

Delft University of Technology

Executable component-based semantics

Binsbergen, L. Thomas van; Mosses, Peter D.; Sculthorpe, Neil

DOI
10.1016/j.jlamp.2018.12.004
Publication date
2019
Document Version
Accepted author manuscript
Published in
Journal of Logical and Algebraic Methods in Programming

Citation (APA)
Binsbergen, L. T. V., Mosses, P. D., & Sculthorpe, N. (2019). Executable component-based semantics.
Journal of Logical and Algebraic Methods in Programming, 103, 184-212.
https://doi.org/10.1016/j.jlamp.2018.12.004

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1016/j.jlamp.2018.12.004

Executable Component-Based Semantics

L. Thomas van Binsbergena,∗, Peter D. Mossesb,c, Neil Sculthorped

aDepartment of Computer Science, Royal Holloway, University of London,
TW20 0EX, Egham, United Kingdom

bDepartment of Computer Science, Swansea University,
SA2 8PP, Swansea, United Kingdom

cEEMCS, Programming Languages, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

dDepartment of Computing and Technology, Nottingham Trent University,
NG11 8NS, Nottingham, United Kingdom

Abstract

The potential benefits of formal semantics are well known. However, a substantial amount of work is required
to produce a complete and accurate formal semantics for a major language; and when the language evolves,
large-scale revision of the semantics may be needed to reflect the changes. The investment of effort needed to
produce an initial definition, and subsequently to revise it, has discouraged language developers from using
formal semantics. Consequently, many major programming languages (and most domain-specific languages)
do not yet have formal semantic definitions.

To improve the practicality of formal semantic definitions, the PLanCompS project has developed a
component-based approach. In this approach, the semantics of a language is defined by translating its
constructs (compositionally) to combinations of so-called fundamental constructs, or ‘funcons’. Each funcon
is defined using a modular variant of Structural Operational Semantics, and forms a language-independent
component that can be reused in definitions of different languages. A substantial library of funcons has been
developed and tested in several case studies. Crucially, the definition of each funcon is fixed, and does not
need changing when new funcons are added to the library.

For specifying component-based semantics, we have designed and implemented a meta-language called
CBS. It includes specification of abstract syntax, of its translation to funcons, and of the funcons themselves.
Development of CBS specifications is supported by an integrated development environment. The accuracy
of a language definition can be tested by executing the specified translation on programs written in the
defined language, and then executing the resulting funcon terms using an interpreter generated from the
CBS definitions of the funcons. This paper gives an introduction to CBS, illustrates its use, and presents
the various tools involved in our implementation of CBS.

Keywords: programming languages, formal semantics, reuse, components, tool support

∗Corresponding author
Email addresses: ltvanbinsbergen@acm.org (L. Thomas van Binsbergen), p.d.mosses@swansea.ac.uk (Peter D. Mosses),

neil.sculthorpe@ntu.ac.uk (Neil Sculthorpe)

Preprint submitted to JLAMP, accepted 21 December 2018.

© 2018. This version is made available under the CC-BY-NC-ND 4.0 licence.

DOI: https://doi.org/10.1016/j.jlamp.2018.12.004

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jlamp.2018.12.004

1. Introduction

New programming languages and domain-specific languages are continually being introduced, as are new
versions of existing languages. Each language needs to be carefully specified, to determine the syntax and
semantics of its programs. Context-free aspects of syntax are usually specified, precisely and succinctly, using
formal grammars; in contrast, semantics (including static checks and disambiguation) is generally specified
only informally, without use of precise notation. Informal specifications are often incomplete or inconsistent,
and open to misinterpretation; formal specifications can avoid such issues. Moreover, completely formal
definitions of programming languages may be used to generate prototype implementations, and as a basis
for proving properties of languages and of individual programs.

Although there is broad agreement as to the benefits of formality in language definitions, and although
there are a few examples of successful individual projects (notably the definition of Standard ML [1]),
there is generally little inclination on the part of programming language developers themselves to produce a
complete formal semantics definition. It appears that this is at least partly due to the effort required when
scaling up to larger languages, and when updating a formal semantics to reflect language evolution (see, for
instance, comments by the Haskell designers [2, Page 9]).

New languages typically include a large number of constructs from previous languages, presenting a
major opportunity for reuse of specification components. However, in the absence of a suitable collection of
reusable components, each language would have to be specified from scratch—a huge effort.

1.1. Component-Based Semantics

To improve the practicality of formal semantic definitions of larger languages, the PLanCompS project1

has developed a component-based approach to semantics. In this approach approach, a reusable component
of language definitions corresponds to a fundamental programming construct : a so-called ‘funcon’, which
has a fixed operational interpretation. The formal semantics of each funcon is defined independently, using
I-MSOS [3], a variant of Modular Structural Operational Semantics [4]. For example, the funcon if-true-else
is defined as follows:

Funcon if-true-else(: booleans, :⇒T , :⇒T) :⇒T

Rule if-true-else(true,X ,) ; X

Rule if-true-else(false, ,Y) ; Y

The collection of funcons is open-ended; crucially, adding new funcons does not require changes to the
definition or use of previous funcons.

A component-based semantics of a programming language is defined by translating its constructs to
funcons. For example, a non-strict conjunction with Boolean-valued operands could be translated as follows:

Rule rval JExp1 ‘&&’ Exp2K = if-true-else(rval JExp1K, rval JExp2K, false)

Many funcons can be widely reused in the definitions of different languages. An initial case study [5] gave
a semantics for Caml Light [6] based on a preliminary collection of funcons. The reusability of funcons
has subsequently been validated by several further case studies, some of which are available online [7],
including an update of the Caml Light specification to OCaml Light. These case studies demonstrate
how translation to funcons scales up for medium-sized languages. A further case study (C#) has been
initiated to test how well CBS can cope with a major programming language.

Analogous practices are widely adopted in software engineering: developers rely on reusable components
in the form of packages. However, applications generally rely on the details of particular versions of packages,
and problems can arise when new versions of packages are installed, requiring changes to applications that use
them. In contrast, each individual funcon definition is fixed, and language definitions require changes only
when the language itself evolves. For example, the above translation of the expression “Exp1 ‘&&’ Exp2”

1http://plancomps.org

2

http://plancomps.org

would need changing if conjunction were to become strict, or if its arguments were no longer required to be
Booleans, since the definition of the if-true-else funcon cannot change.

