
Using Gamification to Address
Technical Debt: A Case Study at Adyen

Version of February 15, 2023

Mark Meijhuis

Using Gamification to Address
Technical Debt: A Case Study at Adyen

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Mark Meijhuis
born in Amsterdam, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Adyen
Simon Carmiggeltstraat 6 - 50

Amsterdam, the Netherlands
www.adyen.com

www.ewi.tudelft.nl
www.adyen.com

© 2023 Mark Meijhuis.

Using Gamification to Address
Technical Debt: A Case Study at Adyen

Author: Mark Meijhuis
Student id: 4389255

Abstract

Technical debt is a term that describes the consequences of taking shortcuts or quick-
and-dirty solutions in the software engineering process, in order to gain short term ad-
vantages in the development process of software projects. In this paper, we investigate
the technical debt present at the fintech company Adyen, and the developers’ experi-
ence with technical debt. We investigate their behavior towards testing and refactoring,
and give insight into module health with the Delta Maintainability Model. With the
conclusions from this research, we propose a novel gamification system called ‘Code
Karma’ to address these technical debt issues, give insight into efforts that increase
code quality and motivate developers to improve internal software quality. We found
that the Delta Maintainability Model may be used to evaluate module health over time.
Additionally, developers believe that ‘Code Karma’ has a positive influence on the
internal quality of the system.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen. Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. M.F. Aniche. Faculty EEMCS, TU Delft
Company supervisor: F. Braz, MSc. Adyen
Committee Member: Dr. Dr. J.G.H. Cockx. Faculty EEMCS, TU Delft

m.j.meijhuis@student.tudelft.nl

Preface

Firstly, I would like to thank Arie van Deursen for supervising me, discussing results and
coming up with new angles to approach the multi-facetted problem of technical debt. Sec-
ondly, I would like to thank Maurı́cio Aniche for being available for feedback on ideas and
advice on statistical methods. Lastly, I would like to thank the developers at Adyen for
deep insights in the company and the development process, brainstorming new ideas and
thinking of angles to approach certain problems and concepts.

Mark Meijhuis
Delft, the Netherlands

February 15, 2023

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Adyen . 2
1.2 Research questions . 3

2 Developers’ experience with technical debt 5
2.1 Background . 5
2.2 Experimental design . 9
2.3 Questionnaire on technical debt . 10
2.4 Questionnaire results . 12

3 Developers’ view on refactoring 15
3.1 Background . 15
3.2 Questionnaire on refactoring . 16
3.3 Questionnaire results . 19

4 Investigating refactoring and testing efforts 21
4.1 Experimental design . 21
4.2 Results . 25

5 Insight in module health with the Delta Maintainability Model 33
5.1 Background . 33
5.2 Applying the DMM to the codebase . 33
5.3 Effect of refactoring on the DMM risk values 34
5.4 Using the DMM as a measurement of module health 35

v

CONTENTS

6 Using gamification to improve software quality 39
6.1 Background . 39
6.2 Code Karma . 40
6.3 Questionnaire to evaluate Code Karma . 41
6.4 Results . 44

7 Conclusions and Future Work 51
7.1 Conclusions . 51
7.2 Answers to the research questions . 52
7.3 Future work . 53

Bibliography 55

vi

List of Figures

1.1 Technical debt quadrant. 2

4.1 Database schema . 24
4.2 The percentage of commits that includes a test or a refactoring for every author. 25
4.3 Refactoring count and lead time of tickets. 26
4.4 Lead time of ticket, along with average and maximum file length. 27
4.5 Lead time of ticket, along with average and maximum file complexity. 27
4.6 Number of file changes and number of refactorings per file. 28
4.7 Percentage of refactoring changes along with the number of authors of a file. . . 29
4.8 Change to complexity of methods by refactoring type. 30
4.9 The complexity of a method before a refactoring type occurs. 31

5.1 Distribution of delta maintainability values over commits. 34
5.2 Aggregated DMM values over time. 36

6.1 Example karma update message to a developer after week 2. 42
6.2 Code Karma distributions of 2 teams . 45

vii

Chapter 1

Introduction

Technical debt is a term that describes the additional development work of taking short-
cuts or quick-and-dirty solutions in the software engineering process, in order to gain short
term advantages in the development process of software projects. These short term advan-
tages, such as reduced cost or time to market, may be beneficial for a short while, but often
lead to technical insufficiencies and limitations that may be hard to overcome in the future.
Additionally, if developers have to work with or around technical debt, the technical debt
might be increased in the process. This is why technical debt is often compared to financial
systems and economic theories [5]. The principal of the technical debt is the money and re-
sources that are used to overcome the technical insufficiencies, and the interest is the excess
money and resources that are needed to work with the technical debt in the future [24].

Even though code-related technical debt has gained the most attention, other types of tech-
nical debt can be present as well [24]. Other types of technical debt can be a lack of
testing, which makes production code unstable and the development process harder and
more time-consuming due to hidden bugs or lack of tests that catch new bugs while debug-
ging. An inefficient build process can also inhibit the efficiency of the development process.
High-level decisions, such as architectural decisions, can be the most important source of
technical debt, since it affects the largest proportion of the codebase and the development
process [33]. There seems to be a dynamic between software engineers, that want to protect
software quality, and business developers, that care about time to market [48].

Unintentional technical debt can also be incurred in multiple ways. Developers may lack
competence to create an optimal solution, and design a sub-par system that needs to be
worked around. New technologies may exist that better fit the software project. The busi-
ness goals of the project may change, making the old code not the perfect fit for the product
and something that needs to be rewritten or worked around. The company might not have
clear coding guidelines, making it harder to work on the codebase due to a lack of consis-
tency. The complex nature of technical debt is summarized in a simple way in Fowler’s
technical debt quadrant [13], which can be seen in Figure 1.1.

1

1. INTRODUCTION

Figure 1.1: Technical debt quadrant.

Technical debt might not always be problematic, since a small amount of technical debt can
be beneficial if the business impact is large. Thus, technical debt can be managed if the
management pays attention to managing it. Companies can use backlogs for managing the
technical debt issues, use static analysis tools to identify debt and reserve time for devel-
opers to work on technical debt [48]. Even though the implications of technical debt are
significant, and there are ways to manage it, only 7.2% of organizations methodically track
technical debt [43].

1.1 Adyen

Adyen is a global company with a large codebase that has been rapidly growing and evolv-
ing for 16 years. Both business managers and developers have had to deal with technical
debt, which makes this company an interesting target for further research into how a large
company accrues, reduces and manages technical debt.

Adyen is a technology company founded in 2006, which specializes in a host of different
payment methods, data enhancements and financial products in a single solution1. Adyen
offers merchants an all-in-one flexible and secure payments platform to accept payments
globally. These transactions can occur through e-commerce, mobile and point-of-sale prod-
ucts. The company partners with global card schemes, such as Visa and Mastercard, while
also offering local payment solutions, such as iDEAL in the Netherlands. Adyen serves
companies of all sizes, from small and medium-sized companies to large global enterprises.
The company is still growing and expanding, now counting over 2800 employees world-

1https://adyen.com/about

2

1.2. Research questions

wide. The company went public in 2018.

Adyen has had a long lifespan with rapid growth. The monorepo, which is mainly written in
Java, consequently has grown into a large, complex codebase. Technical debt has been in-
curred over its lifespan, which causes problems in internal code quality and the development
process. Refactoring is the main practice related to reducing technical debt [33]. Refactor-
ing is being done by developers, but the reason behind the refactoring is largely unknown.
The refactoring could be done to make requirements more easy to implement [30, 39], make
code more readable [36, 31] or make the code less fault-prone [31]. Understanding the be-
havior of developers in doing refactorings is therefore interesting, since it could be the main
driver behind avoiding or reducing technical debt.

1.2 Research questions

In this paper we will aim to research technical debt in the context of a large company, and
to see if we can use gamification to reduce or avoid technical debt in the system. We will
use the following research questions to investigate what problems developers face with re-
gards to technical debt within the company and to define the boundaries of the gamification
system.

RQ1: What types of technical debt impede the development process the most?
RQ2: What is the view of developers on refactoring to reduce or avoid technical debt?
RQ3: What is the behavior of developers regarding refactoring and testing efforts?
RQ4: Can we use the Delta Maintainability Model [10] to give insights into module health?
RQ5: Can we create a gamification system that helps to improve internal software quality?

We will aim to research the different aspects of technical debt within Adyen, investigate
what problems developers face in their development process and answer RQ1 in Chapter
2. We will investigate what motivates developers to refactor, research their views on refac-
toring in general and answer RQ2 in Chapter 3. Additionally, we will investigate their
refactoring and testing behaviors and answer RQ3 in Chapter 4. We will apply the Delta
Maintainability Model [10], investigate whether this can be used to determine module health
and answer RQ4 in Chapter 5. Finally, we will create a gamification system using the results
from previous chapters to investigate whether we can improve internal software quality and
answer RQ5 in Chapter 6. Our general conclusions and suggestions for future work can be
found in Chapter 7.

3

Chapter 2

Developers’ experience with
technical debt

2.1 Background

Technical debt (TD) is a term first coined by Ward Cunningham [8], which describes the
consequences of technical decisions that result in short-term gain, compromising on long
term software quality [33]. The term debt is used as an analogy to describe the negative
results that can occur as a result of not paying off the debt. The principal of the debt is
the effort and accompanying cost that is needed to eliminate the debt from the system. The
interest is the excess effort that is needed to maintain or extend the system as a result of the
principal. The principal can be measured in many ways and expressed in terms of hours to
fix the problems and the labor cost [18, 21]. However, determining the principal and the
interest is not an easy task, since the barriers of technical debt are unclear, and many factors
might contribute to problems that can be identified as technical debt [42].

Technical debt is not about code only. Software systems are complex and have many aspects
that could cause problems and slowdown in the development in the long term. The follow-
ing aspects illustrate some types of technical debt that might hinder the software system to
move forward in the most efficient way [24]. Low code understandability might result in
a developer taking more time to understand the code and to build a new feature. Low test
coverage might result in more bugs, resulting in more developer time expended on writing
tests and making sure the shipped product is bug-free. A long build time might result in
slower development process or longer deployment time. The different types of technical
debt as described by Li et al [24] can be seen in Table 2.1.

5

2. DEVELOPERS’ EXPERIENCE WITH TECHNICAL DEBT

Table 2.1: Types of technical debt [24].

