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A B S T R A C T   

Endogeneity arises in discrete choice models due to several factors and results in inconsistent 
estimates of the model parameters. In adaptive choice contexts such as choice-based recom-
mender systems and adaptive stated preferences (ASP) surveys, endogeneity is expected because 
the attributes presented to an individual in a specific menu (or choice situation) depend on the 
previous choices of the same individual (as well as the alternative attributes in the previous 
menus). Nevertheless, the literature is indecisive on whether the parameter estimates in such 
cases are consistent or not. In this paper, we discuss cases where the estimates are consistent and 
those where they are not. We provide a theoretical explanation for this discrepancy and discuss 
the implications on the design of these systems and on model estimation. We conclude that 
endogeneity is not a concern when the likelihood function properly accounts for the data gen-
eration process. This can be achieved when the system is initialized exogenously and all the data 
are used in the estimation. In line with previous literature, Monte Carlo results suggest that, even 
when exogenous initialization is missing, empirical bias decreases with the number of choices per 
individual. We conclude by discussing the practical implications and extensions of this research.   

1. Introduction 

Endogeneity can arise in discrete choice models due to several factors including measurement errors, selection bias, omitted 
variables, and simultaneity, and results in inconsistent estimates of the model parameters (Guevara, 2015). The textbook definition of 
endogeneity is a correlation between the independent/observed variables in the model and the unobserved error term. A broader 
definition of endogeneity has been provided by Louviere et al. (2005), in which they defined “endogenous” as “all effects that are not 
exogenous”. In the latter work, the authors attribute endogeneity to model misspecification. 

In linear regression models, different methods have been proposed to address endogeneity, the most common of which are 
instrumental variables (IV) and Two-Stage Least Squares (TSLS). These methods use instruments that are correlated with the 
endogenous variables, but not with the error term. Other corrections include Heckman correction for selection bias (Heckman, 1979), 
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and the estimation of simultaneous equation models. 
In discrete choice models, several corrections have been proposed that mainly fall into two categories; the BLP method (Berry et al., 

1995), and the control-function method (Heckman, 1977; Hausman, 1978). The BLP method (also known as the “product-market” 
control approach) suggests aggregating disaggregate consumer preferences obtained from discrete choice models into an aggregate 
market-level system, allowing for the application of standard instrumental variable methods. On the other hand, control-function 
methods use extra variables in the utility specification that are obtained using exogenous instruments. Different control-functions 
have been proposed, the most common of which are by Petrin and Train (2010), Villas-Boas and Winer (1999), Blundell and 
Powell (2004), Guevara and Ben-Akiva (2006, 2012), and Guevara and Polanco (2016). 

These methods are convenient when a few endogenous variables are identified and relevant instruments are available. However, 
the cases considered in this paper are of a different nature; we consider adaptive choice contexts such as adaptive stated preferences 
(ASP) surveys and choice-based recommender systems. When individuals are presented with successive menus (or choice situations), 
the alternatives and attributes in each menu depend on the attributes and choices in the previous menus. Recommender systems 
recommend the “best” alternatives to a user (e.g. alternatives that are most likely to be chosen), while ASP surveys usually do the 
opposite; the attributes of the chosen alternative are deteriorated in order to test whether a respondent will switch. 

In the presence of taste variation (e.g. logit mixture with random parameters), the distributions of heterogeneity are assumed to be 
uncorrelated with the covariates (see Wooldridge, 2010). To illustrate the source of the endogeneity that may arise in adaptive choice 
contexts, we consider the simple logit mixture model shown in equation (1), where individual n’s utility of alternative j includes an 
alternative specific constant (βj) and one attribute with a random parameter βn: 

Ujn ¼ βj þ βnXjn þ εjn

¼ βj þ ðβþ ηnσÞXjn þ εjn
(1)  

where βn � Nðβ;σ2Þ, and ηn is a standard normal random variable independently and identically distributed across individuals. 
Endogeneity arises as a result of the correlation between the unobserved heterogeneity (ηn) and the independent variable ðXjnÞ. In 

recommender systems, individuals with a (supposedly) higher preference for the attribute X (i.e., positive and high value of ηn) are 
recommended alternatives having higher values of this attribute. In turn, in ASP surveys, individuals with a (supposedly) higher 
preference for X are usually presented with a lower value of that attribute in their following choice tasks. If recommendations/choice 
tasks are generated based on multiple attributes, the above reasoning can be extended to conclude that endogeneity arises in all at-
tributes (as Xjn and βn will be multidimensional). 

Under the context described before for recommender systems or ASP surveys, endogeneity can also be explained by model mis-
specification. The values of Xjn depend on the user’s previous choices (and thus on this user’s preferences βn). A correctly specified 
model should account for the joint likelihood of the choices (dn) and the observed attributes ðXjnÞ as shown in equation (2). On the 
other hand, models that do not account for this dependency ðPðXnjβnÞÞ will be misspecified and might result in biased estimates. 

Pðdn; XnjβnÞ¼PðdnjXn; βnÞPðXnjβnÞ (2) 

In this paper, we extend the theoretical analyses of Liu et al. (2007) on “adaptive metric utility balance” to choice contexts to 
demonstrate how endogeneity can cause inconsistent estimation results, and how this inconsistency can be avoided. We show that 
when the system is initialized with exogenous attributes, and when all menus (or choice tasks) are included in the estimation, the 
estimates are consistent. On the other hand, excluding data from the estimation leads to inconsistent estimates. We note that this paper 
only addresses endogeneity that arises as a result of the adaptive nature of these contexts, however, there might be other sources of 
endogeneity that are outside the scope of this paper, such as measurement errors, omitted variables, and self-selection. 

The remainder of this paper is organized as follows. Section 2 presents an overview of adaptive contexts such as recommender 
systems and ASP surveys. Section 3 presents the methodology used in adaptive choice scenarios and a theoretical analysis of endo-
geneity. A Monte Carlo experiment mimicking a dynamic recommender system is presented in Section 4. Section 5 discusses the 
practical implications on recommender systems, ASP surveys, and RP/SP estimation. Finally, Section 6 concludes the paper. 

2. Background 

This paper primarily focuses on adaptive choice contexts whereby endogeneity might arise because the attributes of alternatives 
presented to a user are determined by the previous choices done by the same user. In such applications, all attributes are assumed to be 
endogenous. We start by discussing two applications of this nature; choice based-recommender systems and adaptive stated prefer-
ences surveys. In addition, we briefly discuss adaptive metric utility experiments. 

2.1. Choice-based recommender systems 

Discrete choice models are used in recommender systems due to their ability to integrate item specific, user specific, and contextual 
data in a single model (Chaptini, 2005; Danaf et al., 2019a; Jiang et al., 2014; Polydoropoulou and Lambrou, 2012). These applications 
are generally based on estimating individual-level parameters, and using them in menu/assortment optimization. 

In traditional applications of choice-based recommender systems, individual preferences are estimated beforehand (offline) and 
used in generating personalized recommendations. For example, Chaptini (2005) presents an online academic advisor for MIT students 
that recommends academic courses based on observed and latent attributes of the courses (e.g. difficulty, workload, overall 
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impression, etc.). The model is estimated with data collected via an online revealed preferences (RP)/stated preferences (SP) survey, 
and the estimated individual level parameters are used in generating course recommendations. 

A similar approach is used by Ansari et al. (2000), who present a Hierarchical Bayes approach to movie recommendations on the 
internet. The underlying model accounts for systematic (observed) and random (unobserved) heterogeneity in user preferences. 
Customer ratings are modeled as a function of product attributes, customer characteristics, and expert evaluations. Rubin and Steyvers 
(2009) present another application to movie recommendations, modeling the process by which an individual selects and later rates an 
item. A Latent Dirichlet Allocation (LDA) model is used to model the probability of selecting a movie given a set of movies classified by 
topic, and an ordered logit model (with an individual-specific error term) is used to model movie ratings. 

The above applications are static, and individual-level parameters are estimated beforehand using SP or RP data. More recently, 
dynamic online applications of choice models in recommender systems have been proposed. Teo et al. (2016) present a choice-based 
recommender system used by Amazon Stream, whereby a probit model is estimated at the individual level using the users’ click data. 
Individual preferences are learnt from repeated choices, and updated dynamically using Bayesian estimation. 

