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ARTICLE OPEN

A new class of efficient randomized benchmarking protocols
Jonas Helsen 1, Xiao Xue1,2, Lieven M. K. Vandersypen 1,2 and Stephanie Wehner1

Randomized benchmarking is a technique for estimating the average fidelity of a set of quantum gates. However, if this gateset is
not the multi-qubit Clifford group, robustly extracting the average fidelity is difficult. Here, we propose a new method based on
representation theory that has little experimental overhead and robustly extracts the average fidelity for a broad class of gatesets.
We apply our method to a multi-qubit gateset that includes the T-gate, and propose a new interleaved benchmarking protocol that
extracts the average fidelity of a two-qubit Clifford gate using only single-qubit Clifford gates as reference.

npj Quantum Information            (2019) 5:71 ; https://doi.org/10.1038/s41534-019-0182-7

INTRODUCTION
Randomized benchmarking1–7 is arguably the most prominent
experimental technique for assessing the quality of quantum
operations in experimental quantum computing devices.4,8–13 Key
to the wide adoption of randomized benchmarking are its
scalability with respect to the number of qubits and its
insensitivity to errors in state preparation and measurement. It
has also recently been shown to be insensitive to variations in the
error associated to different implemented gates.14–16

The randomized benchmarking protocol is defined with respect
to a gateset G, a discrete collection of quantum gates. Usually, this
gateset is a group, such as the Clifford group.2 The goal of
randomized benchmarking is to estimate the average fidelity17 of
this gateset.
Randomized benchmarking is performed by randomly sampling

a sequence of gates of a fixed length m from the gateset G. This
sequence is applied to an initial state ρ, followed by a global
inversion gate such that in the absence of noise the system is
returned to the starting state. Then the overlap between the
output state and the initial state is estimated by measuring a two-
component POVM {Q, 1−Q}. This is repeated for many sequences
of the same length m and the outputs are averaged, yielding a
single average survival probability pm. Repeating this procedure
for various sequence lengths m yields a list of probabilities {pm}m.
Usually G is chosen to be the Clifford group. It can then be

shown (under the assumption of gate-independent CPTP noise)2

that the data {pm}m can be fitted to a single exponential decay of
the form

pm �fit Aþ Bfm (1)

where A, B depend on state preparation and measurement, and
the quality parameter f only depends on how well the gates in the
gateset G are implemented. This parameter f can then be
straightforwardly related to the average fidelity Favg.

2 The fitting
relation Eq. (1) holds intuitively because averaging over all
elements of the Clifford group effectively depolarizes the noise
affecting the input state ρ. This effective depolarizing noise then
accretes exponentially with sequence length m.

However it is possible, and desirable, to perform randomized
benchmarking on gatesets that are not the Clifford group, and a
wide array of proposals for randomized benchmarking using non-
Clifford gatesets appear in the literature.18–24 The most prominent
use case is benchmarking a gateset G that includes the vital T-
gate18,19,22 which, together with the Clifford group, forms a
universal set of gates for quantum computing.17 Another use case
is simultaneous randomized benchmarking,23 which extracts
information about crosstalk and unwanted coupling between
neighboring qubits by performing randomized benchmarking on
the gateset consisting of single qubit Clifford gates on all qubits. In
these cases, and in other examples of randomized benchmarking
with non-Clifford gatesets,20,22,23 the fitting relation Eq. (1) does
not hold and must instead be generalized to

pm �fit

X
λ2RG

Aλf
m
λ ; (2)

where RG is an index set that only depends on the chosen gateset,
the fλ are general ‘quality parameters’ that only depend on the
gates being implemented and the Aλ prefactors depend only on
SPAM (when the noise affecting the gates is trace preserving there
will be a λ∈ RG -corresponding to the trivial subrepresentation-
such that fλ= 1, yielding the constant offset seen in Eq. (1)). The
above holds because averaging over sequences of elements of
these non-Clifford groups averaging does not fully depolarize the
noise. Rather the system state space will split into several ‘sectors’
labeled by λ, with a different depolarization rate, set by fλ,
affecting each sector. The interpretation of the parameters fλ
varies depending on the gateset G. In the case of simultaneous
randomized benchmarking23 they can be interpreted as a
measure of crosstalk and unwanted coupling between neighbor-
ing qubits. For other gatesets an interpretation is not always
available. However, as was pointed out for specific gatesets in
ref. 18–20,22 and for general finite groups in ref., 21 the parameters fλ
can always be jointly related (see Eq. (5)) to the average fidelity
Favg of the gateset G. This means that in theory randomized
benchmarking can extract the average fidelity of a gateset even
when it is not the Clifford group.
However in practice the multi-parameter fitting problem given

by Eq. (2) is difficult to perform, with poor confidence intervals
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around the parameters fλ unless impractically large amounts of
data are gathered. More fundamentally it is, even in the limit of
infinite data, impossible to associate the estimates from the fitting
procedure to the correct decay channel in Eq. (2) and thus to the
correct fλ, making it impossible to reliably reconstruct the average
fidelity of the gateset.
In the current literature on non-Clifford randomized bench-

marking, with the notable exception of ref., 22 this issue is
sidestepped by performing randomized benchmarking several
times using different input states ρλ that are carefully tuned to
maximize one of the prefactors Aλ while minimizing the others.
This is unsatisfactory for several reasons: (1) the accuracy of the fit
now depends on the preparation of ρλ, undoing one of the main
advantages of randomized benchmarking over other methods
such as direct fidelity estimation,25 and (2) it is, for more general
gatesets, not always clear how to find such a maximizing state ρλ.
These problems aren’t necessarily prohibitive for small numbers of
qubits and/or exponential decays (see for instance26) but they do
limit the practical applicability of current non-Clifford randomized
benchmarking protocols on many qubits and more generally
restrict which groups can practically be benchmarked.
Here, we propose an adaptation of the randomized bench-

marking procedure, which we call character randomized bench-
marking, which solves the above problems and allows reliable and
efficient extraction of average fidelities for gatesets that are not
the Clifford group. We begin by discussing the general method,
before applying it to specific examples. Finally, we discuss using
character randomized benchmarking in practice and argue the
new method does not impose significant experimental overhead.
Previous adaptations of randomized benchmarking, as discussed
in8,27,28 and in particular22 (where the idea of projecting out
exponential decays was first proposed for a single qubit protocol),
can be regarded as special cases of our method.

