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Abstract
The aim of this Bachelor Thesis is to extend the orthogonal projection method described in
’An Orthogonal Projection Method for Computing Active, Reactive and Scattered Power and
its Application to Compensator Design’ by Jacob van der Woude and Dimitri Jeltsema [10].
In the aforementioned article, a method is described to calculate the active, reactive and scat-
tered power of a 𝑅𝐿𝐶-network. It uses an orthogonal projection of the current on the space
of (anti)derivatives of the voltage. This method can be used to improve the power factor of
the network, as it also shows how to design a compensator for the reactive power. The com-
pensator consists of a parallel connection of an electromagnetic coil and a capacitor. Two
working examples are given.

This research shows that Van der Woude and Jeltsema’s method is not always applicable.
It often results in negative values for the coil and the capacitor, although this has no physical
meaning. When the given voltage consists of more than two frequencies, the method is also
inapplicable. This research gives a condition that ensures an applicable execution of this
method. It also shows when these conditions are met.

We show how the method can be extended to a working method for any 𝑅𝐿𝐶-network,
provided the voltage consists of two frequencies. It uses a second Foster canonical form
to expand the initially proposed compensator. Depending on the coefficients given by the
orthogonal projection, a different type of compensator is needed. It is also described how a
fitting compensator can be chosen, and how the coefficients for the coils and capacitors can
be determined.
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1
Introduction

Energy transfer optimisation is an interesting problem in the field of electronic engineering.
It entails many different challenges and the associated solutions are equally diverse [7] [5] [3].
This report will discuss a certain approach to optimise the so-called power factor of a circuit.
The power factor is the ratio between the power that a resistance in a circuit consumes (the
active or real power 𝑃) and the power that is supplied by a power source (the apparent power
𝑆). In an ideal situation, the power factor is equal to 1 and all the power that is supplied is
also consumed by the load.

However, when a network becomes more complex, for example when capacitors and coils
are added to a circuit, a different type of power called the reactive power is generated. This
power is not used by the load and is returned to the source, causing the power factor to
become less than 1. This reactive power is caused by a phase difference between the current
and the voltage. More on this will follow in chapter 2.

Reactive power seems useless, as it does not actively contribute to ’useful work’. Magnetic
fields and capacitor cause reactive current. For many loads, such as motors, these elements
are necessary for the circuit to function properly. However, from a power factor point of view,
the reactive current is undesired. By installing decent compensators, consisting of coils and
capacitors, parallel to the circuit, the reactive power needed for the functioning of the load
can be generated. This reduces the reactive power demand so more of the apparent power is
transferred to active power, increasing the power factor. We choose coils and capacitors as
they are lossless elements. They do not dissipate any active power.

Energy transfer optimisation is a problem that is getting more complex as we switch to-
wards alternative energy sources. Our energy sources become more diverse, and conse-
quently have more frequencies, creating complicated functions to describe the power. As a
result, decomposing the apparent power into active and reactive power also becomes more
complicated. Nowadays, efficiency is becoming increasingly important, and so creating a de-
cent compensator is crucial. A good compensator can fully compensate the reactive current,
so the apparent power can be converted entirely into active power, or useful work. However,
a poorly designed compensator can cause the reactive power to be needlessly large, causing
the load to require a superfluous amount of apparent power.

Decomposing power has been thoroughly researched by multiple authors. Czarnecki
wrote a detailed work, formulating the Current’s Physical Components (CPC) method [4].
This method describes how apparent power can be decomposed into three specific types of
energy conversion: active current (permanent energy conversion), scattered current (change
of the load conductance with harmonic order) and reactive current (phase-shift between volt-
age and current). Czarnecki also describes how the design of the compensator is achieved.
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2 1. Introduction

Other authors have also designed methods for this problem, some taking a fundamentally
mathematical approach. A notable research was conducted by Menti, Zacharias and Milias-
Argitis [8]. Geometric algebra was used as a tool for representing the different powers.

Another mathematical approach was pursued by Jacob van der Woude and Dimitri Jelt-
sema [10]. Their approach uses an orthogonal projection to calculate the active, reactive
and scattered current in a 𝑅𝐿𝐶-network. 1 A 𝑅𝐿𝐶 network is a network consisting of a se-
ries connection of a resistor (𝑅), a capacitor (𝐶) and an electromagnetic coil (𝐿). Using this
orthogonal projection, a compensator consisting of a parallel coil and capacitor is looked for
to compensate the reactive current of the network, as seen in figure 1.1. This report focuses
on the Van der Woude-Jeltsema approach and extends it to make it more broadly applicable.
The following research questions will be considered:

1. In which cases does the orthogonal projection method provide relevant values for 𝐶 and
𝐿 ?

2. How can the orthogonal projection method be extended to give relevant values for all
𝑅𝐿𝐶 networks with two-frequency voltages?

Chapter 2 focuses on the theoretical background of reactive current and the orthogonal
projection method of Van der Woude and Jeltsema. The concept of the second Foster canon-
ical form is also explained. The following two chapters elaborate on the orthogonal projection
method. Chapter 3 explains where this method falls short. Chapter 4 proposes an extension
to the method, so that it is more widely applicable.

𝑅

𝐶

𝐿

𝐶 𝐿

Figure 1.1: network with parallel compensator described in the work of Van der Woude and Jeltsema.

1The article focuses on networks, but the method can also be used for more general networks.



2
Theoretical Background

2.1. Reactive Power
In this section, a simple explanation on reactive power will be given. Simple circuits, where
the load consists only of a resistor, do not generate any reactive power. For example, this is
the case for a simple lamp running on a battery. However, when capacitors and electromag-
netic coils are added to the circuit, a phase difference is generated, i.e. a phase difference
between the current and the voltage. When the current is ahead of the voltage, we call the
network leading. When the voltage is ahead of the current, the network is called lagging. A
capacitor will cause the network to lead and this can be remedied by adding a coil to the
network. The other way around, when a coil causes a circuit to lag, it can be remedied by
adding a capacitor. A lag or lead is called a phase difference.