This article presents CBS, a unified meta-language for component-based semantics of programming lan-
guages. CBS includes abstract syntax grammars (essentially BNF with regular expressions), the signatures
and equations for functions translating language constructs to funcons, and the signatures and rules for
defining funcons.

1.2. Executability of CBS

One of the most important properties of a language definition is whether the defined language corresponds
to the intentions of the language developers. In practice, the only way of checking this property is to take
a collection of test programs, and compare the intended behaviour of each program with that determined
by the language definition. Provided that the collection of test programs is sufficiently representative, and
that their behaviour involves all parts of the language definition, such empirical validation can detect most
discrepancies between the intended and the defined behaviour, and establish a high degree of confidence in
the accuracy of the language definition.

In general, however, the program behaviour determined by a language definition is not immediately
apparent. One approach is to carry out formal proofs of the relationship between programs and their
behaviours, based on facts derived from the language definition. A less demanding approach is to derive
an implementation of the language from its definition, and observe the behaviour of programs when run.
When the derived implementation can be generated automatically from the language definition, the latter
is called executable.

We have implemented software tools to make component-based semantic definitions in CBS executable.
CBS definitions are developed and maintained within an IDE (integrated development environment) that
offers syntax highlighting, clickable references between uses of funcons and their definitions, as well as access
to the language-specific tools generated from CBS definitions. From a CBS definition, a user can generate
a parser, a translator for translating abstract syntax trees to funcon terms, and an interpreter for executing
funcon terms. In combination, these generated artifacts form an interpreter for the defined language.

1.3. Novel Features of CBS

This article presents details of the CBS meta-language, and shows how it is used to formally define
languages as well as an extensible library of reusable programming constructs. CBS is novel in its emphasis
on reuse: language definitions are based on an extensible collection of predefined, fixed funcons, which
are themselves defined in CBS. The library of reusable funcons provided with CBS is moderated, and
a new funcon is added to the library only after its definition has been validated through analysis and
experimentation. Language definitions reuse funcons simply by referring to their names; there are no explicit
imports of modules or packages, nor any mention of the files or folders in which definitions are stored. This
is possible because a particular funcon name always refers to the same definition within and across language
definitions. Implemented as a Spoofax project [8], CBS provides name resolution and (clickable) references
between occurrences of funcons and their definitions. The moderated collection of reusable funcons is still
under development, and has been pre-released [7] to encourage discussion and review.

If necessary, language-specific funcons can be defined as part of a language definition. Such funcon
definitions are modified freely, and are not intended for reuse. However, a generalisation of a language-
specific funcon may reveal itself as a useful reusable component.

Funcons are highly modular: each funcon is defined independently, and its definition can be understood
in isolation. Funcons inherit their modularity from the I-MSOS inference rules that define them, which
involve the implicit propagation of several classes of auxiliary semantic entities. The I-MSOS rules used in
CBS are based on a rich variety of such classes. Since funcons are defined with small-step style rules, it is
relatively simple to give the semantics of constructs that involve interleaving, or abnormal control flow such
as delimited continuations, exceptions and return statements.

3

1.4. Contributions and Overview

This paper contributes by:

� Introducing CBS, a novel specification language with an extensible collection of fixed, highly reusable
funcons for modular, component-based language definitions.

� Demonstrating how an existing language is defined using CBS, and how to extend a language definition
in a modular fashion when the language evolves.

� Introducing two new classes of auxiliary semantic entities, along with illustrative examples of their
use.

� Explaining how funcon definitions can be implemented as micro-interpreters, which are as modular as
the definitions from which they are generated.

As a running example, we use CBS to formally define Simple, a small C-like imperative programming
language [9]. The Simple definition involves funcons that are likely to be reused in the definitions of most
programming languages.

The rest of this article is organised as follows. In Sect. 2 we discuss the background for CBS, and related
frameworks. In Sect. 3 we show how to use CBS to define abstract syntax and translation of abstract syntax
trees to funcons. In Sect. 4 we show the definitions of some of the funcons that occur in the translations
of the Simple constructs, and explain the different classes of semantic entities used in these definitions. In
Sect. 5, the Simple language is extended with a delimited control operator to demonstrate the evolution
of CBS language definitions as well as the novel bidirectional signals. In Sect. 6 we give an overview of the
Haskell framework for implementing funcon definitions. In Sect. 7 we present an IDE for developing and
validating CBS language definitions.

Appendix A provides a complete CBS definition of Simple (omitting concurrency constructs) and Ap-
pendix B lists the signatures of all the funcons used in the definition. The CBS definitions of these funcons
are available online [7].

2. Background and Related Work

In this section we discuss the background for CBS, and its relation to other current frameworks for formal
semantics that have a high degree of modularity as well as executable definitions.

2.1. Theoretical Foundations

As mentioned in the Introduction, CBS includes meta-notation for specifying abstract syntax, translation
functions (from abstract syntax to funcons), and funcons. The details of CBS are explained and illustrated
in subsequent sections; here, we give an overview of the foundations of the framework.

Grammars for specifying abstract syntax in CBS are context-free. They are expressed in a variant
of Extended BNF, using standard regular expression notation for sequences, alternatives, and optional
and iterated phrases. Abstract syntax trees (ASTs) correspond to finite terms constructed by operations
corresponding to the alternatives for each sort of phrase. (CBS also supports disambiguation rules for
parsing based on abstract syntax grammars, but that is not significant for its foundations.)

CBS allows multiple translation functions for each sort of AST, defined inductively by mutual recursion.
The foundations of inductive definitions of families of functions are well known.