RESULTS
In this section, we present the main result of this paper: the
character randomized benchmarking protocol, which leverages
techniques from character theory29 to isolate the exponential
decay channels in Eq. (2). One can then fit these exponential
decays one at a time, obtaining the quality parameters fλ. We
emphasize that the data generated by character randomized
benchmarking can always be fitted to a single exponential, even if
the gateset being benchmarked is not the Clifford group.
Moreover, our method retains its validity in the presence of
leakage, which also causes deviations from single exponential
behavior for standard randomized benchmarking14 (even when
the gateset is the Clifford group).
For the rest of the paper, we will use the Pauli Transfer Matrix

(PTM) representation of quantum channels (This representation is
also sometimes called the Liouville representation or affine
representation of quantum channels30,31). Key to this representa-
tion is the realization that the set of normalized non-identity Pauli
matrices σq on q qubits, together with the normalized identity σ0 :
= 2−q/21 forms an orthonormal basis (with respect to the trace
inner product) of the Hilbert space of Hermitian matrices of
dimension 2q. Density matrices ρ and POVM elements Q can then
be seen as vectors and co-vectors expressed in the basis
fσ0g∪σq , denoted |ρ〉〉 and 〈〈Q| respectively. Quantum channels
E32 are then matrices (we will denote a channel and its PTM
representation by the same letter) and we have Ejρii ¼ jEðρÞii.
Composition of channels E;Fcorresponds to multiplication of
their PTM representations, that is jE � FðρÞii ¼ EFjρii. Moreover,
we can write expectation values as bra-ket inner products, i.e.
hhQjEjρii ¼ TrðQEðρÞÞ. The action of a unitary G on a matrix ρ is
denoted G, i.e. Gjρii ¼ jGρGyii and we denote its noisy
implementation by ~G. For a more expansive review of the PTM
representation, see Section I.2 in the Supplementary Methods.

We will, for ease of presentation, also assume gate-independent
noise. This means we assume the existence of a CPTP map E such
that ~G ¼ EG for all G∈ G. We however emphasize that our
protocol remains functional even in the presence of gate-
dependent noise. We provide a formal proof of this, generalizing
the modern treatment of standard randomized benchmarking
with gate-dependent noise,14 in the Methods section.

Standard randomized benchmarking
Let’s first briefly recall the ideas behind standard randomized
benchmarking. Subject to the assumption of gate-independent
noise, the average survival probability pm of the standard
randomized benchmarking procedure over a gateset G (with
input state ρ and measurement POVM {Q, 1−Q}) with sequence
length m can be written as: ref. 2

pm ¼ hhQj E
G2G

GyEG
� �m

jρii: (3)

where EG2G denotes the uniform average over G. The key insight
to randomized benchmarking is that G is a representation (for a
review of representation theory see section I.1 in the Supplemen-
tary Methods) of G∈ G. This representation will not be irreducible
but will rather decompose into irreducible subrepresentations,
that is G ¼ �λ2RGϕλðGÞ where RG is an index set and ϕλ are
irreducible representations of G which we will assume to all be
mutually inequivalent. Using Schur’s lemma, a fundamental result
in representation theory, we can write Eq. (3) as

pm ¼
X
λ

hhQjPλjρiifmλ (4)

where Pλ is the orthogonal projector onto the support of ϕλ (note
that this is a superoperator) and fλ :¼ TrðPλEÞ=TrðPλÞ is the quality
parameter associated to the representation ϕλ (note that the trace
is taken over superoperators). This reproduces Eq. (2). A formal
proof of Eq. (4) can be found in the Supplementary Methods and
in ref. 21 The average fidelity of the gateset G can then be related
to the parameters fλ as

Favg ¼ 2�q P
λ2RG TrðPλÞfλ
2q þ 1

: (5)

Note again that RG includes the trivial subrepresentation carried
by |1〉〉, so when E is a CPTP map there is a λ∈ RG for which fλ= 1.
See Lemma’s 4 and 5 in the Supplementary Methods for a proof of
Eq. (5)

Character randomized benchmarking
Now we present our new method called character randomized
benchmarking. For this we make use of concepts from the
character theory of representations.29 Associated to any repre-
sentation ϕ̂ of a group Ĝ is a character function χϕ̂ : Ĝ ! R, from
the group to the real numbers (Generally the character function is
a map to the complex numbers, but in our case it is enough to
only consider real representations). Associated to this character
function is the following projection formula:29

E
Ĝ2Ĝ

χϕ̂ðĜÞĜ ¼ 1

jϕ̂j Pϕ̂; (6)

where Pϕ̂ is the projector onto the support of all subrepresenta-
tions of Ĝ equivalent to ϕ̂ and jϕ̂j is the dimension of the
representation ϕ̂. We will leverage this formula to adapt the
randomized benchmarking procedure in a way that singles out a
particular exponential decay fmλ in Eq. (2).
We begin by choosing a group G. We will call this group the

‘benchmarking group’ going forward and it is for this group/
gateset that we will estimate the average fidelity. In general we
will have that G ¼ �λ2RGϕλðGÞ where RG is an index set and ϕλ are
irreducible representations of G which we will assume to all be
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mutually inequivalent (It is straightforward to extend character
randomized benchmarking to also cover the presence of
equivalent irreducible subrepresentation. However do not make
this extension explicit here in the interest of simplicity). Now fix a
λ′∈ RG. fλ′ is the quality parameter associated to a specific
subrepresentation ϕλ′ of G. Next consider a group Ĝ � G such that
the PTM representation Ĝ has a subrepresentation ϕ̂, with
character function χϕ̂, that has support inside the representation
ϕλ′ of G, i.e. Pϕ̂ � Pλ0 where Pλ0 is again the projector onto the
support of ϕλ′. We will call this group Ĝ the character group. Note
that such a pair Ĝ; ϕ̂ always exists; we can always choose Ĝ ¼ G
and ϕ̂ ¼ ϕλ0. However other natural choices often exist, as we shall
see when discussing examples of character randomized bench-
marking. The idea behind the character randomized benchmark-
ing protocol, described in Fig. 1, is now to effectively construct Eq.
(6) by introducing the application of an extra gate Ĝ drawn at
random from the character group Ĝ into the standard randomized
benchmarking protocol. In practice this gate will not be actively
applied but must be compiled into the gate sequence following it,
thus not resulting in extra noise (this holds even in the case of
gate-dependent noise, see Methods).
This extra gate Ĝ 2 Ĝ is not included when computing the

global inverse Ginv ¼ ðG1 ¼GmÞy. The average over the elements
of Ĝ is also weighted by the character function χϕ̂ associated to
the representation ϕ̂ of Ĝ. Similar to eq. (3) we can rewrite the
uniform average over all ~G 2 G ´m and Ĝ 2 Ĝ as

kλ
0
m ¼ jϕ̂jhhQj E

G2G
GyEG

� �m
E

Ĝ2Ĝ
χϕ̂ðĜÞĜjρii:

Using the character projection formula (Eq. (6)), the linearity of
quantum mechanics, and the standard randomized benchmarking
representation theory formula (Eq. (4)) we can write this as

kλ
0
m ¼

X
λ2RG

hhQjPλPϕ̂jρiifmλ ¼ hhQjPϕ̂jρiif mλ0 (7)

since we have chosen Ĝ and ϕ̂ such that Pϕ̂ � Pλ0. This means the
character randomized benchmarking protocol isolates the expo-
nential decay associated to the quality parameter fλ′ independent
of state preparation and measurement. We can now extract fλ′ by
fitting the data-points kλ

0
m to a single exponential of the form Afmλ0 .