Estimating models at the individual level is feasible when the number of choices per individual is large (e.g. click data). However, 
long panels are not available in many applications. To solve this problem, Danaf et al. (2019a) propose a methodology for estimating 
and updating individual-specific preferences in real-time, using population-level parameters as priors. The underlying model accounts 
for inter- and intra-consumer heterogeneity (corresponding to random taste variations among individuals and among different choices 
of the same individual respectively). The estimation method extends the three-step Gibbs sampler of the logit mixture model (Train, 
2009) to a five-step Gibbs sampler (Becker et al., 2018) to account for intra-consumer heterogeneity. A computationally efficient 
Bayesian estimation is used to update preferences (i.e., individual specific coefficients and their distributions) after each choice, while 
population-level parameters are updated offline periodically. Related work by Song et al. (2017, 2018) demonstrates how the esti-
mated individual-specific coefficients are used in generating personalized recommendations through online assortment optimization. 
This model maximizes hit-rate (i.e., the probability of choosing one of the recommended alternatives1) or consumer-surplus (CS) in the 
form of log-sum, subject to constraints on the maximum number of alternatives to be shown in a menu. While this method allows for 
estimating individual preferences with a small number of choices per individual, dynamic recommendations coupled with taste 
heterogeneity can result in endogeneity bias. 

2.2. Adaptive SP surveys 

In stated choice experiments, a respondent is presented with hypothetical alternatives and asked to choose one among those. 
Efficient designs, which have been proposed to reduce the standard errors of the estimated parameters, rely heavily on priors (Walker 
et al., 2018). To overcome this problem, Kanninen (2002) and Johnson et al. (2006, 2013) suggested updating the design during the 
data collection phase as knowledge of the true parameters increases. With increasing computational capabilities, adaptive stated 
preferences surveys (ASP) have been proposed in which the attributes presented to the users are determined based on the choices they 
have already made. Different studies have investigated endogeneity in ASP surveys, however they do not have a consensus on whether 
the estimation results are consistent in such applications or not. 

Several studies have found that ASP surveys might result in inconsistent or inefficient estimates. Bradley and Daly (1993) analyzed 
several variations of ASP designs and concluded that endogenous SP designs might result in bias in the presence of taste variation in the 
sample. To counter this phenomenon, the authors suggested a few remedies such as (1) using market segmentation in order to ensure 
that each segment is as homogenous as possible, (2) using a Fixed/Adaptive approach (which uses a fixed basic design but avoids 
presenting certain choice options if they are deemed redundant based on prior choices), or (3) using an exogenous adaptive design in 
which an exogenous variable is used to adapt the design levels prior to the experiment. Similarly, Toubia et al. (2003) and Abernethy 
et al. (2008), who developed polyhedral methods for survey designs that “reduce the feasible set of parameters as rapidly as possible”, 
indicated that these methods are susceptible to endogeneity bias. However, Abernethy et al. (2008) observed that the magnitude of 
bias decreases with more questions per individual. 

Fowkes (2007) analyzed endogeneity bias in the Leeds Adaptive Stated Preferences (LASP) survey (Fowkes and Shinghal, 2002; 
Shinghal, 1999), and found significant bias when the models are calibrated over several respondents, but not at the level of the 
respondent. In line with the findings of Abernethy et al. (2008), Fowkes (2007) found that the accuracy of an estimate improves and the 
apparent bias is reduced as more questions are added (due to alterations to the design), and concluded that LASP is, what he termed, 
“asymptotically unbiased”. 

In other applications, the estimates obtained from ASP surveys were found to be consistent. Richardson (2002) developed a 
simulation study to estimate individual-specific values of time (VOT) using an ASP Survey, and concluded that this method produces 
unbiased estimates of VOT. Similarly, Tilahun et al. (2007) used an ASP survey in order to evaluate individual preferences for different 
cycling environments in Minnesota, and concluded that ASP surveys allow for measuring the exact values individuals attach to at-
tributes of interest. 

Related work has been done on SP surveys constructed based on RP surveys (SP-off-RP and pivoted SP designs) by Train and Wilson 

1 In the context of recommender systems, hit-rate refers to the probability of choosing one of the recommended alternatives (e.g. Danaf et al., 
2019a,b; Song et al., 2018). Another common use of the term in the context of discrete choice models refers to the probability that the chosen 
alternative has the highest predicted probability (e.g. Donkers and Melenberg, 2002; Natter and Feurstein, 2002, etc.). In this paper, we refer to the 
former definition. 
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(2008, 2009). They found that the estimates based on properly combined RP and SP data are consistent, while those based on SP data 
alone are not. The authors attributed this inconsistency to the conditional distribution of coefficients, which differs over respondents 
and cannot be calculated without the RP data. 

2.3. Adaptive metric utility balance 

Hauser and Toubia (2005) and Liu et al. (2007) analyzed metric utility balance in adaptive conjoint analysis, where the dependent 
variable is continuous rather than discrete. In these experiments, respondents are presented with paired-comparisons of two different 
items. The preference scale is metric, and questions are chosen based on previous responses to result in utilities that are nearly equal. 
Software packages such as Sawtooth Software (2003) use an adaptive conjoint analysis (ACA) method, which focuses on the attributes 
that are most relevant to the respondent, thus avoiding information overload. This method generates pairwise comparisons based on 
the users’ responses to “self-explicated” data (where users indicate how important an attribute is to them), and is referred to as 
“adaptive metric utility balance”. 

Hauser and Toubia (2005) argue that adaptive metric utility balance in conjoint analysis results in biases, inefficiencies, and higher 
response errors. Their Monte Carlo simulations show that estimates are biased downwards compared to those obtained from an 
orthogonal design. They attribute this bias to endogeneity since new questions depend upon the errors made by respondents in their 
previous answers. However, unlike Fowkes (2007) and Abernethy et al. (2008), their results show that bias increases in the beginning 
as more questions are asked, and decreases afterwards. In order to avoid endogeneity bias and lowered efficiency, the authors suggest 
using polyhedral methods instead of adaptive metric utility balance. 

In response to the work of Hauser and Toubia (2005), Liu et al. (2007) show that in adaptive metric utility balance experiments 
(such as the one implemented in Sawtooth software (Sawtooth Software, 2003)), endogeneity becomes ignorable for estimation once 
the data has been collected because of weak exogeneity and the “likelihood principle”. Weak exogeneity holds when the error term is 
independent of the current values of the regressors (but not of all past and future values). Under weak exogeneity, estimates might be 
biased, but are consistent. The likelihood principle states that “the likelihood function contains all the information in the data about the 
model parameters” (Fisher, 1922). This implies that the likelihood is meant to represent the true data generating mechanism. This has 
several practical implications, such as sequential sampling and pre-survey questions. According to Liu et al. (2007), in such cases one 
should simply condition on these questions instead of accounting for all the possible answers. 

2.4. Summary of background literature 

Endogeneity bias could arise in adaptive choice contexts especially in the presence of heterogeneity (Bradley and Daly, 1993), 
which is at the core of recommender systems and ASP surveys. In choice-based recommender systems, the estimated individual-specific 
parameters are usually used in menu optimization in order to recommend the “best” alternatives to users. This introduces correlations 
between the independent variables and the error term. However, applications of discrete choice models in recommender systems are 
very limited, and endogeneity has not been studied in these few applications. 

On the other hand, ASP surveys are used to obtain more efficient estimates by updating the design as the respondents make more 
choices. Based on the limited literature on ASP surveys, it is undecided whether the estimation results are consistent in such appli-
cations or not. Most studies were based on Monte Carlo experiments, some of which have concluded that estimation under ASP is 
consistent, while others have concluded that it is not. In the applications where significant bias was observed, the magnitude of this 
bias was found to decrease as more observations per individual are included (Abernethy et al., 2008; Fowkes, 2007). 

A theoretical investigation of endogeneity bias and a formal demonstration were presented by Liu et al. (2007) in the context of 
adaptive regression-based metric utility balance, where SP questions are generated beforehand based on self-explicated data. The 
authors concluded that consistent estimates can be obtained by conditioning on the self-explicated data. This is in accordance with the 
findings of Train and Wilson (2008, 2009), who found that SP estimates are only consistent if the RP questions are included in the 
estimation. 

