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Geophysical tomography as a tool to estimate the geometry of soil layers:
relevance for the reliability assessment of dikes
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aDepartment of Geoscience and Engineering, Delft University of Technology, Delft, Netherlands; bDepartment of Physical Geography, Utrecht
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ABSTRACT
The geometric variability of soil layers is a large source of uncertainty in the reliability assessment
of dikes. Because direct samples of the subsurface soils are often insufficient to capture the
complexity of the subsurface, geophysical methods provide a powerful source of
complementary information. A combined approach to estimate the geometry of soil layers is
presented. The approach combines local point data, i.e. data obtained from a CPT or a borehole
log, and geophysical tomography in a universal cokriging framework. The approach uses the
contact points between soil layers obtained from local point data and the orientations of the
layers derived from geophysical tomography. To reduce subjectivity in the interpretation of
tomographic images, an automated edge detection technique was used. The combined
approach was applied to characterise two test sites where the presence of paleochannels locally
change the geometry of soil layers. The results show that a combined approach enables the
reduction of sampling efforts with an improved estimation of geometric variability.
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1. Introduction

Dikes form an essential part of the primary flood
defences along the coast and major rivers in the
Netherlands. Multiple failure mechanisms threaten
the stability of these dikes. Hence, they are subjected
to periodic reliability assessments (MinIM, 2016; De
Waal, 2018). In reliability assessments, a special
focus lies on the geological schematisation of the sub-
surface (Hijma and Lam, 2015). Characterizing geo-
metric variability of soil layers is a key step within
the geological schematisation process. In the failure
mode of macrostability, for example, the thickness
of a weak layer determines the shape of the slip sur-
face and the reliability of the dike. Geometric varia-
bility is also important for the reliability assessment
of dikes in terms of piping. In clay-over-sand dikes,
the thickness of the clay layer in the hinterland gen-
erates resistance against uplift which is the first phase
of piping (Sellmeijer and Koenders, 1991).

The Dutch subsurface is notoriously heterogeneous.
It is built up by sequences of gravely sandy aquifers
alternated by confining clayey aquitards. The uppermost
aquifer, which was deposited during the last glacial
period (Pleistocene epoch), forms a nearly continuous

sandy substrate. These deposits are overlain by the
Holocene deltaic wedge which forms a heterogeneous
confining layer. This layer is mostly composed of aqui-
tard floodplain clays, clay-fine sand, dominated interti-
dal flats, and peats. However, it is dissected by (partly)
isolated alluvial and tidal channel sand bodies (Bierkens,
1994; Weerts, 1996; Hijma and Cohen, 2011). These
channel-belt sand bodies act as shallow-depth aquifers
and locally occur directly underneath dikes. In addition,
small-scale variability of sand body architecture also
occurs which is the result of autogenic processes. Due
to this complexity, it is challenging to characterise the
geometric variability of soil layers with conventional
site investigation methods. Methods, such as the Cone
Penetration Test (CPT) and borehole drilling, sample
the subsurface in detail, yet locally. In the Netherlands,
CPT samples are normally collected with a spacing of
100 m (ENW, 2012). In the Dutch subsurface; however,
the geometry of soil layers often varies on scales smaller
than 25 m (Hijma and Lam, 2015). The mismatch
between site investigation density and actual subsurface
variability leads to schematisation uncertainties.
Although schematisation uncertainties are compensated
with safety factors (ENW, 2012), large uncertainties
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result in uneconomical designs or unnecessary
reinforcement of existing structures. Therefore, it is of
paramount importance to reduce these uncertainties
without exhaustively sampling the subsurface. For this
purpose, geophysical methods are a well-established
option because they map the subsurface in a horizon-
tally-continuous manner.

Even though geophysical methods provide valuable
insights into the variability of soil layers, their use has
been limited to the visual interpretation of geophysical
images. Few attempts have been made to objectively
derive information from geophysical data. For example,
deterministic (Auken and Christiansen, 2004) and prob-
abilistic (de Pasquale et al., 2019) inversion methods
have been used to estimate the geometry of soil layers
and material properties. Alternatively, Hsu et al.
(2010) and Chambers et al. (2012) applied automated
detection techniques to tomographic images in order
to estimate the geometry of soil layers. The problem is
that geophysical data are often affected by instrumental
drift, lateral heterogeneity, and lack of resolution (Mins-
ley et al., 2012; Delefortrie et al., 2019). In such cases, the
quantities estimated with these methods, e.g. geometry,
though informative of the variability trend, are inher-
ently inaccurate.

We propose a combined approach to estimate the
geometry of soil layers. We combine the trend of geo-
metric variability estimated from geophysical data with
accurate data derived from boreholes. We use the
potential field method (Lajaunie, Courrioux, and Man-
uel, 1997) to combine both data sets. The potential
field method generates a geometric model of the sub-
surface via universal cokriging of the layer orientations
and contact points between soil layers. We use the
Laplacian edge detection technique to estimate soil
interfaces from geophysical tomography. The layer
orientations are then calculated as the dip angle of
the tomographic interfaces. Thus, we use layer orien-
tations derived from tomography and the contact
points between soil layers obtained from directly
sampling the subsurface. We test the approach with
two electromagnetic geophysical methods that are
widely used in the site investigation of dikes, namely
Electric Resistance Tomography (ERT) and Electro-
magnetic Induction (EMI).

We first describe the proposed approach and the
main steps behind it. We describe the construction of
geophysical tomography, the technique to obtain layer
orientations from tomography, and the potential field
method. Afterwards, we present a proof of concept of
our approach with a synthetic two-layer model with
internal variability. Our approach is then applied to
two study sites. One site located in an alluvial

environment across an old river channel and the other
site located in a tidal environment along the longitudi-
nal section of a dike. In both cases, the geometry of
the upper layer is characterised.

2. Methodology

We propose an approach to estimate the geometry of the
soil layers of a geological setting (Figure 1). Local point
data and geophysical tomography are used as input in
this approach. Local point data, such as CPTs and bore-
hole logs, are used to derive the contact point or interface
between soil layers. ERT and EMI tomography (Section
2.1) were used to derive the orientations of the soil layers.
The orientations of the soil layers were calculated from
the edges automatically detected in the tomographic
images (Section 2.2). Finally, orientations and contact
points were used to estimate the geometry of soil layers
via the potential field method of Lajaunie, Courrioux,
and Manuel (1997) (Section 2.3).