Note that this remains true even if E is not trace-preserving, i.e. the
implemented gates experience leakage. Repeating this procedure

for all λ′∈ RG (choosing representations ϕ̂ of Ĝ such that Pϕ̂ � Pλ0)
we can reliably estimate all quality parameters fλ associated with
randomized benchmarking over the group G. Once we have
estimated all these parameters we can use Eq. (5) to obtain the
average fidelity of the gateset G.

DISCUSSION
We will now discuss several examples of randomized benchmark-
ing experiments where the character randomized benchmarking
approach is beneficial. The first example, benchmarking T-gates, is
taken from the literature18 while the second one, performing
interleaved benchmarking on a 2-qubit gate using only single
qubit gates a reference, is a new protocol. We have also
implemented this last protocol to characterize a CPHASE gate
between spin qubits in Si/SiGe quantum dots, see ref. 33

Benchmarking T-gates
The most common universal gateset considered in the literature is
the Clifford+ T gateset.17 The average fidelity of the Clifford gates
can be extracted using standard randomized benchmarking over
the Clifford group, but to extract the average fidelity of the T gate
a different approach is needed. Moreover one would like to
characterize this gate in the context of larger circuits, meaning
that we must find a family of multi-qubit groups that contains the
T gate. One choice is to perform randomized benchmarking over
the group Tq generated by the CNOT gate between all pairs of
qubits (in both directions), Pauli X on all qubits and T gates on all
qubits (another choice would be to use dihedral randomized
benchmarking22 but this is limited to single qubit systems, or to
use the interleaved approach proposed in ref. 24). This group is an
example of a CNOT-dihedral group and its use for randomized
benchmarking was investigated in.18 There it was derived that the
PTM representation of the group Tq decomposes into 3 irreducible
subrepresentations ϕ1, ϕ2, ϕ3 with associated quality parameters
f1, f2, f3 and projectors

P1 ¼ jσ0iihhσ0j; P2 ¼
X
σ2Zq

jσiihhσj; P3 ¼
X

σ2σq=Zq

jσiihhσj;

where σ0 is the normalized identity, σq is the set of normalized
Pauli matrices and Zq is the subset of the normalized Pauli
matrices composed only of tensor products of Z and 1. Noting that
f1= 1 if the implemented gates ~G are CPTP we must estimate f2
and f3 in order to estimate the average fidelity of Tq. Using
standard randomized benchmarking this would thus lead to a
two-decay, four-parameter fitting problem, but using character
randomized benchmarking we can fit f2 and f3 separately. Let’s say
we want to estimate f2, associated to ϕ2, using character
randomized benchmarking. In order to perform character
randomized benchmarking we must first choose a character
group Ĝ. A good choice for Ĝ is in this case the Pauli group Pq.
Note that Pq⊂ Tq since T4= Z the Pauli Z matrix.
Having chosen Ĝ ¼ Pq we must also choose an irreducible

subrepresentation ϕ̂ of the PTM representation of the Pauli group
Pq such that Pϕ̂P2 ¼ Pϕ̂. As explained in detail in section V.I in the
Supplementary Methods the PTM representation of the Pauli
group has 2q irreducible inequivalent subrepresentations of
dimension one. These representations ϕσ are each associated to
an element σ 2 fσ0g∪σq of the Pauli basis. Concretely we have
that the projector onto the support of ϕσ is given by
Pσ ¼ jσiihhσj. This means that, to satisfy Pϕ̂P2 ¼ Pϕ̂ we have
to choose ϕ̂ ¼ ϕσ with σ 2 Zq . One could for example choose σ
proportional to Z⊗q. The character associated to the representa-
tion ϕσ is χσ(P)= (−1)〈P,σ〉 where 〈P, σ〉= 1 if and only if P and σ
anti-commute and zero otherwise (we provided a proof of this fact
in section V.1 of the Supplementary Methods). Hence the
character randomized benchmarking experiment with

Fig. 1 The character randomized benchmarking protocol. Note the
inclusion of the gate Ĝ and the average over the character function
χϕ̂, which form the key ideas behind character randomized

benchmarking. Note also that this extra gate Ĝ is compiled into
the sequence of gates (G1, …, Gm) and thus does not result in
extra noise
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benchmarking group Tq, character group Pq and subrepresenta-
tion ϕ̂ ¼ ϕσ produces data that can be described by

k2m ¼ hhQjσiihhσjρiif m2 ; (8)

allowing us to reliably extract the parameter f2. We can perform a
similar experiment to extract f3, but we must instead choose
σ 2 σqnZ. A good choice would for instance be σ proportional to
X⊗q.
Having extracted f2 and f3 we can then use Eq. (5) to obtain the

average fidelity of the gateset Tq as:18

Favg ¼ 2q � 1
2q

1� f2 þ 2qf3
2q þ 1

� �
(9)

Finally we would like to note that in order to get good signal one
must choose ρ and Q appropriately. The correct choice is
suggested by Eq. (7). For instance, if when estimating f2 as above
we choose σ proportional to Z⊗q we must then choose Q ¼
1
2 ð1þ Z�2Þ and ρ ¼ 1

d ð1þ Z�2Þ. This corresponds to the even
parity eigenspace (in the computational basis).

2-for-1 interleaved benchmarking
The next example is a new protocol, which we call 2-for-1
interleaved randomized benchmarking. It is a way to perform
interleaved randomized benchmarking34 of a 2-qubit Clifford gate
C using only single qubit Clifford gates as reference gates. The
advantages of this are (1) lower experimental requirements and
(2) a higher reference gate fidelity relative to the interleaved gate
fidelity allows for a tighter estimate of the average fidelity of the
interleaved gate (assuming single qubit gates have higher fidelity
than two qubit gates). This latter point is related to an oft
overlooked drawback of interleaved randomized benchmarking,
namely that it does not yield a direct estimate of the average
fidelity F(C) of the interleaved gate C but only gives upper and
lower bounds on this fidelity. These upper and lower bounds
moreover depend34,35 on the fidelity of the reference gates and
can be quite loose if the fidelity of the reference gates is low. To
illustrate the advantages of this protocol we have performed a
simulation comparing it to standard interleaved randomized
benchmarking (details can be found in section V.2 in the
Supplementary Methods). Following recent single qubit rando-
mized benchmarking and Bell state tomography results in spin
qubits in Si/SiGe quantum dots36–38 we assumed single qubit
gates to have a fidelity of Fð1Þavg ¼ 0:987 and two-qubit gates to
have a fidelity of Favg(C)= 0.898. Using standard interleaved
randomized benchmarking34 we can guarantee (using the optimal
bounds of ref. 35) that the fidelity of the interleaved gate is lower
bounded by F intavg � 0:62 while using 2-for-1 interleaved rando-
mized benchmarking we can guarantee that the fidelity of
interleaved gate is lower bounded by Favg(C) ≈ 0.79, a significant
improvement that is moreover obtained by a protocol requiring
less experimental resources. On top of this the 2-for-1 randomized
benchmarking protocol provides strictly more information than
simply the average fidelity, we can also extract a measure of
correlation between the two qubits, as per.23 In another paper33