The rules used to specify behaviour in CBS resemble rules in conventional Structural Operational Se-
mantics [10]. However, their interpretation is based on a combination of value-computation systems [11]
and Implicitly-Modular SOS (I-MSOS) [3]:

� Value-computation systems provide a context-insensitive rewriting relation as well as a transition
relation, and allow transitions to be labelled by multiple entities as in Modular SOS (MSOS) [4]. The
format of the rules ensures that (strong) bisimulation is a congruence, and that it is preserved by

4

disjoint extension. The distinction between values and computations is crucial for allowing nested
patterns in source terms of transition rules (e.g., the constants in the above rules for ‘if-true-else’).
Moreover, the saturation of the transition relation by the rewrite relation gives the effect of weak
bisimulation [12].

� I-MSOS supports the use of conventional SOS notation for transitions, whereas its foundations are
based on MSOS. Extra conciseness is obtained by allowing strictness annotations in funcon signatures,
inspired by the K Framework [9, page 9], reflecting the distinction between values and computations.
Strictness annotations in CBS are interpreted as standard congruence rules for the transition relation,
avoiding the need for the reversible ‘heating’ and ‘cooling’ rewrites used in K.

2.2. The PLanCompS Project

The CBS framework has been developed by PLanCompS. This project was originally funded by EPSRC
in the UK (2011–16), and it is currently continuing as an open international collaboration.

Precursors of CBS include an embedding of component-based semantics in Prolog: language syntax
and its translation to funcons were specified together using Definite Clause Grammars; MSOS transition
rules were written as inference rules, supporting the notation introduced in [4] for transitions with labels,
and their desugaring into Prolog rules was also implemented in Prolog. A similar system, MMT [13], was
implemented using the Maude framework instead of Prolog. Both systems have been used in connection
with teaching operational semantics [14].

PLanCompS developed the Prolog-based meta-notation further to support value-computation rules
and rewrites, as well as typing rules for static semantics. It was used to validate the component-based seman-
tics of Caml Light [5]. PLanCompS subsequently switched from Prolog to Haskell as implementation
language, as described in Sect. 6 and [15].

2.3. Other Semantic Frameworks

Executable semantic definitions have been developed since the early 1970s. Current frameworks support-
ing executable semantics2 include the CoreASM tools [16], Ott [17], PLT Redex [18], the K tools [19],
Maude [20] and MMT [13], Melange [21], and DynSem [22]. Most of these frameworks have a high de-
gree of modularity. An extensive discussion relating several of these other frameworks to component-based
semantics can be found in [5].

Apart from CBS, the only current framework that comes together with an extensive collection of reusable
components is MMT, which is based on an embedding of MSOS in Maude. Case studies using MMT
include a sublanguage of Concurrent ML, and MiniJava. However, MMT was developed before I-MSOS
and value-computation systems, and lack of support for these features in MMT significantly reduces the
conciseness and readability of its funcon definitions.

It is of considerable interest to develop executable definitions of collections of funcons in some of the
other frameworks listed above: that would allow users of those frameworks to specify languages simply by
translation to funcons, as in CBS; and it would allow CBS users to exploit features of those frameworks that
have not been implemented in CBS.

We have already investigated the possibility of defining funcons in K, and of using the K tools to translate
languages to funcons [23]. Similarly to CBS, the K rules for funcons do not require modification when funcons
are combined or new funcons added. However, in contrast to CBS, the K Framework requires configurations
of entities to be defined monolithically. Different collections of funcons may require different sets of entities,
so each translation of a language to funcons needs to be accompanied by a configuration definition. Any
reuse of parts of configurations between different language definitions is left implicit.

The DynSem meta-language [22] has been used3 to specify a semantics for a dynamic demonstration
language called SimpleLanguage.4 One of the present authors has developed a translation of (most of)

2We restrict attention to formal semantic frameworks with established foundations.
3https://github.com/MetaBorgCube/metaborg-sl
4https://github.com/graalvm/simplelanguage

5

https://github.com/MetaBorgCube/metaborg-sl
https://github.com/graalvm/simplelanguage

Pgm : pgm ::= decls
Decls : decls ::= decl decls?

Decl : decl ::= func-decl | vars-decl
FuncDecl : func-decl ::= ‘function’ id ‘(’ ids? ‘)’ block

Ids : ids ::= id (‘,’ ids)?

VarsDecl : vars-decl ::= ‘var’ declarators ‘;’
Declarators : declarators ::= declarator (‘,’ declarators)?

Declarator : declarator ::= id | id ‘=’ exp | id ranks
Ranks : ranks ::= ‘[’ exps ‘]’ ranks?

Block : block ::= ‘{’ stmts? ‘}’
Stmts : stmts ::= stmt stmts?

Stmt : stmt ::= imp-stmt | vars-decl
ImpStmt : imp-stmt ::= block

| exp ‘;’
| ‘if’ ‘(’ exp ‘)’ block (‘else’ block)?

| ‘while’ ‘(’ exp ‘)’ block
| ‘for’ ‘(’ stmt exp ‘;’ exp ‘)’ block
| ‘print’ ‘(’ exps ‘)’ ‘;’
| ‘return’ exp? ‘;’
| ‘try’ block ‘catch’ ‘(’ id ‘)’ block
| ‘throw’ exp ‘;’

Exp : exp ::= ‘(’ exp ‘)’ | value | lexp
| lexp ‘=’ exp | ‘++’ lexp
| ‘−’ exp | exp ‘(’ exps? ‘)’
| ‘sizeOf’ ‘(’ exp ‘)’ | ‘read’ ‘(’ ‘)’
| exp ‘+’ exp | exp ‘−’ exp
| exp ‘∗’ exp | exp ‘/’ exp | exp ‘%’ exp
| exp ‘<’ exp | exp ‘<=’ exp
| exp ‘>’ exp | exp ‘>=’ exp
| exp ‘==’ exp | exp ‘!=’ exp
| ‘!’ exp | exp ‘&&’ exp | exp ‘||’ exp

LExp : lexp ::= id | lexp ‘[’ exps ‘]’
Exps : exps ::= exp (‘,’ exps)?

V : value ::= bool | int | string

Figure 1: CBS specification of Simple abstract syntax (omitting concurrent constructs).

SimpleLanguage to funcons in CBS (available online [7]), and experimented with defining those funcons
in DynSem. DynSem has adopted implicit propagation of semantic entities from I-MSOS. The DynSem
definitions of funcons appear to be just as modular as in CBS. However, DynSem is based on big-step rules,
which do not support specification of interleaving or concurrency.