2.1. Geophysical tomography

Two geophysical methods were considered, ERT and
EMI. Although the working principle of each method
is different, both methods map the electrical resistivity
of the ground. ERT is based on electric conduction
while EMI is based on electromagnetic induction. The
ERT method allows for fine-tuning the sensor positions
and acquisition array. Therefore, the depth of investi-
gation and sensitivity of the sensors are adaptable to
different applications. Nevertheless, setting up an ERT
system is labour intensive and the data acquisition is
time-consuming. On the other hand, data acquisition
with an EMI system is up to orders of magnitude faster
(Binley et al., 2015). The EMI device used in this study,
DUALEM-421, has a fixed geometric configuration.
Therefore, fine-tuning the depth of investigation and
sensitivity was not possible. A detailed explanation of
the working principles of both geophysical methods is
presented in Appendices A.1 and A.2, respectively. A
tomography, which is a model of the subsurface, was
constructed with geophysical measurements. The tom-
ography, in this case, represents the spatial distribution
of electrical resistivity in the subsurface. Since tomo-
graphic inversion of ERT and EMI is an ill-posed pro-
blem, it requires regularisation. Regularisation is an
assumption about the form of the tomography. Smooth-
ness regularisation was used to construct the ERT and
EMI tomography. A further explanation of the tomo-
graphic inversion process is presented in Appendix
A.3. The orientations of the soil layers were then esti-
mated from the geophysical tomography (Figure 2(a)).
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2.2. Layer orientations

The Laplacian edge detection technique was used to
automatically detect edges in the tomographic images.
The edges in the tomography were interpreted as the
interfaces between soil layers. In the Laplacian edge
detection technique, edges are defined at the zero-cross-
ings of the Laplace operator applied to the tomography

∇2m(x, z) = ∂2m
∂x2

+ ∂2m
∂z2

= 0, (1)

wherem(x, y) are the material properties of the medium
represented in the tomography i.e. electrical resistivity.
Due to tomographic artefacts and geological complex-
ity, fake edges and edges that are not of interest are

also detected in the tomography. Thus, additional pro-
cessing and interpretation are often needed. Processing
with smoothing and thresholding is effective in redu-
cing the detection of fake edges (Mlsna and Rodríguez,
2009). Smoothing is effective in reducing the detection
of fake edges caused by the small-scale components in
the tomography. An appropriate filter strength should
be picked based on the frequency content of the tomo-
graphic images. On the other hand, thresholding
removes edges that show a low tomographic gradient.
From the remaining edges in the tomography, the
edges that correspond to the geological feature of inter-
est are picked based on the geological interpretation of
the tomography. The final selection of tomographic
edges is assumed to represent the trend of geometric

Figure 1. Schematic of the approach proposed to estimate the geometry of soil layers of a geological setting. The approach uses local
point data and geophysical tomography. Local point data are used to derive the contact points between soil layers. Meanwhile, geo-
physical tomography is used to derive the orientations of the soil layers. The orientations are calculated from the edges detected in
the geophysical tomography. The estimated geometry of the soil layers is obtained via universal cokriging of the contact points and
the orientations.

Figure 2. Tomographic orientations and potential field method. (a) Orientation of the soil layers (arrows) calculated from the dip of
the edges (dashed line) detected in the geophysical tomography (contour plot). (b) Potential field (contour lines) derived from the
contact points between soil layers (crosses) and the tomographic orientations (arrows).
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variability of the soil interfaces. We represent this trend
with the orientations of the edges (Figure 2(a)). The
orientation is a unitary vector that is perpendicular to
the soil layer. The orientations are calculated from the
dip angle of the tomographic edges. In two dimensions
the orientations becomêorientation = − sin (dip)î+ cos (dip)ĵ+ 0k̂, (2)

where the dip angle is calculated directly from the tomo-
graphic edges

dip = tan−1 dzint
dxint

( )
(3)

where xint and zint are the coordinates of the edges. The
dip angle calculated from the tomographic edges is
signed which defines the pointing direction of the orien-
tation vector. Alternatively, the orientation vector can
be defined in terms of dip and azimuth.

The performance of the edge detector depends on
tomographic resolution. Resolution in turn depends
on measurement physics, regularisation, acquisition
design, and physical contrast between soil layers.
Appendix 2 describes the performance of the edge
detector for several cases of acquisition design and phys-
ical contrast in a two-layer model. Appendix 2 shows
that lack of resolution leads to poorly mapped regions
of the subsurface where automated detection techniques
do not perform well. In the regions where automatically
detected edges are not informative, assumptions have to
be in terms of the contact between soil layers or their
orientations. The assumptions made in this part of the
process have a large effect on the estimated geometric
variability. The advantage of the potential field method
(Section 2.3) is that these assumptions are made explicit.
Therefore, uncertainties in these assumptions are
quantifiable.

2.3. Potential field method: universal cokriging

The potential field method (Lajaunie, Courrioux, and
Manuel, 1997) was used to combine tomographic orien-
tations with contact points to estimate the geometry of
soil layers. The method is based on universal cokriging
and offers two main advantages, namely flexibility and
objectivity. The method is flexible because it allows
two non-collocated variables as input. In the present
case, the contact points between soil layers are accu-
rately known from CPTs and boreholes, but they are
sparse. Meanwhile, the orientations of the soil layers
are known in a horizontally-continuous manner from
geophysical tomography, but their location does not
coincide with the contact points. The potential field

method is also objective because it takes into account
the input data sets explicitly. Consequently, the effect
of the data and the covariance model on the estimated
geometry of the soil layers is quantifiable.

The method generates a potential field which is
designated with the random function Z1. The potential
field represents a proxy to the time of formation. By
this definition, the interface between two soil layers
was formed at the same time. Also, the gradient of the
potential field, Z2 = ∇̂Z1, coincides with the orien-
tations of the soil layers. The gradient points towards
younger formations or later formation times. To formu-
late the cokriging system, the value of Z1 and Z2 needs to
be known at certain locations. The gradient of the
potential field, Z2, is known from geophysical tomogra-
phy (arrows in Figure 2(b)). However, the value of the
potential field is not known at the contact points
(crosses in Figure 2(b)). Thus, it is convenient to replace
the random function Z1, which is not known at the con-
tact points, by a new, known, random function defined
as

Z1new(x) = Z1(x)− Z1(x0) = 0, (4)

where x0 is a reference contact point which belongs to
the same interface as x. To illustrate, in Figure 2(b), x0
is the first contact point (leftmost red cross) so
Z1new(x) is evaluated at the remaining two contact
points. The choice of reference point has no influence
in the cokriging estimation of the potential field Z∗

1 (x).
The function Z1new equals zero because the value of
the potential field along an iso-surface is constant. The
potential field method allows for any number of soil
layers, but at least two contact points must be known
per layer so that Z1new is defined. The potential field is
then generated via universal cokriging of Z1new and
Z2. Because of the dependency between Z1 and Z2, the
covariance and cross-covariance matrices are derived
from a single covariance model, i.e. the covariance
model of the potential field. The same is true for the
drift functions. Following De La Varga, Schaaf, and
Wellmann (2019), the cokriging system becomes

CZ1new,Z1new CZ1new,Z2 UZ1new

CZ2,Z1new CZ2,Z2 UZ2

UT
Z1new

UT
Z2

0

⎡⎣ ⎤⎦ ·
lZ1new,Z1new

lZ2,Z1new

mZ1new

⎡⎣ ⎤⎦
=

cZ1new,Z1new

cZ2,Z1new

f Z1new

⎡⎣ ⎤⎦, (5)

where CZ1new,Z1new , CZ2,Z2 are covariance matrices,
CZ1new,Z2 , CZ2,Z1new are cross-covariance matrices, UZ1new

and UZ2 are drift functions, λ, μ are the cokriging
weights, c are vectors which contain covariances and
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cross-covariances between the existing data points and
the interpolation point, and fZ1new is the vector which
contains the drift function of Z1new evaluated at the
interpolation point. The drift function and the relation
between covariance and cross-covariance models are
elaborated in Appendix A.4. The potential field is esti-
mated at any interpolation point in the domain from
the cokriging weights

Z∗
1 (x) =

∑M
a=1

lZ1new,Z1new (Z1(xa)− Z1(x
a
0 ))

+
∑N
b=1

lZ2,Z1newZ2(xb) (6)

where M is the number of contact points minus the
number of soil layers and N is the number of gradients
which is a multiple of three. Although the contribution
of Z1new in equation (6) is zero, Z1new contributes to the
cokriging weights associated with Z2.