TD type Definition

Requirements TD “Refers to the distance between the optimal requirements speci-
fication and the actual system implementation, under domain as-
sumptions and constraints”

Architectural TD “Is caused by architecture decisions that make compromises in
some internal quality aspects, such as maintainability”

Design TD “Refers to technical shortcuts that are taken in detailed design”

Code TD “Is the poorly written code that violates best coding practices or
coding rules. Examples include code duplication and over- com-
plex code”

Test TD “Refers to shortcuts taken in testing. An example is lack of tests
(e.g., unit tests, integration tests, and acceptance tests)”

Build TD “Refers to flaws in a software system, in its build system, or in its
build process that make the build overly complex and difficult”

Documentation TD “Refers to insufficient, incomplete, or outdated documentation in
any aspect of software development. Examples include out-of-
date architecture documentation and lack of code comments”

Infrastructure TD “Refers to a sub-optimal configuration of development-related
processes, technologies, supporting tools, etc. Such a sub-optimal
configuration negatively affects the team’s ability to produce a
quality product”

Versioning TD “Refers to the problems in source code versioning, such as un-
necessary code forks”

Defect TD “Refers to defects, bugs, or failures found in software systems”

6

2.1. Background

How much of a problem is technical debt? Bad quality code is hard to maintain and un-
derstand. This is not a trivial problem: technical debt is estimated to waste up to 42% of
developers’ time, low quality code contains 15 times more defects than high quality code
and resolving issues in low quality code takes on average 124% more time in develop-
ment [43]. It is not even the end of the story once the technical debt is in place, since the
technical debt that has been incurred into the codebase results in more bad quality code.
This phenomenon is best described by the term ‘contagious debt’ [21]. Developers feel that
they can get away with ‘quick-and-dirty’ solutions in a dirty codebase [3]. This means that
once technical debt is in place, this will result in more technical debt. The reverse is also
true, as a clean, well-maintained codebase will result in fewer technical debt incurred as a
result. This suggests that technical debt has a psychological effect on developers, and this
has been shown in previous studies. Bad quality code results in a decrease in developers’
morale [16] and as the ratio of time spent understanding code in comparison to time writing
code is over 10 to 1 [49], it is of the utmost importance that the amount of bad code is kept
to a minimum.

With clear downsides to bad quality code and significant positive impact of refactoring on
productivity, developer morale and general software quality and maintainability, one would
expect the industry to pay attention to the technical debt accumulation in their systems. The
contrary seems to be the case: only 10% of business managers are involved in managing
technical debt, while there is no industry-wide standard for code quality [43]. Develop-
ers are frequently forced to introduce new technical debt as new features are deemed more
important than quality code [43]. In some cases, this trade-off is made willingly if the con-
sequences are clear beforehand [23]. The developers introducing the debt are often aware
of the technical debt that is present, and they indicate it within the comments of the code or
in issue trackers [47]. How businesses and developers handle and deal with technical debt
is therefore not clear, and should be investigated further.

What is the cause of technical debt? In some cases, technical debt can be leveraged for busi-
ness advantage if it is taken on with the full knowledge of the possible consequences [23].
From a software development perspective, it can be hard to forget that customer feedback
is very important to make accurate decisions on the direction forward for the company or
organization [48]. If a different direction is identified, then the system needs to change any-
way, and a faster decision can lead to less technical debt in the long term. This approach,
however, could allow technical debt to accrue more than necessary, since allowing technical
debt to be created is often the path of least resistance. It is also not always possible to know
what the long term consequences will be of short term decisions, since business directions
change and the maintainers of a software system might not have full knowledge of how the
codebase or the business landscape will evolve.

A lack of time for bringing features to market is a recurring theme in the literature as a
cause of technical debt [42, 19]. Technical debt is characterized by low visibility [20],
which makes it hard to determine the technical debt that is actually in the system, holding
back productivity and efficiency. Managers care about time to market, software engineers

7

2. DEVELOPERS’ EXPERIENCE WITH TECHNICAL DEBT

care about software quality [48]. Without a good system to manage technical debt, it is hard
for managers to determine the business value of resolving technical debt. Different software
development organizations have different approaches to managing the debt. Some compa-
nies use ‘20% time’ [48]. As the name suggests, 20% of the development time is used to
improve internal software quality by, for example, fixing bugs and refactoring. The prioriti-
zation of the items can be done in different ways. It can be done on a hunch by developers,
since they are the ones editing, restructuring and extending the code. Some organizations
use a technical debt backlog in management tools such as JIRA1 with a distinction between
priority of items on the list. The items on the list can be identified by looking at business
directions, for example based on the stakeholders’ meeting once a month, or they can be
identified by static code analysis tools such as SonarQube2 and CodeScene3. These tools
detect code smell issues that indicate there is debt that could be repaid. The issues that are
brought up by static analyzers can also be displayed using linters, such as SonarLint4. An-
other metric that is used in the industry to prioritize debt is code coverage [48]. Even though
there is tool support for managing technical debt, only 7.2% of organizations methodically
track technical debt [43, 26]. This might be due to a lack of consensus in both academia and
industry on what the best approach is to use the tools available [21, 27]. Another popular
method of documenting technical debt is self-admitted technical debt (SATD): using words
like TODO, fixme or hack in code comments to indicate there are problems in that code that
still need to be solved [47, 11]. Practical approaches to prevent technical debt are imple-
menting coding standards, improving the definition of done and make unit tests mandatory
for new code pushed to the codebase.

The aforementioned tools are proficient in detecting code debt, which could be due to eas-
ily accessible and analyzable data [21]. Metrics such as coupling, cohesion, complexity
and general code smells within the code can be easily and automatically identified [18].
Determining what needs to be done where is therefore easily identifiable. Other types of
debt, such as architectural debt or technological gaps, are not found by these static analyz-
ers [19, 22]. The most important debt might therefore not be identified, as it is suggested
that architectural debt is the most important type of technical debt [33]. Another approach to
finding technical debt could therefore be the measurement of process metrics, such as num-
ber of distinct developers, owner’s experience and normalized lines added/deleted [34].
Madeyski et al. suggested that number of distinct committers should be implemented in
defect prediction models [25]. In addition, Pantiuchina et al. suggest that the number of
distinct committers is an important factor in predicting refactoring activities [31]. This could
therefore be an important indicator of technical debt in certain files or parts of a software
system. Technical debt is a hard problem, since it is multi-facetted and any decision in the
technical development process of the software system can lead to a negative impact in the
long term. Whatever the type of technical debt, refactoring to a better solution is often the
antidote.

1https://www.atlassian.com/software/jira/
2https://www.sonarqube.org/
3https://codescene.com/
4https://www.sonarsource.com/products/sonarlint/

8

2.2. Experimental design

2.2 Experimental design

To answer RQ1, ‘What types of technical debt impede the development process the most?’,
we did a questionnaire among Adyen developers. A questionnaire was chosen above other
research techniques, such as static code analysis, since technical debt has many facets be-
yond code debt that could stay hidden with such a confined research technique. For ex-
ample, there might be problems with the build system that would go unnoticed when only
performing a static code analysis. With a questionnaire we can quantify certain aspects,
such as grading the codebase on certain dimensions. Additionally, we can use open ques-
tions, where participants might highlight a diverse palette of specific problems that come to
mind in the context of technical debt.

We interviewed 15 Adyen developers that did either an extract method refactoring, an ex-
tract class refactoring or both refactorings within a single commit. These refactorings were
detected with RefactoringMiner [44]. These refactorings have an impact on the codebase
in multiple ways. They could, for example, restructure a part of the application to adhere
to the Single Responsibility Principle, they could make the code more testable, they could
reduce complexity and they could make code more readable. Silva et al. stated that there
are 11 motivations for doing an extract method refactoring, calling it the ‘swiss army knife’
of refactorings [39]. Asking these developers why they chose to do these refactorings could
give us insight into what they deem important qualities of the codebase, such that they take
the time and effort to do such a refactoring. This, in turn, could give us insight in how they
approach avoiding or reducing technical debt.

The developers were interviewed on their views of the current state of technical debt within
the codebase, if enough is being done to mitigate the problem and what they think are points
that attention should be paid to. The questionnaire is divided in the subjects technical debt,
refactoring and the refactoring performed by the developer specifically. The section of the
questionnaire about technical debt can be seen in Table 2.2. The sections of the question-
naire about refactoring can be found in Chapter 3, in Table 3.1 and Table 3.2.

The results of the questionnaire will be interpreted as follows. The results to numeric ques-
tions will be summarized by the average of the numbers. We will subdivide the answers
to open questions into more general themes to draw more general conclusions. Answers to
Likert scale questions cannot be easily generalized to the average of the answers when map-
ping the answers from ‘fully disagree’ up until ‘fully agree’ to 1-5, since we cannot assume
that the sentimental feeling towards these answers can be quantified in a linear way. Ex-
perts have therefore argued that the median should be used for Likert scale questions [41].
However, since the sample size of 15 participants is not large, we will also take the average
of the Likert scale question answers into account.

9

2. DEVELOPERS’ EXPERIENCE WITH TECHNICAL DEBT

2.3 Questionnaire on technical debt

Question Answer type

What team are you in within Adyen? Open

How many years have you worked in the software in-
dustry?

Numeric

Do you agree with the following statement: technical
debt is a problem within the codebase.

Likert scale (1-5)

What is your grade for the code quality on these char-
acteristics within the codebase: readability

Grade (1-10)

What is your grade for [...]: extendability Grade (1-10)

What is your grade for [...]: reusability Grade (1-10)

What is your grade for [...]: immutability Grade (1-10)

What is your grade for [...]: reliability Grade (1-10)

What is your grade for [...]: testability Grade (1-10)

What is your grade for [...]: documentation Grade (1-10)

What is your grade for [...]: coupling Grade (1-10)

What is your grade for [...]: cohesion Grade (1-10)

Do you agree with the following statement: if there was
less technical debt in the codebase, I would be more
productive.

Likert (1-5)

Do you agree with the following statement: I would
feel happier during my development if there was less
technical debt.