In the following sections, we extend the analysis by Liu et al. (2007) to dynamic choice contexts (where menus or SP questions are 
generated dynamically based on the responders’ previous responses rather than self-explicated data), and demonstrate that the es-
timates are consistent in certain cases and inconsistent in others, depending on the data used and the likelihood function. We then 
present a Monte Carlo simulation that replicates a recommender system context, however, the findings can be generalized to ASP 
surveys as well. Our results also show that the biased estimates of ASP surveys become closer to their true values as more questions are 
included in the estimation, which is consistent with the literature on ASP surveys. 

3. Methodology 

In this section, we analyze adaptive choice contexts using discrete choice models with random parameters and provide theoretical 
explanations for consistent and inconsistent estimation strategies. 

In this paper, we are interested in consistency rather than unbiasedness. Bias refers to the difference between the true value of a 
parameter (βÞ and the expectation of its estimate (EðbβÞÞ, while consistency indicates that the estimate converges to the true value as the 
sample size increases ( lim

n→∞
prðjbβ � βj< εÞ¼ 1Þ (see, e.g. Ben-Akiva and Lerman, 1985). Despite its importance in small samples, un-

biasedness cannot be established with standard frequentist estimators (e.g., Maximum Likelihood), and Bayesian estimators are almost 
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always biased (Koop et al., 2007). Therefore, researchers in discrete choice models are primarily concerned with consistency. 
Maximum Simulated Likelihood (MSL) estimators of discrete choice models are consistent with a sufficient number of draws (Train, 
2009), and Bayesian estimators are consistent and independent of the prior distribution in most cases as the sample size increases 
according to the Bernstein–von Mises theorem (Ghosal, 1997; Train, 2009; Van der Vaart, 2000). Later in our Monte Carlo experiments 
(Section 4), we refer to “bias” as the difference between the true values of the model parameters and their corresponding estimates (i.e., 
finite sample empirical bias). 

3.1. Model specification 

We consider a system (e.g., recommender system or ASP survey) in which an individual n (n ¼ 1; 2;…;N) is presented with a menu 
m (m ¼ 1; 2;…Mn), with Jmn (j¼ 1; 2;…JmnÞ alternatives (each menu corresponds to a choice task). The underlying behavioral model is 
a logit mixture with the linear utility specification shown in equation (3). 

Ujmn¼ � Pjmn þXjmnβn þ expðαnÞεjmn (3)  

Ujmn in equation (3) is individual n’s unobserved utility of alternative j in menu m, Pjmn is the price of alternative j (with its coefficient 
fixed to � 1), Xjmn represents a vector of individual characteristics and alternative attributes, βn represents a vector of parameters/ 
preferences, αn is a scale parameter, and εjmn is an error term following the extreme value distribution EV (0, 1). 

The model uses the money-metric utility specification as in Ben-Akiva et al. (2019), whereby the price coefficient is fixed to � 1. 
This specification is equivalent to assuming that the scale is fixed and the price coefficient is distributed, but it is advantageous because 
in it all other coefficients represent the willingness-to-pay for the corresponding attributes (Train and Weeks, 2005). Since the price 
coefficient is fixed, the scale parameter αn can be estimated. We can divide all the elements of equation (3) by expðαmnÞ in order to 
obtain equation (4), where the error term εjmn is distributed as EV (0,1). This setting is used to be able to distinguish between the 
impact of endogeneity on the scale and on the ratio of the model coefficients (Guevara and Ben-Akiva, 2012). 

Ujmn ¼
1

expðαnÞ

�
–  Pjmn þ  Xjmnβn

�
þ εjmn (4) 

We define ζn as a vector of individual-specific coefficients which includes both βn and αn. We assume that ζn is normally distributed 
in the population with mean μ and covariance matrix Ω. 

ζn � Nðμ;  ΩÞ (5) 

We also define θ as the set of all model parameters (in this case, it includes μ;  Ω; and ζn). 

3.2. Menu generation 

In both ASP surveys and recommender systems, menus are generated using the previous choices and attributes. Without loss of 
generality, we assume that:  

1. The system is initialized with one or more menus having exogenous attributes X0 (which can also be pre-survey questions, or any 
exogenous screening questions). The choices/responses in these exogenous menus are denoted as d0.  

2. A known function (Q) is used to generate menu m with alternative attributes Xm based on the previous choices (d0;…;  dm� 1Þ and 
attributes (X0;…;  Xm� 1) (where QðXmjX0;…;  Xm� 1; d0;…;  dm� 1) represents the probability of menu Xm conditional on these 
choices and attributes). 

In the case of recommender systems, this function is an assortment optimization method that generates a personalized menu of 
alternatives. A detailed example demonstrating this process is presented in Section 4. At each menu m, we have a universal set of 
alternatives to recommend from S mn. This universal set is assumed to be exogenous; it is independent of any of the model parameters, 
the error terms, and the individual-specific coefficients of individual n. The goal is to generate a recommended subset S �

mn 2 S mn with 
Jmn alternatives by maximizing a specific objective function given our estimates of the individual-specific coefficients of individual n. 
Song et al. (2017, 2018) provide a methodology for generating recommendations with different objective functions (e.g., maximizing 
consumer surplus, hit-rate, etc.). In each menu m, individuals make the choice between any of the Jmn recommended alternatives and 
opting-out (i.e., not choosing any of the recommendations). 

The recommended alternatives in menu m are generated as follows:  

1. Individual-specific coefficients are estimated using all menus up to ðm � 1Þ
2. These coefficients are fed into an assortment optimization to determine the Jmn alternatives to be included in the optimized menu 

(S �
mn).  

3. The choice among these Jmn alternatives and opting-out in menu m is observed.  
4. Steps 1–3 are repeated after the new menu m  is included in the next estimation. 

Choice-based recommender systems typically use estimates of the individual-specific parameters ζn, which are obtained either 
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using the Hierarchical Bayes (HB) estimator of logit mixture (Train, 2009), or using MSL estimation. These parameters are usually not 
estimated precisely due to shrinkage and simulation variance, especially when the number of observations per individual is small. 
However, Danaf et al. (2019a,b) show that using these parameters in personalized recommendations improves the hit-rates sub-
stantially (even with a small number of observations per individual). 

In the case of ASP surveys, the menu generation function can be a deterministic (or even probabilistic) function which determines 
the attributes of menu m based on the previous choices. For example, a researcher might increase the price of an alternative if it was 
chosen before in order to see whether the subject will switch to another alternative or not. 

3.3. Consistent estimation 

When a typical model estimation is done using data from ASP surveys or recommender systems, the likelihood function that is being 
considered is presented in equation (6). 

Pðd0; d1;…; dm jX; θÞ¼ P
�
d0; d1;…; dmjX0;X1;…;Xm; θ

�
(6) 

Inconsistency arises due to the misspecification of this likelihood function. Ideally, the likelihood function should include two 
components:  

1. The probability of the observed choices conditional on the attributes PðdmjXm;θÞ: This is conditional on the true model parameters θ 
because the choices are generated based on these parameters.  

2. The probability of a menu with attributes Xm conditional on the previous choices and attributes, QðXmjd1;…;dm� 1;X1;…;Xm� 1;

S mnÞ: This is dependent on the true model parameters only through the choices. 

In the case of recommender systems, the attributes are determined by the analysts’ estimates of the model parameters bθ, and not 
their true values. However, since bθ are estimated using the previous attributes and choices, the two expressions QðXmjbθ;S mnÞ and 
QðXmjd1;…;dm� 1;X1;…;Xm� 1;S mnÞ are equivalent. 

The joint likelihood of the choices and attributes of the presented alternatives up to menu m  is presented in equation (7). 

P
�
d0;…;  dm;  X1;…;  XmjX0; θ

�
¼ P

�
d0  jX0; θ

�
Q
�
X1jd0;X0;S 1

�
Pðd1jX1; θÞ…

Q
�
Xmjd0;…; dm� 1;X0;…;Xm� 1;S m

�
P
�
dmjXm; θ

� (7)  

Q can either be a deterministic or a non-deterministic function. If it is deterministic, then the outcome is either 0 or 1; it is 1 if the 
combination of fd0;…;dm� 1;X0;…;Xm� 1;S mg will result in presenting attributes Xm in the next menu and 0 otherwise. Danaf et al. 
(2019a) and Song et al. (2018) present deterministic recommendation functions (where recommendations are generated by inte-
grating over the posterior distributions of the individual-specific parameters, or by using the means of these distributions). If it is 
non-deterministic, then the probabilities of presenting different attributes can be specified by the researcher. Teo et al. (2016) and 
Song (2018) present applications with non-deterministic recommendation functions that use multi-armed bandit methods such as 
Thompson sampling (which use random draws from the posterior distributions). 