The covariance models, which are needed to calculate
the covariance matrices and vector in equation (5), can
be derived experimentally or heuristically. Experimen-
tally, the covariance models need to be derived from
the orientation data (Aug, 2004; Chiles et al., 2004),
for the potential field is a mathematical construction
not known at the contact points. Since the relation
between covariance models is known (Appendix A.4),
the covariance models follow from the covariance
model of the orientation data. Alternatively, a heuristic
approach is often used to define the covariance models.
De La Varga, Schaaf, and Wellmann (2019) assume a
spherical covariance model for the potential field Z1

where the variance and range of Z1 define all the covari-
ance and cross-covariance models. Default values for
the variance and range of the covariance function are
calculated based on the size of the model domain
(Appendix A.4). The estimation variance has no phys-
ical meaning when the covariance models are defined
heuristically. In that case, the cokriging system can be
solved in its dual form which improves computation
efficiency (Goovaerts, 1997). The python package
GemPy (De La Varga, Schaaf, and Wellmann, 2019)
was used to apply the potential field method to the
data presented.

3. Proof of concept

3.1. Synthetic study site and data simulation

The approach of Figure 1 was applied to a synthetic two-
layer model with internal variability. The contact points
between soil layers were obtained from sampling the
subsurface at two locations. The orientations of the

interface between soil layers were derived from three
types of images, namely the true electrical resistivity
model, an ERT tomography, and an EMI tomography.
The geometry of the interface was estimated for each
type of image with the potential field method. Finally,
the estimated geometry was compared to the true geo-
metry of the synthetic model.

Each layer of the synthetic model was simulated as a
realisation of a Gaussian random field via covariance
matrix decomposition (Constantine, 2020). The ran-
dom fields were characterised by an anisotropic covari-
ance model

cov(x1, x2) = s2 exp −2



















tx
ux

( )2

+ tz
uz

( )2
√⎛⎝ ⎞⎠ (7)

where tx and tz are the horizontal and vertical distances
between the pair of points x1 and x2, s2 is the variance of
the random field, and ux and uz are the horizontal and
vertical correlation lengths, respectively. The par-
ameters of the random fields are summarised in Table
1. The air-ground interface was considered flat and
located at z = 0 m. The interface between the soil layers
was located at

z(x) =−0.75− 0.75 sin (0.1px− 3p) (8)

In this case, the position of the interface also corre-
sponded to the thickness of the upper layer. The syn-
thetic model served as the base for simulating
geophysical data and also as a representation of a tom-
ography with perfect resolution. ERT and EMI tom-
ography were constructed by simulating data
acquisition on the synthetic model. The ERT tomogra-
phy was constructed with data simulated following a
roll-along pattern. The EMI tomography was con-
structed with EMI data simulated with the acquisition
geometry of the commercial device DUALEM-421 (Sec-
tion A.2). The simulation parameters for the ERT and
EMI data sets are summarised in Table 2.

Table 1. Parameters of the synthetic model.
Layer Parameter Value Unit

Upper Mean 10 ohm m
Upper Variance 2.25 ohm2 m2

Upper Horizontal correlation length 5 m
Upper Vertical correlation length 0.5 m
Lower Mean 40 ohm m
Lower Variance 36 ohm2 m2

Lower Horizontal correlation length 5 m
Lower Vertical correlation length 0.5 m
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3.2. Edge detection: true model, ERT, and EMI

Figure 3(a) shows the synthetic model and the Laplacian
edge detection technique applied to it. The Laplacian of
the true model shows a large number of zero-crossings
which are a result of the internal variability within the
soil layers. Meanwhile, the gradient shows high values
at the location of the soil interface. The Laplacian and
gradient magnitude sufficed to detect the interface
between soil layers in the true model, so smoothing
was not applied.

Figure 3(b) shows the edge detection technique
applied to the original ERT tomography. Visually,
the ERT tomography indicates the presence of two
soil layers with internal variability. The zero-crossings
of the Laplacian showed both true soil interfaces and
fake edges. The fake edges arised from small-scale
variability in the ERT tomography. Smoothing and
thresholding were applied to improve the detection
of edges in the tomography. Figure 3(c) shows the
ERT tomography after a Gaussian filter with a stan-
dard deviation of 2.5 was applied. Although the
filtered ERT tomography was not visually different
from the original tomography, the small-scale zero-
crossings were significantly fewer. Two geometrically
similar edges were visible in the Laplacian of the
filtered tomography. The edge that corresponds to
the soil interface was identified by thresholding the
gradient magnitude.

Figure 3(d) shows the edge detection technique
applied to the EMI tomography. Visually, the EMI tom-
ography also indicates the presence of two soil layers.
However, the contour plot of the unfiltered EMI tom-
ography resembles only roughly to the true interface
geometry. Moreover, the Laplacian of the unfiltered
tomography is contaminated with small-scale zero-
crossings, so the interface between soil layers is not vis-
ible. Thus, smoothing was applied. Figure 3(e) shows
the EMI tomography after a Gaussian filter with a stan-
dard deviation of 20.0 was applied. The remaining edge
in the Laplacian is located at the same position where
the gradient magnitude is large.

3.3. Potential field: true model, ERT, and EMI

Figure 4(a) shows the potential field method applied to
the data sets of the true model, the ERT, and the EMI
tomography. The data sets consist of contact points
and orientations. The contact points between the soil
layers were obtained from local point data of the subsur-
face, i.e. Equation (8) sampled at x=23 m and x=46 m.
The orientations were calculated as the dip angle of
the Laplacian interfaces. The Laplacian interfaces are
the edges detected with the Laplacian edge detection
technique (Figure 3). They represent the interface
between soil layers estimated with geophysical data
only. The potential-field interfaces represent the inter-
faces estimated by combining geophysical data and
local point data of the subsurface. The potential-field
interfaces correspond to one of the contour lines of
the potential field.

Figure 4(b) shows the error incurred by the Laplacian
and the potential-field interfaces. The errors of the
Laplacian and potential-field interface of the true
model are negligible. Thus, sampling the subsurface is
not necessary in the hypothetical case that the image
of the subsurface is perfect. The added value of a com-
bined approach for site investigation is visible when
the image of the subsurface is approximate. In the
ERT and EMI data sets, the error of the potential-field
interface was smaller than that of the Laplacian inter-
face. Thus, the combination of geophysics and local
point data improved the estimation of geometric
variability.

4. Application in an alluvial environment:
Montfoort

4.1. Study site and data collection

The case study site is located in the central-northern
section of the Rhine-Meuse delta. In this alluvial
environment, multiple paleochannels are present in
the subsurface. These channels are visible in the pre-
sent-day landscape as topographic ridges (Figure 5).
Within this area, the Stuivenberg channel belt is the
main topographic expression. Berendsen (1982) investi-
gated comprehensively the geological development of
the area. Additionally, Winkels et al. (2017) used local
borehole data to gain insights into the internal build-
up of the Stuivenberg channel belt and encasing sedi-
ments. Figure 5 shows an approximate lithological
cross-section from Winkels et al. (2017). The cross-sec-
tion shows the Stuivenberg paleochannel which mainly
consists of sandy deposits. The channel is surrounded
by clayey deposits and a Pleistocene sandy substrate.
The geometric variability of the clay-sand interface

Table 2. Parameters for ERT and EMI data simulation.
Method Acquisition parameter Value

ERT Electrode separation 0.5 m
ERT Number of electrodes 72
ERT Number of electrodes rolled 36
ERT Number of rolls 2
ERT Array type Wenner-alpha
ERT Total number of measurements 2088
EMI Frequency 9000 Hz
EMI Separation from the ground 0.2 m
EMI Sampling spacing 0.5 m
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was investigated at the location of the lithological cross-
section. Since the clay layer is in contact with air, the
depth of the clay-sand interface also represents the
thickness of the clay layer.