Power is the product of current and voltage. As can be seen in figure 2.1, when the current
and voltage are perfectly synchronised, their product is completely positive, coinciding with
a purely active power. However, when we introduce a phase difference as in figure 2.2, this
creates a partially negative power, which in turn indicates the presence of reactive power.
It can be calculated that when the phase difference is equal to 𝜋, we achieve a completely
negative power. In this case, we only have reactive power and no active power.

These examples are relatively simple and hold true for only one frequency. When current
and power with more frequencies get involved, it is more difficult to describe the active and
reactive power. This is where more complicated methods such Czarnecki’s CPC method or
Van der Woude and Jeltsema’s orthogonal projection method get useful. More information
on the second method can be found in section 2.3.

2.2. Second Foster Canonical Form
Within the subject of synthesis of 𝐿𝐶-networks, the Foster and Cauer canonical forms are
of interest. These are repetitive forms of 𝐿𝐶 networks. Their strength lies in the fact that
the coefficients for the coils and capacitors can be calculated by rewriting the admittance
or impedance functions in their partial fraction form. This research uses the second Foster
canonical form. The network corresponding to this form can be seen in figure 2.3. To find
the correct values for the coefficients, the admittance function 𝑌(𝑠) must be rewritten to a
partial fraction of the following form:

𝑌(𝑠) = 𝐼(𝑠)
𝑉(𝑠) = 𝐻𝑠 +

𝐾
𝑠 +∑ 2𝐾 𝑠

𝑠 + 𝜔

As we can see, the compensator proposed by Van der Woude and Jeltsema can be seen
as a second Foster canonical form with only two elements. The corresponding admittance

3



4 2. Theoretical Background
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Figure 2.1: Voltage, current and power without phase difference between voltage and current.
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Figure 2.2: Voltage, current and power with phase difference between voltage and current.



2.3. Orthogonal Projection Method 5

function then becomes:
𝑌(𝑠) = 𝐻𝑠 + 𝐾𝑠

Further information on different types of Foster and Cauer canonical forms can be found in
the work of Guillemin and Chen [6] [2].

𝐻

Figure 2.3: Second Foster canonical form.

2.3. Orthogonal Projection Method
As mentioned in the introduction, this research focuses on a method for computing a 𝐿𝐶
compensator for 𝑅𝐿𝐶 networks, described in the article ’An Orthogonal Projection Method for
Computing Active, Reactive, and Scattered Power and its Application to Compensator Design’
by Jacob van der Woude and Dimitri Jeltsema [10]. The method aims to compute an optimal
compensator, consisting of a capacitor with coefficient 𝐶 and a coil with coefficient 𝐿 placed
parallel to the network.
This is achieved by calculating the reactive current using orthogonal projections on the space
of odd derivatives and antiderivatives of the voltage. The source voltage is given as a finite
number of harmonics:

𝑣(𝑡) =∑𝛼 cos(𝑙𝑡) + 𝛽 sin(𝑙𝑡)

𝑣( ) with 𝑘 a positive integer represents the 𝑘-th derivative of the voltage. Inversely, 𝑣( ) with
𝑘 a negative integer denotes the 𝑘-th antiderivative of 𝑣(𝑡).
Furthermore, an inner product is introduced for functions that have specific properties, such
as being represented by a finite Fourier series (for example, the voltage 𝑣(𝑡)):

⟨𝑓, 𝑔⟩ ∶= 1
2𝜋 ∫ 𝑓(𝑡)𝑔(𝑡)d𝑡

It can be shown that
⟨𝑣( ), 𝑣( )⟩ = 0 (2.1)

with 𝑘,𝑚 integers and 𝑘 − 𝑚 odd. For the proof, the article of Van der Woude and Jeltsema
should be consulted.
The current of the circuit is denoted by 𝑖(𝑡). It can be written as a linear combination of the
(anti)derivatives of 𝑣(𝑡). The following paragraph will elaborate on this statement.
Taking 𝑅, 𝐿 and 𝐶 as the respective values for the load, the coil and the capacitor, the equation
for a 𝑅𝐿𝐶 circuit is given by:

𝑅𝑖(𝑡) + 𝐿𝑖( )(𝑡) + 1
𝐶 𝑖

( )(𝑡) = 𝑣(𝑡)



6 2. Theoretical Background

When solving this differential equation for 𝑖(𝑡), using the method undetermined coefficients,
the solution is indeed given by a linear combination of (anti)derivatives of 𝑣(𝑡).
This means it is possible to decompose 𝑖(𝑡) in an even and an odd part:

𝑖(𝑡) = 𝑖 (𝑡) + 𝑖 (𝑡)

with

𝑖 (𝑡) ∶= ∑ 𝛾 𝑣( )(𝑡) for k even

𝑖 (𝑡) ∶= ∑ 𝛾 𝑣( )(𝑡) for k odd

An important property following from equation (2.1) is that ⟨𝑖 , 𝑖 ⟩ = 0, which means that
𝑖 and 𝑖 are orthogonal, making 𝑖(𝑡) = 𝑖 (𝑡) + 𝑖 (𝑡) an orthogonal decomposition. As a conse-
quence, ⟨𝑣, 𝑖 ⟩ = 0, which means there is no loss of energy in the interaction between 𝑣(𝑡) and
𝑖 (𝑡). This coincides with the reactive current 𝑖 (𝑡) discussed in section 2.1. To summarise,
when we project the given voltage 𝑣(𝑡) of a circuit on the space of odd (anti)derivatives of the
current 𝑖(𝑡), we find the reactive current.