we have used this protocol to characterize a CPHASE gate
between spin qubits in Si/SiGe quantum dots.
An interleaved benchmarking experiment consists of two

stages, a reference experiment and an interleaved experiment.
The reference experiment for 2-for-1 interleaved randomized
benchmarking consists of character randomized benchmarking
using 2 copies of the single-qubit Clifford group G ¼ C�2

1 as the
benchmarking group (this is also the group considered in
simultaneous randomized benchmarking23). The PTM representa-
tion of C�2

1 decomposes into four irreducible subrepresentations
and thus the fitting problem of a randomized benchmarking
experiment over this group involves 4 quality parameters fw
indexed by w= (w1, w2)∈ {0, 1}×2. The projectors onto the

associated irreducible representations ϕw are

Pw ¼
X
σ2σw

jσiihhσj (10)

where σw is the set of normalized 2-qubit Pauli matrices that have
non-identity Pauli matrices at the i’th tensor factor if and only if wi

= 1. To perform character randomized benchmarking we choose
as character group Ĝ ¼ P2 the 2-qubit Pauli group. For each w∈
{0, 1}×2 we can isolate the parameter fw by correctly choosing a
subrepresentation ϕσ of the PTM representation of P2. Recalling
that Pσ ¼ jσiihhσj we can choose ϕ̂ ¼ ϕσ for σ ¼ ðZw

1 � Zw
2 Þ=2 to

isolate the parameter fw for w= (w1, w2)∈ {0, 1}×2. We give the
character functions associated to these representation in section
V.2 of the Supplementary Methods. Once we have obtained all
quality parameters fw we can compute the average reference
fidelity Fref using Eq. (5).
The interleaved experiment similarly consists of a character

randomized benchmarking experiment using G ¼ C�2
1 but for

every sequence ~G ¼ ðG1; ¼ ;GmÞ we apply the sequence (G1, C,
G2, …, C, Gm) instead, where C is a 2-qubit interleaving gate (from
the 2-qubit Clifford group). Note that we must then also invert this
sequence (with C) to the identity.34 Similarly choosing Ĝ ¼ P2 we
can again isolate the parameters fw and from these compute the
‘interleaved fidelity’ Fint. Using the method detailed in ref. 35 we
can then calculate upper and lower bounds on the average fidelity
Favg(C) of the gate C from the reference fidelity Fref and the
interleaved fidelity Fint. Note that it is not trivial that the
interleaved experiment yields data that can be described by a
single exponential decay, we will discuss this in greater detail in
the methods section.
Finally we would like to note that the character benchmarking

protocol can be used in many more scenarios than the ones
outlined here. Character randomized benchmarking is versatile
enough that when we want to perform randomized benchmark-
ing we can consider first what group is formed by the native gates
in our device and then use character benchmarking to extract
gate fidelities from this group directly, as opposed to carefully
compiling the Clifford group out of the native gates which would
be required for standard randomized benchmarking. This
advantage is especially pronounced when the native two-qubit
gates are not part of the Clifford group, which is the case for e.g.
the

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate.39,40

METHODS
In this section will discuss three things: (1) The statistical behavior and
scalability of character randomized benchmarking, (2) the robustness of
character randomized benchmarking against gate-dependent noise, and
(3) the behavior of interleaved character randomized benchmarking, and
in particular 2-for-1 interleaved benchmarking.
First we will consider whether the character randomized benchmarking

protocol is efficiently scalable with respect to the number of qubits (like
standard randomized benchmarking) and whether the character rando-
mized benchmarking protocol remains practical when only a finite amount
of data can be gathered (this last point is a sizable line of research for
standard randomized benchmarking6,28,30,41).

Scalability of character randomized benchmarking
The resource cost (the number of experimental runs that must be
performed to obtain an estimate of the average fidelity) of character
randomized benchmarking can be split into two contributions: (1) The
number of quality parameters fλ associated that must be estimated (this is
essentially set by |RG|, the number of irreducible subrepresentations of the
PTM representation of the benchmarking group G), and (2) the cost of
estimating a single average kλ0m for a fixed λ′∈ RG and sequence length m.
The first contribution implies that for scalable character randomized

benchmarking with (a uniform family of) groups Gq (w.r.t. the number of
qubits q) the number of quality parameters (set by |RG|) must grow
polynomially with q. This means that not all families of benchmarking
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groups are can be characterized by character randomized benchmarking in
a scalable manner.
The second contribution, as can be seen in Fig. 1, further splits up into

three components: (2a) the magnitude of jϕ̂j, (2b) the number of random
sequences ~G needed to estimate kλ0m (given access to kλ0mð~GÞ) and (2c) the
number of samples needed to estimate kλ0mð~GÞ for a fixed sequence. We will
now argue that the resource cost of all three components are essentially
set by the magnitude of jϕ̂j. Thus if jϕ̂j grows polynomially with the
number of qubits then the entire resource cost does so as well. Hence a
sufficient condition for scalable character randomized benchmarking is
that one chooses a family of benchmarking groups where |RG| grows
polynomially in q and character groups such that for the relevant
subrepresentations jϕ̂j the dimension grows polynomially in q.
We begin by arguing (2c):The character-weighted average over the

group Ĝ for a single sequence ~G: kλ0mð~GÞ, involves an average over jĜj
elements (which will generally scale exponentially in q), but can be
efficiently estimated by not estimating each character-weighted expecta-
tion value kλ0mð~G; ĜÞ individually but rather estimate kλ0mð~GÞ directly by the
following procedure

1. Sample Ĝ 2 Ĝ uniformly at random
2. Prepare the state GinvGm � � � G1Ĝjρii and measure it once obtaining a

result bðĜÞ 2 f0; 1g
3. Compute xðĜÞ :¼ χϕ̂ðĜÞjϕ̂jbðĜÞ 2 f0; χϕ̂ðĜÞjϕ̂jg
4. Repeat sufficiently many times and compute the empirical average

of xðĜÞ
Through the above procedure we are directly sampling from a bounded

probability distribution with mean kλ0mð~GÞ that takes values in the interval
½�χ	

