
with the state-of-the-art reconstruction systems including Red-

wood [Choi et al. 2015], ElasticFusion [Whelan et al. 2016], Bundle-

Fusion [Dai et al. 2017], and UncertaintyAware [Cao et al. 2018] on
a variety of 3D objects (see Figure 12). Since our scanning aims at
achieving a complete model, a global loop is required to exist for
every model.

Fig. 14. Surface reconstruction error in terms of average point-to-surface

distances on the ICL-NUIM benchmark (unit: meter). The best performance

is highlighted in bold fonts.

Fig. 15. Comparison of the reconstruction quality between the offline

optimization-based method of Zhou et al. [2013] (top) and our approach

(bottom) on the stonewall example from their 3D Scene Dataset. This

example consists of 2,700 frames.

The Redwood system [Choi et al. 2015] cannot generate good
results due to the registration error. It completely failed on the
human example (see the human face and the right leg in the third
column). The same issue of camera tracking drift also occurs in
the ElasticFusion and the BundleFusion systems. In short, all three
of these systems are unable to produce a global consistent 3D
model. The UncertaintyAware approach can obtain global consis-
tent models by successfully detecting the close loop in all examples.
However, artifacts are still generated by the UncertaintyAware

approach due to the accumulated error—see the human face in the
third column. As has been expected, our HRBF-based method is
more robust in recovering geometric details.

6.3.3 Reconstruction Accuracy. To evaluate the reconstruction
accuracy, we compared the results of Redwood [Choi et al. 2015],
ElasticFusion [Whelan et al. 2016], BundleFusion [Dai et al. 2017],
UncertaintyAware [Cao et al. 2018], and ours to the 3D models
acquired by a commercial hand-held structure light scanner, Artec
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Fig. 16. Comparison with state-of-the-art RGB-D reconstruction systems, i.e., ElasticFusion [Whelan et al. 2016], Redwood [Choi et al. 2015], BundleFusion

[Dai et al. 2017], and UncertaintyAware [Cao et al. 2018] on a sequence of 6,114 RGB-D images captured in a conference room by a complex camera trajectory

that consists of many local loops (see Figure 17).

Fig. 17. The complex camera trajectory for the conference room example

shown in Figure 16 with 6,114 frames.

Eva, with the precision of 0.1mm. The model obtained from this
structure light scanner is referred to as ground truth. To evaluate
the relevant scenery, we manually removed the background of
the obtained model from each method. Each model is aligned to
the ground-truth mesh and the distance error is computed and
visualized as a color map (see Figure 13). As can be observed, all
these methods were able to produce consistent 3D models and our

results have the smallest errors while preserving more geometric
details than the other methods. The errors were mainly sourced
to camera tracking, which is prone to noises on the input RGB-D
images. By using the on-the-fly HRBF surface estimation together
with the weighted registration strategy (i.e., curvature, confidence,
and photometric), our system is more robust in camera tracking,
therefore yielding the highest precision among all these systems.

We also evaluate the surface reconstruction accuracy in terms
of average point-to-surface distances on the living room kr0-kr3

models from the ICL-NUIM benchmark [Handa et al. 2014]. Our
method is compared with a variety of existing approaches and
the results are summarized in Figure 14. It is easy to find that
our method can achieve better (or comparable) results in terms
of reconstruction accuracy. Again this is benefited from the robust
HRBF on-the-fly surface estimation presented in this article.

6.3.4 Scalability. With the robustness in camera tracking and
surface prediction, our method can reconstruct large scenes. In
addition to the two scenes already shown in Figure 1, we tested
our approach on the stonewall models from the 3D Scene dataset
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Fig. 18. Comparison of our reconstruction result (bottom row) with BundleFusion [Dai et al. 2017] (top row) on "scene0054_00," a sequence of 6,629 RGB-D

frames captured by a structure sensor, from ScanNet [Dai et al. 2017]. Closer inspections (green and yellow boxes) are presented to show reconstruction

details of each method. The camera trajectory is visualized in blue color. Our approach maintains only global model points with confidence values larger

than a threshold (see Section 5) similar to Cao et al. [2018], Whelan et al. [2016] and Keller et al. [2013], which causes some missing data on the floor.

Fig. 19. More comparison between the reconstruction results of BundleFusion [Dai et al. 2017] (top) and ours (bottom) on the other four sequences from

the ScanNet dataset [Dai et al. 2017], which contain 1,159, 1,285, 2,434, and 1,490 RGB-D frames, respectively. Structural distortions are marked in colored

circle, and closer zoom views are also presented to show the details of 3D reconstruction.

(see Figure 15). Comparing their method with the offline global
optimizer [Zhou and Koltun 2013], we can observe a significant
reduction of camera tracking drift on our result on this example
with 2,700 frames.