Likert (1-5)

How prevalent are these types of technical debt within
the codebase: architecture (e.g. problems with mod-
ularization)

1 is not prevalent, 5 is very
prevalent

10

2.3. Questionnaire on technical debt

How prevalent are these types of technical debt within
the codebase: design (e.g. wrong design patterns for
implementations)

1 is not prevalent, 5 is very
prevalent

How prevalent are these types of technical debt within
the codebase: code (e.g. long code, high complexity,
too many parameters in methods, etcetera)

1 is not prevalent, 5 is very
prevalent

How prevalent are these types of technical debt within
the codebase: test (e.g. no testing, not enough cover-
age within the tests, bad tests)

1 is not prevalent, 5 is very
prevalent

How often do you write tests for your code? 1 (Never) - 10 (Always)

Where do you test most of your code? Local/Beta/Production

Do you agree with the following statement: I check
other people’s code thoroughly in the code review on
correctness and code quality.

1 (I approve without looking)
- 10 (I checkout the code and
test every single line)

Do you agree with the following statement: code review
is necessary.

Likert (1-5)

Do you agree with the following statement: my team at
Adyen spends enough time and effort to resolve techni-
cal debt.

Likert (1-5)

Do you agree with the following statement: I add to
technical debt in my development process.

Likert (1-5)

Do you agree with the following statement: Adyen
should manage technical debt better.

Likert (1-5)

If you could advise Adyen on managing technical debt,
what would you say?

Open

What frustrates you the most about technical debt in
adyen-main? (in order of importance, most important
first)

Open

What would help reduce technical debt in adyen-main?
(in order of importance, most important first)

Open

What would improve the most if we solved all techni-
cal debt in adyen-main? (in order of importance, most
important first)

Open

11

2. DEVELOPERS’ EXPERIENCE WITH TECHNICAL DEBT

What causes the most technical debt? (in order of im-
portance, most important first)

Open

Table 2.2: Section 1 of the questionnaire (technical debt).

2.4 Questionnaire results

The answers to the questionnaire in Table 2.2, Table 3.1 and Table 3.2 are confidential and
can be found in Appendix ??. The general results to the questions in Table 2.2 will be dis-
cussed here. In total, there were 15 respondents with an average of 10.3 years in software
development.

As is to be expected after a system has been developed for 16 years, there is technical debt
in the system. The developers agree that the technical debt is a problem. If the technical
debt was reduced, then the developers would feel more productive and happier. This is con-
sistent with the literature that says reducing technical debt improves productivity [3], and
that technical debt decreases morale [16].

From the responses we can gather that readability and reliability are the best properties of
the codebase. In contrast, the properties that could be improved are testability, documenta-
tion and immutability. This is an interesting observation, since one would expect reliability
to be low when testability is low. Another interesting observation about testing is that tech-
nical debt in terms of testing is present, but that almost all developers indicated that they
often write tests for their code. They deem code review very important, and do a thorough
analysis when they are doing code review. Their responses also indicate that their team
tends to spend enough effort to resolve technical debt, even though the technical debt as
whole could be managed better. Since the total of 15 respondents come from a total of 12
teams, this is most likely not due to bias by only looking at a well performing team. The
teams might overestimate their own efforts for resolving the debt and might underestimate
their own share in creating the technical debt.

Existing debt is seen by the respondents as a source of technical debt, which is also called
contagious debt [21]. The respondents also indicated that ‘tribal knowledge’ is a source of
technical debt: unwritten knowledge within the company that is not widely known. This
also leads to people ‘reinventing the wheel’: they think they are the first to build something,
but an implementation is already present in the codebase. This leads to the same function-
ality being in multiple places, reducing maintainability.

The respondents also shared their ideas on how technical debt could be reduced. More time
should be spent on reducing technical debt, such as 20% time for refactoring or improving
internal software quality [48]. Other things that might help are more testing, better code
guidelines, more insight into the problem and rewards or recognition for actually reducing

12

2.4. Questionnaire results

technical debt. They also mentioned that clearer ownership of certain parts of the system
are desirable, so people take more responsibility for reducing technical debt in their part of
the codebase.

RQ1: What types of technical debt impede the development process?
It seems that tests, testability and documentation could be improved. Developers might
keep ‘reinventing the wheel’ if they do not know that something already exists within
the codebase, leading to multiple implementations of the same thing. Solutions to
reducing or avoiding technical debt are more testing, better guidelines, more insight
into problems, more rewards or recognition for paying off debt and reserving time to
pay off technical debt.

13

Chapter 3

Developers’ view on refactoring

3.1 Background

The main practice related to technical debt principal repayment is refactoring [33]. Refac-
toring is restructuring software code without changing its behavior [12]. The goal of refac-
toring is to increase code quality and code structure. This goal is achieved by a number of
refactoring techniques, such as the technique ‘extract method’, which is seen as the swiss
army knife of refactoring [39]. This technique extracts some code from a method and en-
closes it into a new method, making the code more readable while reducing the complexity.
There are many more refactoring methods and techniques, which can be automatically iden-
tified by tools such as RefactoringMiner [44].

The benefits of refactoring are supported by the literature. It is widely believed that refac-
toring improves developers’ productivity and software quality [17]. The re-organizing of
the source code to create more cohesive components within the system is correlated with
higher readability [37]. Higher readability is also correlated with fewer bugs or other issues
in the system [36, 3, 17]. When time was spent on refactoring during one development it-
eration, the productivity becomes significantly higher during the next iteration [3, 28]. The
efforts of refactoring to improve the internal quality is even related to improved developers’
morale [16]. Refactoring is, however, not only driven by the urge to improve the internal
structure. Some research suggests that refactoring is mainly driven by changes in require-
ments, such as implementing new features and fixing bugs, and not due to the presence of
code smells [39, 30].

All these factors suggest that refactoring has major benefits and should be taken serious by
all developers in the software development field. However, there are also some drawbacks.
If there is no adequate testing of the source code that is being refactored, then the result-
ing refactored code might be prone to errors. There is even evidence for this phenomenon:
Weißgerber and Diehl found that in a case study of open source software systems, a high
ratio of refactoring is often followed by an increase in bug reports [46]. On the other hand,
Ratzinger et al. and Ammerlaan et al. found that the number of refactorings was correlated

15

3. DEVELOPERS’ VIEW ON REFACTORING

with less defects in the system [35, 3]. It therefore seems that there is some controversy
around refactoring and reducing the number of bugs or defects, but in general refactoring
seems to be worthwhile.

To assist the developer in refactoring, and to reduce the effort expended by developers to
do refactorings, many tools have been developed. Even the IDE the developer uses can
have an impact on the number of refactorings a developer does: IntelliJ IDEA users per-
form more automated refactorings than Eclipse and Netbeans users [39]. These automated
refactorings are often low-impact, and just make the activity of refactoring a tiny increment
easier. An example of this is a dialog that extracts the selected code and allows you to give
a new name to the created method. Shahidi et al. have attempted to automatically identify
extract method refactoring opportunities and automatically generate method names for the
extracted methods [38]. This can be done by a rule-set, but Zaitsev et al. have implemented
a machine learning approach to naming methods [49]. These refactoring opportunities are
relatively low-level. Higher-level automatic refactoring approaches are mostly in the field
of search-based refactoring. Search-based refactoring restructures the refactoring opportu-
nities as combinatorial optimization problems [29]. An example of this is the remodular-
ization of a software system by moving classes to increase cohesion and decrease coupling.
A fitness formula is determined and an algorithm optimizes for the highest fitness value, by
trying out different refactorings.

To answer RQ2, ‘What is the view of developers on refactoring to reduce or avoid technical
debt?’, we will look at the results of the refactoring section of the same questionnaire dis-
cussed in Section 2.2.

3.2 Questionnaire on refactoring

3.2.1 Refactoring

Question Answer type

Refactoring is an important development activity. Likert (1-5)

When I feel I should refactor code, I do it. Likert (1-5)

Refactoring improves code readability. Likert (1-5)

Refactoring improves performance. Likert (1-5)

Do you agree with the following statement: I am afraid
of introducing bugs into the system when I refactor.

Likert (1-5)

16

3.2. Questionnaire on refactoring

How many hours per week do you estimate to spend on
refactoring?

Numeric

What are reasons for you to refactor code? Multiple choices:

• Reduce complexity

• Increase readabil-
ity/understandability

• Be able to implement a
new feature better

• Be able to write tests
better

• Fix bugs

• Avoid bugs in the fu-
ture

• Remove code smells

• Remove duplicate
code

• Other

17

3. DEVELOPERS’ VIEW ON REFACTORING

What are reasons NOT to refactor source code? Multiple choices:

• Might introduce bugs

• Insufficient tests of the
source code

• I don’t understand all
the source code

• Understanding all the
source code to do the
refactoring takes too
much time

• Do not want to make
code reviews for peo-
ple reviewing my code
harder than they have to
be

• I don’t care about tech-
nical debt

• Not worth the time

• I have no time

• Don’t want to deal with
the merge conflicts

• Risk of over-
engineering

• Other.

Do you adhere to the Boy Scout rule: leave your code
better than you found it.

Likert (1-5)

Do you agree with the Broken Windows Theory: when
there are problems in the codebase, developers are less
motivated to write the best code they can.

Likert (1-5)

If I had a tool that could deliver specific refactoring rec-
ommendations, then I would use it.

Likert (1-5)

How do you ensure program correctness after refactor-
ing?

Open

What do you think is the best reason to refactor? Open

18

3.3. Questionnaire results

Table 3.1: Section 2 of the questionnaire (refactoring).

3.2.2 Specific refactoring

Question Answer type

What is the hash of your specific commit? You can find
this in my Mattermost message.

Open

What was the motivation behind your specific refactor-
ing? Please be specific.

Open

(Optional) Do you have any other insights in refactor-
ing and technical debt at Adyen that you would like to
share?

Open

Table 3.2: Section 3 of the questionnaire (specific refactoring).

3.3 Questionnaire results

The main practice related to technical debt principal repayment is refactoring [33]. The
developers that did a refactoring deem refactoring an important development activity and
spend an average of 5.1 hours per week on refactoring.

The main reason for refactoring is mainly to improve code structure. The extract method
and extract class refactorings were mainly performed to improve readability and to re-
move/avoid code duplication and to make the classes and methods adhere to the Single
Responsibility Principle [4]. This gives the impression that the developers are involved in
reducing or avoiding technical debt in their development process.

It is also interesting to note that code review is also a reason for people to do a specific
refactoring, showing that multiple people are involved in the process of avoiding deterio-
ration of the codebase. Code review is also seen by these developers as a very important
process, making it likely that developers deem reducing technical debt as important.

