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A self-adaptation framework based on
functional knowledge for augmented
autonomy in robots

Carlos Hernandez?*, Julita Bermejo-Alonso” and Ricardo Sanz”

aTU Delft Robotics Institute, Delft University of Technology, Delft, The Netherlands

bAutonomous Systems Laboratory, UPM-CSIC Centre for Automation and Robotics, Universidad Politécnica de
Madrid, Madrid, Spain

Abstract. Robot control software endows robots with advanced capabilities for autonomous operation, such as navigation, object
recognition or manipulation, in unstructured and dynamic environments. However, there is a steady need for more robust oper-
ation, where robots should perform complex tasks by reliably exploiting these novel capabilities. Mission-level resilience is re-
quired in the presence of component faults through failure recovery. To address this challenge, a novel self-adaptation framework
based on functional knowledge for augmented autonomy is presented. A metacontroller is integrated on top of the robot control
system, and it uses an explicit run-time model of the robot’s controller and its mission to adapt to operational changes. The model
is grounded on a functional ontology that relates the robot’s mission with the robot’s architecture, and it is generated during the
robot’s development from its engineering models. Advantages are discussed from both theoretical and practical viewpoints. An
application example in a real autonomous mobile robot is provided. In this example, the generic metacontroller uses the robot’s
functional model to adapt the control architecture to recover from a sensor failure.

Keywords: Autonomy, functional modeling, functional ontology, self-adaptation, robustness, resilience

1. Introduction capability of performing their missions with depend-

able autonomy, handling disruption and recovering af-

Thanks to the continuous advances in Computational ter a fault. Robots need resilience to recover base capa-

intelligence, robotics is entering a golden age where bilities after failure, e.g., an autonomous robot shall re-

smart and flexible robots are being deployed to per- cover navigation capability after the failure of a critical
form complex missions. Robots are required to be eas- Sensor.

Current methods to deal with abnormal scenarios
rely on fault-tolerant solutions at the component level.
However, these cannot account for emergent, systemic
failures, for which ad-hoc, case-based solutions are
typically hard-coded. This result in solutions that are
expensive, non-scalable and hard to maintain. New
mechanisms for self-adaptation are needed to provide
adequate levels of dependability. Moreover, a more
general and extensible approach to build them, sup-
ported by engineering tools and reusable assets, is re-

ily re-taskable and deployable in uncertain environ-
ments, able to deal with unexpected changes and dis-
turbances.

The research on autonomous robotics has been fo-
cusing typically on the development of the base ca-
pabilities needed for this advanced behavior, such as
path planning, dynamical control, or trajectory track-
ing [41]. However, future robots should add the overall
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turing and warehouses, where a variety of heteroge-
neous components and techniques are involved [23]
(3D object detection and localization, online planning
or grasp synthesis), in addition to navigation in the case
of mobile manipulators. The increased internal com-
plexity, together with an open environment, leads to a
potential increase of run-time emergent failures. Like-
wise, robots used in catastrophic situations require re-
silience, since disturbances and unpredictable environ-
ments are common. As Murphy describes [29, p. 41]
“an Unmanned Ground Vehicle (UGV) (in a disaster
situation) fails 10 times as frequently as the same robot
in a laboratory setting and that UGV have a mean time
between failures (MTBF) in the field of 620 hours”.

To engineer this dependable autonomy, the main is-
sue is that the knowledge linking the robot design with
the mission specification is only in the mind of engi-
neers, not available in the run-time system once it is
built. When a problem happens at runtime, this knowl-
edge is necessary to understand why a specific system
feature was placed there, to devise an adequate solution
or walk-around. Hence, the traceability from require-
ments to implementation is lost in the development-
runtime gap.

To overcome this issue, we consider the formal cap-
ture of the robot design (the reified knowledge from
the engineers) related to the mission (the requirements
traceability information), to support run-time meta-
reasoning [34]. The robot will use this knowledge at
runtime to reason about its mission, and how its ele-
ments and control architecture contribute to its base ca-
pabilities to perform it.

This article describes how augmented autonomy can
be achieved thanks to a metacontroller that exploits
explicit functional models sustained by ontologies, re-
sulting in a run-time self-adaptation capability. The
focus is on resilience for base capabilities, by ex-
ploiting functional models for diagnosis and reconfig-
uration. The proposed architectural framework pro-
vides a domain-independent metacontrol solution for
component-based control systems. It has been imple-
mented and demonstrated in the control architecture
of an autonomous mobile robot, implemented in the
Robot Operating System (ROS) [31] platform.

The article is organized as follows: Section 2 ex-
plains our design principles, compared with previ-
ous approaches; Section 3 describes the architectural
framework that reifies those principles; Section 4
shows its application in a real autonomous mobile
robot. Finally, Section 5 discusses the benefits and
limitations of our approach and draws concluding re-
marks.

2. Background ideas and related work

This section describes the design principles behind
the work presented in this article, as compared to simi-
lar research on the domain of autonomous systems en-
gineering.

2.1. Related work on fault-tolerance and run-time
adaptation

Diverse efforts have addressed fault diagnosis and
recovery in robotic systems. Fault Tolerant Control
(FTC) is used to address faults and perturbations out
of the range of operation of the controller. Blanke et
al. [11] have proposed an architecture for autonomous
supervision in fault-tolerant controllers. It relies on
“analytical redundancy” in the system to replace faulty
components with alternatives in the system that can
perform a similar role, as alternative to physical redun-
dancy (e.g. redundant sensors). A “supervisor’ acts as
aresident engineer, using a model of the control system
to diagnose any deviation from the expected behavior,
and to determine the appropriate corrective reconfig-
uration. Gehin et al. [18] have used functional analy-
sis to obtain a declarative model of the system suit-
able to develop FTC supervisors. Asato et al. [2] have
proposed a domain-independent fault-detection frame-
work for robot middleware based on a layered architec-
ture. The DyKnow stream reasoning framework by de
Leng at al. [15] extends ROS with support for reconfig-
uration, which opens more opportunities for FTC and
knowledge based self-adaptation in ROS-based robotic
systems.