Therefore, conditional on the previous choices, their attributes, and the universal set to recommend from (S mn), the probability of 
the recommended alternatives in menu m  is a constant. For example, in a recommender system with a deterministic function Q, given 
the previous choices and menus presented to a specific individual, and given the universal set of alternatives, the recommendation 
becomes deterministic: 

Q
�
X1jd0;X0;S 1

�
¼ 1

Q
�
Xmjd0;…; dm� 1;X0;…;Xm� 1;S m

�
¼ 1 (8) 

Furthermore, if the universal sets of alternatives S m are not known, but exogenous, even without conditioning on these universal 
sets, the menu generation probability is a constant and only depends on the distribution of attributes in the universal sets: 

Q
�
Xmjd0;…; dm� 1;X0;…;Xm� 1

�
¼

Z

S m

Q
�
Xmjd0;…; dm� 1;X0;…;Xm� 1;S m

�
fðS mÞdS m (9)  

where fðS mÞ is the distribution of attributes in the universal sets. QðXmjd0;…;dm� 1;X0;…;Xm� 1;S mÞ is equal to 1 for all universal 
sets that result in recommending Xm and 0 otherwise. Therefore, this probability is a constant and it is independent of the model 
parameters. 

As a result, these constant terms can be dropped from the likelihood without having any effect on the estimation results (in classical 
estimation, these terms drop out of the log-likelihood function, and in Bayesian estimation, the numerator and the denominator of the 
posterior distribution are scaled by the same constant). Using the conditional independence of choices, we can conclude that the two 
likelihood functions presented in equations (6) and (7) have the same maximum. In this case, the likelihood function fully explains the 
underlying data generation process, and therefore, endogeneity is not a concern. 
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3.4. Inconsistent estimation 

Inconsistent estimation results are obtained when the likelihood function does not fully reflect the data generation process. We 
consider the example in which the exogenous menus {X0; d0g are used to generate menu X1. However, estimation is done using menus 
1;2;…m (i.e., excluding the exogenous menus, X0). The (misspecified) likelihood function that is being considered is: 

Pðd1; d2;…; dm jX; θÞ¼ Pðd1; d2;…; dmjX1;X2;…;  Xm; θÞ; (10)  

while the correct likelihood function is presented in equation (11): 

Pðd1; …dm;X1;…;XmjθÞ ¼QðX1jθÞPðd1jX1; θÞ…QðXmjd1;…; dm� 1;X1;…;Xm� 1ÞP
�
dmjXm; θ

�
; (11)  

where QðX1jθÞ is the marginal probability of observing menu X1 (assuming that X0 and d0 are unknown). QðX1jθÞ can be obtained by 
integrating over the joint distribution of X0, d0, and X1 given by equation (12), which is a function of θ because it depends on the choice 
probabilities Pðd0jX0; θÞ (which are functions of θ). 

fðX0; d0;X1jθÞ ¼P
�
d0jX0; θ

�
fðX0ÞQ

�
X1jd0;X0

�
(12)  

where fðX0Þ is the joint distribution of all the attributes in the exogenous menus, Pðd0jX0; θÞ is the probability of the choices given the 
exogenous attributes and model parameters, and PðX1jd0;X0Þ is the menu generation probability of the first menu. 

QðX1jθÞ ¼
Z

X0

X

d0

P
�
d0jX0; θ

�
fðX0ÞQ

�
X1jd0;X0

�
dX0 (13) 

In equation (13), QðX1jd0;X0Þ cannot be treated as a constant and dropped from the equation as before because the outcome is 
different for each combination of fd0;X0g. For example, if a deterministic function is used, this probability is either equal to zero or one, 
depending on the values of d0 and X0 (it is equal to one only for combinations of d0 and X0 that will result in recommending the first 
observed menu X1). 

Therefore, the probability of observing the first endogenous menu is a function of the model parameters θ, and excluding this 
expression from the likelihood function results in inconsistent estimates. Since the two likelihood functions are not equivalent, the one 
presented in equation (10) does not account for the data generation process, and therefore, the estimates are inconsistent. In addition, 
the expression in equation (13) is difficult to evaluate because it requires multi-dimensional integration over all the possible attribute 
levels in the exogenous menus. The case presented above demonstrates an example of when inconsistency can arise, however, it is not 
the only one. Inconsistent estimates will be obtained if any of the following menus is excluded (if this menu was used in generating the 
subsequent menus). For example, Hauser and Toubia (2005) obtained biased estimates in a Monte Carlo simulation of ACA after 
excluding the “self-explicated” data from their estimation. 

These results are in line with the “initial conditions” problem (Heckman, 1981), who analyzed time-series probit models with lagged 
dependent variables. If the initial conditions are assumed to be exogenous, estimation with the entire history results in consistent 
estimates. If the analyst does not have access to the entire history (e.g., because the process has been in operation prior to the time it is 
sampled), or if initialization is not truly exogenous, the estimation results are inconsistent. In analyzing this problem, Akay (2012) 
found similar results to those obtained by Abernethy et al. (2008) and Fowkes (2007), where Monte Carlo experiments showed that the 
magnitude of bias decreases with longer panels. 

4. Monte Carlo experiment 

In this section, we simulate a dynamic recommender system following the methodology of Danaf et al. (2019a) and Song et al. 
(2017, 2018), mimicking the choice of Mobility-as-a-Service (MaaS) plans. Based on the analysis presented in Section 3, we present 
examples of consistent and inconsistent estimation results. 

4.1. Data set description 

The Monte Carlo data assumes that 10,000 individuals are presented with 16 successive menus. A sufficiently large sample size is 
used because we are interested in analyzing the consistency of the estimates (lower samples result in larger standard errors or standard 

Table 1 
Monte Carlo attributes and levels.  

Attribute Symbol Levels 

Monthly Price P $0 to $480* 
Transit T Available (1) or unavailable (0) 
Bike Sharing B Available (1) or unavailable (0) 
On Demand Trips OD 2 to 12 trips/month 

*Price is positively correlated with all other attributes 

M. Danaf et al.                                                                                                                                                                                                         



Journal of Choice Modelling 34 (2020) 100200

8

deviations of the posterior distribution, which makes it difficult to distinguish bias from statistical discrepancies and simulation er-
rors). While this sample is large compared to traditional applications, it is typical in web or app-based contexts such as recommender 
systems (where the number of users is large). 

Each menu includes three alternatives (different MaaS plans) with varying attributes and an opt-out alternative. Each plan has a 
different monthly price and three attributes: access to transit, access to bike sharing, and the number of on-demand trips (e.g., taxi, 
Uber. Lyft etc.) per month. Table 1 shows the distributions of the attributes in the universal sets (S m). The dependent variable is the 
choice between the three different plans or opting-out (indicating that the individual does not purchase any of the MaaS plans, or 
chooses an outside alternative). 

The utility equations (normalized to the opt-out alternative) are presented in equation (14). 

Ujmn �
1

expðαnÞ

�
– Pjmn þ βTn

Tjmn þ βBn
Bjmn þ expðβODn

ÞODjmnþ βqn

�
þ εjmn  

Uopt� out;mn � 0þ εopt� out;mn (14)  

where:  

� n is an index for users (n ¼ 1; 2;…;  N), m is an index for menus (m ¼ 1;2;…;Mn), and j is an index for alternatives in the menu (j ¼
1; 2;…;  Jmn).  

� Ujmn represents the utility of alternative j in menu m faced by individual n, and Uopt� out;mn is the opt-out utility.  
� Pjmn is the monthly price (in $100’s) of alternative j in menu m faced by individual n, with its coefficient normalized to � 1.  
� Tjmn, Bjmn and ODjmn represent access to transit, access to bike sharing, and the number of on-demand trips per month of alternative 

j with coefficients βTn
, βBn

, and expðβODn
Þ respectively (exponentiation is used to obtain a lognormally distributed coefficient).  

� βqn is a constant term for choosing any plan (rather than opting out).  
� αn is a scale parameter (the lognormal distribution is also used to guarantee that the scale is positive for everyone).  
� εjmn is an error component following the extreme value distribution (EVð0;1Þ). 