As shown in Figures 16 and 17, we captured a sequence of
6,114 RGB-D images in a conference room by a Microsoft Kinect v1

camera with a complex camera trajectory. The trajectory contains
many local loops. When comparing with other state-of-the-art re-
construction systems including Redwood [Zhou and Koltun 2015],
ElasticFusion [Whelan et al. 2016], BundleFusion [Dai et al. 2017]),

and UncertaintyAware [Cao et al. 2018], all the other four methods
suffer from camera tracking drift (especially in the regions with
local loops on the trajectory) and perform poorly in recovering
surface details—see the "double layers" of chairs (fourth column)
and tables (fifth column) shown in the zoom views. Our robust sur-
face estimation by using on-the-fly HRBF implicits can effectively
reduce the error in camera tracking drift and thus can generate
more consistent 3D reconstruction.

We also conducted experiments on the ScanNet dataset [Dai
et al. 2017]. Among its 1,500 scan sequences, we randomly selected
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Fig. 20. Comparison of our reconstruction result (bottom row) with state-of-the-art RGB-D reconstruction systems, i.e., BundleFusion [Dai et al. 2017] (top

row) and UncertaintyAware [Cao et al. 2018] (center row) on a sequence of 14,163 RGB-D frames captured on an urban street with a long trajectory. Closer

inspections (black boxes) are presented to show the reconstructed details of each method.

Table 2. Statistic of Memory Consumption for Reconstruction (Unit: MB)

Model Name Fig. #Frames BundleFusion (GPU) Ours (GPU)

Voxel Size

10mm 4mm

Fertility 12 1,301 153.0 740.9 15.0

Plant 12 1,703 162.9 830.5 25.3

Human 12 2,751 137.4 1,309.1 44.9

Pillar 12 1,987 198.2 1,536.6 59.8

Car Frame 12 3,694 126.8 1,462.5 95.1

Faces 13 579 59.0 443.0 21.1

Head 13 1,663 167.6 1,806.4 15.6

Upper Body 13 1,308 179.7 1,951.6 22.3

Small Chair 13 1,693 107.5 1,115.2 34.0

Conference Room 16 6,114 164.7 1,240.3 98.1

Urban Street 20 14,163 2205.3 - 552.5

Library 1 16,128 1924.1 - 571.3

Study Platform 1 10,930 1835.0 - 603.1

200 sequences to reconstruct 3D scenes and compared our results
with those from BundleFusion [Dai et al. 2017]. It is found that simi-
lar results are generated by both methods on most of the sequences,
especially on those for simple scenes. Better reconstruction results
can be found on five sequences with complex trajectories. For
example, in the scene shown in Figure 18, the structural distortion
is significantly reduced by our method. Similar improvement can
also be found on the other four scenes as shown in Figure 19.

Moreover, we captured a sequence of 14, 163 RGB-D frames with
a quite long trajectory on an urban street using a Microsoft Kinect

v1. We compare the reconstruction results with BundleFusion [Dai
et al. 2017] and UncertaintyAware [Cao et al. 2018] in Figure 20.
We can observe that the result of BundleFusion [Dai et al. 2017]

breaks (see the zoom view on the top left) and fails to generate a
globally consistent 3D model. UncertaintyAware can obtain a more
consistent result but still suffers from camera tracking drift, which
leads to artifacts in the reconstruction (see the zoom view on the
right of the second row). In contrast, our system can produce a
globally consistent 3D model. It is also worthy to note that surfel-
based representation has the advantage to preserve geometric
details. This can be observed from the number plate “1” in the
right zoom views, where the result obtained from the volumetric
representation of BundleFusion is not as clear as UncertaintyAware

and ours.

6.3.5 Ablation Study. We further conducted an ablation study
to evaluate the effectiveness of each single algorithm component
of our system by replacing it with another option used in others’
work, where the study is taken on a sequence of 4,080 RGB-D
images captured in a meeting room (Figure 21). For quantitative
analysis, we also plot the mean distance errors of all validated
vertex pairs for each frame pair to indicate the quality of the
registration as shown in Figure 21(f). Due to the high sensitivity
to noise, the surfel-based representation led to a dramatic increase
in mean distance error (see Figure 21(f)) and unsatisfactory re-
construction (see the close-up view shown in Figure 21(a)). In the
second test, we replace our HRBF-based curvature estimation with
the method presented in Lefloch et al. [2017]. Although the global
consistent 3D model can be obtained, thanks to global techniques
of local and global BA, noises induced by the black surfaces (i.e.,
chairs) can lead to artifacts in intra-submap level as shown in
Figure 21(b). In Figure 21(c), we utilize the camera-distortion-based
evaluation method [Keller et al. 2013] for confidence map. As a
result, the accumulated noise in the global model leads to unstable
registration and imperfect reconstruction. The last two tests are
conducted to evaluate the importance of local BA (Figure 21(d))
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Fig. 21. Evaluation of our system with different options for each single component on a sequence of 4,080 RGB-D images captured in another meeting room

(different from Figure 17). (a) Replacing HRBF implicits by the surfel-based representation. (b) Changing HRBF-based curvature to the curvature estimation

method presented in Lefloch et al. [2017]. (c) Using the camera-distortion-based confidence evaluation method in Keller et al. [2013]. (d) Removing local

BA. (e) Removing global BA. (f) Our reconstruction result with full components. (g) Mean distance error of all validated vertex pairs (see Section 4.1) for

each frame pair. The close-up views in (a)–(e) show the artifacts obtained by changing one component (top) and our corresponding reconstruction (bottom)

using all algorithm components.