Jiang et al. [26] have presented a solution based on
automated invariant inference and monitoring to detect
faults in ROS-based robotic systems. Their monitors
could be used to instrument FTC supervisors such as
the metacontroller presented here.

NASA’s Remote Agent (RA) [30,32] proved that
mission flexibility and resilience for spacecraft control
can be achieved using a controller that uses declarative
models to plan the goals for the flight software, and to
identify operation modes and reconfigure its compo-
nents for failure diagnosis and recovery. The continua-
tion of that work in the NASA’s Autonomous Science-
craft Experiment [14], successfully flying the Earth
Observing One Spacecraft during the 17 years of the
mission, confirms the benefits of using the benefits of
using explicit models for run-time adaptation, a line
that is further explored in the work presented here.
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2.2. Metacontrol to bridge the development-runtime
gap

Traditional systems engineering methods have been
designed with a particular and static set of require-
ments in mind [5]. However, modern life-cycle models
show that engineering and operation are concurrent ac-
tivities in long-lived, adaptive, high value systems. Re-
engineering tasks will necessarily happen at runtime
for adaptive systems.

However, there is usually a big difference between
the design models that engineers use to build the
technical artifact, and the run-time models that some
systems capable to some extent of reflection may
use during their operation [10]. In other words, a
development-time/run-time gap appears when follow-
ing traditional systems development methods.

In our view, extending the use of the design mod-
els as run-time self-models can eliminate this gap, to
leverage the full potential of model-driven develop-
ment [37].

Our approach is based on an analogy between con-
trol systems and autonomous systems engineering.
In the same way that a disturbance invalidates the
open-loop control strategy, traditional engineering fails
when the system needs to cope with situations not
anticipated or considered during design, such as un-
expected failures. Our autonomy loop solution [24]
bridges the development-runtime gap with a metacon-
troller that closes a loop on the mission requirements to
maintain the desired system behavior even in the pres-
ence of failures (Fig. 1). When the system’s behavior
deviates from the mission, the metacontroller performs

a re-design to adapt the controller configuration at run-
time.

To execute the appropriate re-design actions, the
metacontroller needs the knowledge of the engineers.
Our solution proposes to extend the use of engineering
models to run-time models exploited by the metacon-
troller, effectively bridging the gap between the devel-
opment and run-time stages of the robot life-cycle.

2.3. Functional models for run-time adaptation

Function is a core concept in the approach described
in this article. Functions map the domain of the stake-
holder needs with the domain of the system realiza-
tion. This is what enables addressing mission require-
ments by means of system reconfiguration. Our objec-
tive as designers is for the autonomous robot to pro-
vide the functionality required (i.e. displaying a certain
behavior), even in the presence of disturbances such as
unforeseen environmental conditions or internal emer-
gent failures. The autonomy loop implementation pre-
sented here focuses on the internal emergent failures.
It takes as reference the mission requirements, i.e. the
functions needed. In the presence of a failure, this au-
tonomy loop actuates on the system’s structure — i.e.
configuration, to continue providing the required func-
tions. Therefore, our metacontroller operates in the do-
main of the functions of the autonomous system.

Functional modelling addresses the formal represen-
tation of the relation between the mission requirements
considered to design a system, and its engineered struc-
ture that achieves them during run-time operation [27].
The idea is to specify: 1) the intention of the designer
and the system’s overall goal; 2) the functions that the
system must perform to achieve this overall goal, and
3) the interaction between the structural elements to
achieve this goal in terms of behavior of the physical
structure (as variable interactions and component rela-
tionships) [13].

The approach described in this article offers a
grounding of functional modeling by means of a
Sfunctional ontology [21], that conceptualizes the au-
tonomous robots design knowledge. This ontology
provides a consistent and shareable description of
functional concepts, acting as support for the func-
tional modeling activities involved in engineering such
systems.

These functional models are the cornerstone of the
metacontroller: control loops that exploit the robot’s
functional models to implement run-time self-adaptation
mechanisms.
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2.4. Ontologies to support model-based metacontrol

A knowledge-based approach in which the model
used by the metacontroller is explicit, i.e. separated
from the reasoning engine, allows the reuse of the rea-
soning software across applications. Knowledge-based
control comprises general processes perception, under-
standing (i.e. evaluation, reasoning, prediction) and ac-
tion [22,36] around the run-time model.

The development and exploitation of explicit mod-
els that capture functional knowledge for our meta-
control solution is supported by ontologies. Schmill et
al. [38] proposed a metacognitive loop (MCL) on top
of the system that performs automated reasoning, sup-
ported by ontologies, to cope with failures. Alvares et
al. [1] showed how domain-specific languages can sup-
port knowledge-based self-adaptive components, for
improved base capability robustness.

An ontology defines a set of ontological elements as
representational primitives that can be used to model
a domain of knowledge [19,20]. Ontologies have been
used to represent the knowledge the robot need to per-
form its tasks or to interact with humans. As exam-
ple, KnowRob [39]. It is a knowledge-based frame-
work, where a set of ontologies provide a common vo-
cabulary about robot actions, event, objects, etc. [40].
A core ontology for robotics and automation has been
published as a standard by the IEEE Standards Associ-
ation [25], to be used as a reference for knowledge rep-
resentation and reasoning in robots. This core ontology
is to be extended with robot task representation [4] and
autonomous robot features [6,17].