In some cases, a refactoring is needed to implement a new feature, which has been sup-
ported by Silva et al. who state that refactoring activity is mainly driven by requirements
for new features or bug fixes [39]. However, for Adyen developers, improving code struc-
ture seems to be the main driver. This is also supported by their adherence to the Boy Scout
Rule: they try to leave the code better than they found it. They also strongly agree with
the Broken Windows Theory: when there are problems in the codebase, developers are less

19

3. DEVELOPERS’ VIEW ON REFACTORING

motivated to write the best code they can. This could also be a good motivator for putting a
heavy emphasis on clean code, since a clean codebase motivates clean code creation in the
future.

RQ2: What is the view of developers on refactoring to reduce or avoid technical
debt?
Developers mainly refactor to improve code structure in terms of readability, to re-
move/avoid code duplication and to make the classes and methods adhere to the Single
Responsibility Principle. The developers deem refactoring an important activity, they
refactor when they feel that it is needed and they suggest refactoring in code reviews.
There is a fear of introducing bugs when refactoring.

20

Chapter 4

Investigating refactoring and testing
efforts

4.1 Experimental design

To answer RQ3, ‘What is the behavior of developers regarding refactoring and testing ef-
forts?’, we will look at the codebase itself, the activity in the Git repository, the lead time of
tickets, and the refactoring and testing efforts. This will give us large resources of quantifi-
able data where we might be able to discover if there are predictive behaviors for developers
to do or not do a refactoring or touch test files.

In the rest of this section, we will describe the methods used to gather data on code com-
mitted to the Git repository, files, classes, methods, authors, specific refactorings and tickets
that are linked to the commits. We need a few details of the codebase to do a thorough anal-
ysis of the refactoring efforts of developers and the evolution of the codebase in general.

• Commits and commit metadata. Commit metadata includes hash, date and commit
message.

• Files. For each commit, we need to know which files have been changed. Each commit
is a snapshot that contains file data, such as file length.

• Methods and classes. For each commit, we track whether methods were added and
what the metrics are of those methods, such as method length and complexity.

• Authors, teams and module owners. Every author is connected to a team within
Adyen. There are metadata files within the codebase to indicate what teams own what
modules. Almost all files within the codebase are connected to a module. With this
data, we know whether an author commits code to a file that he or she does not explic-
itly own.

• Refactorings. For each commit, we know whether a certain refactoring has taken
place. RefactoringMiner [44] is used to scan the Git history for refactorings.

• Tickets. Within Adyen, a system is used to manage tickets and assign them to people
to work on them. The most important features of the tickets is the assigned date of the

21

4. INVESTIGATING REFACTORING AND TESTING EFFORTS

ticket to investigate the lead time of the ticket.

• Delta maintainability. The Delta Maintainability Model indicates for every commit
whether the changes are low risk or high risk within a certain domain, such as unit size,
unit complexity or unit interfacing. For every commit, these metrics are calculated and
stored as a value between 0 and 1. More on the Delta Maintainability Model can be
found in Chapter 5.

Since much of the data is relational, we used a SQL database to store and link the data.
The data was gathered from the Adyen Git repository from 01-07-2020 to 01-07-2022
(DD/MM/YYYY).

4.1.1 Data acquisition

All data acquisition, preprocessing and entering into the database was done in Python
3.8 [45].

Git repository

The data from the Git repository was gathered with GitPython1. The following data was
gathered from the Git repository:

• Commits: hash, commit message, datetime, author and changed *.java files in com-
mit.

• Authors: author name and number of commits before the data acquisition starting date.

• Files: filename.

File and method metrics

Every *.java file change within a commit is evaluated as a new snapshot of the file. For
every snapshot, the file and the methods in this file undergo a static code analysis performed
by Lizard2. The following data was gathered for each snapshot:

• Files: number of lines of code and token count.

• Methods: number of lines of code, cyclomatic complexity, number of parameters,
token count and containing class.

Refactoring data

The open source library RefactoringMiner [44] was used to detect refactorings in the Git
history of the Adyen codebase. Every refactoring was characterized by at least a type and
a file, and when possible the method that was involved in the refactoring. The refactoring
types we will investigate are as follows. The precision and recall metrics are taken from the

1https://gitpython.readthedocs.io/en/stable/
2https://github.com/terryyin/lizard

22

4.1. Experimental design

official GitHub page3 as of 17 October 2022.

Refactoring type Precision Recall

Extract Method 0.999 0.969
Extract Class 1.000 1.000
Extract Interface 1.000 1.000
Extract Subclass 1.000 1.000
Extract Superclass 1.000 1.000

Table 4.1: Refactoring types

Correlation analysis

To determine if there is a linear correlation between 2 variables, the Pearson correlation
coefficient is used [7]. A correlation on the intervals [0.1, 0.4) and (-0.4, -0.1] is considered
weak, a correlation on the intervals [0.4, 0.6) and (-0.6, -0.4] is considered moderate, a cor-
relation on the intervals [0.6, 1) and (-0.6, -1] is considered strong and a correlation of 1 or
-1 is considered perfect [1].

4.1.2 Schema

The resulting schema of the database can be seen in Figure 4.1.

3https://github.com/tsantalis/RefactoringMiner

23

4. INVESTIGATING REFACTORING AND TESTING EFFORTS

Figure 4.1: Database schema

24

4.2. Results

4.2 Results

In this section, we will look at the efforts of developers in terms of testing and refactoring,
according to the refactoring types in Table 4.1.

4.2.1 Refactoring and testing

Figure 4.2 shows the percentage of commits that contains a change to a test file of every
author on the y-axis, while the x-axis shows the percentage of commits that contain a refac-
toring of the same author. The Pearson correlation of these metrics is 0.36, indicating a
weak correlation.

Figure 4.2: The percentage of commits that includes a test or a refactoring for every author.

Since there is a weak correlation, one might say that the developer that tends to write more
tests, might also be more inclined to do refactorings.

In the questionnaire discussed in Section 3.1, participants indicated that they write tests
to check their refactoring on correctness. Table ?? in confidential Appendix ?? shows the
number of commits that contained a refactoring or changed a test file. This table indicates
that in nearly half of the commits where there was a refactoring, a test file was also changed.
The Chi-Square test indicates that a test is more likely to be changed if a refactoring has
occurred, with a p-value < 0.001.

25

4. INVESTIGATING REFACTORING AND TESTING EFFORTS

4.2.2 Lead time

Figure 4.3 shows the number of refactorings in a ticket and the time it took to complete the
ticket. The Pearson correlation of lead time and number of refactorings in a ticket is 0.20,
which indicates a weak correlation.

Figure 4.3: Refactoring count and lead time of tickets.

Since there is a weak correlation, there does not seem to be a significant impact on lead time
if refactoring is involved. This means that developers might not need to spend more time
on a ticket if a refactoring is required. Additionally, if refactorings are required due to bad
code or a restructuring of the code, then this does not significantly impact lead time.

A ticket that requires the developers to work in long files might take more time than a ticket
that only involves short files. Figure 4.4 shows the lead time with the average file length
and the lead time with the maximum file length, respectively.

The Pearson correlation between lead time and average file length is 0.05, while the Pear-
son correlation between lead time and maximum file length is 0.18. These correlations are
weak, so we cannot draw the conclusion that the requirement to work in long files is an
indicator that the lead time of a ticket will be increased.

High file complexity might lead to a developer taking longer to make a change or add fea-
tures to the code. Figure 4.5 shows the lead time with the average file complexity and the
lead time with the maximum file complexity, respectively.

The Pearson correlation between the lead time and the average file complexity is 0.06 and
the Pearson correlation between the lead time and the maximum file complexity is 0.11.
This indicates that there is no relationship between the lead time of a ticket and the com-

26

4.2. Results

Figure 4.4: Lead time of ticket, along with average and maximum file length.

Figure 4.5: Lead time of ticket, along with average and maximum file complexity.

plexity of the code a developer has to work in in order to finish a ticket.

4.2.3 Author experience

Pantiuchina et al. state that the fewer experience a developer has with the code he is work-
ing on, the lower the chance is that that developer refactors the code [31]. For this analysis,
they use the number of commits as the metric for developer experience. Our data shows that
the percentage of commits that contains a refactoring is not significantly correlated with the
total number of commits to the codebase by that specific author.

The Pearson correlation between commit count and refactoring commit count is 0.74, indi-
cating that there is a strong relationship. This is logical, since the more developers commit
code, the more likely it is that a refactoring is among those commits. On average, the de-
velopers do a refactoring once every 16 commits.

27

4. INVESTIGATING REFACTORING AND TESTING EFFORTS

4.2.4 File changes

One might say that the more a system changes, the more technical debt accrues within that
system. This might mean that the more a file changes, the more likely that file is to be refac-
tored. The distribution can be seen in Figure 4.6 and with a Pearson correlation of 0.11, we
can say that this is not necessarily the case.

Figure 4.6: Number of file changes and number of refactorings per file.

Another theory is that the more authors a file has, the more complex code can become due
to different coding styles or developers not understanding all the code in the file. This might
have an impact on how often a file gets refactored. In Figure 4.7, we can see the percentage
of commits that had a refactoring as a percentage of the total changes to that file. In the
same figure, we can see the number of authors of the file. The Pearson correlation of these
variables is 0.04, indicating that an increased number of authors of a file has no predictive
value to the number of refactorings in this file.

28

4.2. Results

Figure 4.7: Percentage of refactoring changes along with the number of authors of a file.

4.2.5 Method complexity

In Figure 4.8, we can see the average complexity change of a method that occurs along with
a refactoring type. Extract method reduces the complexity the most, on average by 2.2.

In Figure 4.9, we can see what the average complexity is of methods where a certain refac-
toring type occurs. When a method gets extracted from another method, the average com-
plexity of that method is 7.9. We can also see that ‘Add Variable Modifier’ and ‘Remove
Variable Modifier’ happens relatively often in methods with a high complexity. This is ex-
clusively the addition and the removal of the final keyword to variables. ‘Add Parameter’
and ‘Remove Parameter’ also occur relatively often in methods with high complexity.

RQ3: What is the behavior of developers regarding refactoring and testing ef-
forts?
There is a weak correlation between writing refactorings and editing test files. When a
refactoring occurs, there is a higher chance of a test file being changed. When a refac-
toring is done, it might indicate that the lead time of the corresponding ticket is higher.
The file length or the complexity of the methods in the files that are changed during the
development process do not seem to correlate with refactorings.

29

4. INVESTIGATING REFACTORING AND TESTING EFFORTS

Figure 4.8: Change to complexity of methods by refactoring type.