The article of Van der Woude and Jeltsema also shows that the active and scattered cur-
rent can be calculated using orthogonal projections. When the current is projected on the
space of even (anti)derivatives of 𝑣(𝑡), the active current 𝑖 (𝑡) is found. It is also shown that
the scattered current 𝑖 (𝑡) is the difference between the even current and the active current:
𝑖 = 𝑖 − 𝑖 . The scattered current and active current are also orthogonal, meaning ⟨𝑖 , 𝑖 ⟩ = 0.
As these two currents are also orthogonal to the reactive current, their relation can be de-
scirbed as such:

||𝑖|| = ||𝑖 || + ||𝑖 || + ||𝑖 ||

This leads us to conclude that the apparent power 𝑆, the active power 𝑃, the reactive power
𝑄 and the scattered power 𝑄 have the following relation:

𝑆 = 𝑃 + 𝑄 + 𝑄

Two examples are described in the article of Van der Woude and Jeltsema, and both give
promising results. It is shown that in each case, when the current is projected on the space
of odd (anti)derivatives of 𝑣(𝑡), the reactive current can be described in the following form:

𝑖 (𝑡) = −𝑐 𝑣( )(𝑡) + −𝑐 𝑣( )(𝑡)

This current can then be compensated by the compensator that generates a current of the
form:

𝑖 (𝑡) = 𝑐 𝑣( )(𝑡) + 𝑐 𝑣( )(𝑡) (2.2)

that is implemented in parallel to the 𝑅𝐿𝐶 network.

The compensator that is suggested as decent in this situation is shown in figure 1.1. We
want to know if this type of compensator indeed generates a current of the form in equation
2.2. In other words, can the admittance function of the compensator be rewritten to a form
that matches equation 2.2? If so, what values should the coefficients have? This can be
shown as follows.

We only consider the compensator, as shown in figure 2.4. This can be seen as a second
Foster canonical form, without any series elements, which was elaborated on in section 2.2.
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This form is shown in figure 2.5. The admittance function for this circuit is given by:

𝑌(𝑠) = 𝐼(𝑠)
𝑉(𝑠) = 𝐻𝑠 +

𝐾
𝑠

⟺ 𝐼(𝑠) = (𝐻𝑠 + 𝐾𝑠 )𝑉(𝑠)

To find the current generated by this circuit, we take the inverse Laplace transform. We
then find:

ℒ [𝐼(𝑠)] = ℒ [(𝐻𝑠 + 𝐾𝑠 )𝑉(𝑠)]

⟺ 𝑖(𝑡) = 𝐻 ⋅ ℒ [𝑠 ⋅ 𝑉(𝑠)] + 𝐾 ⋅ ℒ [𝑠 ⋅ 𝑉(𝑠)]
= 𝐻 ⋅ 𝑣( )(𝑡) + 𝐾 ⋅ 𝑣( )(𝑡) (2.3)

When we compare equation (2.2) and equation (2.3), they indeed have the same form.
The only thing that is left to examine are the coefficients for the coil and the capacitor. The
differential equations relating the current and the voltage for capacitors and coils respectively,
are as follows [9]:

𝐶𝑣( )(𝑡) = 𝑖(𝑡) 𝑣(𝑡) = 𝐿𝑖( )(𝑡)

⟺ 𝐶𝑣( )(𝑡) = 𝑖(𝑡) ⟺ 1
𝐿𝑣

( )(𝑡) = 𝑖(𝑡)

Thus, if we set 𝐶 = 𝑐 = 𝐻 and 𝐿 = = , we have found a compensator that completely
compensates the reactive current. This leads to an improved power factor of the circuit and,
depending on the presence of scattered power, it could improve the power dissipation in such
a way that the power factor becomes 1. In this case, all apparent power is converted to active
power. This shows that the compensator in figure 2.4 generates a current of the form shown
in equation (2.2).

𝐿 𝐶

Figure 2.4: compensator described in Van der Woude and Jeltsema’s work.

This result seems promising, as the article goes on to show that when we examine the com-
plex Fourier series of the voltage and the current and use the coefficients in their vector form,
the computation of the reactive, active and scattered current and the power factor becomes
much easier. Another advantage is that the vector notation allows a rapid implementation
in mathematical programming languages such as Matlab. This allows us to quickly deter-
mine a compensator for any 𝑅𝐿𝐶 circuit with a given voltage and current. When applied to
two examples in the article, the power factor is greatly improved, and in one example even
becomes 1.

Indeed, this method is easy in calculation, and works well for certain values of 𝑅, 𝐿 and
𝐶. However, after testing different values for 𝑅, 𝐿 and 𝐶, the method frequently gives negative
values for 𝐶 and 𝐿 . These are not relative coefficients, as they have no physical meaning.
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𝐻

Figure 2.5: Second Foster canonical form without any series elements.

Also, the examples used in the article use a voltage with two frequencies. When trying cur-
rents with more frequencies, the projection of the current on the space of the (anti)derivatives
of the voltage, gives us a linear combination of the following form:

𝑖 (𝑡) = −𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − ...
The amount of basis vectors depends on the number of frequencies introduced. As shown

above, the compensator shown in figure 2.4 does not coincide with a current of this form. It
raises the question if a different type of compensator is needed. If so, what form should this
compensator have?
The following chapter will focus on answering the first research question: In which cases
does the orthogonal projection method provide relevant values for 𝐶 and 𝐿 ? In other words:
when does the projection method give us positive values for 𝐿 and 𝐶 ?



3
Limitations of the Orthogonal Projection

Method
As mentioned in the previous chapter, the orthogonal projection method has some very useful
properties, such as the ease of implementation. However, the method also has some serious
limitations.
In the article by Van der Woude and Jeltsema, two examples are shown for which the method
succeeds. However, after trying a couple of other values for 𝑅, 𝐿 and 𝐶 and trying different
voltages, it is soon discovered that this method often does not succeed at giving two useful
values for 𝐶 and 𝐿 . There are two common problems that occur: on one hand 𝐶 and 𝐿 are
often negative and on the other hand the orthogonal projection method sometimes generates
more than two coefficients. These issues will be discussed in the following paragraphs.