Our approach using ontologies is twofold. Firstly,
the robot models (aka knowledge to behave) can be ob-
tained in a consistent, meaningful and shareable way
using the ontologies developed to describe the system.
Secondly, the ontologies serve as support to obtain the
engineering models for the metacontroller.

Models constitute one of the main components of
our knowledge-based strategy for autonomy. Knowl-
edge in the form of explicit models supported by on-
tologies and metamodels grounds advanced and robust
robot capabilities. Having an autonomous systems ref-
erence ontology [8] and related patterns becomes a sig-
nificant advantage to obtain the autonomous system’s
models [7], compared to developing them in an ad-hoc
or case by case manner.

Moreover, ontologies guide the flow of the knowl-
edge through the robot life-cycle and engineering [35].
They constitute analysis metamodels that define the
different entities and relationships participating in the
autonomous robot engineering and its operation.

We extend the use of ontologies and metamodels not
only to develop the system design models, but also to
support the model-driven engineering (MDE) of the
robotic system. This MDE process produces the model
used by the robot at runtime through a model-to-model
transformation from the engineering model. This trans-
formation is captured in the Deep Model Reflection
pattern, saving efforts and reducing errors by automat-
ing the building of models. The run-time model must
conform to a metamodel which is part of the model
transformation definition. This shared metamodel be-
tween the engineering and run-time phases is what the
functional ontology provides [22].

2.5. Model-based functional metacontrol

The former ideas are reified in the Metacontrol De-
sign pattern [22], that splits the control system in two
(see central part of Fig. 5). The standard domain con-
troller is responsible for sensing, computing and acting
on the robot to achieve a target reference that is typi-
cally the value of a variable in the robot’s domain of
operation, e.g. a position, a velocity, a trajectory. The
metacontroller controls the former through an inter-
face provided by its implementation component plat-
form. The metacontroller’s references are the system’s
mission requirements, which belong to the mission’s
domain and not to the robot’s domain. This metacon-
troller follows the Functional Metacontrol pattern to
target functional aspects. This pattern defines a lay-
ered structure for the metacontroller consisting of two
nested loops (see OM Metacontroller in Fig. 5): 1)
the Components Loop controls the configuration of
the components of the controller; 2) the Functional
Loop controls the performed functions. Hence, the
functional and structural concerns are explicitly repre-
sented.

Our metacontroller is an FTC supervisor. How-
ever, it uses knowledge about how its inner orga-
nization supports the mission, to provide analytic
fault-tolerance at the mission-level. This is above the
system realization level that most FTC systems do
offer [33]. Likewise, while redundancy-based fault-
tolerance mechanisms usually keep system organiza-
tion, ours tries to keep system function. Our metacon-
troller rejects disturbances modifying the robot con-
trollers to maintain its function from a mission per-
spective. If there is enough analytical redundancy in
the robot and its controller, the metacontroller can ex-
ploit multiple options.

The framework presented in this article also follows
similar ideas to NASA’s RA, but offers a mechanism
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Fig. 2. The main elements in TOMASys that capture functional/structural and design/runtime information of an autonomous system.

that explicitly addresses the match between the system
and the mission by exploiting functional models. This
explicitness enables the achievement of the objective
of domain and mission neutrality for the metacontrol
architecture.

3. An architectural framework for augmented
autonomy robot control

Our approach to develop improved autonomy con-
trollers for robots is architecture-centric and pattern-
based. Focusing on the system’s architecture is focus-
ing on the structural properties that constitute the more
pervasive and stable properties of the system. Archi-
tectural aspects are what critically determine the final
capabilities of any information processing technology,
such as robotic systems.

Functional system models are the cornerstone of the
process, serving both as assets for model-based engi-
neering and knowledge bases for cognitive control of
the robot. This can be achieved because knowledge
about the relation between the mission goals and the
robot components and base capabilities are explicitly
captured in the model. In this software-intensive ap-
proach, ontologies and metamodels act as backbones,
to develop the system models in a consistent, meaning-
ful and shareable way.

The Operative Mind (OM) Architectural Framework

is the specific architectural solution that combines and
integrates the design principles described in Section 2.

These design principles have been reified as a set of
elements at different levels, to ensure general applica-
bility, regardless of the application domain and the im-
plementation technology:

— Atthe modeling level: A metamodel to specify the
functional model of autonomous systems. This
functional metamodel captures both the system’s
functional specification at design time and its run-
time realization in the control components.

— At the run-time operation level: A reference ar-
chitecture for robot control with a metacontroller
for augmented autonomy, following the metacon-
trol and functional metacontrol patterns.

— At the engineering process level: The implemen-
tation of the deep model reflection pattern by
defining an MDE process to obtain the run-time
functional model that the metacontroller exploits
for self-adaptation.

3.1. TOMASys

The Teleological and Ontological Model for Au-
tonomous Systems (TOMASys) is the metamodel devel-
oped to provide the concepts for modeling the func-
tional knowledge of autonomous systems. It consti-
tutes thus a functional ontology, and it is based on
the Ontology for Autonomous Systems (OASys) [8,9].
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Fig. 3. Example of the TOMASys modelling of different functions and components of a mobile robot.