The clay-sand interface was identified in boreholes
from Winkels et al. (2017). The data set consisted of
eight borehole cores (Table 3), each of which was
sampled with a resolution of 0.1 m. The interface depths

Figure 3. Edge detection applied to three images of the subsurface, i.e. the true model, an ERT tomography, and an EMI tomography.
The white lines represent the zero-crossings of the Laplacian operator. (a) Unfiltered synthetic model, (b) before filter, (c) after filter, (d)
before filter and (e) after filter.
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were determined by visual inspection. Tomographic
images, collocated with the lithological cross-section,
were created with ERT and EMI data. The ERT data
were collected in spring 2018 with a Wenner-alpha
array. The roll-along technique was used to cover the
extent of the test site. The EMI data were collected in
summer 2020 with a DUALEM-421 (Section A.2).
Table 4 summarises the acquisition parameters for the
ERT and EMI data. Clayey and sandy layers were recog-
nised in ERT and EMI tomography by their value of
electrical resistivity. In general, low values of electrical
resistivity correspond to clayey layers while high values
correspond to sandy layers.

4.2. Edge detection and interpretation: ERT and
EMI tomography

Figure 6(a) shows the Laplacian edge detection tech-
nique applied to the ERT tomography. The tomography
was filtered with a Gaussian filter at a standard deviation
of 4.0. The value was chosen so that near-surface arte-
facts were reduced without distorting the tomography.
Due to the variability of the geological setting, multiple
soil layers were detected in the Laplacian of the ERT
tomography. The interfaces that correspond to the
layer of interest, the bottom of the clay layer in Figure
5, were picked from the edges detected in the tomogra-
phy. The picked edges showed a large value of gradient

Figure 4. Estimated interface geometry and error with the true model, ERT, and EMI tomography. (a) Potential field (contour lines) and
(b) error.

Figure 5. Elevation map of the study site (left) and lithological cross-section (right).
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magnitude. Figure 6(b) shows the Laplacian edge detec-
tion technique applied to the EMI tomography. The
tomography was filtered with a Gaussian filter at a stan-
dard deviation of 10.0. The value was chosen so that
near-surface artefacts were reduced without distorting
the tomography. Although the EMI tomography does
not resolve the geological setting in the same detail as
the ERT tomography, similar insights were derived.

The clayey deposits on top of the Stuivenberg sand
body (from approximately 60 to 350 m in Figure 5)
are thinner than the deposits on the sides of the sand
body. On top of the sand body, the thickness of the
clay layer varies at a smaller scale due to autogenic pro-
cesses. For instance, BH1 and BH2 (Table 3), which are
located on top of the sand body, show a thicker clayey
layer than the surrounding boreholes. Small-scale vari-
ations are visible in both ERT and EMI tomography.
However, only the Laplacian of the ERT tomography
captures the details of the fine-scale variability. The
Laplacian of the EMI tomography does not capture
this variability due to the lack of detail of the
tomography.

The lack of detail in the EMI tomography is inherent
to the device used in this survey, DUALEM-421. Two
factors affected the EMI tomography. First, the
measurements were collected during a dry summer
day. Therefore, the electrical resistivity of the shallow
portion of the ground was high due to evapotranspira-
tion. Higher electrical resistivity values resulted in
lower signal strength and thus lower resolution. Second,
the maximum depth of investigation of the DUALEM-
421 is approximately 6 m. Meanwhile, the thickness of
the clay layer is known to be larger than 6m on the

left-hand side of the sand body. Therefore, the clay-
sand interface in the EMI tomography was only roughly
visible on this side. On the right-hand side of the sand
body, the thickness of the clay layer is known to be smal-
ler than 4 m. Therefore, the clay-sand interface is more
visible on this side.

4.3. Potential field: ERT and EMI

Figure 6(g) shows the potential field method applied the
ERT data set of the Montfoort site. The estimated geo-
metry of the clay-sand interface corresponds to one of
the contour lines of the potential field. The method
was applied with borehole data and ERT tomography.
The location of the clay-sand interface was derived
from borehole data (Figure 6(c)) and the orientations
were derived from ERT tomography (Figure 6(e)). The
estimated interface with the ERT data set captures in
great detail the complexity of the lithological cross-sec-
tion of the Stuivenberg channel belt.

The geometry of the clay-sand interface was also esti-
mated with the EMI data set. For that purpose,
additional information was manually added regarding
the orientation of the clay-sand interface on top of the
sand body. Although finer variability is visible in the
EMI tomography, the Laplacian edge detection tech-
nique was not successful at detecting variability in this
region. Thus, we considered the clay layer on top of
the sand body to be horizontal (Figure 6(f)). The orien-
tations were positioned at the minimum depth found in
the boreholes from Table 3 which is 0.6 m. Additionally,
the data from a borehole core which is not listed in
Table 3 was used (BH9 in Figure 6(d)). In the borehole
core, which was drilled at x=30m, he Pleistocene sand
layer was not reached after 5.5 m of drilling. Thus, the
location of the clay-sand interface was conservatively
estimated at a depth of 5.5 m. Figure 6(h) shows the
potential field method applied to the EMI data set. To
a lesser detail than the ERT tomography, the clay-sand
interface was estimated with the EMI data set. On aver-
age, the clay-sand interface estimated with the ERT data
set is comparable to that with the EMI data set (Table 5).

5. Application in a tidal environment:
dike 20-3

5.1. Study site and data collection

The site is a dike stretch which is part of the dike trajec-
tory 20-3. The trajectory 20-3, which goes along with the
Spui river, is part of the dike ring 20 Voorne-Putten in
the Netherlands. The site is located in a tidal environ-
ment where tidal paleochannels are expected, but not

Table 3. Borehole data.
Borehole ID Distance (m) Thickness (m)

BH0 168.00 −1.4
BH1 218.00 −1.5
BH2 81.16 −1.5
BH3 127.73 −0.8
BH4 177.90 −0.6
BH5 222.76 −0.9
BH6 273.94 −1.0
BH7 327.25 −1.1

Table 4. Parameters for ERT and EMI data acquisition at the
Montfoort site.
Method Acquisition parameter Value

ERT Electrode separation 1.0 m
ERT Number of electrodes 72
ERT Number of electrodes rolled 36
ERT Number of rolls 11
ERT Array type Wenner-alpha
ERT Total number of measurements 12,051
EMI Frequency 9000 Hz
EMI Separation from the ground 0.2 m
EMI Sampling spacing 1.0 m
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always visible in elevation maps. The study site is a 200
m stretch of dike located in the hinterland of the dike.
Figure 7 shows the elevation map of the study site and
an approximate lithological cross-section. The cross-

section shows a roughly homogeneous upper clayey
layer underlain by a sandy Holocene layer. An isolated
tidal paleochannel crosses both layers. The geometric
variability of the clay-sand interface was investigated
at the location of the lithological cross-section. As in
Section 4, the depth of the clay-sand interface also cor-
responds to the thickness of the clay layer.