30

4.2. Results

Figure 4.9: The complexity of a method before a refactoring type occurs.

31

Chapter 5

Insight in module health with the
Delta Maintainability Model

5.1 Background

The Delta Maintainability Model (DMM) is a model that is used to assess what the effect
of a commit is on the maintainability of the code. The Delta Maintainability Model uses
the risk thresholds as described by Alves et al. [2] to determine a delta risk profile, which
in turn measures whether the changes of the commit can be classified as good or bad [10].
The delta risk profile takes three properties into account:

• Unit size: method length in lines of code. Low risk threshold 15 lines.
• Unit complexity: method cyclomatic complexity. Low risk threshold 5.
• Unit interfacing: method number of parameters. Low risk threshold 2.

The DMM is used to investigate whether we can see deterioration of the codebase in terms
of these properties. For every commit, a value is calculated from 0.0 (all changes are risky)
to 1.0 (all changes are low risk). Since this value is only describing of a single commit, we
will map the values of these properties to -0.5 to 0.5 and use the accumulation of these val-
ues over time to characterize modules within the codebase. We expect the cumulative value
to be above 0 if the module has mostly maintainable changes, and below 0 if the module has
mostly unmaintainable changes. We would expect any modules with a cumulative DMM
property value below 0 to have considerable technical debt.

PyDriller is a Python framework that can be used to mine software respositories [40]. It has
an open source implementation of the Delta Maintainability Model to assess the risk profile
of commits.

5.2 Applying the DMM to the codebase

This DMM measures risk values of unit size, unit complexity and unit interfacing. These
indicators are measured for every commit and measured with a value between 0.0 (high
risk commit) and 1.0 (low risk commit). The distribution of the values of these commits is

33

5. INSIGHT IN MODULE HEALTH WITH THE DELTA MAINTAINABILITY MODEL

shown in Figure 5.1.

Figure 5.1: Distribution of delta maintainability values over commits.

The distributions in Figure 5.1 show that most of the DMM values are 0 or 1. This indicates
that either all changes within the commit are risky, or all changes are non-risky. The dis-
tribution for unit size is not skewed to either side, but in terms of unit complexity and unit
interfacing we can see that the distribution is skewed into mostly non-risky changes.

5.3 Effect of refactoring on the DMM risk values

When applying the refactoring types from Table 4.1, one can expect that the DMM values
would be closer to 1 than 0. This is because these refactoring types should reduce unit size,
since some code is extracted away into other methods, classes or interfaces. The complexity
should be reduced for the same reason. Overall the code should be more simple and more
readable, which could also reduce the unit interfacing. Table 5.1 shows the average unit
size, unit complexity and unit interfacing of commits where one of these refactoring types

34

5.4. Using the DMM as a measurement of module health

is applied.

Refactoring type Occurrences Avg. size Avg. complexity Avg. interfacing

No refactoring 29,857 0.50 0.60 0.67
Extract Method 5,959 0.69 0.80 0.66
Extract Class 493 0.70 0.79 0.74
Extract Interface 57 0.71 0.79 0.78
Extract Subclass 34 0.71 0.82 0.77
Extract Superclass 170 0.69 0.80 0.69

Table 5.1: DMM values in commits with refactorings

Compared to the commits that had no refactoring, it seems like the commits with a specific
high-level refactoring made the underlying code more maintainable. This means that the
commits with these refactorings improved in terms of the lines of code within methods,
cyclomatic complexity of methods and number of parameters of methods.

5.4 Using the DMM as a measurement of module health

If we map the values between 0 and 1 to -0.5 and 0.5, we can aggregate the DMM values
to see improvement or deterioration of these metrics within modules of the codebase. The
results are in Figure 5.2. The modules have been anonymized in this figure, the real names
of the modules can be found in Figure ?? in Appendix ??.

35

5. INSIGHT IN MODULE HEALTH WITH THE DELTA MAINTAINABILITY MODEL

Figure 5.2: Aggregated DMM values over time.

36

5.4. Using the DMM as a measurement of module health

In all the modules that were analysed, unit interfacing and unit complexity went up over
time. This is consistent with the distribution in Figure 5.1, as there is an abundance of
DMM values of 1 for these metrics. Some modules have a steeper slope, this is because
these modules are changed more frequently in commits. In Figure 5.1, we can see that the
unit size metrics are more balanced. This results in the different graphs for unit size in Fig-
ure 5.2.

Some modules have a positive value on 2022-7, such as M2 and M3. Other modules have
a negative value, such as M1 and M5. You can see that M2 and M3 mostly have a positive
slope, while M1 and M5 mostly have a negative slope. From this we can conclude that M2
and M3 mostly received commits that were low risk to unit size, so the commits did not
affect the length of the methods in a negative way. Modules M1 and M5 mostly received
commits that were high risk to unit size, so the commits impacted the method lengths nega-
tively. The course of the unit size deterioration of module M1 and the course of the unit size
being guarded in modules M2 and M3 can be an indication of the Broken Windows Theory:
when there are problems in the codebase, developers are less motivated to write the best
code they can [3].

RQ4: Can we use the Delta Maintainability Model to give insights into module
health?
The Delta Maintainability Model seems to give an indication of module health when its
unit size risk values are added over time. If the aggregate value is low, then this module
might risk changes that are bad for unit size, i.e. edits that make methods longer or
edits that add long methods. A higher aggregate unit size might indicate better module
health with low method lengths. This might in turn mean that future edits will be of low
risk to unit size, which means that developers will put in more effort to not let method
size get out of hand.

37

Chapter 6

Using gamification to improve
software quality

6.1 Background

With the lack of a concrete process to manage technical debt and with organizations relying
on developer’s prioritization based on their subjective feeling [48], gamification might be
a solution. Gamification seeks to implement game elements in certain tasks, to improve
the user’s engagement, motivation and performance [15, 32]. In doing so, the gamifica-
tion of the process makes the tasks themselves more attractive and might promote more of
those activities. A simple way of implementing a gamification system is to assign points
to behaviour you would like to see repeated. However, the value of points or a rank is not
inherent in the points themselves, it is within the implied reputation, identification with a
certain group or social approval that the points represent [9]. Gamification in software engi-
neering could look like earning points for writing documentation, better commit messages
and writing more tests. A good example of gamification is StackOverflow1: users gain
points by answering community questions in a well-formulated and accurate way.

The main point of gamification is to motivate developers to repeat behaviour that is desir-
able. Research suggests that the motivation of software engineers is reported to have the
largest impact on productivity and software quality management, and that this motivation
is the hardest to manage [14]. The motivation of software engineers has been studied [6],
but people management has still been considered a key issue [15]. If gamification can im-
prove developers’ motivation, then it will improve technical debt, improve productivity and
reduce turnover within the company.

Gamification in software engineering is at an early stage, and not yet fully mature [15].
This might be due to the nature of gamification, where a company-wide application might
be hard to implement both in the systems and in the working procedures of the employees.
This might also be due to the infancy of the concept within the field.

1https://stackoverflow.com/

39

6. USING GAMIFICATION TO IMPROVE SOFTWARE QUALITY

6.2 Code Karma

‘Code Karma’ is a gamification implementation that we propose for the identification of
beneficial internal code modifications. The system works by the accumulation of points
for certain activities, to see if showing these points in a ranking will increase developers’
motivation for these tasks by coupling it to their perceived reputation within the team. In the
survey described in Section 2.2, developers indicated that the main problems with technical
debt in the codebase are related to testing/testability and documentation. They also indicated
that they refactor to improve readability/understandability and to avoid or remove duplicate
code. Code debt such as long code or high complexity also seems to be relatively prevalent.
Code Karma aims to motivate developers by awarding them points for making modifications
to the codebase that improve these properties. The goal of this experiment is to investigate
if we improve what we measure, even more so when coupled to a reputation within the
team. Additionally we will be able to determine if we can make the effort of improving
internal software quality a fun activity. The Code Karma experiment ran for 4 weeks, while
reporting the results to the participants every week.

6.2.1 Karma accumulation

Three properties of Git commits are tracked to determine how much karma is awarded for
a commit.

• Test lines added. The number of lines added to a test file is determined by the lines
added to a file with the filename *Test.java. Empty lines are not counted. If there
are added lines that were moved from another test file, then the lines are not counted.
This could happen when a class is extracted and the tests are moved to a new test file.
This would not be new test lines, since they test the same functionality.

• Docblocks written. Docblocks are identified by an added line that starts with /*,
which indicates a multi-line docblock. Single line comments are not counted, since
there are cases where they do not explain the code or the effect of the code. They could,
for example, indicate self-admitted technical debt with comments such as TODO [47],
or they could indicate characteristic comments in tests such as given, then and when.
Moved docblocks are not counted.

• Refactorings. The refactorings are identified by using RefactoringMiner [44]. Since
the goal of promoting refactoring behavior is mainly to improve readability/understandability
and improve code structure, only the refactoring types from Table 4.1 are measured.

No negative karma is awarded to avoid motivating the developers to do things they feel are
not necessary. The calculation for karma per commit is as follows.

karma = (docblocks * 2) + (test lines added / 10) + (refactorings * 5)

We tried to award karma for a specific activity in accordance with the effort it takes to do a
specific activity. For example, in this calculation, doing a refactoring is deemed harder than
writing a docblock.

40

6.3. Questionnaire to evaluate Code Karma

6.2.2 Achievements

To invoke more motivation within the developers to put effort in the aforementioned activ-
ities, achievements were awarded to developers ranking the highest in the activities. The
following achievements could be earned.

• First, second and third highest karma earner in a week.
• Most test lines added in a week.
• Most docblocks written in a week.
• Most refactorings done in a week.

6.2.3 Participant groups

Within Adyen, there were 2 teams that participated in the experiment. Group 1 had 20 par-
ticipants, group 2 had 10 participants. The results were split between the teams, such that
team members could only see the anonymized results of team members. Additionally, each
team had a karma goal of 750 karma. The progress towards this goal was reported every
week.

6.2.4 Displaying the results

The value of points or a rank is not inherent in the points themselves, it is within the im-
plied reputation, identification with a certain group or social approval that the points rep-
resent [9]. Therefore we show a ranking of the karma earned within the team, with an
indication of where the developer is within the distribution. The names are indicated with
random nicknames, such as Vertex and Ripple, within the distribution, to ensure anonymity
of the developers. This is done to avoid negative effects of the experiment, such as damag-
ing a developers’ reputation by showing this person low in the rankings. There can be good
reasons for a developer to not write tests, docblocks or do refactorings, so the experiment
aims to provoke only positive emotions within the participants.