The TOMASys model of a robotic system allows auto-
mated reasoning on how the current robot’s controller
is achieving the mission objectives, so that a metacon-
troller can decide appropriate reconfiguration actions
in an analogous way to how an engineer would do.
TOMASYys’s concepts (Fig. 2) have been specified
using a UML-based notation, where each element is
captured as a class with a set of properties (and rela-
tions). A complete specification can be found in [21].
TOMASys captures not only functional matters
at design-time as other functional modelling frame-
works do, but also the instantiation of functions as
component configurations during run-time operation.
A TOMASys Function' represents a capability that
has been designed in the system, for example
Localization in an autonomous mobile robot (see
Fig. 3), or Sense 2D Obstacles. Atdesign-time,
engineers typically create solutions for the robot’s ca-
pabilities. These are modelled in TOMASys as Func-
tion Designs, and there can be several built-in the
robot architecture for the same function/capability. In-
ternally, a function design prescribes a certain struc-
ture that solves the function, i.e. it maps functionally
to system structure, through specifications of compo-
nents and their interconnection. For example to solve
localization an Adaptive Monte Carlo (amcl) algo-

I Note about notation: general elements of the framework are indi-
cated in bold font upon first appearance, whereas specific instances
in the mobile robot example are indicated with courier.

rithm can be used with odometry information (odom),
sensed 2D obstacles (2D obs) and a map as in the
function design Localization V1 in Fig. 3. This
solution requires accurate information of 2D obsta-
cles in a wide range, which is modelled in the specific
accu. 2D obst objective instance of the sense 2D
obstacles function/capability, and solves the localiza-
tion function with maximum reliability (confidence
= 1). An alternative that requires a less restrictive
sense 2D obstacles objective is Localization V2,
which integrates the odometry information (odom)
with orientation from a digital compass through an
extended Kalman filter (ek£); but this design is less
reliable (confidence = 0.9). To solve the sense 2D
obstacles function one possible design (Scan_V1
in Fig. 3) is using a laser range scan sensor.

Part of TOMASys elements constitute a compo-
nent model that represents both the static design-time
knowledge about the system components, and the in-
stantaneous run-time information of the their state.
The design knowledge about the robot’s components
and their properties (such as fault behavior) is cap-
tured through Component Classes, their Parameter
Profiles and internal failure models (ifm()), amongst
other TOMASys elements (see laser and amcl
classes in Fig. 3). The instantaneous state of these in-
stances is captured by Component States, containing
information about their internal state and specific con-
figuration for the mission, e.g. Parameter values. For
example, in Fig. 3 amcl_node and sicklms cap-
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ture the run-time information about the instances of
amcl and laser.

A capability demanded at runtime by the robot’s op-
eration is represented by an Objective of the type of
the function that represents that capability. This con-
crete instance can include specific requirements, e.g.
a certain accuracy for the localization, or range and
density for the scan of sensed 2D obstacles. The in-
stance of the function design that is realised at runtime
to achieve the objective is a Function Grounding, and
it binds the roles defined by the specifications of the
function design to the runtime components that realize
them (see function groundings A and B in Fig. 3).

3.2. The OM architecture

The OM Architecture is a reference architecture for
the development metacontrollers to augment robot au-
tonomy through self-adaptation. The OM Architecture
defines the operation and structure of such a meta-
controller and its integration with the robot controller,
as proposed by the Metacontrol principle discussed in
Section 2.5. The main elements of the OM Architec-
ture are: i) the OM Model, which is model of the func-
tional architecture of the robot controller, together with
an instantaneous estimation of its structural and func-
tional status, all specified with TOMASys, and ii) the
OM Metacontroller which exploits the OM Model to
diagnose and reconfigure — if necessary — the robot
control architecture.

The OM Metacontroller is organized as a two-
layered controller (see Fig. 5) that follows the Func-
tional Metacontrol pattern explained in Section 2.5.

The lower Components Loop is continuously mon-
itoring the status of the components of the robot con-
troller using the reflection mechanisms available in its
implementation platform. The estimation of the current
state of the components (configuration) is evaluated
against the desired configuration (the reference goal for
this loop), to determine any required reconfiguration
action, executed again through the available reflection
mechanisms.? Reconfiguration actions may include ac-
tivation and de-activation of components, reconfigura-
tion of their parameters, or re-connecting components.

If the reconfiguration actions do not succeed achiev-
ing the desired configuration, the OM Metacontroller

2This means that the improved resilience mechanisms described
in this article can only be deployed over controllers built upon an
infrastructure that provides reflection. This is a minimal but strong
requirement that is however widely fulfilled by modern software
frameworks.

operation escalates to the upper Functional Loop. The
unsuccessful evaluation of the current configuration is
used to update the functional hierarchy, up to the top-
most objectives. This update is performed using the
function designs contained in the OM Model, which
define the requirement to achieve each objective. When
any of the topmost objectives is not achieved, the OM
Metacontroller looks for alternative function designs
that are currently realisable. It seeks component classes
available to fill in the roles defined by their specifica-
tions. A new functional hierarchy is obtained by com-
puting all the function groundings and objectives that
realise the selected function designs. Finally, all the
new component specifications are gathered in the new
desired configuration sent to the Components Loop.

A complete description of the OM Metacontroller
operation is provided in [21], and the relevant details
of its operation are described along the example case
in Section 4.3.

3.3. The OM Engineering Process

The OM Engineering Process (OMEP) is the method
proposed to develop the metacontroller for autonomous
robots with the OM Architecture. OMEP divides the
development of an autonomous robot application in
two main activities (see left side of Fig. 5):

Control development refers to the development of
the robot’s domain controller, developing the base ca-
pabilities required by the mission (e.g. task planning,
navigation, motion, vision, etc.), for which state of the
art techniques in robotics shall be used.