Local authorities have carried out extensive CPT
investigation along the dike trajectory 20-3. Two CPTs
were available at the location of the study site. The
depth of the clay-sand interface was obtained from the
Soil Behavior Type (SBT) index of the CPTs (Robertson,
2009). The interface between the upper and lower layer
was defined the depth were the SBT index reached a

Table 5. Average depth of the clay-sand interface calculated
with the potential field method applied to ERT and EMI data
sets of the Montfoort site.
Zone Initial X End X Method Average

One 0.0 40.0 ERT 6.94
EMI 5.50

Two 60.0 350.0 ERT 1.09
EMI 1.26

Three 350.0 400.0 ERT 2.98
EMI 2.53

Figure 6. Application of the proposed approach to the data set of the Montfoort site. The white lines in a and b represent the zero-
crossings of the Laplacian operator. (a) Edge detection (ERT), (b) edge detection (EMI), (c) contact points, (d) contact points, (e) orien-
tations, (f) orientations, (g) potential field (colored contour lines) and estimated interface (black line) and (h) potential field (colored
contour lines) and estimated interface (black line).
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value of 2.6 (Robertson, 2009). Tomographic images,
coincident with the lithological cross-section, were cre-
ated with ERT and EMI data. The ERT data were col-
lected with a Wenner-alpha array. The roll-along
technique was used to cover the extent of the test site.
The EMI data were collected with a DUALEM-421 (Sec-
tion A.2). Table 6 summarises the acquisition par-
ameters for the ERT and EMI data. Clayey and sandy
layers were recognised in ERT and EMI tomography
by their value of electrical resistivity. In general, low
values of electrical resistivity correspond to clayey layers
while high values correspond to sandy layers.

5.2. Edge detection and interpretation: ERT, and
EMI tomography

Figure 8(a) shows the Laplacian edge detection applied
to the ERT tomography of the study site. The tomogra-
phy was not filtered because small-scale artefacts were
not strongly present. Multiple layers were detected in
the Laplacian of the ERT tomography. The tomography
shows a high resistivity top which is the dry part of the
upper layer. After the dry part, the upper layer shows
low resistivity. The layer after shows higher resistivity
values. The variability of the clay-sand interface is vis-
ible in the Laplacian of the ERT tomography (Figure 8
(a)). Figure 8(b) shows the Laplacian edge detection
applied to the EMI tomography of the study site. To

reduce small-scale artefacts, the tomography was filtered
with a Gaussian filter at a standard deviation of 10.5.

Although the depth of the EMI tomography is shal-
lower than that of the ERT tomography, both tomo-
graphic images show comparable features. The tidal
paleochannel of Figure 7, which is located from x=50
m to x=100m, was captured in the ERT and EMI tom-
ography. In the ERT tomography the paleochannel was
fully captured while in the EMI tomography only the
top was captured. The clay-sand interface is visible in
the Laplacian of the ERT tomography along the entire
dike stretch. Meanwhile, the Laplacian of the EMI tom-
ography shows the clay-sand interface mostly at the
location of the paleochannel intrusion. The penetration
depth of the EMI survey device, DUALEM-421, was
lower than the depth of the clay-sand interface on the
sides of the paleochannel.

5.3. Potential field method with ERT and EMI

The potential field method was applied to the ERT and
EMI data set. The CPTs were located at the top of the
sand body intrusion and at the flat portion of clayey
layer (Figures 8(c,d)). The clay-sand interface in CPT0
was located at a distance of 78.0 m and a depth of
−1.5 m while the clay-sand interface at CPT1 was
located at a distance of 178.0 m and a depth of −6.0
m. A fictitious interface at a distance of 25.0 m and
depth of −6.0 m was added to the EMI data set (CPT2
in Figure 8(d)). The interface was added to enforce
the clay-sand interface at this location to be similar to
the interface at 178.0 m. The orientations derived from
the ERT and EMI tomography are shown in Figures 8
(e) and 8(f). Since the depth of the EMI tomography
captures the top of the sand body intrusion, but it
does not reach the deeper sand layer. We manually
added the orientations of the layer interface based on
the interpretation of neighbouring CPTs. We con-
sidered this layer to be horizontal. The orientations

Figure 7. Elevation map of the study site and lithological cross-section.

Table 6. Parameters for ERT and EMI data acquisition at the dike
20-3 site.
Method Acquisition parameter Value

ERT Electrode separation 1.5 m
ERT Number of electrodes 72
ERT Number of electrodes rolled 36
ERT Number of rolls 2
ERT Array type Wenner-alpha
ERT Total number of measurements 2946
EMI Frequency 9000 Hz
EMI Separation from the ground 0.2 m
EMI Sampling spacing 1.0 m
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derived from the EMI tomography and the manually-
added orientations are shown in Figure 8(f) in black
and blue respectively. The estimated geometry of the

upper clayey layer is shown in Figure 8(g) for the ERT
data set and in Figure 8(h) for the EMI data set. The geo-
metric variability of the clay-sand interface is captured
by both data sets. On average, the clay-sand interface
estimated with the ERT data set is comparable to that
estimated with the EMI data set (Table 7).

6. Discussion

In the Netherlands, stochastic subsurface models were
developed for the reliability assessment of primary

Figure 8. Application of the proposed approach to the data set of the dike 20-3. The white lines in a and b represent the zero-cross-
ings of the Laplacian operator. (a) edge detection (ERT), (b) edge detection (EMI), (c) contact points, (d) contact points, (e) orientations,
(f) orientations, (g) Potential field (colored contour lines) and estimated interface (black line) and (h) potential field (colored contour
lines) and estimated interface (black line).

Table 7. Average depth of the clay-sand interface calculated
with the potential field method applied to ERT and EMI data
sets of the Dike 20-3 site.
Zone Initial X End X Method Average

One 10.0 40.0 ERT 4.82
EMI 5.95

Two 50.0 90.0 ERT 2.08
EMI 2.51

Three 125.0 200.0 ERT 5.45
EMI 5.95
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dikes (Hijma and Lam, 2015). The models were created
based on an extensive database of local point data and
geological knowledge of the Rhine-Meuse delta. Despite
the large amount of available information in the Nether-
lands, uncertainties remain in the subsurface models.
The main source of uncertainty is the sparsity of the
data relative to the geological variability. To account
for uncertainty in reliability assessments, geological
experience is often used. For instance, a probability of
occurrence is assigned to a geological scenario even
though that scenario is not found in site investigation
data (ENW, 2012). Such geological scenarios could

lead to over conservative reliability assessments. To dis-
card or confirm this type of geological scenarios, it is
necessary to reduce data sparsity. Geophysical explora-
tion methods are a powerful tool in this regard because
they provide a horizontally-continuous view of the sub-
surface. In this research, the geometric variability of soil
layers was studied. The geometry of soil layers is an
important part in the reliability assessment of dikes
especially for the failure mechanisms of piping and
macrostability. The approach presented here aims at
improving the characterisation of geometric variability
in two ways. First, by showing that geophysical

Figure 9. Error statistics Montfoort. (a) Laplacian (ERT geophysics only), (b) pontential field with seven boreholes (ERT geophysics and
boreholes) and (c) pontential field with four boreholes (ERT geophysics and boreholes).
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exploration can improve the allocation of site investi-
gation efforts. Second, by improving the estimated geo-
metry of soil layers with a reduced amount of local point
data.