All coefficients are normally distributed in the sample. The true values of the population means and inter-consumer covariance 
matrix are shown in Table 2. The true values of the individual specific coefficients are generated only once from their corresponding 
distributions, and then used in generating the choices in each menu. However, the attributes of the alternatives in the universal sets are 
different (both across different individuals and different menus). 

The choices are simulated by calculating the systematic utilities (using the true individual-specific coefficients and the attributes) 
and adding EV (0,1) error terms to these systematic utilities to obtain the total utilities. The alternative with the highest total utility is 
chosen. 

4.2. Dynamic recommendations 

We assume that in each menu, three alternatives are recommended (and included in this menu) from a universal set (S mn) of 10 
alternatives. This universal set is different for each individual and for each menu, and the 10 alternatives in this set are generated by 
drawing the attributes from their corresponding distributions shown in Table 1. We also assume that the individual can choose any of 
the recommended alternatives or opt-out, and that the remaining (non-recommended) alternatives are not available in that choice 
situation. 

In the first two menus, the recommendations are random; i.e., the three recommended alternatives are randomly chosen from the 
10 alternatives in the universal set. Therefore, these two menus have exogenous attributes. 

The following menus (3–16) are generated in a dynamic manner based on each user’s previous choices. Recommendations in menu 
m are generated using the same procedure as in Section 3.2:  

1. Estimating individual-specific coefficients (bζn) using menus 1;2;…;m � 1 (e.g. using the HB procedure presented in following 
section, Section 4.3). 

Table 2 
True values of the parameters.  

Parameter True mean Covariances 

αn  βTn  
βBn  

βODn  
βqn  

αn  � 1.0 0.25 0 0 0 0 
βTn  

1.0 0 2.0 0.3 0.1 � 0.3 
βBn  

0.5 0 0.3 1.0 0.2 � 0.2 
βODn  � 2.0 0 0.1 0.2 0.5 � 0.1 
βqn  

� 0.5 0 � 0.3 � 0.2 � 0.1 1.0  
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2. Calculating the systematic utilities of each alternative in the universal set using the estimated individual-specific coefficients: 

bVjmn �
1

expðbαnÞ

�
–  Pjmn þ bβSn

Sjmn þ bβCn
Cjmnþ expðbβLn

ÞLjmnþ bβqn

�
      j¼ 1; 2;…; 100 (15)    

3. Selecting the three alternatives with the highest calculated utilities and including them in the recommended menus. 

In each menu, the choice among the three MaaS plans and opting-out is simulated using the true individual-specific coefficients (ζn) 
(and not their estimates). The procedure is then repeated for the next menu (mþ 1). 

4.3. Model estimation 

To estimate this model, we use the Hierarchical Bayes procedure described below, which is based on a three-step Gibbs sampler 
with an embedded Metropolis-Hastings algorithm (Train, 2009):  

1. Drawing μjΩ; ζn using a Normal Bayesian update with unknown mean and known variance.  
2. Drawing  Ωjμ; ζn using a Normal Bayesian update with known mean and unknown variance.  
3. Drawing ζnjμ;  Ω using the Metropolis-Hastings algorithm. 

In this procedure, the individual-specific coefficients ζn are treated as additional model parameters. Sequential draws are obtained 
from the three conditional distributions shown above in order to eventually obtain draws from the unconditional posterior distribution 
Kðμ;Ω; ζnjX;dÞ. A diffuse prior is used on the population means (i.e., with large variances), and a weakly informative Half-t prior is used 
on the covariance matrix as recommended by Akinc and Vandebroek (2018), and Huang and Wand (2013). 

Bayesian estimation is used to replicate MSL estimates (and standard errors) at a lower computational cost. The point estimates of 
the population means and variances are obtained by averaging the posterior draws of these parameters, which pertains to minimizing 
the quadratic loss function (Koop et al., 2007). Because of the uninformative priors and the large sample size, Bayesian and classical 
estimates of μ, Ω, and ζn are virtually identical, despite their algorithmic differences (Ben-Akiva et al., 2019; Huber and Train, 2001; 
Train, 2009). Train (2009) shows that the mean of the posterior is an equivalent to the maximum likelihood estimator, and the 
standard deviations of the posterior provide classical standard errors for the estimator. Huber and Train (2001) extend this result to 
show that the individual-specific parameters obtained from both estimation methods are identical. Therefore, estimation using MSL 
and extracting individual-specific coefficients does not affect the estimation results in this case (and hence the findings of this paper). 

Table 3 
Estimation results with varying panel sizes and exogenous initialization.  

Population Means  

Transit Bike Sharing On Demand Constant Scale 

True Value 1.000 0.500 � 2.000 � 0.500 � 1.000 
Value in Sample 0.996 0.500 � 1.998 � 0.507 � 0.999 
Estimation with m ¼ 1, 2 0.942 (0.025) 0.497 (0.022) � 1.997 (0.021) � 0.498 (0.035) � 1.022 (0.044) 
Estimation with m ¼ 1, 2, 3 0.960 (0.021) 0.486 (0.017) � 2.007 (0.018) � 0.501 (0.027) � 0.988 (0.024) 
Estimation with m ¼ 1, 2, 3,4 0.964 (0.019) 0.490 (0.015) � 2.004 (0.016) � 0.491 (0.025) � 0.989 (0.018) 
Estimation with m ¼ 1, 2, …,5 0.973 (0.018) 0.489 (0.014) � 2.008 (0.013) � 0.497 (0.022) � 0.990 (0.014) 
Estimation with m ¼ 1, 2, …,6 0.980 (0.017) 0.494 (0.013) � 1.997 (0.012) � 0.514 (0.022) � 0.984 (0.013) 
Estimation with m ¼ 1, 2, …,7 0.979 (0.017) 0.494 (0.013) � 2.004 (0.012) � 0.512 (0.021) � 0.987 (0.011) 
Estimation with m ¼ 1, 2, …,8 0.983 (0.017) 0.496 (0.013) � 2.002 (0.011) � 0.516 (0.020) � 0.993 (0.011) 
Estimation with m ¼ 1, 2, …,12 0.982 (0.017) 0.496 (0.012) � 2.007 (0.010) � 0.510 (0.018) � 0.992 (0.009) 
Estimation with m ¼ 1, 2, …,16 0.985 (0.016) 0.496 (0.011) � 2.005 (0.010) � 0.507 (0.017) � 0.996 (0.008) 

Variances  

Transit Bike Sharing On Demand Constant Scale 

True Value 2.000 1.000 0.500 1.000 0.25 
Value in Sample 2.009 1.013 0.507 1.011 0.248 
Estimation with m ¼ 1, 2 2.127 (0.112) 1.105 (0.068) 0.523 (0.041) 1.142 (0.109) 0.308 (0.089) 
Estimation with m ¼ 1, 2, 3 2.059 (0.088) 1.037 (0.050) 0.532 (0.029) 1.122 (0.086) 0.233 (0.049) 
Estimation with m ¼ 1, 2, 3,4 2.056 (0.073) 1.032 (0.040) 0.519 (0.026) 1.055 (0.065) 0.243 (0.028) 
Estimation with m ¼ 1, 2, …,5 2.052 (0.069) 1.013 (0.034) 0.529 (0.021) 1.052 (0.050) 0.230 (0.024) 
Estimation with m ¼ 1, 2, …,6 2.045 (0.062) 1.034 (0.032) 0.534 (0.018) 1.101 (0.052) 0.235 (0.023) 
Estimation with m ¼ 1, 2, …,7 2.050 (0.060) 1.036 (0.029) 0.537 (0.017) 1.093 (0.047) 0.218 (0.017) 
Estimation with m ¼ 1, 2, …,8 2.063 (0.056) 1.042 (0.027) 0.536 (0.017) 1.073 (0.043) 0.218 (0.015) 
Estimation with m ¼ 1, 2, …,12 2.053 (0.047) 1.033 (0.023) 0.527 (0.013) 1.045 (0.037) 0.232 (0.008) 
Estimation with m ¼ 1, 2, …,16 2.053 (0.047) 1.033 (0.021) 0.527 (0.012) 1.027 (0.031) 0.243 (0.007)  
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4.4. Results 

The results presented in Table 3 show the estimates (posterior means) and standard errors (posterior standard deviations) of the 
population means and inter-consumer variances. The estimates of the off-diagonal elements of the covariance matrix are presented in 
Appendix A. These results are based on a single estimation, however, in order to avoid incidental simulation results, a large sample size 
is used, and variations of the experimental setting are presented in Appendices B and C. The results indicate that when all menus (up to 
menu m) are included in the estimation, there is no significant bias in any of the parameters (bias is defined as the difference between 
the estimates and their corresponding true values in the population). 