Every week, all participants received a message in the internal company messaging system.
In this message, the player received their nickname, the activities they performed in the
last week that attributed to their karma, their total karma, their achievements, the progress
towards the team goal karma and the distribution of karma across the team. An example of
this message is shown in Figure 6.1.

6.3 Questionnaire to evaluate Code Karma

To evaluate the experience of developers with Code Karma and to see what effect it had on
the participants, a questionnaire was distributed to the participating developers. The ques-
tions in the questionnaire are in Table 6.1.

41

6. USING GAMIFICATION TO IMPROVE SOFTWARE QUALITY

Figure 6.1: Example karma update message to a developer after week 2.

42

6.3. Questionnaire to evaluate Code Karma

Question Answer type

What team are you in within Adyen? Multiple choice

What was your nickname? Open

How many years have you worked as a software devel-
oper?

Open

On a scale of 1-10, how competitive are you? Grade (1-10)

On a scale of 1-10, how concerned are you with re-
ducing technical debt and improving the quality of the
codebase?

Grade (1-10)

Do you agree with the following statement: Code
Karma was a positive experience.

Likert (1-5)

(Optional) Elaborate on your previous answer if you
wish.

Open

Do you agree with the following statement: the result-
ing karma distribution was surprising to me.

Likert (1-5)

(Optional) Elaborate on your previous answer if you
wish.

Open

Do you agree with the following statement: I expected
to obtain more karma than I received.

Likert (1-5)

Do you agree with the following statement: I think
Code Karma has a positive impact on the codebase.

Likert (1-5)

Do you agree with the following statement: Code
Karma motivated me to write more tests.

Likert (1-5)

Do you agree with the following statement: Code
Karma motivated me to write more docblocks.

Likert (1-5)

Do you agree with the following statement: Code
Karma motivated me to do more refactorings.

Likert (1-5)

Do you agree with the following statement: the ranking
distribution motivated me to obtain more karma.

Likert (1-5)

43

6. USING GAMIFICATION TO IMPROVE SOFTWARE QUALITY

Do you agree with the following statement: the team
karma goal motivated me to obtain more karma.

Likert (1-5)

Do you agree with the following statement: the
achievements motivated me to obtain more karma.

Likert (1-5)

Do you agree with the following statement: the formula
for obtaining karma is balanced. The formula is as fol-
lows: (docblocks * 2) + (test lines added / 10) + (refac-
torings * 5)

Likert (1-5)

(Optional) Elaborate on your previous answer if you
wish.

Open

Do you agree with the following statement: using nick-
names was better than using real names of participants.

Likert (1-5)

Do you agree with the following statement: I would
like Code Karma to continue giving the team weekly
updates after the end of the experiment.

Likert (1-5)

Do you agree with the following statement: Code
Karma should be used more within Adyen.

Likert (1-5)

What do you like about Code Karma? Open

What do you NOT like about Code Karma? Open

Are there features that should be added to Code Karma? Open

Is there any other feedback you would like to give? Open

Table 6.1: Questionnaire to evaluate Code Karma.

6.4 Results

The Code Karma experiment was evaluated by both a survey and by comparing the refactor-
ing efforts, test lines added and docblocks written in the month of the experiment, compared
to the 3 months before the experiment. The results of the teams after 4 weeks are shown in
Figure 6.2.

44

6.4. Results

Figure 6.2: Code Karma distributions of 2 teams

6.4.1 Questionnaire results

Only the results of the grade-scale and likert-scale questions are shown here. These results
and the answers to the open questions will be discussed after the survey results. These are
the results of 17 participants of the code karma experiment. In total 2 teams participated, of
which 11 (64.7%) were in team A, and 6 (35.3%) were in team B. All the questions were
likert-scale questions (1-5), unless otherwise stated in the question.

Question Answer type

How many years have you worked as a software devel-
oper?

Average 9.9±8.1 years

On a scale of 1-10, how competitive are you? Average 7.2±1.5

On a scale of 1-10, how concerned are you with re-
ducing technical debt and improving the quality of the
codebase?

Average 8.2±1.2

Do you agree with the following statement: Code
Karma was a positive experience.

Median 4, average 4.0±0.9

45

6. USING GAMIFICATION TO IMPROVE SOFTWARE QUALITY

Do you agree with the following statement: the result-
ing karma distribution was surprising to me.

Median 3, average 3.2±0.9

Do you agree with the following statement: I expected
to obtain more karma than I received.

Median 3, average 2.6±1.2

Do you agree with the following statement: I think
Code Karma has a positive impact on the codebase.

Median 4, average 3.6±1.0

Do you agree with the following statement: Code
Karma motivated me to write more tests.

Median 3, average 3.2±1.2

Do you agree with the following statement: Code
Karma motivated me to write more docblocks.

Median 3, average 3.0±1.2

Do you agree with the following statement: Code
Karma motivated me to do more refactorings.

Median 3, average 3.2±1.3

Do you agree with the following statement: the ranking
distribution motivated me to obtain more karma.

Median 4, average 3.1±1.1

Do you agree with the following statement: the team
karma goal motivated me to obtain more karma.

Median 4, average 3.2±1.3

Do you agree with the following statement: the
achievements motivated me to obtain more karma.

Median 4, average 3.3±1.4

Do you agree with the following statement: the formula
for obtaining karma is balanced. The formula is as fol-
lows: (docblocks * 2) + (test lines added / 10) + (refac-
torings * 5)

Median 3, average 3.2±1.0

Do you agree with the following statement: using nick-
names was better than using real names of participants.

Median 4, average 4.1±1.0

Do you agree with the following statement: I would
like Code Karma to continue giving the team weekly
updates after the end of the experiment.

Median 4, average 4.1±1.0

Table 6.2: Results of questionnaire to evaluate Code Karma.

The overall experience of Code Karma

Overall, the participants seem to agree that Code Karma was a positive experience for them.
They mentioned that this gamification could break the inertia of never having written tests

46

6.4. Results

by motivating the developers to write tests. Additionally, developers mentioned that they
were motivated to write better code. It gave them positive reinforcement when making a
contribution, and reminding them when they made no contribution. The participants also
mentioned that the insights were useful and interesting. Some participants mentioned that
it is not a true reflection of contribution, since being concerned with code quality might be
subordinate to very high priority work and the Code Karma formula might be too simple to
accurately reflect contributions. One participant noted that Code Karma is not very useful
and might be more of a distraction from getting work done.

The answers to the questions in Table 6.2 indicate that the participants think that Code
Karma has a positive impact on the codebase, that Adyen should use Code Karma more and
that they would like Code Karma to continue after the experiment. This indicates that Code
Karma might be positive for both quality concerns and having fun while doing development
work.

Code Karma’s impact on motivation

An interesting finding from the results in Table 6.2 is that the participants seemed neutral
about the impact of Code Karma on their motivation for writing tests, adding docblocks
or doing refactorings. They do, however, seem to be motivated by seeing the ranking dis-
tribution, the team karma goal and the achievements in their results. These results might
indicate that the participants are not necessarily motivated to perform a particular code qual-
ity activity, but that they are motivated by the rewards and the social implications of their
contributions as a whole.

Accuracy of the formula

One of the main critiques of Code Karma is the formula. For example, participants wonder
whether refactorings always improve code quality, that there are forms of improving code
that are not included, and that adding test lines is more important than adding docblocks.
Other activities such as removing lines from a deprecated module or creating a test harness
for a class that has existed without tests for a long time might be more important than the
simple metrics included in the formula.

Closing feedback

The main positive points of Code Karma were the playful way of showing insights into the
code quality contributions of the team. The participants also liked the raised awareness of
code quality. The weekly summary was fun to receive and acknowledgement of contribu-
tions was nice to receive.

47

6. USING GAMIFICATION TO IMPROVE SOFTWARE QUALITY

The main criticism is the absence of other metrics that might give deeper insight to the ac-
tual contribution to the codebase. There could also be an addition of negative karma when
people write code that does not have tests associated with it. It was also mentioned that
people might be more concerned with gathering karma points than adding value to the busi-
ness. Additionally, the insights might cause some conflict between developers.

6.4.2 Comparing karma gained to preceding months

To determine if there is an increase in karma due to the experiment, we look at the karma
gained in preceding time frames in comparison to the time frame of the experiment. The
experiment lasted for 4 weeks starting on Monday the 7th of November. The preceding
time frames are 3 time frames of 4 weeks. In Table 6.3 and Table 6.4, these time frames are
denoted as the months of the starting dates. The developers included in this analysis par-
ticipated in the Code Karma experiment, and were active developers at the start of August.
The values of Table 6.3 and Table 6.4 were multiplied by a hidden number to obscure the
absolute values.

August September October November

Docblocks 360 330 810 765
Test lines added 50265 73065 58470 82155
Refactorings 285 345 315 645
Karma 7171.5 9691.5 9042 12970.5
Average karma per person 651 881 822 1179.1

Table 6.3: Karma results per month for Team A

August September October November

Docblocks 720 630 510 840
Test lines added 24765 54195 23580 33330
Refactorings 180 465 210 90
Karma 4816.5 9004.5 4428 5463
Average karma per person 963.3 1800.9 885.6 1092.6

Table 6.4: Karma results per month for Team B

In Team A, there seems to be an increase in karma in November, the month of the experi-
ment. In Team B, this does not seem to be the case due to the high karma gain in September.
We can therefore not draw any conclusions as to whether or not Code Karma assisted in mo-
tivating the developers to spend more time on writing documentation, writing tests or doing

48

6.4. Results

refactorings.

RQ5: Can we create a gamification system that helps to improve internal software
quality?
The results do not prove that the gamification system leads to more activities to improve
the internal code quality by refactoring, writing tests or writing docblocks. However,
the participants do believe that the gamification system has a positive impact on the
codebase. The karma distribution, achievements and team karma goal all seemed to
motivate the participants. Therefore, we can say that there is a good chance that this
gamification system, if developed further, will have a positive impact on the internal
software quality.

49

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we aimed to investigate technical debt at Adyen. We looked at the perception
of developers on technical debt or problems in the codebase that hindered them in their de-
velopment process. We also looked at the refactoring and testing efforts of the developers
and the impact of file length and complexity on their refactoring efforts. We looked at the
Delta Maintainability Model to give insight in module deterioration or maintainment. Fi-
nally, we created a ‘Code Karma’ gamification system to motivate developers to improve
internal quality.