3.1. Negative values for coefficients
When preforming the orthogonal projection method, certain combinations of 𝑅, 𝐿 and 𝐶 in
combination with a certain voltage give negative values for 𝐿 and 𝐶 . This has no physical
meaning for coils and capacitors, and is thus an inapplicable practical result. The occurrence
of negative values of either 𝐿 , 𝐶 or both is illustrated in figure 3.1. Every combination for 𝑅,
𝐿 and 𝐶 that yielded a negative value for either 𝐶 or 𝐿 is indicated with a blue marker. The
tested values for 𝐿 and 𝐶 range between 0 and 3 (excluding 0 in the case of 𝐶), taking steps
of 0.05. 𝑅 was also tested between 0 and 3, but to improve visibility of the image, the steps
were chosen at 0.5. However, the pattern that can clearly be seen in the image continues
when testing other values for 𝑅.

3.1.1. Influence of R
We see an interesting relationship appear between the values for 𝐿 and 𝐶. A white space
means that the method is successful for these values for 𝑅, 𝐿 and 𝐶. When examining a
cross-section of figure 3.1, we get plots such as those shown in figure 3.2. As the resistor
increases in value, more and more combinations with 𝐿 and 𝐶 lead to a successful execution
of the method. Successful in this context means that both 𝐿 and 𝐶 are positive.

This makes sense when looking at the situation from a physical point of view. When the
load of a network becomes much more influential than the coils and the capacitors, much of
the power in the network is already being used as active power.

3.1.2. Boundary
An interesting question to ask is: what is the boundary for success? How do the voltage and
the values for 𝑅, 𝐿 and 𝐶 combine to form a condition ?

9
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Figure 3.1: The blue dots indicate the combinations for , and for which negative coefficients were calculated. The used
voltage is ( ) √ ( cos( ) sin( )).

To examine this, we perform the orthogonal method again, assuming a random value for
𝑅, 𝐿 and 𝐶 and a random alternating voltage with two frequencies of the form:

𝑣(𝑡) = 𝑏 ⋅ cos(𝑎𝑡) + 𝑏 ⋅ sin(𝑏𝑡) (3.1)

Due to the complexity of these calculations, they were performed in Matlab.
All variables (𝑅, 𝐿, 𝐶, 𝑏 , 𝑏 , 𝑏 and 𝑎) were assumed to be unknown. Following the examples
of chapter 7 in the article of Van der Woude and Jeltsema, 𝑉 and 𝑊 were defined. These are
vectors containing the coefficients of Fourier representation of the voltage and the frequencies
respectively. The complex notation for the current, given by 𝐼 was then calculated by solving
the equation

(𝑅𝐼 + 𝐿𝑊 + 1
𝐶𝑊 ) = 𝑉

The basis for the orthogonal projection was defined in a matrix as such:

𝐴 = [𝑊𝑉,𝑊𝑉 ]

Finally, the reactive current 𝐼 was calculated using the orthogonal projection of 𝐼 on 𝐴:

𝐼 = 𝐴(𝐴 𝐴) 𝐴 ⋅ 𝐼

Rewriting the values of the coefficients given by this projection, We find the following values
for 𝐶 and 𝐿 :

𝐶 = 𝐶(𝑎 𝑏 𝐶 𝐿𝑅 − 𝑎 𝑏 𝐶 𝐿 + 𝑎 𝐶𝐿 + 𝑏 𝐶𝐿 − 1)
(𝐶 𝑅 𝑎 + (1 − 𝐶𝐿𝑎 ) ) ⋅ (𝐶 𝑅 𝑏 + (1 − 𝑏 𝐶𝐿) )
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𝐿 = (𝐶 𝑅 𝑎 + (1 − 𝐶𝐿𝑎 ) ) ⋅ ((𝐶𝐿𝑏 − 1) + 𝐶 𝑅 𝑏 )
𝑎 𝑏 𝐶 (−𝑎 𝑏 𝐶 𝐿 + 𝑎 𝐶𝐿 + 𝑏 𝐶𝐿 + 𝐶𝑅 − 𝐿)

As we can see, the values are not dependent on the amplitudes of the voltage, only on the
frequencies and the values for 𝑅, 𝐿 and 𝐶. This can be expected, as the amplitude is only a
constant that is multiplied with the voltage. When using the voltage and its (anti)derivatives
as a basis, the coefficients of the linear combination of the basis elements will not be influ-
enced by any constant multiplied with the voltage.

The boundary for the areas of success is given by the following conditions:

𝐶 = 0 𝐿 = 0
As can be seen in figure 3.3, these lines are indeed the boundaries between the areas of
success and of failure. 𝐶 = 0 is plotted in red and 𝐿 = 0 is plotted in blue. These plots also
make a distinction between the 𝑅𝐿𝐶 combinations for which 𝐶 is negative (red) and for which
𝐿 is negative (blue). In these images, these plots do not seem to overlap. However, this is
not a correct assumption, as we will see in the next paragraph.

3.1.3. Influence of frequencies
Remember the equation for the voltage given in equation (3.1). To find out what influence the
frequencies have, the values for 𝑎 and 𝑏 are varied. As we have two frequencies, it is more
difficult to summarise the results. It is safe to say that, when 𝑎 and 𝑏 both become larger,
there are increasingly less 𝑅𝐿𝐶 combinations for which the method succeeds. However, if we
keep 𝑏 small and increase the value of 𝑎, we will see that we get an increase in successful
combinations. Keeping 𝑎 small and increasing the value of 𝑏 does not seem to have this
effect. This can also be seen in figure 3.4.
Something interesting we see in these images as well, is the appearance of a green zone.
Remember the red dots coincide with the 𝑅𝐿𝐶 combinations for which 𝐶 is negative, and the
blue dots have an negative 𝐿 value. The green dots are the combinations for which both 𝐿
and 𝐶 are negative. Indeed, the line 𝐶 = 0 crosses through the area of negative 𝐿 values,
creating a large subset of combinations yielding two negative coefficients.