On the other hand, Table 4 presents similar estimation results (obtained with the same datasets), but the first two menus are 
excluded from the estimation. In this case, significant differences are observed in most of the parameters (at the 95% level of confi-
dence). For example, in the first few menus, all the population means (including the means of the constant and the scale parameter) are 
over-estimated. In addition, the variances of the constant and scale parameters are substantially overestimated in the first two menus. 
These results indicate that any model estimation with menus 1;…;  m results in consistent estimates. However, if some menus prior to 
menu m are excluded from the estimation, the estimates deviate substantially from their true values. 

Fig. 1 shows the bias in the population means (difference between the estimates and the true values) as a function of the number of 
menus included in estimation. When the first two menus are excluded, the observed bias decreases as more choices are included in the 
estimation. This is because the effect of the omitted term (QðX3jθÞ) on the likelihood decreases. The attributes in any menu m after the 
third one are determined partially by the attributes and choices of menus 3;…;  m. Therefore, the bias decreases since the misspecified 
likelihood function accounts partially for the data generation process. The results are also consistent with the findings of Fowkes 
(2007), who concluded that LASP is asymptotically unbiased, and Abernethy et al. (2008), who concluded that bias decreases as more 
questions are observed. 

5. Practical implications 

This section presents the practical implications on recommender systems, ASP surveys, and RP/SP estimation. In some of these 
applications, the analyst might have access to the entire choice history, and thus consistent estimation is possible. However, this might 
not apply to all cases. 

5.1. Recommender systems 

The results presented in Section 4.4 indicate that the entire choice history of each individual is needed to estimate the behavioral 
models in recommender systems. However, in such systems, the number of individuals and choices per individual can be excessively 
large, resulting in computational constraints. 

There are a few ways for the analyst to deal with this problem. The results presented in Table 4 and Fig. 1 suggest including as much 
observations per individual as possible, to reduce the bias. However, the analyst cannot know how many choices are needed, or 

Table 4 
Estimation results with varying panel sizes, excluding the first two menus (endogenous initialization).  

Population Means  

Transit Bike Sharing On Demand Constant Scale 

True Value 1.000 0.500 � 2.000 � 0.500 � 1.000 
Value in Sample 0.996 0.500 � 1.998 � 0.507 � 0.999 
Estimation with m ¼ 3 1.911 (0.090) 0.909 (0.045) � 1.892 (0.051) 0.994 (0.239) � 0.792 (0.066) 
Estimation with m ¼ 3, 4 1.331 (0.038) 0.686 (0.029) � 1.866 (0.029) � 0.185 (0.086) � 0.604 (0.037) 
Estimation with m ¼ 3, 4, 5 1.182 (0.028) 0.588 (0.020) � 1.945 (0.021) � 0.154 (0.064) � 0.709 (0.026) 
Estimation with m ¼ 3, 4, …, 6 1.102 (0.022) 0.550 (0.017) � 1.960 (0.019) � 0.196 (0.047) � 0.765 (0.02) 
Estimation with m ¼ 3, 4, …, 7 1.059 (0.020) 0.531 (0.015) � 1.987 (0.016) � 0.236 (0.039) � 0.819 (0.016) 
Estimation with m ¼ 3, 4, …, 8 1.041 (0.018) 0.521 (0.014) � 1.986 (0.014) � 0.264 (0.031) � 0.855 (0.013) 
Estimation with m ¼ 3, 4, …, 12 1.004 (0.016) 0.509 (0.012) � 2.005 (0.010) � 0.370 (0.027) � 0.921 (0.01) 
Estimation with m ¼ 3, 4, …, 16 1.001 (0.015) 0.503 (0.012) � 1.999 (0.009) � 0.417 (0.021) � 0.948 (0.008) 

Variances  

Transit Bike Sharing On Demand Constant Scale 

True Value 2.000 1.000 0.500 1.000 0.25 
Value in Sample 2.009 1.013 0.507 1.011 0.248 
Estimation with m ¼ 3 8.539 (1.416) 2.053 (0.342) 0.751 (0.117) 50.964 (6.924) 0.941 (0.160) 
Estimation with m ¼ 3, 4 2.171 (0.177) 1.011 (0.088) 0.504 (0.050) 7.602 (0.865) 1.634 (0.174) 
Estimation with m ¼ 3, 4, 5 1.765 (0.095) 0.998 (0.059) 0.551 (0.036) 3.823 (0.329) 0.826 (0.114) 
Estimation with m ¼ 3, 4, …, 6 1.655 (0.074) 1.026 (0.046) 0.563 (0.031) 2.729 (0.204) 0.549 (0.054) 
Estimation with m ¼ 3, 4, …, 7 1.698 (0.064) 1.021 (0.039) 0.563 (0.022) 2.120 (0.134) 0.387 (0.039) 
Estimation with m ¼ 3, 4, …, 8 1.711 (0.056) 1.023 (0.032) 0.537 (0.021) 1.780 (0.102) 0.331 (0.028) 
Estimation with m ¼ 3, 4, …, 12 1.786 (0.051) 0.997 (0.024) 0.530 (0.015) 1.313 (0.050) 0.271 (0.012) 
Estimation with m ¼ 3, 4, …, 16 1.847 (0.043) 1.007 (0.022) 0.520 (0.012) 1.202 (0.043) 0.269 (0.010)  
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whether the bias is eliminated or not. 
If relevant instruments are available, standard correction methods may be used such as the control functions. Ongoing research on 

recommender systems is investigating potentially relevant instruments, such as the attributes of non-personalized menus (that are 
recommended based on population parameters rather than individual-specific parameters). 

Alternatively, the population parameters can be estimated using a subset of individuals (where the entire choice history of this 
subset is included), and the online estimation method proposed by Danaf et al. (2019a) can be used to estimate individual-specific 
parameters. Models calibrated at the individual level do not require the heterogeneity to be uncorrelated with the covariates (as in 
the case of fixed effects). Computational constraints can also be mitigated by parallelization (e.g. Neiswanger et al., 2013), where data is 
partitioned into different batches that are processed independently on multiple machines (using any classical MCMC method such as 
Gibbs sampling), and combined afterwards to generate samples from the full posterior. 

The analyses presented in Sections 3.3 and 3.4 apply to various recommendation functions as long as the assumptions presented in 
Section 3.2 are satisfied. In Section 4, we used the estimated individual-specific parameters in order to generate personalized rec-
ommendations. The function Q is an assortment optimization that recommends alternatives that are most likely of being chosen. This 
reasoning can be extended to other applications that do not use individual-specific parameters. For example, Appendix B presents a 
recommender system that recommends the three nearest neighbors of the alternative chosen in the previous menu (with the weights 
being the population level means of the corresponding attributes). The results of this experiment are similar to those presented in 
Tables 3 and 4 

5.2. ASP surveys 

ASP surveys usually have smaller sample sizes than recommender systems, and therefore, computational constraints are not an 
issue. In most cases, estimation with the entire data set is feasible. However, we present some cases where specifying the correct 
likelihood function might not be obvious. 

In some cases, the analyst might be interested in estimating a model with a subset of the questions. For example, in transportation 

Fig. 1. Bias as a function of the number of menus under “Full Estimation” (with the entire choice history) and “Excluded Menus” (where the first 
two menus are excluded). Fig. 1 shows the number of menus used in estimation, and not the menu number. (e.g., in the case where the first two 
menus are excluded, estimation with one menu refers to estimation with menu 3). 
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mode choice, if the respondent is presented with an alternating design of urban and suburban trips, the analyst cannot estimate two 
separate models (for urban and suburban trips), as the estimates will be inconsistent. 

Some SP questions might be generated using a pre-survey without including the responses to the pre-survey questions in the 
likelihood function. For example, in a transportation mode choice SP survey, the respondent might only be presented with car al-
ternatives if he/she indicated that they are willing to buy a car. Similarly, the cost of transit can be set to zero in SP questions if the 
respondent indicated in the pre-survey that he/she is willing to buy a transit pass. In such cases, estimation with the ASP questions 
alone might result in inconsistent estimates. 