OMEP differs from other robot developments in the
definition of alternative solutions for at least some of
the capabilities, for the sake of analytical redundancy.
Each alternative design for a capability is a variance
point in the spectrum of possible functional architec-
tures of the system, so that the total number of alterna-
tives for the control architecture of the complete robot
is the product of the number of alternatives for each
capability. OMEP will thus produce a model for these
architectural alternatives.

This model will be converted in the OM Model, so
it has to be captured with a conceptualization that can
be mapped to TOMASYys elements. Applying Model-
Based Systems Engineering with the OASys-driven
Engineering Methodology [7], which is based on the
same underlying ontology than TOMASYys, facilitates
this.

Metacontrol development is the process to create
the metacontroller and integrate it into the robot con-
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trol architecture. Thanks to the model-based approach,
this process consists on instantiating the OM Metacon-
troller, which can be reused across robot systems an
applications, and creating the OM Model of the au-
tonomous robot application.

For the creation of the OM Metacontroller, dif-
ferent elements were developed through the progres-
sive platform-specific refinement by applying model
weaving [3] (Fig. 4). This allows for the maximum
reusability. The first step was to design the OM
Architecture, a platform-independent solution, from
TOMASYys, which is a computation independent model.
Then, from the OM Architecture a generic OMJava
library was developed to implement OM-based meta-

controllers.? Java was selected in order to provide a
portable implementation, so that the OMJava OM-
metacontroller can be easily integrated in the specific
platform of the robot’s domain controller. In the final
refinement, the platform specific model has to be inte-
grated in the platform of the robot control architecture
(e.g. ROS). The details about this final integration are
given in Section 4.2.

The OM Model is obtained by first parsing the func-
tional model of the robot control into a TOMASys

30MlJava is available as open source at https://github.com/chcorb
ato/omjava.
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Fig. 6. Reduced version of the functional breakdown of the mobile
robot.

formulation, and then implementing it into the run-
time executable OM Model by using the classes in
OMJava.metacontrol.knowledge.

4. Example case: Fault-tolerant mobile robot

The OM Architecture has been tested in the con-
trol architecture of an autonomous mobile robot, to im-
prove its resilience to failures through the capability of
reconfiguring its control architecture.

Autonomous navigation is representative of the cur-
rent challenges in the manufacturing sector, where au-
tonomous mobile solutions are envisioned for intralo-
gistics, and mobile robotic platforms are also explored
for mobile manipulation. These challenges encompass
both operation in an open environment and internal
complexity, thus offering opportunities to explore ro-
bustness to both external and internal disturbances.

The application involved a real mobile robot mov-
ing autonomously in an unstructured environment. The
robot had to navigate in the Autonomous System Lab-
oratory following a set of waypoints (see the plant
in Fig. 5) to accomplish a surveillance mission. The
robot consisted of a differential Pioneer 2ATS platform
that has internal encoders for odometry, additionally
equipped with a laser sensor, a 3D Kinect camera and
an electronic compass.

The goal was to implement and test a generic meta-
controller capable of agilely adapting the robot control
architecture to unforeseen events, such as a sensor fail-
ure, which could result in a critical failure in some of
the base capabilities needed for the mission. Experi-
ments involved different failure scenarios in simulation
and with the real robot.

4.1. Mobile robot control development

Following the OM Engineering Process, the robot
control architecture was designed and modeled using

Table 1
Average time and standard deviation for the robot to navigate the
route and reconfigure its control architecture over 6 trials for each of
the following scenarios: i) using Architecture 1, ii) using Architec-
ture 2, iii) when the metacontrol adapts the architecture from 1 to 2
to recover a permanent laser failure

Scenario Navigation (avg. & o) Reconf. (avg. & o)
Arch. 1 1772 £264 s

Arch. 2 379.0 £ 101.3 s

Metacontrol 256.2 £49.7 s 114+07s

the ISE&PPOOA methodology [16] for Model-Based
Systems Engineering. Figure 6 shows a simplified ver-
sion of the base capabilities in the mobile robot. For the
sake of simplicity, in this paper the focus is on the robot
control architecture to achieve the autonomous naviga-
tion capability. The solution implemented is based on
that of Marder-Eppstein et al. [28] publicly available
as a ROS open-source library. ROS is a component-
based platform for robotics, so any robot controller de-
veloped with it is automatically suitable for the OM
Architectural Framework.

Following OMEP guidelines, analytical redundancy
was added by defining alternative function designs for
the Localization and Navigation capabilities,
using different components and configurations to use
the available sensory information. Figure 7 shows two
alternative architectures, with their functional break-
downs and the configuration of components (repre-
sented as blobs) that realize the different functions
(represented as rectangular areas).

In Architecture 1 (left part of Fig. 7), the laser
readings are used by the Scan V1 function de-
sign to achieve the capability/function sense 2D
Obstacles. The density of the obstacle information
provided by the laser implementation allows a good
performance of the Localization V1 solution for
the Localization function that uses directly the
ded reckoning information provided by the robot
driver component. The Navigation V1 design
uses dense 2D Obstacles and sparse 3D Obstacles, and
a high speed scale factor for the velocity commands.