The developers agree that there is technical debt in the system and that there could be im-
provements in the management of it. They also think that they themselves do very well
in terms of managing and avoiding technical debt. There might be a slight underestima-
tion of the developers themselves on how much they add to the technical debt. The main
problems with technical debt seem to be testing/testability, documentation, architecture and
problems with the code itself (long code, high complexity, etcetera). Another problem that
was mentioned was that the codebase is so large that developers do not know a solution
already exists in the codebase. The developers say that more time should be reserved for
reducing technical debt. More guidelines and more testing could also improve the internal
quality. The developers refactored to improve code structure, let code adhere to the Single
Responsibility Principle or when the code reviewer suggested them to. Improving the code
structure therefore seems to be an important part of the developers’ development process.

It does seem like developers that do more refactoring do more testing. When the develop-
ers refactor, they also have a higher chance of writing tests. This makes it seem like some
developers are more concerned with code structure and tests than others. We did not find a
correlation with the author’s experience with the codebase and the number of refactorings
they do. File length and complexity also do not seem to be a factor that increases the chance
of refactoring. There is a weak correlation between lead time and refactoring. This could
be due to complexer requirements of a ticket correlating with higher lead time, but also with

51

7. CONCLUSIONS AND FUTURE WORK

one or multiple refactorings being needed to implement the ticket. The number of times a
file has changed and the number of authors of a file does not seem to give a higher chance
of refactoring.

The unit size of the Delta Maintainability Model [10] plotted over time seems to support the
idea of the Broken Windows Theory: when there are problems in the codebase, developers
are less motivated to write the best code they can. The modules that have long methods
will receive more changes that further aggravate this problem. Modules that have mostly
short methods, will continue to receive changes that are good for the length of the methods.
Plotting the unit size over time could therefore give more insight in what modules are dete-
riorating into bad code with long methods.

The ‘Code Karma’ gamification seems to have a positive effect on both the developers and
the motivation to improve code quality. The main criticism of the system was that the for-
mula for karma did not reflect true contribution to code quality, since there are many things
that are done to improve code quality that were not captured by this formula. Adding more
features to this formula and adding a way to toggle these features to reflect what is most
important for the software system at that time might be a better approach. Anonymizing the
names was perceived as a positive addition, to keep the developers anonymous and avoid
negative emotion towards a developers’ place in the ranking.

7.2 Answers to the research questions

In this section, we will repeat the research questions and the answers to the research ques-
tions as they were formulated in the chapters.

RQ1: What types of technical debt impede the development process?
It seems that tests, testability and documentation could be improved. Developers might
keep ‘reinventing the wheel’ if they do not know that something already exists within the
codebase, leading to multiple implementations of the same thing. Solutions to reducing
or avoiding technical debt are more testing, better guidelines, more insight into problems,
more rewards or recognition for paying off debt and reserving time to pay off technical debt.

RQ2: What is the view of developers on refactoring to reduce or avoid technical debt?
Developers mainly refactor to improve code structure in terms of readability, to remove/avoid
code duplication and to make the classes and methods adhere to the Single Responsibility
Principle. The developers deem refactoring an important activity, they refactor when they
feel that it is needed and they suggest refactoring in code reviews. There is a fear of intro-
ducing bugs when refactoring.

52

7.3. Future work

RQ3: What is the behavior of developers regarding refactoring and testing efforts?
There is a weak correlation between writing refactorings and editing test files. When a
refactoring occurs, there is a higher chance of a test file being changed. When a refactoring
is done, it might indicate that the lead time of the corresponding ticket is higher. The file
length or the complexity of the methods in the files that are changed during the development
process do not seem to correlate with refactorings.

RQ4: Can we use the Delta Maintainability Model to give insights into module health?
The Delta Maintainability Model seems to give an indication of module health when its unit
size risk values are added over time. If the aggregate value is low, then this module might
risk changes that are bad for unit size, i.e. edits that make methods longer or edits that add
long methods. A higher aggregate unit size might indicate better module health with low
method lengths. This might in turn mean that future edits will be of low risk to unit size,
which means that developers will put in more effort to not let method size get out of hand.

RQ5: Can we create a gamification system that helps to improve internal software
quality?
The results do not prove that the gamification system leads to more activities to improve
the internal code quality by refactoring, writing tests or writing docblocks. However, the
participants do believe that the gamification system has a positive impact on the codebase.
The karma distribution, achievements and team karma goal all seemed to motivate the par-
ticipants. Therefore, we can say that there is a good chance that this gamification system, if
developed further, will have a positive impact on the internal software quality.

7.3 Future work

There are two topics investigated in this paper that deserve a continuation in the form of
future research.

7.3.1 Delta Maintainability Model

Firstly, the Delta Maintainability Model to quantify the health of modules within a software
system. The conclusion that the aggregation of the unit size value of the Delta Maintain-
ability Model showed the health of a module were mainly verified by the experience of
developers within Adyen. To see whether this method works consistently in other systems,
it should be tested by showing the results in the same way as in Figure 5.2 and the correct-
ness should be quantified using a survey.

53

7. CONCLUSIONS AND FUTURE WORK

7.3.2 Code Karma

Secondly, the Code Karma system could be improved for both developer experience and
developer motivation for the right improvement efforts. Since the participants’ main criti-
cism was that the karma system did not show a fair representation of contributions due to
the lack of features, these features could be tweaked. For example, moving classes might be
an important activity if modularization are a priority for the company. Creating a test har-
ness for a class that does not have any tests might be more impactful than just adding test
lines to a file. Integration tests might be worth more points than a regular unit test. People
might want to gift others karma if these people were helpful for implementing a feature or
fixing a bug, since these efforts are invisible to the system. Negative karma could also be
introduced. For example, if a person creates a new class without unit tests.

The focus of a development team might change, so these requirements might change as
well. A system that has a backoffice where managers can toggle what things are important
and what features are not might be a very accessible way of managing technical debt, that
is also a fun experience for the developers.

54

Bibliography

[1] Haldun Akoglu. User’s guide to correlation coefficients. Turkish Journal of Emergency
Medicine, 18(3), 2018. ISSN 24522473. doi:10.1016/j.tjem.2018.08.001.

[2] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from
benchmark data. In IEEE International Conference on Software Maintenance, ICSM,
2010. doi:10.1109/ICSM.2010.5609747.

[3] Erik Ammerlaan, Wim Veninga, and Andy Zaidman. Old habits die hard: Why refac-
toring for understandability does not give immediate benefits. In 2015 IEEE 22nd In-
ternational Conference on Software Analysis, Evolution, and Reengineering, SANER
2015 - Proceedings, 2015. doi:10.1109/SANER.2015.7081865.

[4] Apostolos Ampatzoglou, Angeliki Agathi Tsintzira, Elvira Maria Arvanitou, Alexan-
der Chatzigeorgiou, Ioannis Stamelos, Alexandru Moga, Robert Heb, Oliviu Matei,
Nikolaos Tsiridis, and Dionisis Kehagias. Applying the single responsibility princi-
ple in industry: Modularity benefits and trade-offs. In ACM International Conference
Proceeding Series, 2019. doi:10.1145/3319008.3320125.

[5] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and Paris
Avgeriou. The financial aspect of managing technical debt: A systematic lit-
erature review. In Information and Software Technology, volume 64, 2015.
doi:10.1016/j.infsof.2015.04.001.

[6] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh Robinson, and Helen Sharp. Moti-
vation in Software Engineering: A systematic literature review. Information and Soft-
ware Technology, 50(9-10), 2008. ISSN 09505849. doi:10.1016/j.infsof.2007.09.004.

[7] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson Corre-
lation Coefficient. In Springer Topics in Signal Processing, volume 2, pages 1–4.
2009. doi:10.1007/978-3-642-00296-0 5. URL http://link.springer.com/10.
1007/978-3-642-00296-0_5.

[8] Frank Buschmann. To pay or not to pay technical debt. IEEE Software, 28(6), 2011.
ISSN 07407459. doi:10.1109/MS.2011.150.

55

https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1109/ICSM.2010.5609747
https://doi.org/10.1109/SANER.2015.7081865
https://doi.org/10.1145/3319008.3320125
https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1007/978-3-642-00296-0_5
http://link.springer.com/10.1007/978-3-642-00296-0_5
http://link.springer.com/10.1007/978-3-642-00296-0_5
https://doi.org/10.1109/MS.2011.150

BIBLIOGRAPHY

[9] Sebastian Deterding. Gamification: Designing for Motivation. Interactions, 19(4),
2012. ISSN 10725520. doi:10.1145/2212877.2212883.

[10] Marco Di Biase, Ayushi Rastogi, Magiel Bruntink, and Arie Van Deursen. The delta
maintainability model: Measuring maintainability of fine-grained code changes. In
Proceedings - 2019 IEEE/ACM International Conference on Technical Debt, TechDebt
2019, 2019. doi:10.1109/TechDebt.2019.00030.

[11] Mário André de Freitas Farias, Manoel Gomes de Mendonça Neto, Marcos Kali-
nowski, and Rodrigo Oliveira Spı́nola. Identifying self-admitted technical debt
through code comment analysis with a contextualized vocabulary. Information and
Software Technology, 121, 2020. ISSN 09505849. doi:10.1016/j.infsof.2020.106270.

[12] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999. ISBN 0-201-48567-2.

[13] Martin Fowler. Technical debt quadrant, 2009. URL https://martinfowler.com
/bliki/TechnicalDebtQuadrant.html.

[14] Cesar Franca, Fabio Q.B. Da Silva, and Helen Sharp. Motivation and Satisfaction of
Software Engineers. IEEE Transactions on Software Engineering, 46(2), 2020. ISSN
19393520. doi:10.1109/TSE.2018.2842201.

[15] Félix Garcı́a, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel Pen-
abad. A framework for gamification in software engineering. Journal of Systems and
Software, 132, 2017. ISSN 01641212. doi:10.1016/j.jss.2017.06.021.

[16] Hadi Ghanbari, Terese Besker, Antonio Martini, and Jan Bosch. Looking for Peace
of Mind? Manage Your (Technical) Debt: An Exploratory Field Study. In Inter-
national Symposium on Empirical Software Engineering and Measurement, volume
2017-November, 2017. doi:10.1109/ESEM.2017.53.