ϕ̂
; χ	

ϕ̂

 where χ	

ϕ̂
is the largest absolute value of the character function

χϕ̂ . Since the maximal absolute value of the character function is bounded
by the dimension of the associated representation,29 this procedure will be
efficient as long as jϕ̂j is not too big.
For the examples given in the discussion section (with the character

group being the Pauli group) the maximal character value is 1. Using
standard statistical techniques42 we can give e.g. a 99% confidence interval
of size 0.02 around kλ0mð~GÞ by repeating the above procedure 1769 times,
which is within an order of magnitude of current experimental practice for
confidence intervals around regular expectation values and moreover
independent of the number of qubits q. See section VI in the
Supplementary Methods for more details on this.
We now consider (2b): From the considerations above we know that

kλ0mð~GÞ is the mean of a set of random variables and thus itself a random
variable, taking possible values in the interval ½�χ	

ϕ̂
; χ	

ϕ̂

. Hence by the same

reasoning as above we see that kλ0m, as the mean of a distribution (induced
by the uniform distribution of sequences ~G) confided to the interval
½�χ	

ϕ̂
; χ	

ϕ̂

 can be estimated using an amount of resources polynomially

bounded in jϕ̂j. We would like to note however that this estimate is
probably overly pessimistic in light of recent results for standard
randomized benchmarking on the Clifford group28,30 where it was shown
that the average kλ0m over sequences ~G 2 G ´m can be estimated with high
precision and high confidence using only a few hundred sequences. These
results depend on the representation theoretic structure of the Clifford
group but we suspect that it is possible to generalize these results at least
partially to other families of benchmarking groups. Moreover any such
result can be straightforwardly adapted to also hold for character
randomized benchmarking. Actually making such estimates for other
families groups is however an open problem, both for standard and
character randomized benchmarking.
To summarize, the scalability of character randomized benchmarking

depends on the properties of the families of benchmarking and character
groups chosen. One should choose the benchmarking groups such that
the number of exponential decays does not grow too rapidly with the
number of qubits, and one should choose the character group such that
the dimension of the representation being projected on does not grow too
rapidly with the number of qubits.

Gate-dependent noise
Thus far we have developed the theory of character randomized
benchmarking under the assumption of gate-independent noise. This is
is not a very realistic assumption. Here we will generalize our framework to
include gate-dependent noise. In particular we will deal with the so called
‘non-Markovian’ noise model. This noise model is formally specified by the
existence of a function Φ : G ! S2q which assigns to each element G of
the group G a quantum channel ΦðGÞ ¼ EG . Note that this model is not the

most general, it does not take into account the possibility of time
dependent effects or memory effects during the experiment. It is however
much more general and realistic than the gate-independent noise model.
In this section we will prove two things:

1. A character randomized benchmarking experiment always yields
data that can be fitted to a single exponential decay up to a small
and exponentially decreasing corrective term.

2. The decay rates yielded by a character randomized benchmarking
experiment can be related to the average fidelity (to the identity) of
the noise in between gates, averaged over all gates.

Both of these statements, and their proofs, are straightforward general-
izations of the work of Wallman14 which dealt with standard randomized
benchmarking. We will see that his conclusion, that randomized
benchmarking measures the average fidelity of noise in between quantum
gates up to a small correction, generalizes to the character benchmarking
case. We begin with a technical theorem, which generalizes [14, Theorem 2]
to twirls over arbitrary groups (with multiplicity-free PTM representations).

Theorem 1. Let G be a group such that its PTM representation G ¼
�λ2RGϕλðGÞ is multiplicity-free. Denote for all λ by fλ the largest eigenvalue of
the operator EG2Gð~G � ϕλðGÞÞ where ~G is the CPTP implementation of G∈ G.
There exist Hermicity-preserving linear superoperators L;R such that

E
G2G

ð~GLGyÞ ¼ LDG; (11)

E
G2G

ðGyR~GÞ ¼ DGR; (12)

E
G2G

ðGRLGyÞ ¼ DG; (13)

where DG is defined as

DG ¼
X
λ

fλPλ; (14)

with Pλ the projector onto the representation ϕλ for all λ∈ RG.

Proof. Using the definition of G and DG we can rewrite Eq. (11) asX
λ

E
G2G

ð~GðLPλÞϕλðGÞyÞ ¼
X
λ

fλLPλ: (15)

This means that, without loss of generality, we can take L to be of the form

L ¼
X
λ

Lλ; LλPλ0 ¼ δλλ0Lλ; 8λ0: (16)

Similarly we can take R to be

R ¼
X
λ

Rλ; Pλ0Rλ ¼ δλλ0Rλ; 8λ0: (17)

This means Eqs. (11) and (12) decompose into independent pairs of
equations for each λ:

E
G2G

ð~GLλϕλðGÞyÞ ¼ fλLλ (18)

E
G2G

ðϕλðGÞyR~GÞ ¼ fλRλ: (19)

Next we use the vectorization operator vec : M22q ! R24q mapping the
PTM representations of superoperators to vectors of length R24q . This
operator has the property that for all A; B;C 2 M22q we have

vecðABCÞ ¼ A� CTvecðBÞ (20)

where CT is the transpose of C. Applying this to the equations Eqs. (18) and
(19) and noting that Gy ¼ GT since G is a real matrix we get the eigenvalue
problems equivalent to Eqs. (18) and (19),

E
G2G

ð~G � ϕλðGÞÞvecðLλÞ ¼ fλvecðLλÞ (21)

E
G2G

ð~G � ϕλðGÞÞTvecðRλÞ ¼ fλvecðRλÞ: (22)

Since we have defined fλ to be the largest eigenvalue of EG2Gð~G � ϕλðGÞÞ
(and equivalently of EG2Gð~G � ϕλðGÞÞT ) we can choose vecðLÞ and vecðRÞ
to be the left and right eigenvectors respectively of EG2Gð~G � ϕλðGÞÞ
associated to fλ. Inverting the vectorization we obtain solutions to the
equations Eqs. (18) and (19) and hence also Eqs. (11) and (12). To see that
this solution also satisfies Eq. (13) we note first that EG2GðGRλLλGyÞ is
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proportional to Pλ for any Rλ;Lλ satisfying Eqs. (16) and (17) (by Schur’s
lemma). Since the eigenvectors of EG2Gð~G � ϕλðGÞÞ are only defined up to
a constant we can for every λ choose proportionality constants such that
EG2GðGRλLλGyÞ ¼ fλPλ and thus that Eq. (13) is satisfied.
Next we prove that if we perform a character randomized benchmarking

experiment with benchmarking group G, character group Ĝ and
subrepresentations ϕ̂ � ϕλ0 for some λ′∈ RG, the observed data can
always be fitted (up to an exponentially small correction) to a single
exponential decay. The decay rate of fλ′ associated to this experiment will
be the largest eigenvalue of the operator EG2Gð~G � ϕλ0 ðGÞÞ mentioned in
the theorem above. Later we will give an operational interpretation of this
number. We begin by defining, for all G∈ G a superoperator ΔG which
captures the ‘gate-dependence’ of the noise implementation of G,
ΔG :¼ ~G � LGR; (23)

whereR;L are defined as in Theorem 1. Using this expansion we have the
following theorem, which generalizes [14, Theorem 4] to character
randomized benchmarking over arbitrary finite groups with multiplicity-
free PTM representation.