In Architecture 2 (right part of Fig. 7), the laser
sensor is not used. Instead Localization V2 uses
more sparse and noisy 2D obstacle sensing provided
by Scan V2, which uses the Kinect and a conver-
sion from PointCloud to range scan readings to Sense
2D Obstacles, compensated with more precise ori-
entation information by integrating the compass read-
ings with the odometry from the robot driver through
a Kalman filter (implemented by the ekf compo-
nent). Navigation V2 uses a lower speed scal-
ing factor (configuration 2 of the move_base com-



166 C. Herndndez et al. / A self-adaptation framework for augmented autonomy in robots

Architecture 1

AUTONOMOUS
NAVIGATION

Navigation V1

LOCALIZATION

Localization V1

¢—I—W

MOTION SENSE 2D SENSE 3D
. . . OBSTACLES OBSTACLES
Differential Motion
Scan V1 PointCloud
reading
Localization V1
Navigation V1
map_server move_base
(config. 1)
map L / AN\
ointCloud Differential
eading Motion
kinect ro_bot
driver
odometry |

Architecture 2

AUTONOMOUS
NAVIGATION

Navigation V2

LOCALIZATION

Localization V2

W—‘—\V

MOTION SENSE 2D SENSE 3D
N y N OBSTACLES OBSTACLES
Differential Motion
Scan V2 PointCloud
reading
Localization V2
Navigation V2
map_server move_base
(config. 2)
i B Z

gCation

vel. comgmand

Scan V2 ointCloua| Diferential

pcl2scan reading Wition

kinect (;olbot
river

odometry |

Fig. 7. Alternative architectures for the mobile robot’s domain controller.

ponent) to compensate for the lower performance of
Localization V2 and the more sparse obstacle
information using only the 3D information from the
Kinect, which result in slower robot motions than Ar-
chitecture 1 (see Table 1), but accomplishes the objec-
tive of autonomous navigation without using the laser
Sensor.

4.2. Mobile robot metacontroller development

The Metacontrol Development for the mobile robot
required the integration of the (platform independent
model of the) metacontroller in the ROS platform of
the robot, and the creation of the OM Model.

The om_ros* library was developed to integrate the
OMlJava OMmetacontroller in any ROS-based appli-
cation. Its OMMetacontrollerNode.java class wraps
the OMJava OMmetacontroller.java as a ROS node,
and the meta_sensor and meta_actuator ROS nodes
implement the monitoring and reconfiguration mecha-
nism using the introspection services available in ROS.

Thanks to our model-based approach, the only

4om_ros is available as open source at https://github.com/chcorb
ato/om_ros.

Metacontrol Development effort specific to the mo-
bile robot case was the creation of the the OM Model.
For this purpose, first the TOMASys model was man-
ually obtained from the functional architecture of the
robot that was modelled during the Control Develop-
ment phase. Then the OM Model was implemented by
using the classes in OMJava.metacontrol.knowledge
package.

4.3. Experimental results

The capabilities of the proposed metacontroller were
tested in different experiments in which the robot con-
troller had to adapt to unforeseen events, such as simu-
lated failures in different components, and in particular
a sensor failure in the real robot.

Here, two of these fault-tolerance scenarios are de-
scribed. One consists of a transient failure due to an
error in the laser driver, to demonstrate fault-tolerance
at the component level. The second scenario involves
a permanent failure of the laser, and demonstrates mis-
sion resilience by reconfiguring the robot control ar-
chitecture to overcome the problem.

In the mobile robot control Architecture 1 (see
Fig. 7), the 1aser component is used to obtain 2D ob-
stacle information, objective needed by Navigation
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V1 to achieve Autonomous navigation, and by
Localization V2 to achieve the Localization
objective.

4.3.1. Component-level resilience scenario

In this scenario, the metacontroller provides for
standard fault-tolerance at the component level. Ini-
tially the robot is in normal operation with the OM
Metacontroller maintaining the functional hierarchy
corresponding to Architecture 1, since it is the most
performing to address the mission objectives. This
means that the estimated component state in the OM
Metacontroller corresponds to the configuration of
components that realises that hierarchy.

In this situation, a software failure of the ROS laser
driver occurs. The bottom part of Fig. 8 shows the main
reasoning steps and the OM Model elements involved
in the metacontrol operation. The failure is detected by
the meta_sensor node that monitors the log mes-
sages produced by the control components in the ROS
system. The operation of the meta_sensor node is
driven by the internal failure modes of the robot com-
ponents captured in the component classes of the OM
Model, which for ROS components consist of patterns
in the log reported by the components.

At the Components Loop, this monitoring informa-
tion is used to update the components state. The sub-
sequent error status of the 1aser component is eval-
uated using the failure model of the laser compo-
nent class, and the OM Metacontroller uses it to and
decide a re—start reconfiguration action to recover
from the error. This reconfiguration is executed by the
meta_actuator node, which restart the ROS laser driver.
The metacontroller process runs at 0.3 Hz for the mo-
bile robot case, to guarantee that any reconfiguration
action is seen as instantaneous to the metacontroller.
This metacontrol frequency has to be determined for
each robotic application. Since the laser failure is due
to a transient fault, the laser recovers its normal oper-
ation, and so do the Localization and Navigation func-
tions, so that the robot can continue performing its mis-
sion. It is important to remark here that in the exam-
ple, the components in the robot architecture for nav-
igation are loosely-coupled. This means that instanta-
neous (according to the metacontrol frequency) inter-
ruption of components does not critically affect the be-
havior of the robot, apart from a resulting temporary
pause, in the pursue of its mission. For other appli-
cations it might be necessary to take additional mea-
sures upon reconfiguration, such as putting the sys-
tem or specific components in a safe state. These re-

quirements, and associated metacontrol actions, can be
added to the OM Model, either at the component level
or at the functional level as required, making use of the
corresponding internal failure models for component,
or errorModels for function designs.

One of the benefits of our metacontrol approach over
ad-hoc fault-tolerance mechanisms is that it is easily
scalable. To include fault-tolerance mechanisms for a
new component, or to incorporate the new failure infor-
mation about an existing component, all that is needed
is to update the OM Model of the robot control ar-
chitecture, by respectively updating to the new fail-
ure models in the component classes, or including the
new component classes in the model; no changes are
needed in the OM Metacontrol.