3. Specifying Programming Languages in CBS

A component-based semantics for a programming language is a compositional translation from the ab-
stract syntax of the language to funcon terms. CBS provides notation for context-free grammars defining
abstract syntax, and notation for introducing translation functions and defining them inductively.

As a running example, we will use the Simple programming language, a small C-like imperative language.
Simple was introduced by Roşu and Şerbănuţă [9] as a pedagogical language for demonstrating the K
Semantic Framework [19]. This section presents illustrative extracts from our CBS definition of Simple,
which is listed in Appendix A. For more detailed discussion and examples of the translation of programming
languages to funcons (though not using CBS), see [5] or [23].

6

3.1. Abstract Syntax Definitions

Our CBS definition of the abstract syntax of Simple is presented in Figure 1. We typeset non-terminal
symbols in sans-serif and variables in Capitalised Italic. Terminal symbols consist of concrete syntax, and are
typeset in ‘bold’ and enclosed in single quotation marks. A ‘?’ suffix applied to a symbol (or parenthesised
sequence of symbols) denotes that the symbol(s) are optional. Each non-terminal may be declared with an
associated variable, which can then be used in translation equations to match phrases of that non-terminal
sort.

3.2. Translation Functions

We specify the semantics of a programming language by defining a set of compositional translation
functions. A translation function comprises a signature and a set of translation equations. The signature
declares the sort of source language phrases that the function translates, and the sort of funcon term that
it produces. For example, the signature of a translation function named val that translates Simple value
phrases into funcon terms computing values is declared as follows:

Semantics val J : valueK :⇒values (1)

The convention in the funcon framework is to use the plural form for funcon type names. We typeset funcons
and their types in bold, and translation functions in italic.

In Simple, the semantics of an expression depends on whether it occurs to the left or right of an
assignment operator (so-called l-expressions and r-expressions). An l-expression should evaluate to an
imperative variable, whereas an r-expression, if it results in a variable, should evaluate to the value currently
assigned to that variable. In the grammar we have grouped the subset of expressions that are valid l-
expressions into a separate non-terminal named lexp, and we define two translation functions for specifying
the semantics of expressions:

Semantics lval J : lexpK :⇒variables (2)

Semantics rval J : expK :⇒values (3)

A signature is accompanied by a set of translation equations. Each equation should be compositional :
translation functions in the right-hand side of an equation should be applied to subphrases of the argument
phrase in the left-hand side of the equation, for example:

Rule rval J‘!’ ExpK = not(rval JExpK) (4)

Rule rval JExp1 ‘+’ Exp2K = integer-add(rval JExp1K, rval JExp2K) (5)

Rule rval J‘read’ ‘(’ ‘)’K = read (6)

The translation of an lexp phrase that occurs as an r-expression is:

Rule rval JLExpK = assigned(lval JLExpK) (7)

where:

Rule lval JIdK = bound(id JIdK) (8)

Rule lval JLExp ‘[’ Exp ‘]’K = checked(index(integer-add(1, rval JExpK), vector-elements(rval JLExpK))) (9)

Notice that dereferencing imperative variables (Rule 7) and identifier bindings (Rule 8) are implicit in
Simple syntax, but are made explicit in the produced funcon term.

Programming languages often contain constructs that are intended to be understood as abbreviations
for other constructs in the language: so-called ‘syntactic sugar’. CBS allows desugaring equations to be
defined. For example, a Simple for-loop can be desugared into a Simple while-loop as follows:

Rule J‘for’ ‘(’ Stmt Exp1 ‘;’ Exp2 ‘)’ ‘{’ Stmts ‘}’K : stmt =

J‘{’ Stmt ‘while’ ‘(’ Exp1 ‘)’ ‘{’ ‘{’ Stmts ‘}’ Exp2 ‘;’ ‘}’ ‘}’K (10)

7

This desugaring equation mirrors the K specification of Simple [9, Page 26], which uses analogous “desug-
aring macros” to achieve the same effect. However, we deviate slightly from the K desugaring, which
(presumably inadvertently) scopes any declarations in the loop body (Stmts) over the for-iterator (Exp2).

Most of the equations presented so far have translated each Simple construct directly into a corre-
sponding funcon. Translating many other Simple constructs is just as straightforward (see Appendix A).
However, often the semantics of a language construct needs to be expressed by a combination of funcons.
For example, here are the equations for two forms of Simple declarator:

Semantics var-declare J : declaratorK :⇒environments (11)

Rule var-declare JIdK = bind(id JIdK, allocate-variable(values)) (12)

Rule var-declare JId ‘=’ ExpK = bind(id JIdK, allocate-initialised-variable(values, rval JExpK)) (13)

One of our aims is that the name of a funcon should be sufficiently indicative of its semantics that a
reader should be able to understand the gist of a translation without referring to the funcon definitions.

3.3. Language-Specific Funcons

Although the funcon library contains over a hundred computational funcons (as well as over a hun-
dred value operations), sometimes the semantics of a language construct cannot be directly expressed by
a straightforward combination of existing funcons. In Simple, declarators for nested arrays are one such
construct. The difficulty is that the rank of an outer array is used to determine the size of each inner array,
but the expression computing that array size should only be evaluated once, with the result shared between
the inner arrays. Roşu and Şerbănuţă also encounter this issue in their K specification [9, page 28]. They
note that this case cannot be handled by desugaring, as that would duplicate the expression (and any side
effects it may contain). Their solution, which they remark is not ideal, is to have their semantic rule for
array declarators generate Simple code that uses a for-loop to iteratively allocate each sub-array. This code
generation happens at run-time, after the size expression has been computed.