Theorem 2. Let G be a group such that its PTM representation G ¼
�λ2RGϕλðGÞ is multiplicity-free. Consider the outcome of a character
randomized benchmarking experiment with benchmarking group G,
character group Ĝ, subrepresentations ϕ̂ � ϕλ0 for some λ′∈ RG, and set of
sequence lengths M. That is, consider the real number

kλ
0
m ¼ E

G2G
E

Ĝ2Ĝ
χϕ̂ðĜÞjϕ̂jhhQj~Ginv

~Gm � � �gG1
bGjρii (24)

for some input state ρ and output POVM {Q, 1−Q} and m 2 M. This
probability can be fitted to an exponential of the form

kλ
0
m ¼fit Af

m
λ0 þ εm; (25)

where A is a fitting parameter, fλ is the largest eigenvalue of the operator
EG2Gð~G � ϕλðGÞÞ and εm � δ1δ

m
2 with

δ1 ¼ jϕ̂jmax
Ĝ2Ĝ

jχϕ̂ðĜÞjmax
G2G

ΔGk k}; (26)

δ2 ¼ EG2G ΔGk k}; (27)

where �k k} is the diamond norm on superoperators.43

Proof. We begin by expanding
gG1
bG ¼ LG1ĜR þ ΔG1Ĝ

. This gives us

kλ
0
m ¼ � E

Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQj~Ginv
~Gm � � � LG1ĜRjρii

(28)

þχϕ̂ðĜÞjϕ̂jhhQj~Ginv
~Gm � � �ΔG1Ĝ

jρii: (29)

We now analyze the first term in Eq. (28). Using the character projection
formula, the fact that G1 ¼ ðGinvGm ¼G2Þy and Eq. (11) from Theorem 1 we
get

E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQj~Ginv
~Gm � � � LG1ĜRjρii

¼ E
G1 ;¼ ;Gm2G

hhQj~Ginv
~Gm � � � ~G2LGy

2 ¼Gy
invPϕ̂Rjρii (30)

¼ E
G3 ;¼ ;Gm2G

hhQj~Ginv
~Gm � � � ~G3LDGGy

3 ¼Gy
invPϕ̂Rjρii (31)

¼ hhQjLDm
GPϕ̂Rjρii (32)

¼ fmλ0 hhQjLPϕ̂Rjρii (33)

where we used that DG commutes with G for all G∈ G and the fact that
DGPϕ̂ ¼ fλ0 Pϕ̂ . Next we consider the second term in Eq. (28). For this we
first need to prove a technical statement. We make the following

calculation for all j ≥ 2 and Ĝ 2 Ĝ:

E
G1 ;¼ ;Gm2G

~Ginv
~Gm � � � ~Gjþ1LGjRΔGj�1 ¼ΔG1Ĝ (34)

¼ E
G1 ;¼ ;Gm2G

~Ginv
~Gm � � � ~Gjþ1LGy

jþ1 ¼Gy
m

´GinvGy
1 ¼Gy

j�1RΔGj�1 ¼ΔG1 Ĝ
(35)

¼ E
G1 ;¼ ;Gm2G

~Ginv
~Gm � � � ~Gjþ1LGy

jþ1 ¼Gy
m

´GinvGy
1 ¼Gy

j�1Rð~Gj�1 � LGj�1RÞ

´ΔGj�2 ¼ΔG1Ĝ (36)

¼ E
G1; ¼ ;Gj�1;

Gjþ1; ¼Gm 2 G

~Ginv
~Gm � � � ~Gjþ1LGy

jþ1 ¼Gy
m

´GinvGy
1 ¼Gy

j�2ðDG �DGÞRΔGj�2 ¼ΔG1 Ĝ
(37)

¼ 0 (38)

where we used the definition of ΔGj�1 , the fact that Gj�1 ¼
ðGm ¼Gjþ1ÞyGinvðG1 ¼Gj�1Þy and Eqs. (12) and (13). We can apply this
calculation to the second term of Eq. (28) to get

E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQj~Ginv
~Gm � � � ~G2ΔG1 Ĝ

jρii
(39)

¼ E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQj~Ginv
~Gm � � � ðLG2Rþ ΔG2 Þ

´ΔG1 Ĝ
jρii (40)

¼ E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQj~Ginv
~Gm � � � ~G3ΔG2ΔG1Ĝ

jρii
(41)

¼ E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQjΔGinvΔGm ¼ΔG1Ĝ
jρii

(42)

Hence we can write

kλm ¼ fmλ0 hhQjLPϕRjρii þ εm (43)

with

εm ¼ E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQjΔGinvΔGm ¼ΔG1Ĝ
jρii:

(44)

We can upper bound εm by

E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞjϕ̂jhhQjΔGinvΔGm ¼ΔG1Ĝ
jρii

(45)

� E
Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

jχϕ̂ðĜÞjjϕ̂j ΔGinvk k} ΔGmk k} ¼ ΔG1Ĝ

��� ���
} (46)

� max
Ĝ2Ĝ

jχϕ̂ðĜÞjjϕ̂jmax
G2G

ΔGk k} EG2G ΔGk k}
� 	m

: (47)
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Setting

δ1 ¼ jϕ̂j max
Ĝ2Ĝ

jχϕ̂ðĜÞj
� �

max
G2G

ΔGk k}
� �

(48)

δ2 ¼ E
G2G

ΔGk k} (49)

we complete the proof.
In14 it was shown that δ2 is small for realistic gate-dependent noise. This

implies that for large enough m the outcome of a character randomized
benchmarking experiment can be described by a single exponential decay
(up to a small, exponentially decreasing factor). The rate of decay fλ′ can be
related to the largest eigenvalue of the operator EG2Gð~G � ϕλ0 ðGÞÞ. We can
interpret this rate of decay following Wallman14 by setting w.l.o.g. ~G ¼
LGGR whereR is defined as in Theorem 1 and is invertible (we can always
render R invertible by an arbitrary small perturbation). Now consider from
~G ¼ LGGR and the invertibility of R:

E
G2G

TrðGyR~GR�1Þ ¼ E
G2G

TrðGyRLGGRR�1Þ (50)