As the previous paragraphs show, there are many cases for which the orthogonal projec-
tion method is not applicable yet. Chapter 4 will focus on a solution to extend the method in
such a way that the method does work for any 𝑅𝐿𝐶 network with a voltage with two frequen-
cies.

3.2. More than 2 frequencies.
As soon as we add more than two frequencies, we see that the projection obtains the following
form:

Three frequencies: 𝑖 (𝑡) = −𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡)
Four frequencies: 𝑖 (𝑡) = −𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡)
Five frequencies: 𝑖 (𝑡) = −𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡)
Six frequencies: 𝑖 (𝑡) = −𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡) − 𝑐 𝑣( )(𝑡)

...

Every added frequency generates a separate base element. Remember the basis in this situ-
ation is the space of odd (anti)derivatives of the source voltage 𝑣(𝑡). As shown in chapter 2,
the proposed compensator only generates a current with two base elements. Therefore, the
orthogonal projection method must be extended to compensate a reactive current of the form
shown above.
This research will not focus on this problem, but the conclusion includes a recommendation
in what way this problem can be tackled.
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Figure 3.2: The blue dots indicate the combinations for and for which negative coefficients were calculated. The value of
is varied. The used voltage is ( ) √ ( cos( ) sin( )).
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Figure 3.3: The blue dots indicate the combinations for and for which was negative. Red dots indicate combinations for
which is negative. The red line indicates . The blue line indicates . The value of is varied. The used voltage
is ( ) √ ( cos( ) sin( )).
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Figure 3.4: The blue dots indicate the combinations for and for which was negative. Red dots indicate combinations for
which is negative. Green dots indicate combinations for which both coefficients are negative. The red line indicates .
The blue line indicates . The value of is varied. The used voltage is ( ) √ ( cos( ) sin( )).



4
Possible Solution: Second Foster

Canonical Form

𝐶𝐿

Figure 4.1: Compensator configuration as suggested by Van der Woude and Jeltsema [10].

As was shown in the previous chapter, a compensator as the one depicted in figure 4.1
is a good option for certain 𝑅𝐿𝐶 networks. However, many combinations of 𝑅, 𝐿 and 𝐶 yield
negative values for 𝐶 and/or 𝐿 . Therefore, the method must be extended, so that it gives us
a solution for all combinations of 𝑅, 𝐿 and 𝐶. This study will focus on the case of a voltage
with two frequencies.

As mentioned in chapter 2, the compensator in figure 4.1 is an example of a second Foster
form with admittance function:

𝑌(𝑠) = 𝐼(𝑠)
𝑉(𝑠) = 𝐻𝑠 +

𝐾
𝑠

A possible solution to finding a compensator that works for more 𝑅𝐿𝐶 networks is to expand
the second Foster form with one step, as shown in figure 4.2. The goal is to evaluate if
this realisation meets our requirements to act as a compensator for any 𝑅𝐿𝐶 network with a
voltage of two frequencies. To achieve this, the admittance function must be assessed. The
key is to find out how it can be rewritten to a linear combination of odd (anti)derivatives of
the network’s voltage.

15
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𝐻

Figure 4.2: A configuration of a second Foster canonical form.

4.1. Admittance Function
As explained by W. Chen [2], the admittance function belonging to the realisation in figure
4.2 is given by:

𝑌 (𝑠) = 𝐼
𝑉 = 𝐻𝑠 + 𝐾𝑠 + 2𝐾 𝑠

𝑠 + 𝜔

⟺ 𝐼 = (𝐻𝑠 + 𝐾𝑠 + 2𝐾 𝑠
𝑠 + 𝜔 )𝑉

The first two terms correspond to the original compensator in figure 4.1, and can be
rewritten easily to a linear combination as such:

ℒ [(𝐻𝑠 + 𝐾𝑠 )𝑉 (𝑠)]

=𝐻 ⋅ ℒ [𝑠 ⋅ 𝑉 (𝑠)] + 𝐾 ⋅ ℒ [𝑠 ⋅ 𝑉 (𝑠)]
=𝐻 ⋅ 𝑣( )(𝑡) + 𝐾 ⋅ 𝑣( )(𝑡)

The difficulty lies in the addition of the 𝐿𝐶 element. We must rewrite the last term
to a combination of 𝑣( ) with 𝑘 odd.

ℒ [ 2𝐾 𝑠
𝑠 + 𝜔 ⋅ 𝑉 (𝑠)]

=2𝐾 (cos(𝜔𝑡) ∗ 𝑣(𝑡))

=2𝐾 ∫ cos(𝜔(𝑡 − 𝑢)) ⋅ 𝑣(𝑢)d𝑢 (4.1)

4.2. Integral Assessment
To assess this integral we must first find an equation for 𝑣(𝑡). A voltage with two frequencies
can be represented as:

𝑣(𝑡) = 𝑏 cos(𝑎𝑡) + 𝑏 sin(𝑏𝑡)

In this expression, 𝑏 and 𝑏 are constants associated with the amplitude, and 𝑎 and 𝑏 are
variables that allow for different frequency combinations.