We cannot take this approach in the funcon framework: funcon definitions cannot refer to source-language
syntax or invoke translation functions. However, CBS provides a convenient alternative: local funcons can
be specified within a language definition. This is appropriate for funcons that are not considered reusable
enough to be included in the funcon library, but nonetheless capture a useful concept of the language being
defined. (Local funcon definitions are also useful for validating new funcons before adding them to the
library.) Here, we introduce a Simple-specific funcon allocate-nested-vectors that precisely captures the
semantics of nested array declarators, allowing us to define the translation as follows:

Rule var-declare JId RanksK = bind(id JIdK, allocate-nested-vectors[ranks JRanksK]) (14)

The definition of allocate-nested-vectors is included in Appendix A.4.2.

3.4. Remarks

Our definition of Simple omits the concurrent aspects of the language. This is not due to any limitation
of CBS or (I-)MSOS-based specifications – indeed, one author of this article has previously used MSOS to
specify a sublanguage of Concurrent ML [24] – rather it is that development of the funcon library is ongoing
work, and funcons specifying concurrency have not yet been added.

4. Specifying Fundamental Constructs in CBS

Structural Operational Semantics (SOS) [10] is a well-established framework for specifying computational
behaviour, where the behaviour of programs is modelled by labelled transition systems, defined inductively
by axioms and inference rules. To specify the dynamic semantics of funcons, we use small-step rules in a
modular variant of SOS called MSOS [4]. The CBS notation for MSOS rules is based on Implicitly-Modular
SOS (I-MSOS) [3], which provides a notational style similar to conventional SOS. CBS (or I-MSOS) rules
can be understood as syntactic sugar for MSOS rules. We assume the reader is familiar with conventional
SOS rules (e.g. [10]). The rules define two transition relations, for computational steps and context-free

8

rewrites respectively. A formal account of the underlying MSOS framework can be found in [4], of the
I-MSOS rules in [3], and of the two transition relations in [11].

This section presents an informal and example-driven overview of using CBS to specify funcons. The
funcons in this section are selected to demonstrate different aspects of CBS specifications. Appendix B.1
lists the signatures of all funcons used in the Simple language specification; the definitions of those funcons
are available online [7].

4.1. Transition Relations

Consider the following CBS specification of if-true-else:

Rule
B −→ B ′

if-true-else(B ,X ,Y) −→ if-true-else(B ′,X ,Y)
(15)

Rule if-true-else(true,X ,) ; X (16)

Rule if-true-else(false, ,Y) ; Y (17)

This is a fairly conventional SOS specification of a conditional expression, except that there are two transition
relations: ‘−→’ and ‘;’. The former denotes exactly one step of computation, which in general may have
arbitrary side effects and be sensitive to its context. The latter denotes context-free term rewriting, which
cannot involve side effects, and is reflexive and transitive. The distinction facilitates reasoning about funcons
terms. It can also be exploited by a funcon interpreter to provide a more efficient implementation of the
pure transitions. The formal details of these two relations, and the interaction between them, are spelled
out in [11].5

4.2. Funcon Signatures

CBS requires each funcon to have a declared signature. For example, the signature for if-true-else is
declared as follows:

Funcon if-true-else(: booleans, :⇒T , :⇒T) :⇒T (18)

The result of the funcon, and each funcon parameter, has a sort. A funcon sort is either a value sort (a
type), or a computation sort (a type prefixed by the ‘⇒’ symbol, which is pronounced “computes”). When
the result sort is a value sort, then the funcon is a value constructor, and the funcon will not have any
operational rules.

Additionally, polymorphic funcons may have signatures that contain type variables. In the case of
if-true-else, the type variable T is used to express that the second and third arguments compute values of
the same type, and that the funcon as a whole also computes a value of that type.

Notice that the first parameter has a value sort. This does not mean that if-true-else is limited to being
applied to literal Boolean values; rather, value-sort annotations play a special role in funcon signatures, as
we will now describe.

When a parameter has a value sort, we say that the funcon is strict in that argument. If a funcon is
strict in all its arguments, then we say that the funcon is strict. For each strict parameter in a funcon’s
signature, a congruence rule is implicitly generated for that argument.

A congruence rule has a single premise consisting of a computation step for the strict argument. The
target of the rule’s conclusion is the same as the source of the conclusion, except that the argument subterm
is replaced with the updated subterm from the target of the premise. For example, Rule 15 is the congruence
rule implicitly generated by the signature of if-true-else (18), and thus that rule can be omitted. A funcon
with congruence rules generated for several arguments is non-deterministic with respect to the order in which
these arguments are evaluated: the congruence rules admit all possible interleavings. This technique for
automatically generating congruence rules was inspired by the strictness annotations in the K Framework [9,
page 9].

5 In [11] the relations ‘;’ and ‘−→’ are written ‘⇒’ and ‘→’, respectively.

9

4.3. Values and Types

CBS provides a rich suite of primitive and composite values, and operations on those values. The
available operations include arithmetic, conversions between types, and insertion/deletion from collections,
among others. The signatures of all value operations used in this article are listed in Appendix B.2. Some
familiar types of values are left unspecified, for example integers, floats and maps. In these cases the
semantics of value operations is implemented manually in a library provided as part of the Haskell funcon
framework (see Sect. 6.5).

The names of types are themselves funcon values, and belong to the type types. All values, including
type names, are members of the type values (i.e. values is a supertype of integers, floats, etc.). The type
values is frequently used when specifying funcons that can take arbitrary values as arguments.

New data types can be introduced. For example, the data types booleans, and null-type are defined as
follows:

Datatype booleans ::= true | false (19)

Datatype null-type ::= null (20)

The type null-type is the unit type of the funcon library, and is used as the result type of commands.
When specifying a funcon, it may be necessary to restrict a rule to be only applicable when some of

its arguments are values (rather than computations). This can be achieved by annotating the appropriate
arguments with ‘: T ’ (or a more specific type).

Alternatively, arguments in rules can be restricted to values by using patterns. A pattern consists of a
value constructor, with sub-patterns to match the arguments of the constructor (if any). Those sub-patterns
may include meta-variables. For example, rules 16 and 17 have the true and false constructors as the first
argument, respectively, restricting each rule to that specific argument.

Following [11], the only funcons permitted in CBS patterns are value constructors. This ensures that
the internal structure of a computation cannot be observed: the only way to observe anything about a
computation is to execute it. Conversely, CBS values can be observed, but must be stable: values do not
perform computation steps.