Geophysical exploration can improve the allocation
of site investigation efforts by providing a view of the
average composition of the subsurface. For example,
the geophysical images in Sections 4 and 5 (Figures 6
and 8) show the regions of the subsurface where the geo-
metry of soil layers varies due to the presence of paleo-
channels. Indeed, anomalies, such as paleochannels, are a
large source of uncertainty in reliability assessments
because they are easily missed in local point data
(ENW, 2012). Elevation maps are a valuable source of
information to visually detect paleochannels (Berendsen
andVolleberg, 2007). However, small paleochannels, e.g.
Section 5, are more challenging to detect in elevation
maps. Then, geophysical methods can fill the infor-
mation gap between local point data. A common pro-
blem of geophysical exploration is that the data
interpretation is often subjective and relies on expert
knowledge. Thus, an automatic edge detector was
applied to the geophysical images so that the interpret-
ation is objective and reproducible without expert
knowledge. The information retrieved from geophysical
data is valuable for assisting the allocation of site investi-
gation efforts. For example, by indicating the location
and extent of anomalous features, such as paleochannels.

Apart from assisting exploration efforts, geophysical
data improves subsurface characterisation when com-
bined with local point data. In particular, the estimation
of geometric variability is improved. To elaborate, we
consider the estimation error of the ERT data set of
the Montfoort site. Figure 9 shows the estimation
error of the Montfoort site. The left-hand side of the
plot shows the absolute error per borehole. The right-
hand side shows the overall density distribution of the
Montfoort site. The absolute error in Figure 9 was calcu-
lated using the contact points measured in boreholes
(Table 3) as the reference truth. Figure 9(a) shows the
error incurred when only the Laplacian interface of
the ERT tomography is used for the interface esti-
mation. In this test site, there is a good agreement
between the Laplacian and borehole interface. Indeed,
the density distribution of the error is narrow with
few outliers. Figures 9(b) and 9(c) show that the esti-
mation of geometric variability improves when geophy-
sical and borehole data are combined via the potential
field method. The error in Figure 9(b) was calculated
by removing one borehole at a time from the estimation
procedure and using that borehole for validation,
namely cross-validation. The median of the error in
Figure 9(b) is reduced significantly and the overall

density distribution of the error is narrow. The esti-
mation with a combined data set shows consistency
even when the number of boreholes is reduced. Figure
9(c) shows the cross-validation error when half of the
boreholes are used in the estimation. The figure shows
that the median of the error remains low and the density
distribution remains narrow. Figure 9(c) shows more
data points because there are several possible combi-
nations to remove four boreholes.

7. Conclusions

An approach to estimate the geometry of soil layers with
the aid of geophysical tomography was presented. The
approach aims to address the sparsity problem existing
in the reliability assessment of dikes, i.e, the mismatch
between site investigation density and geological varia-
bility. The approach provides a two-fold quantitative
framework to incorporate geophysical information
into geological schematisation. First, an automatic
edge detection technique allows for objective and repro-
ducible interpretation of geophysical exploration data.
Second, a cokriging framework allows for objective
incorporation of geophysical and local point data to
estimate the geometric variability of soil layers. The
resulting estimation is improved even when a reduced
amount of local point data is available. In addition to
this, geophysical data showed to be a valuable tool for
assisting the allocation of site investigation efforts.

The approach presented in this study compared the
data from two geophysical methods, namely ERT and
EMI. The ERT method showed a detailed description
of the subsurface. To a lesser detail than the ERT
method, the EMI method also showed the main features
of the subsurface, such as the presence of paleochannels.
From an operational point of view; however, the EMI
method is a more viable method for exploring the sub-
surface of dikes, for it can cover wide areas in a fraction
of the time required with the ERT method.

Looking at the geophysical data beyond the geometry
of soil layers, it is clear that a larger degree of complexity
is captured in the geophysical data. The challenge is to
retrieve quantitative information from this data for geo-
technical applications. Geophysical insights are needed
in terms of, for example, the internal correlation struc-
ture of soil layers.
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Appendices

Appendix 1. Geophysical theory and inversion

A.1. Electrical resistivity tomography forward
model
The ERT method measures the ground response, electric
potential, of point sources of direct current. The injection
and the measurement electrodes are commonly located at
the surface of the medium. However, they can also be located
inside the medium. In the case of stainless steel electrodes, the
injection and measurement points are interchangeable. Thus,
an electrode can be used to inject current or to measure elec-
tric potential. The ground response depends on the bulk elec-
trical resistivity of the ground. For a point current source, the
ground response is related to the bulk electrical resistivity by
the equation

∇ · 1
r(x, y, z)

∇f(x, y, z)
( )
= −Id(x− xs)d(y− ys)d(z − zs), (A1)

where r(x, y, z) is the electrical resistivity of the subsurface, f
is the electric potential, I is the source current, and δ is the
Dirac-delta function centred at the location of the point
source. Equation (A1) represents the forward model for
ERT. In reality, two sources of opposite polarity are needed
to inject current into the ground. Also, two electrodes are
needed to measure the electric potential. Thus, one ERT
measurement requires four electrodes, a quadrupole. Figure
A1 shows a schematic of the ground response in an ERT
measurement. In the figure, C1 and C2 are current electrodes
while P1 and P2 are potential electrodes. The total electric
potential results from the algebraic sum of the electric poten-
tial for each point source.

An ERT measurement is represented by the apparent res-
istivity instead of the electric potential. The apparent resis-
tivity is the resistivity of an equivalent homogeneous
medium. In a homogeneous half-space, the ground response

for a single point source is given by

f = rI
2pr

, (A2)

where r is the distance between the current and potential elec-
trode. Thus, the electric potential difference between P1 and
P2 becomes

Df = f1 − f2 =
rI
2p

1
rC1P1

− 1
rC2P1

− 1
rC1P2

+ 1
rC2P2

( )
. (A3)

where rCiPj is the distance between injection point Ci and
measuring point Pj. Thus, the apparent resistivity becomes

ra = k
Df

I
, (A4)

where

k = 2p
( 1
rC1P1

− 1
rC2P1

− 1
rC1P2

+ 1
rC2P2

)
. (A5)

To detect different portions of the subsurface, the separation
between electrodes or the array type is changed. Commonly
used array types are dipole-dipole, Wenner-alpha, and Wen-
ner-Schlumberger. The array type has a large influence on the
sensitivity of the measurement. For example, the Wenner-
alpha array is more sensitive to horizontal structures while
the dipole-dipole array is more sensitive to vertical structures
(Loke, 2013). The python package pyBERT (Rücker, Günther,
and Spitzer, 2006) was used to solve the forward model in
equation (A1).

A.2. Electromagnetic induction forward model
The EMI method described in this section measures the
ground response, magnetic field, of a vertical magnetic dipole
above the earth surface. The magnetic dipole is induced by a
coil through which alternating current flows at a given fre-
quency. The geometric arrangement of the source and recei-
ver coil with respect to each other determines the sensitivity
of the signal. The commercial device DUALEM-421 (Dualem
Inc., Milton, ON, Canada) was used in this study. The geo-
metric arrangement of this device consists of three horizontal
coplanar (HCP) sensors and three perpendicular coplanar
(PRP) sensors. Thus, each measurement contains six data
points. The separation between transmitter and receivers is
fixed. The HCP sensors are separated from the transmitter
by 1.0, 2.0, and 4.0 m. The PRP sensors are separated from
the transmitter by 1.1, 2.1, and 4.1 m.