4.3.2. Mission-level resilience scenario

In this scenario, the metacontroller provides for
mission-level resilience by dynamically reconfiguring
the robot control architecture. The initial situation is
the same than in the previous case, with Architecture 2
deployed in the robot. In this scenario, though, the laser
sensor becomes permanently unavailable due to a per-
manent fault (e.g. due to physical damage).

For the OM Metacontroller, this scenario is an ex-
tension of the previous one, as shown in the upper part
of Fig. 8. The reconfiguration action described before
does not solve the problem and further metacontrol ac-
tion ensues.

In the next metacontrol cycle at the components
loop, the monitoring information reports the failure of
the reconfiguration action to re—activate the laser
driver component. This failure implies, according to
the simple internal failure model of the Laser com-
ponent class, the unavailability state of that component
(arrow 1). The OM Metacontroller evaluation of the
current desired configuration uses the general knowl-
edge contained in TOMASys to determine that the
Component Specification for a laser component in the
system is unfeasible, since the component class is
unavailable.

The subsequent unfeasibility of the goal of the Com-
ponents Loop is therefore escalated to the Functional
Loop, as the role required for the Scan V1 function
has no realiser (arrow 2). In general, when the Compo-
nents Goal becomes unfeasible, meaning that the de-
sired configuration is not recoverable by the Compo-
nents Loop, the problem escalates to the Functional
Loop as binding errors for those functions in which the
corresponding roles become unfulfilled.

Then, the evaluation process updates the state of the
robot functional hierarchy up to the topmost Objec-
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tives (arrow 3). It is a reasoning process that follows
the functional dependencies bottom-up, using the error
models for each function to determine the state of the

in TOMASYys that an

function groundings, and the general model included
objective is in error if its realis-
ing function grounding is in a failure status. The de-
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fault errorModel for functions in TOMASys state that
function groundings are in PERMANENT_FAILURE
status if one of their required roles has no available re-
aliser (the case for the Scan V1 function), or in FAIL-
URE status if one of their depending objectives are in
ERROR (the case for the rest of the function ground-
ings in the mobile robot hierarchy). Note that specific
error models can be included in the OM Model of the
robot application, by incorporating them to the corre-
sponding functions designs. As a result of the evalua-
tion of the functional hierarchy, a critical ERROR state
for the autonomous navigation topmost objective is de-
termined.

In addition to the evaluation of the functional hier-
archy (instantaneous information), the general knowl-
edge about the functions availability is also updated
in the robot OM Model using the error models. In
this case (arrow 4), the unavailability of the laser
component determines that the function design Scan
V1 is unavailable, and the reasoning proceeds follow-
ing the required dependencies amongst function de-
signs. In this case, only the function design corre-
sponding the current grounding in the functional hi-
erarchy become unavailable, but it could be the case
that some additional possible function designs, not cur-
rently grounded, would be updated to unavailable, di-
rectly due to a missing component class required, or
indirectly due to some function being unavailable.

To solve the unmet autonomous navigation objec-
tive, the OM Metacontroller computes an alternative
functional hierarchy for it (arrow 5) by selecting and
grounding function designs (arrow 6). The selection
is first based on their availability, and then on their
performance, represented by the confidence to solve
their respective functional objectives. This confidence
is part of the OM Model, and can be tuned for an appli-
cation based on experimental results. Gathering all the
component specifications to fulfill the required roles,
a new desired configuration for the components in the
robot controller is obtained, and send as the new goal
to the Components Loop (arrow 7). Back at the com-
ponent level, the OM Metacontroller executes the com-
ponent reconfiguration action required to obtain the
desired components configuration. Note that some of
these actions, such as re-activating a component, can
require additional knowledge for the metacontroller,
e.g. an internal state in the component to recover. A
basic internal state is already supported in TOMASys
Component Class, which is not described here for sim-
plicity.

As a result, the OM Metacontroller reconfigures the
robot control architecture grounding the functional hi-

erarchy that corresponds to Architecture 2 in Fig. 7,
which uses the Kinect camera both to sense 3D
obstacles for the autonomous navigation function,
and to sense 2D obstacles for the localization
function, and incorporates a Kalman filter to improve
the accuracy of the odometry information with the ori-
entation information from the compass.

5. Discussion

The experiments with the mobile robot show the fea-
sibility and benefits of the metacontrol solution for en-
hanced resilience in autonomous robots proposed here.

5.1. Benefits of the approach

Given the generic model-based OM Metacontroller
developed, the development effort to enable the self-
adaptations required to recover from a failing laser
sensor was limited to creating the OM Model of the
robot control system. The same OM Model also pro-
vides from component-failure recovery behavior in any
of the other components of the system, thanks to the
generic default failure model included in TOMASys.
The Components Loop in the metacontroller is eas-
ily scalable for improved fault-tolerance, e.g. with new
knowledge from failure analysis of the robot’s compo-
nents. All that is needed is to update the component
classes in the robot’s OM Model. This is a clear advan-
tage over hard-coded fault-tolerance methods.