4.4. Semantic Entities

Formal specifications of programming-language constructs typically make use of auxiliary semantic enti-
ties to model computational side effects. Common examples of such entities include environments, stores or
output sequences.6 In an SOS specification, such semantic entities are explicit arguments of transition rela-
tions, and thus they must appear in every transition formula of that relation. For example, in a conventional
SOS specification, Rule 15 could well have been written as follows:

ρ ` 〈B , σ〉 α−−→ 〈B ′ , σ′〉
ρ ` 〈if-true-else(B ,X ,Y) , σ〉 α−−→ 〈if-true-else(B ′,X ,Y) , σ′〉

(21)

ρ, σ, σ′ and α are all variables. ρ is the environment in which the term is executing, σ and σ′ are the
state of the store before and after the transition, and α is the output sequence being emitted. Observe that
both the environment and output are the same in both the premise and conclusion. This would typically be
understood as propagating the environment unmodified from the conclusion to the premise, and propagating
the output unmodified from the premise to the conclusion. The use of σ and σ′ would typically be understood
as propagating the initial store unmodified from the source of the conclusion to the source of the premise,
and propagating the resulting store from the target of the premise to the target of the conclusion. While
this rule does not access or modify the store directly, the computation step in the premise may do so.

This systematic propagation of semantic entities is common to many rules in SOS specifications. The
key feature of I-MSOS is that any semantic entities that are not mentioned in a rule are implicitly propagated

6The use of environments and stores in SOS dates back to 1981, when they were adopted by Plotkin [10]. But these were
simply first-order versions of the corresponding entities used in denotational semantics since the early 1970s (foreshadowed in
Strachey’s work on CPL [25], and his lecture notes from 1967 [26]).

10

between the premise(s) and conclusion, systematically following the propagation schemes described above.
This allows semantic entities that are not affected by the programming construct being specified to be
omitted from the rule. Thus, rather than Rule 21, in CBS we are able to write the much more concise
Rule 15.

Moreover, beyond just notational convenience, implicit propagation brings a key modularity benefit: new
semantic entities can later be added without requiring any change to the previously given rules. This high
degree of modularity is what allows the collection of funcons to be open-ended, while still ensuring that once
a funcon is added to the collection, its CBS definition need never be updated.

To allow semantic entities to be implicitly propagated, they must be classified according to their desired
propagation scheme. CBS supports five classes of semantic entity, each with its own notation and system
of implicit propagation: contextual, mutable, input, output and control-flow. The input and control-flow
entities are novel: in prior publications on MSOS or funcons (e.g. [4, 5, 24, 27]), only contextual, mutable
and output entities were provided, a more limited form of control-flow was achieved by using output entities,
and program input was represented by mutable entities.7

CBS allows multiple entities of each class, so each entity is tagged with a distinguishing name. The
notation for a CBS computation step using one entity of each of the five classes is as follows (writing the
classification names as placeholders for the actual entity names):

Rule contextual() ` 〈 ,mutable()〉 input?() control-flow() output!()−−−−−−−−−−−−−−−−−−−−→ 〈 ,mutable()〉 (22)

Note that the ‘;’ relation never involves semantic entities.
We will now present examples of each class of semantic entity, and of funcons whose semantics require

them.

4.4.1. Contextual Entities

Contextual entities model contextual information that is available to a computation step, but which
cannot be modified by that computation step. In a CBS rule, unmentioned contextual entities are implicitly
propagated from the transition in the conclusion to the transition in any premises.

The classic example of a contextual entity is an environment containing bindings for program identifiers.
We declare such an entity in CBS as follows:

Entity environment(: environments) ` −→ (23)

Here, environment is the name of the entity being declared, environments is the type of value contained in
the entity. The type environments is a mapping from identifiers to optional values:

Funcon environments :⇒types (24)

Rule environments ; maps(identifiers, values?) (25)

A ‘?’ suffix on a funcon type (or type variable) denotes an option type; that is, zero or one values of that
type. An absent value in an environment represents that a binding is present, but inaccessible.8

Let us consider some funcons that use this entity. The funcon bound(I) evaluates to the value bound to
the identifier I in the current environment. A common use of this funcon is when specifying the translation
of occurrences of identifiers in expressions (e.g. in Eq. 8). The definition of bound for non-recursive bindings
is as follows:9

7In prior publications, contextual, mutable and output entities have appeared under a variety of names, most commonly
read-only, read-write and write-only, respectively.

8For example, in C] a local variable is in scope in its entire enclosing block (shadowing any outer variable of the same
name), but it is not accessible until after its point of declaration.

9See [7] for the generalisation to recursive bindings.

11

Funcon bound(: identifiers) :⇒values (26)

Rule
lookup(ρ, I) ; V : values

environment(ρ) ` bound(I : identifiers) −→ V
(27)

Rule
lookup(ρ, I) ; ()

environment(ρ) ` bound(I : identifiers) −→ fail
(28)

The conclusions of Rules 27 and 28 are computation steps, not rewrites, because they refer to a semantic
entity. The notation ‘()’ denotes the absence of a CBS value.

The funcon scope(ρ,X) adds the bindings in ρ to the current environment for the purposes of executing
the subterm X :

Funcon scope(: environments, :⇒T) :⇒T (29)

Rule
map-override(ρ1 , ρ0) ; ρ2 environment(ρ2) ` X −→ X ′

environment(ρ0) ` scope(ρ1 : environments,X) −→ scope(ρ1 ,X ′)
(30)

Rule scope(: environments,V : T) ; V (31)

Recall that a funcon signature containing any strict arguments implicitly generates congruence rules for
evaluating those strict arguments. Thus the first argument to scope could be a funcon term that computes
an environment. This is indeed the case in Simple, where declarations involve allocating and initialising
imperative variables (see Sect. 3.2).