The same reasoning applies to adaptive regression-based conjoint analysis (where the density of the continuous response variable 
LðYmjXmθÞ is used in equation (7) instead of the choice probability PðdmjXm;θÞ). For more details on regression-based ACA, we refer the 
reader to Liu et al. (2007), who were particularly interested in endogeneity bias that arises as a result of using “self-explicated” data in 
adaptive conjoint analysis. They concluded that endogeneity bias is “ignorable” if SP data and self-explicated data are properly 
modeled jointly, which can be handled by some modules of the Sawtooth software (Sawtooth Software, 2003). 

5.3. Adaptive valuation methods 

The findings of this paper can also be relevant to contingent valuation (CV) experiments, where users are presented with a series of 
double bounded dichotomous choice questions designed to infer their marginal rate of substitution (MRS) or willingness-to-pay (WTP). 
When the design is not adaptive (e.g. when questions do not depend on previous responses), endogeneity bias is not a concern. 
However, an adaptive design might be used in order to narrow down the MRS or WTP estimates more efficiently (e.g. Kanninen, 1993a, 
1993b; Nyquist, 1992). For example, the researcher might infer a lower bound on the respondents’ willingness-to-pay from his/her 
previous choices, and present the respondent with a price that exceeds the lower bound. 

In adaptive CV experiments, considerable care is needed when estimating statistical models over a sample of respondents, espe-
cially when heterogeneity is modeled using continuous or discrete distribution (e.g. latent class). In such cases, excluding data from 
estimation might result in inconsistent estimation results. However, this is not an issue when WTP and MRS values are calculated on 
the individual level (which is similar to the findings of Fowkes (2007)). 

Another relevant application is the “half-space” method proposed by Rouwendal et al. (2010) in order to narrow down the location 
of an individual’s marginal rate of substitution (MRS) or willingness-to-pay (WTP) using successive choice situations that are adjusted 
dynamically. Each choice situation divides the space of relevant marginal valuations into two “half-spaces”, and the choice reveals the 
half-space to which the respondent belongs. The authors start by assuming that the choices are error free (i.e. individual choices are 
consistent), and then extend their method to allow for errors using a statistical model. 

In the first part of the latter study, the upper and lower bounds of WTP are estimated for each individual separately, without 
assuming any distribution. Therefore, endogeneity bias is not a concern despite the adaptive nature of the questionnaire. In this case, 
excluding previous choices might result in wider intervals of WTP, but the true WTP values will certainly lie between the estimated 
upper and lower bounds (since the choice is error free). In the second part of the study, the data are pooled over all respondents and a 
statistical model is estimated to account for the probability of committing errors. This is advantageous because it allows for including 
all the observations in estimation (and not only those whose choices are consistent). However, it also requires the upper and lower 
bounds of WTP to be estimated using a discrete mixture model (rather than estimating them on the individual level). If an adaptive 
design is used, excluding previous choices from estimation might result in inconsistent estimates of the population parameters (i.e. the 
probabilities of belonging to different sub-spaces, and the probabilities of committing errors). 

This should rarely be a concern in such applications, because the analyst usually has access to the entire choice history of each 
respondent, and the sample size is not large enough to impose computational constraints. However, there might be other sources of 
bias affecting the estimation results in these contexts. For example, Blamey et al. (1999) argue that these experiments generally result 
in WTP values exceeding those observed in real-life markets, potentially because of “yea-saying” (which refers to the higher probability 
of responding “yes” in hypothetical dichotomous choice situations where payment is not required). In addition, several studies show 
that learning and fatigue effects might cause additional biases in the context of contingent valuation (e.g. Adamowicz, and Boxall, 
2001; Bateman et al., 2008; Holmes and Boyle, 2005; etc). 

5.4. SP/RP estimation 

The results obtained in Section 4.4 are in accordance with the findings of Train and Wilson (2008) who concluded that estimation 
with pivoted SP designs is consistent when RP choices are properly included in the estimation. This can be interpreted as a special case 
of the framework presented in Section 3. To demonstrate this, we denote by dRP and XRP the choices and attributes in the RP data, and 
dSP and XSP the choices and attributes in the SP data respectively. Assuming the RP attributes are exogenous and the function Q is used 
to generate SP attributes, the joint Likelihood of observing the SP attributes and the RP and SP choices is expressed as: 

PðdRP;XSP; dSPjXRP; θÞ ¼ PðdRPjXRP; θÞQðXSPjdRP;XRPÞPðdSPjXSP; θÞ (16) 

In this case, QðXSPjdRP;XRPÞ is constant (independent of θ), and thus can be dropped. Therefore, joint estimation with SP and RP data 
ensures that the likelihood function is correctly specified. 

However, if we do not include the RP data (dRP and XRPÞ in the estimation, we have to integrate over their distributions in order to 
specify the correct likelihood function: 
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PðXSP; dSPjθÞ ¼ PðdSPjXSP; θÞPðXSPjθÞ

¼ PðdSPjXSP; θÞ
Z

XRP

X

dRP

PðdRPjXRP; θÞfðXRPÞQðXSPjdRP;XRPÞdXRP (17)  

where fðXRPÞ denotes the distribution of the RP attributes. 
Another approach is to use the full information maximum likelihood FIML solution proposed by Train and Wilson (2008), which 

overcomes this problem by using specially designed maximum simulated likelihood method. Guevara and Hess (2019) also proposed a 
limited information maximum likelihood (LIML) approach based on a control-function that uses RP attributes as instruments and 
proved to be more robust to model misspecifications and easier to apply, albeit potentially losing efficiency. 

We finally note that the above argument accounts only for endogeneity that is caused by the dependency of SP attributes on RP 
choices. However, RP data might not be fully exogenous, especially in the presence of measurement errors, self-selection (where the 
existing market reflects current consumer preferences), and other sources of endogeneity that are outside the scope of this paper. 

The same reasoning also applies to efficient SP designs that are generated based on individual-specific priors. Traditional efficient 
designs aim to improve the efficiency of SP estimates by presenting respondents with more meaningful tradeoffs (e.g. avoiding 
dominant or inferior alternatives). These designs typically require priors on the model parameters. Endogeneity bias might arise if 
individual-specific priors are estimated (e.g. using the individuals’ previous choices), and used in generating the designs (rather than 
using the same priors across all individuals). In the latter case, estimation is inconsistent unless the likelihood function accounts for the 
process by which these priors were generated. 

6. Conclusion 

This paper investigated endogeneity in adaptive choice contexts, such as choice-based recommender systems and adaptive stated 
preferences surveys. In these cases, all of the attributes are endogenous, and finding relevant instruments to correct for endogeneity 
may not be feasible. 

A Monte Carlo experiment was used to demonstrate cases where endogeneity results in consistent estimates and cases where it does 
not, in the context of a choice-based recommender system in which alternatives are recommended based on the estimates of the 
individual-specific preferences. The results indicate that including all the data in the model estimation (and properly accounting for 
heterogeneity) results in consistent estimates if the initialization is exogenous. In the latter case, the estimates were not significantly 
different from their true values. On the other hand, estimates are inconsistent if data that were used in generating subsequent menus 
are excluded in the estimation. Monte Carlo results also suggest that, even when exogenous initialization is missing, empirical bias 
decreases with the number of menus, which is consistent with the findings of Fowkes (2007) and Abernethy et al. (2008). Nevertheless, 
the latter result should be taken with caution because we cannot provide a formal proof for its validity on circumstances beyond the 
experimental setting considered. 

Our findings have implications on the design and analysis of ASP surveys and choice-based recommender systems. Researchers and 
practitioners should make sure that the likelihood function accounts for the data generation process, which is achieved by conditioning 
on the previous choices and attributes. It is also important that the system is initialized exogenously, and that this initialization is 
accounted for in the estimation. 

This paper addressed endogeneity that is caused by the dependencies in adaptive choice contexts. However, there might be other 
sources of endogeneity in such contexts that are not accounted for (such as measurement errors, omitted variables, etc.). By adjusting 
the design based on the respondents’ previous choices, ASP surveys can result in harder questions that increase the respondents’ 
mental burden. On the other hand, recommender systems are designed to reduce the mental burden caused by information overload, 
by reducing the size of the choice or consideration set. Both of these effects can result in cognitive biases that are beyond the scope of 
this paper, and which we leave for future research. 