¼ E
G2G

TrðRLGÞ (51)

and moreover from Eq. (12):

E
G2G

TrðGyR~GR�1Þ ¼
X
λ2RG

fλTrðPλÞ: (52)

From this we can consider the average fidelity of noise between gates (the
map ðRLGÞ averaged over all gates:

E
G2G

FavgðRLGÞ ¼ E
G2G

2�qTrðRLGÞ þ 1
2q þ 1

(53)

¼ 2�q
P

λ2RG fλTrðPλÞ þ 1

2q þ 1
: (54)

Hence can interpret the quality parameters given by character randomized
benchmarking as characterizing the average noise in between gates,
extending the conclusion reached in14 for standard randomized bench-
marking to character randomized benchmarking. In ref. 16 an alternative
interpretation of the decay rate of randomized benchmarking in the
presence of gate dependent noise is given in terms of Fourier transforms
of matrix valued group functions. One could recast the above analysis for
character randomized benchmarking in this language as well but we do
not pursue this further here.

Interleaved character randomized benchmarking
In the main text we proposed 2-for-1 interleaved randomized benchmark-
ing, a form of character interleaved randomized benchmarking. More
generally we can consider performing interleaved character randomized
benchmarking with a benchmarking group G, a character group Ĝ, and an
interleaving gate C. However it is not obvious that the interleaved
character randomized benchmarking procedure (for arbitrary G and C)
always yields data that can be fitted to a single exponential such that the
average fidelity can be extracted. Here we will justify this behavior subject
to an assumption on the relation between the interleaving gate C and the
benchmarking group G which we expect to be quite general. This relation
is phrased in terms of what we call the ‘mixing matrix’ of the group G and
gate C. This matrix, which we denote by M, has entries

Mλ;λ̂ ¼
1

TrðPλÞ Tr PλCP λ̂Cy

 �

(55)

for λ; λ0 2 R0G ¼ RGnfidg with ϕid the trivial subrepresentation of the PTM
representation of G carried by |1〉〉 and where Pλ is the projector onto the
subrepresentation ϕλ of G. Note that this matrix is defined completely by C
and the PTM representation of G. Note also that this matrix has only non-
negative entries, that is Mλ;λ̂ � 0 8λ; λ̂.
In the following lemma we will assume that the mixing matrix M is not

only non-negative but also irreducible in the Perron-Frobenius sense.44

Formally this means that there exists an integer L such that AL has only
strictly positive entries. This assumption will allow us to invoke the
powerful Perron-Frobenius theorem44 to prove in Theorem 3 that
interleaved character randomized benchmarking works as advertised.
Below Theorem 3 we will also explicitly verify the irreducibility condition
for 2-for-1 interleaved benchmarking with the CPHASE gate. We note that
the assumption of irreducibility of M can be easily relaxed to M being a
direct sum of irreducible matrices with the proof of Theorem 3 basically

unchanged. It is an open question if it can be relaxed further to encompass
all non-negative mixing matrices.

Theorem 3. Consider the outcome km
λ0 of an interleaved character

randomized benchmarking experiment benchmarking group G, character
group Ĝ, subrepresentations ϕ̂ � ϕλ0 for some λ′∈ RG, interleaving gate C,
and set of sequence lengths M and assume the existence of quantum
channels EC ; E s.t. ~C ¼ CEC and ~G ¼ EG for all G∈ G. Now consider the
matrix MðECEÞ as a function of the composed channel ECE with entries

Mλ;λ̂ðECEÞ ¼ 1
TrðPλÞ Tr PλCP λ̂CyECE


 �
(56)

for λ; λ0 2 R0G ¼ RGnfidg where Pλ is again the projector onto the
subrepresentation ϕλ of G. If for E ¼ EC ¼ I (the identity map) the matrix
MðIÞ ¼ M (the mixing matrix defined above) is irreducible (in the sense of
Perron-Frobenius), then there exist parameters A, fλ′ s.t.

jkmλ0 � Afmλ0 j � δ1δ
m
2 (57)

with δ1 ¼ Oð1� FavgðECEÞÞ and δ2 ¼ γ þ Oð½1� FavgðECEÞ
2Þ where γ is the
second largest eigenvalue (in absolute value) of M. Moreover we have that
(noting that fid= 1 as the map ECE is CPTP):

1
2q

X
λ2RG

TrðPλÞfλ � 2qðFavgðECEÞ þ 1Þ
2q þ 1

�����
�����

� O ½1� FavgðECEÞ
2
� 	

(58)

Proof. Consider the definition of kmλ0 :

kλ
0
m ¼ jϕ̂j E

Ĝ 2 Ĝ

G1; ¼ ;Gm 2 G

χϕ̂ðĜÞhhQjE invGinvCECEGm

´ CECE¼ CECEG1Ĝjρii; (59)

where Ginv ¼ Gy
1C

y � � �Gy
mCy and E inv is the noise associated to the inverse

gate (which we assume to be constant). Using the character projection
formula and Schur’s lemma we can write this as

kλ0m ¼ E
G1 ;¼ ;Gm�12G

hhQjE invGy
1Cy � � � Gy

m�1Cy

´
X
λm2R0G

TrðPλmECEÞ
TrðPλm Þ

Pλm

2
4

3
5CECEGm�1

´ CECE¼ CECEG1Pϕ̂jρii: (60)

Note now that in general C and Pλm do not commute. This means that we
can not repeat the reasoning of Lemma 3 but must instead write (using
Schur’s lemma again):

kλ
0
m ¼

X
λm2R0G

TrðPλmECEÞ
TrðPλm Þ

E
G1 ;¼ ;Gm�22G

hhQjE invGy
1Cy � � � Gy

m�2Cy

´
X

λm�12R0G

TrðPλm�1CyPλmCECEÞ
TrðPλm�1 Þ

2
4

3
5

´Pλm�1CECEGm�2CEC

´ E¼ CECEG1Pϕ̂jρii: (61)

Here we recognize the definition of the matrix element Mλm�1 ;λm ðECEÞ.
Moreover we can apply the above expansion to Gm−2,Gm−3 and so forth
writing the result in terms of powers of the matrix MðECEÞ. After some
reordering we get

kλ
0
m ¼

X
λ1 ;λm2R0G

TrðPλmECEÞ
TrðPλm Þ

½Mm�1
λ1 ;λm hhQjPλ1Pϕ̂jρii

where we have again absorbed the noise associated with the inverse Ginv

into the measurement POVM element Q. Now recognizing that by
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construction Pϕ̂ � Pλ0 we can write kλ0m as

kλ
0
m ¼ eλ0M

mvT hhQjPϕ̂jρii (62)

where eλ′ is the λ′th standard basis row vector of length R0G and v ¼ vðECEÞ
is a row vector of length R0