Continuing with expression 4.1, we find:
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2𝐾 ∫ cos(𝜔(𝑡 − 𝑢)) ⋅ 𝑣(𝑢)d𝑢

=2𝐾 ∫ cos(𝜔(𝑡 − 𝑢)) ⋅ 𝐴 ⋅ (𝑐 cos(𝑎𝑡) + 𝑐 sin(𝑏𝑡))d𝑢

=2𝐾 ⋅ 𝐴 ⋅ [𝑐 ∫ cos(𝜔(𝑡 − 𝑢)) ⋅ cos(𝑎𝑢)d𝑢 + 𝑐 ∫ cos(𝜔(𝑡 − 𝑢)) ⋅ sin(𝑏𝑢)d𝑢]

=2𝐾 ⋅ 𝐴 ⋅ [𝑐 𝑎 ⋅ sin(𝑎𝑡) − 𝜔 sin(𝜔𝑡)𝑎 − 𝜔 + 𝑐 𝑏 cos(𝜔𝑡) − 𝑏 cos(𝑏𝑡)𝑏 − 𝜔 ]

= 2𝐾 𝐴
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) [𝑐 (𝑏 − 𝜔 )(𝑎 ⋅ sin(𝑎𝑡) − 𝜔 ⋅ sin(𝜔𝑡)) + 𝑐 (𝑎 − 𝜔 )(𝑏 ⋅ cos(𝜔𝑡) − 𝑏 ⋅ cos(𝑏𝑡)]

= 2𝐾 𝑎 𝑏
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) ⋅ 𝑣

( )(𝑡) (4.2)

+ 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) ⋅ 𝑣

( )(𝑡) (4.3)

+ 2𝐾 𝐴
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) [−𝑐 𝑏 𝜔 sin(𝜔𝑡) + 𝑐 𝜔 sin(𝜔𝑡) + 𝑐 𝑎 𝑏 cos(𝑏𝜔𝑡) − 𝑐 𝜔 𝑏 cos(𝜔𝑡)] (4.4)

These results are very promising, as we have already found a linear combination of 𝑣( )
(equation (4.3)) and 𝑣( ) (equation (4.2)). However, a last term remains that seems more
difficult to handle. It contains terms of the form sin(𝜔) and cos(𝜔). These can not be rewrit-
ten to an odd (anti)derivative of 𝑣(𝑡), as setting 𝜔 equal to 𝑎 or 𝑏 leads to a division by 0 in
the coefficient. However, these terms can be explained by a phenomenon called resonance [1].

Resonance can be interpreted as an internal impedance. Any network with at least one
coil and one capacitor has its own resonance. It can act as a filter to select frequencies and
it has many practical applications. However, these frequencies do not coincide with the fre-
quencies caused by the driving voltage of the network. They can be seen as homogeneous
solutions of the differential equation of this circuit. In other words: these are the frequencies
we perceive when the circuit is not driven by a voltage. This means they have no influence
on the reactive current fed by the voltage. They can be omitted from this equation.

We have now found a linear combination of 𝑣( )(𝑡) and 𝑣( )(𝑡).

4.3. Linear Combination
As shown in the previous section, the admittance function of the compensator in figure 4.2
can be rewritten to a linear combination of the following form:

𝑖 (𝑡) = (𝐻 + 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 ))𝑣

( )(𝑡) + (𝐾 + 2𝐾 𝑎 𝑏
(𝑎 − 𝜔 )(𝑏 − 𝜔 ))𝑣

( )(𝑡) (4.5)

The added rational terms generates an extra degree of freedom. We have seen in section
3 that the reactive current, when projected on the space of odd (anti)derivatives, yields a
compensator with a current of the form:

𝑖 (𝑡) = 𝑐 𝑣( )(𝑡) + 𝑐 𝑣 (𝑡)

In some cases, both coefficients are positive, in which case the method is successful at gen-
erating a compensator. However, in some cases either 𝑐 or 𝑐 are negative and sometimes
both are negative. We must therefore assess if the coefficients of equation 4.5 can become
simultaneously positive and negative, negative and positive, or both, keeping in mind that
𝐻,𝐾 , 𝐾 and 𝜔 must remain positive. If these coefficients are not positive, they loose their
physical meaning.
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First, we rename the coefficients:

𝑐 = 𝐶 = 𝐻 + 𝑡 with 𝑡 = 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 )

and

𝑐 = 𝐶 = 𝐾 + 𝑡 with 𝑡 = 2𝐾 𝑎 𝑏
(𝑎 − 𝜔 )(𝑏 − 𝜔 )

Let us first assume that 𝐶 has to be negative and 𝐶 has to be positive. In order to get
𝐶 negative, 𝑡 has to be negative, as 𝐻 has to be positive. As the numerator of 𝑡 already
consists of purely positive terms, it is up to the denominator to make sure this happens.

(𝑎 − 𝜔 )(𝑏 − 𝜔 ) < 0
⟺ (𝑎 − 𝜔 ) < 0 ∧ (𝑏 − 𝜔 ) > 0 or (𝑎 − 𝜔 ) > 0 ∧ (𝑏 − 𝜔 ) < 0

⟺ 𝑎 < 𝜔 < 𝑏 or 𝑏 < 𝜔 < 𝑎

As we see, when 𝜔 is chosen between 𝑎 and 𝑏, 𝑡 becomes negative. An interesting result
is that the freedom given in choosing 𝐾 is enough to make sure that 𝑡 equals 𝑐 . 𝐻 is not
needed as extra degree of freedom to influence 𝐶 . Therefore, the capacitor is not needed in
the original network. For 𝐶 , 𝐾 can then be used to make sure that 𝐶 equals 𝐾 + 𝑡 .

The same result is achieved when we assume that 𝐶 has to be positive, and 𝐶 has to
be negative. In that case, we do not need 𝐾 as an extra degree of freedom, and we can omit
the coil from the network. So, if the coefficient of 𝑣( ) is negative, the network in figure 4.3
can be used as a compensator. If the coefficient of 𝑣( ) is negative, we can use the network
in figure 4.4 as a compensator.

Finally, when both coefficients are negative, we can take a similar approach as in the
above case. However, it is important to note that 𝜔 < 𝑎𝑏, as 𝑎 and 𝑏 are both positive real
integers and 𝜔 is smaller than either 𝑎 or 𝑏 (but not both). This means that, if we want 𝑡
and 𝑡 to be negative, 𝑡 will be more negative than 𝑡 . We then have two cases:

1. 𝐶 < 𝐶
In this case, we only need to choose 𝜔 and 𝐾 in such a way that 𝑡 = 𝐶 . 𝐾 can then
be chosen in such a way that 𝐶 = 𝐾 + 𝑡 .