Another example of a contextual entity is given-value:

Entity given-value(: values?) ` −→ (32)

This entity is used for a very simple form of binding and scoping. It holds only a single value. The use
of given-value is sufficiently common that we give it special treatment in funcon signatures. A sort S⇒T
represents a term that, in a context where the given value has type S , computes a value of type T . To
access the value, we use the funcon given, which is analogous to bound:

Funcon given : T⇒T (33)

Rule given-value(V : values) ` given −→ V (34)

Rule given-value() ` given −→ fail (35)

To provide a value to a subterm via the given-value entity, we use the funcon give, which is analogous to
scope:

Funcon give(: S , : S⇒T) :⇒T (36)

Rule
given-value(V) ` X −→ X ′

given-value() ` give(V : S ,X) −→ give(V ,X ′)
(37)

Rule give(: S ,V : T) ; V (38)

A common use of give and given is to model passing arguments to a function, as we shall discuss in
Sect. 4.5.

4.4.2. Mutable Entities

Mutable entities model persistent information that can be modified by a computation step: the resulting
value of a mutable entity after a step is the initial value of the mutable entity for the next step. In a CBS
rule, unmentioned mutable entities are implicitly propagated unmodified.

The classic example of a mutable entity is a store containing the values of imperative variables. We
declare such an entity in CBS as follows:

Entity 〈 , store(: stores)〉 −→ 〈 , store(: stores)〉 (39)

12

The type stores is a mapping from locations (locations) to optional values, where a mapping to an absent
value represents a location without an assignment.

Funcon stores :⇒types (40)

Rule stores ; maps(locations, values?) (41)

A variable wraps a location and the type of values that can be assigned to that location.

Datatype variables ::= variable(: locations, : types) (42)

To assign a value to a variable in the store, we use the funcon assign:

Funcon assign(: variables, : values) :⇒null-type (43)

Rule

and(is-in-set(L, dom(σ)), is-in-type(V ,T)) ; true
map-override({L 7→ V }, σ) ; σ′

〈assign(variable(L : locations,T : types),V : values) , store(σ)〉 −→ 〈null , store(σ′)〉 (44)

Rule
and(is-in-set(L, dom(σ)), is-in-type(V ,T)) ; false

〈assign(variable(L : locations,T : types),V : values) , store(σ)〉 −→ 〈fail , store(σ)〉 (45)

The notation { 7→ } constructs map values. The value assigned to a variable is retrieved using the funcon
assigned (e.g. in Eq. 7):

Funcon assigned(: variables) :⇒values (46)

Rule
lookup(σ,L) ; V : values

〈assigned(variable(L : locations,T : types) , store(σ)〉 −→ 〈V , store(σ)〉 (47)

Rule
lookup(σ,L) ; ()

〈assigned(variable(L : locations,T : types) , store(σ)〉 −→ 〈fail , store(σ)〉 (48)

4.4.3. Output Entities

Output entities model emitted output. An output entity is a sequence of values, and the sequences from
adjacent computation steps are implicitly concatenated, with non-terminating computations potentially
resulting in infinite output. If an output entity is not mentioned in a rule, it is implicitly propagated from
the premise (if any) to the conclusion.

An example of an output entity is the standard-output channel. We declare output entities with an ‘!’
suffix:

Entity
standard-out!(:values∗)−−−−−−−−−−−−−→ (49)

The standard-out entity holds a sequence of values. A funcon for printing a value to the standard-out entity
can be defined as follows:

Funcon print(: values∗) :⇒null-type (50)

Rule print(V * : values∗)
standard-out!(V *)−−−−−−−−−−→ null (51)

The star in ‘V *’ and the annotation ‘: values∗’ denote that ‘V *’ is a placeholder for zero or more values.

4.4.4. Input Entities

Input entities model consumed input. Like output entities they form a sequence of values, but this
represents the input consumed by a computation step, not the output emitted.

An example of an input entity is the standard-input channel. We declare input entities with a ‘?’ suffix:

Entity
standard-in?(:values∗)−−−−−−−−−−−−→ (52)

The standard-in entity holds a sequence of values, with null representing the end of input. A funcon for
reading a single value from the standard-in entity can be defined as follows:

13

Funcon read :⇒values (53)

Rule read
standard-in?(V :∼null-type)−−−−−−−−−−−−−−−→ V (54)

Rule read
standard-in?(null)−−−−−−−−−→ fail (55)

The notation ‘∼’ is type complement; that is, Rule 54 is applicable when the input value is not null.
The Haskell funcon framework discussed in Sect. 6 supports simulated and interactive input, where the

input values are provided before execution begins, or given by the user during execution, respectively.

4.4.5. Control-flow Entities

Control-flow entities model changes in the control-flow of the program. In CBS rules, control-flow entities
contain signals that communicate between two rules in a derivation tree. Propagation of control-flow entities
is not directed ; rather, any signals in unmentioned control-flow entities are implicitly synchronised between
the premise and conclusion of a rule. Unlike input and output entities, a control-flow entity does not
accumulate a sequence of values. Instead, it contains either a present signal, which carries a value, or an
absent signal, which is empty.

The classic example of a control-flow change is abrupt termination of a computation. The abrupted
control-flow entity indicates abrupt termination when it appears with value V in a label on a transition.
The type of value is used to indicate different forms of abrupt termination, which include thrown exceptions,
returning from a function, or breaking from a loop. The absence of V indicates the absence of abrupt
termination.

Entity
abrupted(:values?)−−−−−−−−−−→ (56)

Abrupt termination is initiated using abrupt, which emits a signal in the abrupted entity:

Funcon abrupt(: values) :⇒empty-type (57)

Rule abrupt(V : values)
abrupted(V)−−−−−−−→ stuck (58)

Funcons for throwing exceptions, for example, are then defined as follows:

Datatype throwing ::= thrown(: values) (59)

Funcon throw(: values) :⇒empty-type (60)

Rule throw(V : values) ; abrupt(thrown(V)) (61)

To handle thrown exceptions, we use a funcon called handle-thrown:

Funcon handle-thrown(: S⇒T , : X⇒T) : S⇒T (62)

Rule
X

abrupted(thrown(V))−−−−−−−−−−−−→

handle-thrown(X ,H)
abrupted()−−−−−−→ give(V ,H)

(63)

Rule
X

abrupted(V : ∼throwing)−−−−−−−−−−−−−→ X ′

handle-thrown(X ,H)
abrupted(V)−−−−−−−→ handle-thrown(X ′,H)

(64)

Rule
X

abrupted()−−−−−−→ X ′

handle-thrown(X ,H)
abrupted()−−−−−−→ handle-thrown(X ′,H)

(65)

Rule handle-thrown(V : T ,) ; V (66)

The first argument of handle-thrown is a term to be evaluated, and the second argument is a term that
serves as an exception handler. If the step on the first argument emits a thrown signal with value V ,
Rule 63 invokes the handler H by giving it V . Other forms of abrupt termination are not handled, and are

14

propagated by Rule 64. Rule 65 is similar to a congruence rule for the first argument, except that the step
on the argument must not emit a thrown signal. If the first argument of handle-thrown is a value, Rule 66
ignores the handler and returns that value.