G
with entries ½v
λ ¼ TrðPλm ECEÞ

TrðPλm Þ . This looks
somewhat like an exponential decay but not quite. Ideally we would like
that Mm has one dominant eigenvalue and moreover that the vector v has
high overlap with the corresponding eigenvector. This would guarantee
that kλ0m is close to a single exponential. The rest of the proof will argue that
this is indeed the case. Now we use the assumption of the irreducibility of
the mixing matrix M ¼ MðIÞ. Subject to this assumption, the Perron-
Frobenius theorem44 states that the matrix M has a non-degenerate
eigenvalue γmaxðMðIÞÞ that is strictly larger in absolute value than all other
eigenvalues of MðIÞ and moreover satisfies the inequality

min
λ2R0G

X
λ̂2R0G

Mλ;λ̂ � γmaxðMðIÞÞ � max
λ2R0G

X
λ̂2R0G

Mλ;λ̂: (63)

It is easy to see from the definition of Mλ;λ̂ thatX
λ̂2R0G

Mλ;λ̂ ¼
X
λ̂2R0G

1
TrðPλÞTr PλCP λ̂Cy


 �
(64)

¼
X
λ̂2R0G

1
TrðPλÞ PλC

X
λ̂2R0G

P λ̂Cy
0
@

1
A (65)

¼ TrðPλÞ
TrðPλÞ ¼ 1 (66)

for all λ 2 R0G. This means the largest eigenvalue of MðIÞ is exactly 1.
Moreover, as one can easily deduce by direct calculation, the associated
right-eigenvector is the vector vR= (1, 1, …, 1). Note that this vector is
precisely vðECEÞ (as defined in Eq. (62)) for ECE ¼ I . Similarly the left-
eigenvector of M ¼ MðIÞ is given by (in terms of its components)
vLλ ¼ TrðPλÞ. This allows us to calculate that kλ0m ¼ hhQjPϕ̂jρii if ECE ¼ I ,
which is as expected.
Now we will consider the map ECE as a perturbation of I with the

perturbation parameter

α ¼ 1� TrðPtotECEÞ
TrðPtotÞ (67)

with Ptot ¼
P

λ2R0G Pλ . We can write the quantum channel ECE as ECE ¼
I � αF where F is some superoperator (not CP, but by construction trace-
annihilating). Since MðECEÞ is linear in its argument we can write
MðECEÞ ¼ MðIÞ � αMðFÞ. From standard matrix perturbation theory
[ref. 45, Section 5.1] we can approximately calculate the largest eigenvalue
of MðECEÞ as
γmaxðMðECEÞÞ ¼ γmaxðMðIÞÞ

�α
vLMðFÞvRT

vLvRT
þ Oðα2Þ (68)

We can now calculate the prefactor vLMðFÞvRT
vLvRT

as

vLAðFÞvRT
vLvRT

¼
P

λ2R0G
P

λ̂2R0G v
L
λMðFÞλ;λ̂vRλ̂

TrðPtotÞ
(69)

¼
P

λ2R0G
P

λ̂2R0G TrðPλC
yP λ̂FÞ

TrðPtotÞ
(70)

¼ Tr PtotFð Þ
TrðPtotÞ (71)

¼ 1
α

Tr Ptot½I � ECE
ð Þ
TrðPtotÞ (72)

¼ 1 (73)

where we used the definition of α in the last line. This means that
γmaxðMðECEÞÞ ¼ 1� α up to O(α2)corrections. One could in principle
calculate the prefactor of the correction term, but we will not pursue this
here. Now we know that the matrix MðECEÞm�1 in Eq. (62) will be
dominated by a factor (1− α+O(α2))m−1. However it could still be that the
vector vðECEÞ in Eq. (62) has small overlap with the right-eigenvector

vRðECEÞ of MðECEÞ associated to the largest eigenvalue γmaxðMðECEÞÞ. We
can again use a perturbation argument to see that this overlap will be big.
Again from standard perturbation theory [ref. 45, Section 5.1] we have

vRðECEÞ � vRðIÞ�� �� ¼ OðjαjÞ: (74)

Moreover, by definition of vRðIÞ and vðECEÞ we have that
vRvðECEÞT ¼ 1� α. By the triangle inequality we thus have

vRðECEÞ � vðECEÞ
�� �� ¼ OðjαjÞ: (75)

One can again fill in the constant factors here if one desires a more precise
statement. Finally we note from Lemma 4 that

α ¼ 1� TrðPtotECEÞ
TrðPtotÞ ¼ 2q

2q � 1
ðFðECEÞ � 1Þ (76)

This means that in the relevant limit of high fidelity, α will be small,
justifying our perturbative analysis. Defining γ to be the second largest (in
absolute value) eigenvalue of MðECEÞ, which by the same argument as
above will be the second largest eigenvalue of MðIÞ up to O(α2)
corrections, we get

jkλ0m � hhQjPϕ̂jρii � γmaxðMðECEÞÞm�1hhQjPϕ̂jρiij � δ1δ
m
2

with δ1 ¼ Oð1� FavgðECEÞÞ and δ2 ¼ jγj þ Oðð1� FavgðECEÞÞ2Þ. Moreover,
we have from Eqs. (68) and (76) that

γmaxðAðECEÞÞ ¼ 1� 2q

2q � 1
ðFðECEÞ � 1Þ

þO ½1� FavgðECEÞ
2
� 	

(77)

which immediately implies

1
2q

X
λ2RG

TrðPλÞfλ � 2qðFavgðECEÞ þ 1Þ
2q þ 1

�����
�����

� O ½1� FavgðECEÞ
2
� 	

(78)

proving the lemma.
It is instructive to calculate the mixing matrix for a relevant example. We

will calculate M for C the CPHASE gate and G ¼ C�2
1 two copies of the

single qubit Clifford gates. Recall from the main text that the PTM
representation of C�2

1 has three non-trivial subrepresentations. From their
definitions in Eq. (10) and the action of the CPHASE gate on the two qubit
Pauli operators it is straightforward to see that the mixing matrix is of the
form

M ¼
1=3 0 2=3

0 1=3 2=3

2=9 2=9 5=9

0
B@

1
CA: (79)

Calculating M2 one can see that M is indeed irreducible. Moreover M has
eigenvalues 1, 1/3 and −1/9. This means that for 2-for-1 interleaved
benchmarking the interleaved experiment produces data that deviates
from a single exponential no more than (1/3)m (for sufficiently high fidelity)
which will be negligible for even for fairly small m. This means that for 2-
for-1 interleaved benchmarking the assumption that the interleaved
experiment produces data described by a single exponential is good. We
will see this confirmed numerically in the simulated experiment presented
in Supplementary Fig. 2. Finally, we note that a similar result was achieved
using different methods in ref. 46,47
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