Figure A1. Ground response, electric potential f, of a homo-
geneous medium under two point sources of opposite polarity.
Current I = 1 (A) and electrical resistivity r = 1 (ohm m). C1 and
C2 are current electrodes. P1 and P2 are potential electrodes.
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Figure A2 shows the ground response of the vertical mag-
netic dipole, m, induced by a DUALEM-421. The magnetic
field measured at the receiver coils consists of the primary
and secondary magnetic field. The primary field is that
measured in free space while the secondary field is that
reflected by the ground. For a vertical magnetic dipole, the
magnetic field has a radial component (Hr1m, Hr2m, and
Hr4m in Figure A2) and a vertical component (Hz1m, Hz2m,
and Hz4m in Figure A2). The vertical component of the mag-
netic field is measured by the HCP sensors while the radial
component is measured by the PRP sensors. At the receiver
coils, the secondary magnetic field is calculated only from
the upgoing component of the potential F−0 e

−u0heu0z. A
detailed derivation of the solution of Maxwell’s equations
for a vertical magnetic dipole in a layered medium is pre-
sented in Ward and Hohmann (1988). In this section, we pre-
sent only the solutions. The primary magnetic field is given by

Hp = m
4ps3

(A6)

where m is the magnetic dipole strength and s is the distance
between transmitter and receiver. The measured response
given by commercial devices is given as the ratio of the sec-
ondary magnetic field to the primary magnetic field Hs/Hp.
Thus, the strength of the magnetic dipole cancels out. The

ratio Hs/Hp for the HCP sensors is given by

HsHCP

Hp
= s3

∫1
0
rTEe

−2lhl2J0(ls) dl. (A7)

Meanwhile, the ratio Hs/Hp for the PRP sensors is given by

HsPRP

Hp
= s3

∫1
0
rTEe

−2lhl2J1(ls) dl. (A8)

In the above equations, rTE is the reflection coefficient, λ is the
wavenumber, and Ji is the ith-order Bessel function of the first
kind. The reflection coefficient,

rTE = l− û1
l+ û1

, (A9)

is a function of the wavenumber, û1, which is calculated itera-
tively

û1 = u1
û2 + u1 tanh (u1h1)
u1 + û2 tanh (u1h1)

(A10)

ûn = un
ˆun+1 + un tanh (unhn)
un + ûn tanh (unhn)

(A11)

and

ûN = uN (A12)

Figure A2. Schematic electromagnetic induction DUALEM-421. An electromagnetic field is generated by a magnetic dipole with
strength m. The HCP sensors detect the vertical component of the magnetic field, Hz . The PRP sensors detect the horizontal com-
ponent of the magnetic field, Hr. The vertical and horizontal fields result from solving Maxwell’s equations for the upgoing component
of the vector potential F.
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with

un =










l2 − k2n

√
(A13)

and

k2n = −imnsnw (A14)

where mn and sn are the magnetic permeability and electric
conductivity of layer n and w is the angular frequency of the
transmitted signal. In many applications, the magnetic per-
meability is equal to that of free-space. Therefore, the quantity
that is mapped by EMI is the electrical conductivity of the
ground. Equations (A7) and (A8) are the forward model for
EMI of a DUALEM-421.

A.3. Tomographic inversion
A geophysical tomography is constructed from geophysical
data via inversion. The tomography represents the spatial dis-
tribution of material properties in the subsurface. Inversion
consists in minimising the squared error between the
measured data and the simulated data from a forward
model. The error is minimised by changing the material prop-
erties of the medium. In the case of ERT, the forward model is
Equation (A1) from which the simulated data are the apparent
resistivity, Equation (A4). For EMI of a DUALEM-421, the
simulated data are given by Equations (A7) and (A8). The
inverse problem for ERT and EMI is ill-posed. Thus, math-
ematical constraints, regularisation, are needed to find a
unique solution. A tomography is constructed by minimising

an objective function, Φ, which contains a data error com-
ponent and a regularisation component

F = (d− f (m))TDTD(d− f (m))+ l(m

−m0)
TCTC(m−m0) (A15)

The first term in the above equation contains the data error
component in which d is the measured data, f (m) is the simu-
lated data with the forward model, f, applied to the material
properties of the mediumm, D is a weighting matrix that con-
tains the correlation structure of the measurement error. In
the second term λ is the regularisation strength, m0 is an a
priori model, and C is the constraint matrix that contains
information about the expected correlation structure of the
final model. Smoothness-type of constraints are commonly
used in geophysical inversion. The tomography, m, is the
model that minimises the objective function from equation
(A15). A comprehensive treaty of inverse theory is presented
in Menke (2012). The python package pyGIMLi (Rücker,
Günther, and Wagner, 2017) was used for tomographic
inversion.

A.4. Potential field method
The covariance model and drift function model, which are
needed to formulate the cokriging system of Equation (5),
are elaborated in this section. To aid the illustration, a typical
data set consisting of contact points and orientations is used
(Figure A3(a)). In Figure A3(a) and the following equations,
the contact point i associated to layer p is denoted as xpai

Figure A3. Potential field method. (a) Example data set used for the application of the potential field method. x pai indicates the con-
tact point i associated to layer p. xbk indicates the orientation point k. (b) Potential field (contour lines) estimated from the data in (a).
The contact points from the same layer share the same contour line.
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while the orientation point k is denoted as xbk. The available
data consist of the random function Z1new evaluated at the
contact points xpai and the random function Z2 evaluated at
the orientation point xbk, i.e, the orientation at point xbk.
The covariance of Z1new is defined as an expectation

CZ1new(xpa i),Z1new(xqa j) = E[(Z1(xpai)− Z1(xpa0))

· (Z1(xqaj)− Z1(xqa0))] (A16)

which simplifies to

CZ1new(xpa i),Z1new(xqa j) = CZ1(xpa i),Z1(xqa j) − CZ1(x pa i),Z1(xqa0)

− CZ1(xpa0),Z1(xqa j) + CZ1(xpa0),Z1(xqa0)

(A17)

where xpa0 and xqa0 are the reference points for layer p and q,
respectively. The covariance of Z1 is defined in terms of the
absolute distance, r, between data points. Meanwhile, the
covariance of Z2 is defined in terms of the gradient com-
ponents Z2x, Z2y, and Z2z. Following Lajaunie, Courrioux,
and Manuel (1997), the covariance between the gradient

points xbk and xbl becomes

CZ2u(xbk),Z2u(xbl) =
∂2CZ1(r)

∂r2u

= C′
Z1(r)

r2u
r3

− 1
r

( )
− r2u

r2
C′′
Z1(r) (A18)

and

CZ2u(xbk),Z2v(xbl) =
∂2CZ1(r)

∂rurv
= rurv

r2
C′
Z1(r)

r
− C′′

Z1(r)

( )
(A19)

where ru and rv are the signed distances between points along
the components x, y, or z. The cross-covariance between the
contact point xpai and the gradient point xbk becomes

CZ1new(xpa i),Z2u(xbk) =
∂CZ1(r)

∂ru
= − ru

r
C′
Z1(r). (A20)

The drift functions of Z1new and Z2 describe the trend of the
random functions. The drift function of Z1 can be described
with a polynomial. For example, a polynomial of first degree

UZ1 (xpai) = 1+ x+ y+ z (A21)

Figure A4. Generalised apparent resisitivity response for a two-layer model and a Wenner-alpha array.