2. 𝐶 < 𝐶
In this case, choosing the proper coefficients becomes more difficult. First, 𝐾 and 𝜔
have to be chosen so that 𝐶 = 𝑡 . If we find that these values for 𝐾 and 𝜔 give a value
for 𝑡 , so that 𝑡 < 𝐶 , then we only need 𝐻 to make sure that 𝐶 = 𝐻 + 𝑡 . However,
should we find that 𝐶 < 𝑡 , then there is no 𝐻 for which 𝐶 = 𝐻 + 𝑡 is valid. In that
case, we need to re-evaluate the values for 𝜔 and 𝐾 . We need to re-choose these values
so that 𝑡 < 𝐶 and 𝑡 < 𝐶 . Then we need to introduce both 𝐻 and 𝐾 to ensure that
𝐶 = 𝐾 + 𝑡 and 𝐶 = 𝐻+ 𝑡 . In that case, a compensator such as the compensator in
figure 4.2 is needed.

4.4. Choosing omega
As shown before, if we want to choose an 𝜔 so that 𝑡 and 𝑡 become negative, 𝜔 must satisfy
𝑎 < 𝜔 < 𝑏. 𝐾 makes 𝑡 , small ’enough’. However, is there an optimal 𝜔?
In theory, all values for 𝜔 between 𝑎 and 𝑏 are valid. However, from a practical perspective,
a smaller 𝐾 is a more economical choice, as it means the coil and capacitor do not need to
be very strong. 𝐾 is minimal when the denominator of 𝑡 and 𝑡 is minimal. For this, we
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Figure 4.3: Compensator in the case of a negative

𝐻

Figure 4.4: Compensator in the case of a negative

differentiate the denominator for 𝜔.

d
d𝑡 [(𝑎 − 𝜔 )(𝑏 − 𝜔 )] = 0

⟺ d
d𝑡 [𝑎 𝑏 − 𝑎 𝜔 − 𝑏 𝜔 + 𝜔 ] = 0

⟺ − 2𝑎 𝜔 − 2𝑏 𝜔 + 4𝜔 = 0
⟺ 𝜔 = 0 or − 𝑎 − 𝑏 + 2𝜔 = 0

⟺ 𝜔 = 𝑎 + 𝑏
2 ⟺ 𝜔 = √𝑎 + 𝑏

2

If we choose this value for 𝜔, 𝜔 is still in between 𝑎 and 𝑏, as 𝜔 squared is the average of the
squares of 𝑎 and 𝑏. When examining graphs of functions of this form, we find that this value
for 𝜔 is indeed a minimum, and not a maximum.

4.5. Results
Following this method, an expansion to Van der Woude and Jeltsema’s method is found,
making this method applicable to any 𝑅𝐿𝐶 network and any two-frequency voltage. When
using the orthogonal projection method proposed in their paper, a linear combination is
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found of the form:
𝑖 (𝑡) = −𝑐 ⋅ 𝑣( ) − 𝑐 ⋅ 𝑣( )

This can be compensated by an 𝐿𝐶-network generating the current:

𝑖 (𝑡) = 𝑐 ⋅ 𝑣( ) + 𝑐 ⋅ 𝑣( )

Depending on the sign of 𝑐 and 𝑐 , a different type of network is needed.

We rename 𝑐 = 𝐶 and 𝑐 = 𝐶 . The different situations are summarised below:

• 𝐶 > 0 and 𝐶 > 0
In this case, the original method of Van der Woude an Jeltsema can be used. A com-
pensator of the form in figure 4.1 can be used, with:

𝐶 = 𝐶 and 𝐶 = 1
𝐿

with 𝐶 > 0 and 𝐿 > 0.

• 𝐶 < 0 and 𝐶 > 0
When the orthogonal projection yields a negative 𝐶 , a compensator of the form shown
in figure 4.3 can be used. We then choose the coefficients so that we achieve:

𝐶 = 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) and 𝐶 = 𝐾 + 2𝐾 𝑎 𝑏

(𝑎 − 𝜔 )(𝑏 − 𝜔 )
with 𝐾 ,𝐾 > 0 and 𝑎 < 𝜔 < 𝑏 or 𝑏 < 𝜔 < 𝑎 (depending on whether 𝑎 or 𝑏 is larger).

• 𝐶 > 0 and 𝐶 < 0
In case of a negative 𝐶 , the compensator shown in figure 4.4 can be used. The coef-
ficients must then be chosen in such a way that:

𝐶 = 𝐻 + 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) and 𝐶 = 2𝐾 𝑎 𝑏

(𝑎 − 𝜔 )(𝑏 − 𝜔 )
with 𝐻,𝐾 > 0 and 𝑎 < 𝜔 < 𝑏 or 𝑏 < 𝜔 < 𝑎.

• 𝐶 < 0 and 𝐶 < 0
There are two cases.

1. 𝐶 < 𝐶 < 0
In this case, a compensator as in figure 4.3 can be chosen, with

𝐶 = 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) and 𝐶 = 𝐾 + 2𝐾 𝑎 𝑏

(𝑎 − 𝜔 )(𝑏 − 𝜔 )
with 𝐻,𝐾 > 0 and 𝑎 < 𝜔 < 𝑏 or 𝑏 < 𝜔 < 𝑎.