Fig. 22. The evaluation of using different support sizes on the accuracy

of camera tracking on different datasets, i.e., TUM benchmark, ICL-NUIM

benchmark, and CoRBS benchmark. We select different sizes of window

patches (as described in Section 3.1): 5×5, 7×7, and 9×9 for the evaluation.

and global BA (Figure 21(e)) in our pipeline of reconstruction,
where local BA helps to recover the artifacts between submaps and
global BA helps to generate globally consistent models.

6.3.6 Parameter Discussion. As a key parameter of our system,
the support size influences the accuracy of registration. We select
different sizes of window patches (Section 3.1) as 5 × 5, 7 × 7
(default), and 9 × 9 for the experiment. The evaluation is con-
ducted on three different datasets, i.e., TUM benchmark, ICL-NUIM

benchmark, and CoRBS benchmark, and the results are presented in
Figure 22. A larger support size leads to a smoother surface, while
a smaller support size can preserve more geometric details. Corre-
spondingly, a patch size of 5 × 5 is suitable for the reconstruction

of clean data but not robust enough to handle the noises induced
by depth cameras. On the other hand, a patch size of 9 × 9 always
leads to over-smoothing results. A patch size of 7 × 7 can achieve
the best performance in our tests as shown in Figure 22.

6.3.7 Performance. To study the memory consumption of our
approach, we recorded the GPU memory consumption for storing
and managing the global model over 13 sequences of RGB-D im-
ages that are captured. Comparison with the BundleFusion system
[Dai et al. 2017] is conducted to demonstrate the memory efficiency
of our HRBF-based method; see Table 2. Note that BundleFusion

shares the same representation with VoxelHashing [Niessner et al.
2013], which exploits sparsity by applying a hash-based structure
to the volumetric representation. The memory consumption of
BundleFusion by using two different voxel sizes is reported. When
4mm is used for the voxel size, being able to capture more geo-
metric details, the BundleFusion system failed to add depth maps
during reconstruction due to the large memory requirement. Our
system has a significantly smaller memory footprint compared to
the volumetric representation-based approaches and therefore is
more suitable for reconstructing large scenes.

We report the computing time used by each component of
our system in Figure 23 for all RGB-D frames throughout the
sequence of Meeting Room (Figure 16). The efficiency of different
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Fig. 23. Comparison of the computing time of our system (right) with BundleFusion [Dai et al. 2017] (left) and UncertaintyAware [Cao et al. 2018] (center)

on each frame of the Meeting Room sequence (Figure 16). The processing time for each main component of the three systems is also plotted. Note that two

GPUs are used for BundleFusion as suggested in Dai et al. [2017] and the time is reported here according to the main GPU. Differently, only one GPU is

employed for UncertaintyAware and our pipeline.

components of the computational pipeline has been analyzed. In
general, our system can achieve an average processing time of
42ms per frame, which indicates a near-real-time performance
(i.e., approximately 24Hz). Among all components of our system,
the HRBF-based prediction takes over half of the processing time
(25ms). For comparison, we also plot the processing times of
BundleFusion [Dai et al. 2017] (left) and UncertaintyAware [Cao
et al. 2018] (center) in Figure 23.

7 CONCLUSION AND FUTURE WORK

We have presented HRBF-Fusion as a new method using on-the-
fly HRBF implicits for 3D reconstruction from RGB-D images. Our
system is not only able to reconstruct objects with high fidelity but
also scalable to large scenes after incorporating submap-based lo-
cal and global optimization strategies. The robustness of our HRBF-
Fusion is mainly due to the robust curvature estimation based on
the HRBF implicits, which can significantly reduce the drift in
camera tracking. Moreover, our reconstruction-indicated surface
evaluation method exploits the uncertainty of the measurement in
the input depth maps and further improves the accuracy in both
the camera tracking step and the finally reconstructed models. The
surfel representation using on-the-fly HRBF implicits has a low
memory footprint and is suitable for reconstructing large scenes.

The proposed system can reconstruct long-range scanning with
submap-level local and global optimization. However, camera
tracking failure may still happen between intra-submaps for
featureless regions (e.g., white planar walls). This is a common
problem in all existing RGB-D reconstruction systems. A proactive
reconstruction method by using robotic systems is planned to be
investigated in our future work. Furthermore, it is also interesting
to incorporate geometric primitives or structural regularities (i.e.,
parallelism or orthogonality) to improve the robustness of the
hierarchical optimization for long-range scanning.
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