Figure A5. Particular apparent resisitivity response for a two-layer model and a Wenner-alpha array.
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or a polynomial of second degree

UZ1 (xpai) = 1+ x+ y+ z + x2 + y2 + z2 + xy+ xz

+ yz. (A22)

The drift of Z1new follows from the drift of Z1

UZ1new (xpai) = UZ1 (xpai)− UZ1 (xpa0). (A23)

The drift of Z2 is calculated as the gradient of UZ1

UZ2u(xbk) =
∂UZ1

∂u
(A24)

where u is the component x, y, or z.
The covariance and cross-covariance matrices require a

covariance model for Z1. However, the covariance of the
potential field cannot be derived experimentally because the
potential field is not known. On the other hand, the exper-
imental covariance of the gradient Z2 can be derived from
the data because the orientations are known (Aug, 2004).
Alternatively, a heuristic covariance model can be used. For
example, De La Varga, Schaaf, and Wellmann (2019) uses a

cubic covariance model

C(r) = C0 1− 7
r
a

( )2
+ 35

4
r
a

( )3
− 7
2

r
a

( )5
+ 3
4

r
a

( )7( )
(A25)

with a default value for the variance

C0 = a2

14 · 3 (A26)

and a default value for the range

a =
















L2 + B2 + H2

√
, (A27)

where L, B, and H are the dimensions of the model domain. A
detailed justification for such model and values is presented in
Chiles et al. (2004). Figure A3(b) shows the estimated geome-
try using a cubic covariance model and the default values for
the variance, C0, and range, a. The plot shows that the contact
points of the same layer belong to the same iso-surface of the
potential field. The interpolation of Figure A3(b) was gener-
ated with a python implementation of the potential field

Figure A6. Edge detection applied to one-dimensional tomographic images before and after a smoothing Gaussian filter was applied.
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method. The implementation is added as supplementary
material.

Appendix 2. Edge detection to detect soil
layers: Two-layer model

A synthetic two-layer model is studied with the ERT method.
First, the impact of geophysical measurements in a tomo-
graphic image is studied. For that purpose, the analytical
ERT response for a generic two-layer model is presented. Sub-
sequently, the study is extended to particular cases of soil
properties and acquisition designs. The synthetic responses
from these particular cases are used to construct one-dimen-
sional tomographic images. Finally, the performance of the
Laplacian edge detection on these images is studied.

Figure A4 shows the apparent resistivity response for a
Wenner-alpha array in a horizontal two-layer model. The
apparent resistivity is normalised with respect to the resistivity
of the upper layer. The apparent resistivity contour is plotted
with respect to the normalised electrode spacing, a/h, and the
resistivity contrast

kr = r2 − r1
r2 + r1

. (A28)

The normalised electrode spacing, a/h, determines the sensi-
tivity of the measurement in depth. A measurement with a
small value of a/h is more sensitive to the resistivity of the
upper layer. Meanwhile, a measurement with a large value
of a/h is more sensitive to the lower layer. An acquisition
array should contain small and large values of a/h so that
the upper layer and lower layers are properly detected. The
optimum range of a/h values will depend on the resistivity
contrast, kr. At a given contrast (white dashed lines in Figure
A4), the range of a/h values has to be such that the resistivity
response is properly sampled. In other words, an acquisition
array should cross the contour lines in Figure A4 from
ra/r1 = 1 to ra/r1 = r2/r1. Operational limitations regard-
ing data acquisition and lack of geological knowledge, make
comprehensive data acquisition difficult to achieve in practice.
Thus, the measured data contain incomplete geological infor-
mation which affects the tomography.

A particular two-layer model with h=1.5 m and r1 = 10
ohmm is further analysed. Two resistivity contrasts are ana-
lysed, namely kr = 0.2 and kr = 0.6 which result in
r2 = 15 ohmm and r2 = 40 ohmm, respectively. Figure A5
shows the noise-free apparent resistivity response for each res-
istivity contrast. For tomographic inversion, four cases are
considered each with 23 measurements. The base electrode
spacing, a, for each case is 0.25, 0.5, 1.0, and 3.0 m. Due to
the limited number of measurements, the apparent resistivity
response is not fully reconstructed in the measurements.
The portion of the response that is covered in each case is
shown at the bottom of Figure A5. At a = 0.25 m, the response
is more sensitive to the upper layer than the lower layer. At a

= 0.5 m and a = 1.0 m, the apparent resistivity is sensitive to
both layers. Even though the measurements do not recon-
struct the complete apparent resistivity response, the trend
of the response is well captured. At a = 3.0 m, most of the
measurements are sensitive to the lower layer while few
measurements are sensitive to the upper layer.

The synthetic apparent resistivity data were contaminated
with Gaussian random noise of 2% before tomographic
inversion. The value follows the guideline of the report for
Best Practices in Electrical Resistivity Imaging (Day-Lewis
et al., 2008). Figure A6 shows the Laplacian edge detection
technique applied to the tomographic images obtained for
kr = 0.2 and kr = 0.6. The figure shows the tomographic
images and edge detection before and after a Gaussian
filter was applied. The chosen standard deviation for the
filter was 5.5 ohmm. Most of the inverted models reproduce
the trend of variability of the true model. However, the
inverted models at low resistivity contrast, kr = 0.2, are
more affected by the added noise than the inverted models
at high resistivity contrast, kr = 0.6. This fact is reflected
in the undulations of the inverted models which result
from overfitting the data during tomographic inversion. In
general, a combination of low resistivity contrast and non-
optimum data acquisition is detrimental to the reliability of
tomography for geological interpretation. However, no
exact limit can be drawn. For example, the inverted model
for kr = 0.6 and a=3.0 m shows a clear mismatch between
the true and inverted resistivity values even though the con-
trast is high. On the other hand, all the inverted models for
kr = 0.2 reproduce the trend of electrical resistivity. A sensi-
ble criterion to assess the reliability of a tomographic image
is that layers that are visible in the tomography should also
be visible in the raw data. In other words, the measured
response should match that of a conceptual lithological
cross-section.

Figure A6 shows Laplacian edge detection technique applied
to one-dimensional tomographic images for kr = 0.2 and
kr = 0.6. The automated edge detector finds edges in the tomo-
graphic images even when there are no geological interfaces.
The so-called fake edges are more often found when small-
scale artefacts are present in the tomography. For instance,
fake edges are more frequent for kr = 0.2 because of the undu-
lated pattern of the inverted models. In Figure A6, a smoothing
Gaussian filter reduced the undulations of the tomographic
images significantly and therefore fake edges. At the same
time, the filter kept intact the large-scale trend of resistivity
values. Fake edges were further reduced by setting a threshold
on the gradient. The tomography and edges detected after filter-
ing, and thresholding agree with the resistivity trend and the
interface location of the true model. However, the locations of
the tomographic interfaces do not precisely coincide with that
of the true model. Hence, the potential field method (Lajaunie,
Courrioux, and Manuel, 1997) was used to calibrate the tomo-
graphic data with more accurate information obtained from
direct samples of the subsurface.
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