2. 𝐶 < 𝐶 < 0
In most cases, a compensator such as in figure 4.4 is a good choice with

𝐶 = 𝐻 + 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) and 𝐶 = 2𝐾 𝑎 𝑏

(𝑎 − 𝜔 )(𝑏 − 𝜔 )
with 𝐻,𝐾 > 0 and 𝑎 < 𝜔 < 𝑏 or 𝑏 < 𝜔 < 𝑎. However, in some cases it will not be
possible to find a valid 𝜔 and 𝐾 . In that case, a compensator with an extra element
is needed, such as the compensator in figure 4.2. We then have:

𝐶 = 𝐻 + 2𝐾 𝜔
(𝑎 − 𝜔 )(𝑏 − 𝜔 ) and 𝐶 = 𝐾 + 2𝐾 𝑎 𝑏

(𝑎 − 𝜔 )(𝑏 − 𝜔 )
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Conclusion

In their article ’An Orthogonal Projection Method for Computing Active, Reactive, and Scat-
tered Power and its Application to Compensator Design’ [10], Dimitri Jeltsema and Jacob
van der Woude propose a method for power decomposition and compensator design in a 𝑅𝐿𝐶
network. Their method is based on an orthogonal projection of the current on the space of
the (anti)derivatives of the voltage.

By projecting the current on the space of odd (anti)derivatives, the reactive power can be
calculated. Conversely, projecting the current on the space of even (anti)derivatives yields
the active power of the circuit. Finally, the scattered power is represented by the difference
between the space of even (anti)derivatives and the active power. A useful application of
the method is the design of a lossless compensator, consisting of a parallel combination of a
coil 𝐿 and a capacitor 𝐶 . This compensator is able to improve the power factor of the system.

Two examples are presented in van der Woude and Jeltsema’s work. The projection of the
current on the odd (anti)derivatives of the voltage yields the reactive current, taking on the
following form:

𝑖 (𝑡) = −𝑐 𝑣( ) − 𝑐 𝑣( ) (5.1)

It is then shown that a compensator coil with magnitude and a capacitor with magnitude
𝑐 improves the power factor, in one case the power factor even become 1.

During this Bachelor Thesis, research was conducted in order to expand on the orthogonal
projection method devised by Van der Woude and Jeltsema. After trying different values for
the load 𝑅, the coil 𝐿, the capacitor 𝐶 and the voltage, it becomes clear that this method often
fails to give useful answers. The two main problems that occur are:

• The values for the coefficients of 𝐿 and 𝐶 are often negative. This has no physical
meaning.

• When trying voltages with more than two frequencies, the reactive current does not
obtain the form shown in equation 5.1. This does not coincide with the proposed com-
pensator form.

The following research questions were posed:

1. In which cases does the orthogonal projection method give relevant values for 𝐶 and 𝐿 ?

2. How can the orthogonal projection method be extended to give relevant values for all
𝑅𝐿𝐶 networks with two-frequency voltages?
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In order to answer the first research question, we found a condition for a successful ex-
ecution of the method. This condition is twofold: 𝐶 has to be larger than 0, as well as 𝐿 .
Our research constructed equations for these two coefficients, depending on 𝑅, 𝐿, 𝐶 and the
voltage frequencies. The following values were found:

𝐶 = 𝐶(𝑎 𝑏 𝐶 𝐿𝑅 − 𝑎 𝑏 𝐶 𝐿 + 𝑎 𝐶𝐿 + 𝑏 𝐶𝐿 − 1)
(𝐶 𝑅 𝑎 + (1 − 𝐶𝐿𝑎 ) ) ⋅ (𝐶 𝑅 𝑏 + (1 − 𝑏 𝐶𝐿) )

𝐿 = (𝐶 𝑅 𝑎 + (1 − 𝐶𝐿𝑎 ) ) ⋅ ((𝐶𝐿𝑏 − 1) + 𝐶 𝑅 𝑏 )
𝑎 𝑏 𝐶 (−𝑎 𝑏 𝐶 𝐿 + 𝑎 𝐶𝐿 + 𝑏 𝐶𝐿 + 𝐶𝑅 − 𝐿)

When these two values give positive results, the values for 𝐶 and 𝐿 are relevant and the
orthogonal projection method is applicable.

Calculating negative values is equivalent to an inapplicable execution of the method.
Therefore, the research also revolved around examining the graphs for 𝐶 = 0 and 𝐿 = 0.
These can be seen as a boundary for success/failure. Chapter 3 includes many plots show-
ing the combinations for 𝑅, 𝐿 and 𝐶 for which this method does not provide a valid answer.
It can be seen that a larger 𝑅 yields more successful executions of the method. More 𝑅𝐿𝐶
combinations lead to an applicable execution as the voltage frequencies simultaneously get
bigger.

As seen in the first section, 𝐶 and 𝐿 often become negative. Therefore, a second contri-
bution of this research is that it constructs a new type of compensator. This compensator
also generates a current of the form:

𝑖 (𝑡) = 𝑐 𝑣( ) + 𝑐 𝑣( )

However, an additional requirement is that 𝑐 and 𝑐 need to be able to become negative as
well as positive. There are a few different cases for 𝑐 and 𝑐 , that are summarised in section
4.5. This research shows that by adding an extra degree of freedom to the compensator, the
reactive power of any 𝑅𝐿𝐶 network with a two-frequency voltage can be fully compensated.
This also answers the second reseach question that was posed.

The results of this research may inspire research in similar topics. A good follow-up re-
search can be done in finding a compensator for circuits with voltages with more than two
frequencies. As shown in the research, adding extra degrees of freedom (for example, by
adding a larger second Foster canonical form) made the method more generally applicable.
The same approach can be tried for more frequencies.

There are still a couple of question marks to be resolved. An example is the ragged ap-
pearance of the plot for 𝐶 = 0. The reason for this is still unclear. Also, the assumption
made in section 4.2 about the terms of the form sin(𝜔𝑡) and cos(𝜔𝑡) corresponding to the
internal resonance can be further researched. Finally, it would also be interesting to test if
the conclusions also work in an experimental setup.

This research is an addition to the orthogonal projectionmethod devised by Van derWoude
and Jeltsema. It makes the method generally applicable for any 𝑅𝐿𝐶 network with a two-
frequency voltage.
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