In addition, our analysis assumes that the behavioral model is correctly specified. Model misspecification generally results in 
inconsistent estimates. For example, Hess and Train (2017) show that ignoring correlations between parameters can result in over- or 
under-estimating the distribution of ratios of coefficients, representing the values of willingness to pay (WTP) and marginal rates of 
substitution. Model misspecification can also be attributed to preference formulation, learning, and fatigue, which are not usually 
accounted for in the behavioral model. Our analysis in Section 3 assumes that preferences are stable over time, however, it can be 
extended to time-varying preferences, only if the model accounts explicitly for this temporal variability. For example, Danaf et al. 
(2019b) suggest modeling the scale parameter as a function of the menu/choice situation number in order to capture learning and 
fatigue effects. 

Another key assumption in our analysis is that the universal set of alternatives to recommend from S mn is assumed to be exog-
enous. This might not apply in many cases. For example, a recommender system or an ASP survey cannot present the respondent with 
car alternatives if the respondent does not have access to a vehicle or a valid driving license. In the latter case, car and driving license 
ownership are endogenous decisions, which are a function of the respondent’s preferences towards car. 

While our empirical results show that the magnitude of bias decreases with the number of menus or choice situations, several other 
factors can come into play. Since the bias is caused by the correlation between the individual-specific effects and the independent 
variables (as shown in Equation (1)), the magnitude of bias is determined by the degree of correlation. For example, the magnitude of 
bias is expected to be larger with higher levels of heterogeneity (i.e. higher population variances). On the other hand, with a lower 
scale (or higher variance of the error term), the learning process from previous choices becomes more difficult (due to noise in the 
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data), resulting in a lower bias (however, lower scale usually results in lower hit-rates in recommender systems). Future research 
should further investigate the effects of heterogeneity, scale, and experimental design on the magnitude of bias in different settings 
including recommender systems, ASP surveys, and CV experiments. 

Future work should focus on real data applications in order to identify relevant instruments to deal with cases where either the 
analyst does not have access to the entire choice history, or computational constraints preclude using all the data (e.g. recommender 
systems). In addition, future research should investigate endogeneity corrections in adaptive choice contexts. For example, the 
standard corrections to the “initial conditions” problem (Heckman, 1981) (e.g. such as the reduced-form approximations and varia-
tions of the Wooldridge method (Wooldridge, 2005)) can be extended. In the context of RP/SP estimation, Train and Wilson (2008) and 
subsequent work by Guevara and Hess (2019) propose corrections (which are variations of the control-function method) in order to 
obtain consistent estimates with SP data alone. 
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Appendix A. Covariance Matrix Estimation 

Because of the large number of simulations, we did not include the estimation results of all the off-diagonal elements. However, the 
results below present the estimation results for 16 menus indicating that the true values are recovered accurately.  

Table 5 
True and estimated covariances with 16 menus.  

Parameter True Covariances 

αn  βTn  
βBn  

βODn  
βqn  

αn  0.25 0 0 0 0 
βTn  

0 2.0 0.3 0.1 � 0.3 
βBn  

0 0.3 1.0 0.2 � 0.2 
βODn  

0 0.1 0.2 0.5 � 0.1 
βqn  

0 � 0.3 � 0.2 � 0.1 1.0  

Estimated Covariances 
αn  βTn  

βBn  
βODn  

βqn  

αn  0.243 (0.007) 0 0 0 0 
βTn  0 2.053 (0.047) 0.329 (0.019) 0.100 (0.014) � 0.320 (0.026) 
βBn  0 0.329 (0.019) 1.033 (0.021) 0.222 (0.010) � 0.227 (0.019) 
βODn  0 0.100 (0.014) 0.222 (0.010) 0.527 (0.012) � 0.117 (0.016) 
βqn  

0 � 0.320 (0.026) � 0.227 (0.019) � 0.117 (0.016) 1.027 (0.031)  

Appendix B. 3-Nearest Neighbors Recommendations 

This appendix presents similar results to Section 4.4, but with a different menu generation procedure. The first two menus are 
generated exogenously as before. Afterwards, the three nearest neighbors to the alternative that was chosen in the previous menu are 
recommended. Therefore, only the previous choice is taken into consideration. 

The results shown in Tables 6 and 7 are similar to those observed in Section 4.4:  

1. When the entire choice history of each individual is included in estimation, no significant bias is observed.  
2. Excluding the first two menus results in significant biases.  
3. The magnitude of bias decreases as more choices per individual are included in the estimation. The estimates with 16 choices are 

very close to their true values even when the first two menus are excluded.  
4. The coefficients of transit, bike sharing, and on-demand, are biased upwards (because of the positive correlations between these 

variables and the error terms).  
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Table 6 
Endogeneity results using 3-NN recommendations.  

Population Means  

Transit Bike Sharing On-Demand Constant Scale 

True Values 1.00 0.50 � 2.00 � 0.50 � 1.00 
Menus 1-2 0.942 (0.025) 0.497 (0.022) � 1.997 (0.021) � 0.498 (0.035) � 1.022 (0.044) 
Menus 1, 2, 3 0.965 (0.021) 0.496 (0.018) � 1.998 (0.019) � 0.49 (0.027) � 0.999 (0.021) 
Menus 1, …, 4 0.961 (0.021) 0.497 (0.016) � 1.998 (0.018) � 0.476 (0.026) � 0.996 (0.02) 
Menus 1, …, 5 0.971 (0.019) 0.494 (0.014) � 1.994 (0.015) � 0.494 (0.023) � 0.994 (0.014) 
Menus 1, …, 16 0.986 (0.017) 0.496 (0.012) � 2.001 (0.011) � 0.507 (0.017) � 1.004 (0.008) 

Variances  
Transit Bike Sharing On-Demand Constant Scale 

True Values 2.00 1.00 0.50 1.00 0.25 
Menus 1-2 2.127 (0.112) 1.105 (0.068) 0.523 (0.041) 1.142 (0.109) 0.308 (0.089) 
Menus 1, 2, 3 2.055 (0.09) 1.041 (0.052) 0.494 (0.029) 1.146 (0.084) 0.25 (0.037) 
Menus 1, …, 4 2.064 (0.078) 1.008 (0.038) 0.494 (0.026) 1.063 (0.068) 0.242 (0.031) 
Menus 1, …, 5 2.065 (0.072) 1.005 (0.036) 0.502 (0.024) 1.072 (0.055) 0.249 (0.022) 
Menus 1, …, 16 2.066 (0.051) 1.028 (0.022) 0.514 (0.015) 1.032 (0.03) 0.254 (0.01) 

Unlike the case with individual-specific parameters, the constant is biased downwards with 3-NN recommendations (while it is biased upwards with 
in Table 4).  

Table 7 
Endogeneity results using 3-NN recommendations, excluding the first 2 menus.  

Population Means  

Transit Bike Sharing On-Demand Constant Scale 

True Values 1.00 0.50 � 2.00 � 0.50 � 1.00 
Menu 3 1.970 (0.067) 0.951 (0.046) � 1.568 (0.040) � 1.374 (0.149) � 1.019 (0.063) 
Menus 3, 4 1.620 (0.038) 0.780 (0.027) � 1.619 (0.028) � 1.370 (0.063) � 0.859 (0.04) 
Menus 3, 4, 5 1.436 (0.036) 0.680 (0.023) � 1.717 (0.025) � 1.096 (0.058) � 0.855 (0.026) 
Menus 3, …, 16 1.025 (0.017) 0.509 (0.013) � 1.973 (0.012) � 0.550 (0.019) � 0.986 (0.009) 

Variances  
Transit Bike Sharing On-Demand Constant Scale 

True Values 2.00 1.00 0.50 1.00 0.25 
Menu 3 4.527 (0.616) 1.583 (0.202) 0.875 (0.113) 23.752 (3.57) 0.526 (0.148) 
Menus 3, 4 2.86 (0.194) 1.333 (0.102) 0.498 (0.065) 5.959 (0.529) 0.581 (0.127) 
Menus 3, 4, 5 2.536 (0.152) 1.285 (0.073) 0.512 (0.046) 3.311 (0.283) 0.319 (0.057) 
Menus 3, …, 16 2.113 (0.054) 1.055 (0.027) 0.504 (0.014) 1.130 (0.041) 0.252 (0.009)  
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