The main current benefit of the OM Architectural
Framework is to provide capability resilience at the
mission level, when the autonomous system is faced
with unforeseen internal emergent failures. In the mo-
bile robot case, to enable resilience for the capabilities
affected by the laser sensor, alternative solutions had
to be developed for them. This development consisted
of: 1) designing additional architectural configurations
to realise the sense 2D obstacles, localization and au-
tonomous navigation functions, which mainly involved
different component’s configuration and connection of
additional available components (compass, ekf), ii) in-
cluding those alternatives in the OM Model, by en-
coding the corresponding TOMASys function designs
and component classes. Note that no overall architec-
tural solutions where specified, only partial designs for
different functions in the system. The overall final ar-
chitecture after reconfiguration is the result of the OM
Metacontroller operation to achieve the topmost objec-
tives. The metamodelling approach for the run-time re-
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configuration knowledge, with the OM Model based
on the TOMASys metamodel, makes the metacontrol
solution for the mobile robot immediately scalable. If
new capabilities were added to the robot, e.g. object
recognition, enabling component fault-tolerance sim-
ply requires defining the component classes and fail-
ure model for the new elements in the system, whereas
capability resilience can be enabled by creating alter-
native designs and defining them by extending the OM
Model of the system with new function designs. Note
that all these modifications reuse the initial OM Model
of the mobile robot. Component classes and function
designs can be reused for other missions, and even for
other robots, that use the same control components.
More importantly, the same OM Metacontroller can be
used in any other cases, since it is a general reason-
ing engine. All the metacontrol development effort is
limited to creating the OM Model of the autonomous
robot application.

5.2. Limitations of the current solution

We discuss here the limitations identified so far
in the use of the OM Architectural Framework. One
is that TOMASys only captures static considerations
about the systems capabilities, and not dynamic con-
siderations: temporary objectives, and how availability
of functions impact mission planning/re-scheduling.
Adding the temporal dimension in the metamodel
would allow the framework to also address mission
scheduling issues, tackling dynamic objectives. More
critically, the OM Metacontroller does not account for
the temporal nature of the reconfiguration, discretizing
the adaptation process to 3 steps: failure, reconfigura-
tion (during which domain operation is paused) and re-
turn to normal operation.

Another current limitation of the OM Architectural
Framework is that it only addresses unforeseen situa-
tion arising from internal emergent failures. However,
disturbances due to unexpected changes in the envi-
ronment are not yet considered. An example could be
smoke rendering a camera in a robot useless. This ex-
ternal disturbance will not be properly identified with
the current features of the framework, preventing the
metacontroller from adjusting to the new navigation
conditions. As a consequence, the robot would not de-
tect obstacles and keep bumping into them. In [21] a
solution was already drafted, consisting of adding ob-
server mechanisms to update of the status of the objec-
tives — e.g. obtain RGB images — in the functional hier-
archy. Frequently, such a mechanism is already avail-

able in the components of the system — e.g. some cam-
era drivers detect smoke. An alternative to this direct
observation is to build a perception model of the status
of the objective that uses other related information in
the system. For example, a perception model could be
added to the TOMASys model of the ‘obtain RGB im-
age’ objective to detect when an image does not have
sufficient quality.

The assignment of components to functions at run-
time is currently a challenge in situation more com-
plex than one-to-one. TOMASys metamodel does not
specify any cardinality for the bindings between func-
tions and components. This means that it is possible in
principle to have several allocations of the same com-
ponent to different functions. It can be the case that a
component cannot be assigned to more than ‘n’ func-
tions, and/or that some rules may apply depending on
the operational context for the assignments. For exam-
ple, a while a camera can perform a role in different
functions, a gripper can generally be used for one func-
tion at a time. Currently TOMASys does not model
cardinality rules for component bindings, but it is pos-
sible to extend it to do so, for example through a ‘car-
dinality’ property of the ComponentClass, and ‘cardi-
nality constraints’ in the Roles of the Function Design.

Finally, a restriction of the proposed framework is
that it is only applicable to component-based systems,
which can be modelled with TOMASys. However, ad-
vanced robotic applications are componentized [12],
and the OM Architectural Framework structure sep-
arating functional and structural concerns allows to
reuse the functional elements for the metacontrol of
control architectures whose structure is not currently
suitable for the OM Architectural Framework pre-
sented in this article. TOMASYys structure allows to
modify its component model while reusing the func-
tional elements, and while that change in TOMASys
component model requires a re-implementation of
the Components Loop in the OM Metacontroller, the
preservation of the functional elements allows to reuse
the Functional Loop for the new metacontroller.

5.3. Concluding remarks

Achieving high levels of autonomy for robots re-
quires complex controllers that can provide sophisti-
cated fundamental capabilities. But this is not enough.
Autonomous robots must also be able to be resilient
and recover after failure affecting their capabilities.
This article has described a model-based approach
that can support the engineering of metacontrollers
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for robots to improve their autonomy concerning re-
silience. The approach has been reified in the OM Ar-
chitectural Framework, whose essential elements are i)
a metamodel that underlies the construction of a func-
tional model of the robotic system under control; ii)
a reference architecture to implement the dual com-
ponent/function metacontrol strategy that performs
mission-oriented reconfiguration of the robot; and iii)
reusable assets to integrate these metacontrollers in
ROS-based autonomous robots. This methodology and
elements have been demonstrated with a mobile robot
that shows a capability for reconfiguration without ad-
hoc mechanisms.

The OM Architectural Framework has three charac-
teristics that make it especially interesting:

— It is scalable, i.e. new missions or components
in the robot only can be accounted for by ex-
tending the functional model, without changes in
the metacontroller (i.e. the self-adaptation mech-
anisms).

— It is unified, i.e. it provides support for fault-
tolerance at the component level and resilience at
the mission level using a single architecture for
metacontrol.

— It is universal, i.e. it can be applied to any kind
of system that fulfills a minimal set of require-
ments (in essence, be componentized and both ob-
servable and controlable, e.g. through reflection
mechanisms).

Unification and universality are desirable properties
for any kind of technology. It is considered that they
set the foundation for any future theory of autonomous
systems and any engineering methodology based on it.
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