[17] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field study of
refactoring challenges and benefits. In Proceedings of the ACM SIGSOFT 20th Inter-
national Symposium on the Foundations of Software Engineering, FSE 2012, 2012.
doi:10.1145/2393596.2393655.

[18] Makrina Viola Kosti, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Geor-
gios Pallas, Ioannis Stamelos, and Lefteris Angelis. Technical debt principal
assessment through structural metrics. In Proceedings - 43rd Euromicro Con-
ference on Software Engineering and Advanced Applications, SEAA 2017, 2017.
doi:10.1109/SEAA.2017.59.

[19] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt: From
metaphor to theory and practice. IEEE Software, 29(6), 2012. ISSN 07407459.
doi:10.1109/MS.2012.167.

56

https://doi.org/10.1145/2212877.2212883
https://doi.org/10.1109/TechDebt.2019.00030
https://doi.org/10.1016/j.infsof.2020.106270
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://doi.org/10.1109/TSE.2018.2842201
https://doi.org/10.1016/j.jss.2017.06.021
https://doi.org/10.1109/ESEM.2017.53
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1109/SEAA.2017.59
https://doi.org/10.1109/MS.2012.167

Bibliography

[20] Oualid Ktata and Ghislain Lévesque. Designing and implementing a measurement
program for scrum teams: What do agile developers really need and want? In ACM
International Conference Proceeding Series, 2010. doi:10.1145/1822327.1822341.

[21] Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini, and Francesca
Arcelli Fontana. A systematic literature review on Technical Debt prioritization:
Strategies, processes, factors, and tools. Journal of Systems and Software, 171, 2021.
ISSN 01641212. doi:10.1016/j.jss.2020.110827.

[22] Zengyang Li, Nicolas Guelfi, Peng Liang, Paris Avgeriou, and Apostolos Ampat-
zoglou. An empirical investigation of modularity metrics for indicating architectural
technical debt. In QoSA 2014 - Proceedings of the 10th International ACM SIG-
SOFT Conference on Quality of Software Architectures (Part of CompArch 2014),
2014. doi:10.1145/2602576.2602581.

[23] Zengyang Li, Peng Liang, and Paris Avgeriou. Architectural Debt Management in
Value-Oriented Architecting. In Economics-Driven Software Architecture. Morgan
Kaufmann, 2014. doi:10.1016/B978-0-12-410464-8.00009-X.

[24] Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping study on tech-
nical debt and its management. Journal of Systems and Software, 101, 2015. ISSN
01641212. doi:10.1016/j.jss.2014.12.027.

[25] Lech Madeyski and Marian Jureczko. Which process metrics can significantly im-
prove defect prediction models? An empirical study. Software Quality Journal, 23(3),
2015. ISSN 15731367. doi:10.1007/s11219-014-9241-7.

[26] Antonio Martini, Terese Besker, and Jan Bosch. Technical Debt tracking: Cur-
rent state of practice: A survey and multiple case study in 15 large organi-
zations. Science of Computer Programming, 163, 2018. ISSN 01676423.
doi:10.1016/j.scico.2018.03.007.

[27] Ana Melo, Roberta Fagundes, Valentina Lenarduzzi, and Wylliams Barbosa Santos.
Identification and measurement of requirements technical debt in software develop-
ment: A systematic literature review. Journal of Systems and Software, 194:111483,
2022. ISSN 0164-1212. doi:https://doi.org/10.1016/j.jss.2022.111483.

[28] Naouel Moha, Yann Gaël Guéhéneuc, Laurence Duchien, and Anne Françoise
Le Meur. DECOR: A method for the specification and detection of code and design
smells. IEEE Transactions on Software Engineering, 36(1), 2010. ISSN 00985589.
doi:10.1109/TSE.2009.50.

[29] Michael Mohan and Des Greer. A survey of search-based refactoring for software
maintenance. Journal of Software Engineering Research and Development, 6(1),
2018. doi:10.1186/s40411-018-0046-4.

57

https://doi.org/10.1145/1822327.1822341
https://doi.org/10.1016/j.jss.2020.110827
https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1016/B978-0-12-410464-8.00009-X
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1007/s11219-014-9241-7
https://doi.org/10.1016/j.scico.2018.03.007
https://doi.org/https://doi.org/10.1016/j.jss.2022.111483
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1186/s40411-018-0046-4

BIBLIOGRAPHY

[30] Ally S. Nyamawe, Hui Liu, Nan Niu, Qasim Umer, and Zhendong Niu. Automated
recommendation of software refactorings based on feature requests. In Proceedings
of the IEEE International Conference on Requirements Engineering, volume 2019-
September, 2019. doi:10.1109/RE.2019.00029.

[31] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Piantadosi,
Rocco Oliveto, Gabriele Bavota, and Massimiliano Di Penta. Why Developers Refac-
tor Source Code: A Mining-based Study. ACM Transactions on Software Engineering
and Methodology, 29(4), 2020. ISSN 15577392. doi:10.1145/3408302.

[32] Oscar Pedreira, Félix Garcı́a, Nieves Brisaboa, and Mario Piattini. Gamification in
software engineering - A systematic mapping. In Information and Software Technol-
ogy, volume 57, 2015. doi:10.1016/j.infsof.2014.08.007.

[33] Boris Pérez, Camilo Castellanos, Darı́o Correal, Nicolli Rios, Sávio Freire, Rodrigo
Spı́nola, Carolyn Seaman, and Clemente Izurieta. Technical debt payment and preven-
tion through the lenses of software architects. Information and Software Technology,
140, 2021. ISSN 09505849. doi:10.1016/j.infsof.2021.106692.

[34] Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are
better. In Proceedings - International Conference on Software Engineering, 2013.
doi:10.1109/ICSE.2013.6606589.

[35] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. On the relation of refactoring
and software defects. In Proceedings - International Conference on Software Engi-
neering, 2008.

[36] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto, and Denys Poshyvanyk.
A comprehensive model for code readability. In Journal of Software: Evolution and
Process, volume 30, 2018. doi:10.1002/smr.1958.

[37] Giulia Sellitto, Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, Andrea Lu-
cia, Fabio Palomba, and Filomena Ferrucci. Toward understanding the impact of refac-
toring on program comprehension. 12 2021. doi:10.1109/SANER53432.2022.00090.

[38] Mahnoosh Shahidi, Mehrdad Ashtiani, and Morteza Zakeri-Nasrabadi. An automated
extract method refactoring approach to correct the long method code smell. Journal
of Systems and Software, 187, 2022. ISSN 01641212. doi:10.1016/j.jss.2022.111221.

[39] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we Refactor? Con-
fessions of Github contributors. In Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, volume 13-18-November-2016, 2016.
doi:10.1145/2950290.2950305.

[40] Davide Spadini, Maurı́cio Aniche, and Alberto Bacchelli. Pydriller: Python frame-
work for mining software repositories. In The 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2018. doi:10.1145/3236024.3264598.

58

https://doi.org/10.1109/RE.2019.00029
https://doi.org/10.1145/3408302
https://doi.org/10.1016/j.infsof.2014.08.007
https://doi.org/10.1016/j.infsof.2021.106692
https://doi.org/10.1109/ICSE.2013.6606589
https://doi.org/10.1002/smr.1958
https://doi.org/10.1109/SANER53432.2022.00090
https://doi.org/10.1016/j.jss.2022.111221
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/3236024.3264598

Bibliography

[41] Gail M. Sullivan and Anthony R. Artino. Analyzing and Interpreting Data From
Likert-Type Scales. Journal of Graduate Medical Education, 5(4), 2013. ISSN 1949-
8349. doi:10.4300/jgme-5-4-18.

[42] Edith Tom, Aybüke Aurum, and Richard Vidgen. An exploration of techni-
cal debt. Journal of Systems and Software, 86(6), 2013. ISSN 01641212.
doi:10.1016/j.jss.2012.12.052.

[43] Adam Tornhill and Markus Borg. Code red: The business impact of code
quality - a quantitative study of 39 proprietary production codebases. In Pro-
ceedings of the International Conference on Technical Debt, TechDebt ’22, page
11–20, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393041. doi:10.1145/3524843.3528091. URL https://doi.org/10.
1145/3524843.3528091.

[44] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. Refactoringminer
2.0. IEEE Transactions on Software Engineering, 48(3):930–950, 2022.
doi:10.1109/TSE.2020.3007722.

[45] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009. ISBN 1441412697.

[46] Peter Weißgerber and Stephan Diehl. Are refactorings less error-prone than other
changes? In Proceedings - International Conference on Software Engineering, 2006.
doi:10.1145/1137983.1138011.

[47] Laerte Xavier, Joao Eduardo Montandon, and Marco Tulio O Valente. Comments
or issues: Where to document technical debt? IEEE Software, pages 0–0, 2022.
doi:10.1109/MS.2022.3170825.

[48] Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander. How do software develop-
ment teams manage technical debt? – An empirical study. Journal of Systems and
Software, 120, 2016. ISSN 01641212. doi:10.1016/j.jss.2016.05.018.

[49] Oleksandr Zaitsev, Stephane Ducasse, Alexandre Bergel, and Mathieu Eveillard. Sug-
gesting descriptive method names: An exploratory study of two machine learning
approaches. In Communications in Computer and Information Science, volume 1266
CCIS, 2020. doi:10.1007/978-3-030-58793-2 8.

59

https://doi.org/10.4300/jgme-5-4-18
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1145/3524843.3528091
https://doi.org/10.1145/3524843.3528091
https://doi.org/10.1145/3524843.3528091
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/1137983.1138011
https://doi.org/10.1109/MS.2022.3170825
https://doi.org/10.1016/j.jss.2016.05.018
https://doi.org/10.1007/978-3-030-58793-2_8

	Preface
	Contents
	List of Figures
	Introduction
	Adyen
	Research questions

	Developers' experience with technical debt
	Background
	Experimental design
	Questionnaire on technical debt
	Questionnaire results

	Developers' view on refactoring
	Background
	Questionnaire on refactoring
	Questionnaire results

	Investigating refactoring and testing efforts
	Experimental design
	Results

	Insight in module health with the Delta Maintainability Model
	Background
	Applying the DMM to the codebase
	Effect of refactoring on the DMM risk values
	Using the DMM as a measurement of module health

	Using gamification to improve software quality
	Background
	Code Karma
	Questionnaire to evaluate Code Karma
	Results

	Conclusions and Future Work
	Conclusions
	Answers to the research questions
	Future work

	Bibliography