As another example, a funcon representing returning from within a function is defined as follows:

Datatype returning ::= returned(: values) (67)

Funcon return(: T) :⇒empty-type (68)

Rule return(V : T) ; abrupt(returned(V)) (69)

We then define a funcon handle-return that ‘handles’ returned values by evaluating its argument and gives
V if its argument terminates normally with value V , or abruptly for reason returned(V). This is analogous
to handle-thrown, so we omit the rules. Further examples of using control-flow entities are in Sect. 5.

4.5. Functions and Closures

Semantic entities hold values, not arbitrary computation terms. However, sometimes we want to record
an unevaluated computation; for example, we need to represent procedural abstractions as values in the
environment.

The value constructor abstraction takes a computation as argument and constructs a value:

Funcon abstraction(: S⇒T) : abstractions(S⇒T) (70)

Procedural abstractions are modelled using the functions type defined below.

Datatype functions(S ,T) ::= function(: abstractions(S⇒T)) (71)

We do not merge functions and abstractions into a single funcon, because we also model other concepts
using abstractions, including patterns (which compute bindings), thunks (delayed computations), and con-
tinuations (which we discuss in Sect. 5).

We model argument passing using the given-value entity: given refers to the argument (which could be
a tuple of arguments) inside the function body at the definition site of the function, and give supplies the
argument at the call site of the function. Function application is modelled by extracting the computation
from the function value, and giving an argument to that computation:

Funcon apply(: functions(S ,T), : S) :⇒T (72)

Rule apply(function(abstraction(X)),V : S) ; give(V ,X) (73)

Note that we are not saying that we translate occurrences of Simple identifiers in a function body to the
funcon given. Rather, we use given to refer to the argument when expressing the semantics of parameter
binding. The bindings are then scoped over the function body, using scope. (See Appendix A.4.3.)

This treatment of functions leads to dynamic scoping for identifiers, as the bound funcon is defined
such that it looks up the identifier in the environment where it is evaluated. To support static scoping of
identifiers we use the funcon closed, which ensures that its computation argument is evaluated without any
non-local bindings:

Funcon closed(:⇒T) :⇒T (74)

Rule
environment(map-empty) ` X −→ X ′

environment() ` closed(X) −→ closed(X ′)
(75)

Rule closed(V : T) ; V (76)

The closure of a computation X is an abstraction with a closed body derived from X and with the current
environment available as local bindings:

Funcon closure(: S⇒T) :⇒abstractions(S⇒T) (77)

Rule environment(ρ) ` closure(X) −→ abstraction(closed(scope(ρ,X))) (78)

The computation X will thus be evaluated with respect to the environment where the closure is formed, not
the environment where the closure is evaluated.

15

4.6. Remarks

We believe language definitions written with CBS are relatively easy to comprehend and accessible to
a wide audience. The process of defining the syntax of a language with (a variant of Extended) BNF
is ubiquitous and well-understood. Funcon translations are defined through simple translation equations
familiar especially to users experienced in denotational semantics. The I-MSOS rules that define funcons
are similar to standard SOS rules, with the difference that that auxiliary semantic entities may be omitted,
making specifications more concise. Moreover, for understanding the behaviour of an individual funcon it is
unnecessary to know the details of the implicit propagation rules of the entity classes. Most importantly, to
define languages in CBS, awareness of the precise formal semantics of the used funcons is not required: an
informal explanation suffices, which is provided in the form of inline documentation (available online [7]).

The library of reusable funcons contains funcons that capture many types of constructs found in program-
ming languages across language paradigms. For example, the funcons give semantics to different evaluation
strategies in procedural and functional programming, algebraic data types and patterns in functional pro-
gramming, classes and inheritance in object-oriented programming, as well as GOTO-statements and other
forms of abnormal control flow.

Funcons have not yet been developed for all aspects of existing programming languages. For example,
the library of funcons currently contains funcons for interleaving (and its prevention), and for interactive
input and output, but not for threads, synchronisation, or distributed processes. Adding appropriate en-
tities for use in CBS rules specifying the semantics of such constructs should be straightforward, based on
previous experience with using MSOS for Concurrent ML [24] and on the many examples of process algebra
specifications provided in the literature (the latter relies on the close relationship between small-step MSOS
and the conventional framework of transition system specifications). Deciding whether to include funcons
for synchronous or asynchronous communication (or both) may be more difficult, but case studies can be
carried out to inform such choices. The main difficulties seem likely to arise in connection with executability
and validation: interpreter generation will need to ensure that CBS rules are applied fairly, and model
checking may be needed to determine whether all intended computations are possible. The K framework
addressed those issues [9] by annotating transition rules (essentially identifying different states); it is unclear
whether we will be able to adopt a similar approach for interpreter generation based on CBS rules.

In general, if funcons for particular language constructs cannot be defined in CBS as it is presented in
this paper, we may extend the current collection of entity classes. Adding new entities would not affect the
definitions of existing funcons, assuming that the new entities are implicitly propagated when not mentioned
in rules.

We have only considered the dynamic semantics of funcons here. Together with Churchill and Torrini,
two of the present authors have previously explored specifying the static semantics of funcons [5]. Following
that approach, we intend to add facilities for declaring typing rules in CBS, and to generate static analyses
from those rules; but this remains as future work.

5. Case Study: Delimited Continuations

In Sect. 3, we discussed using CBS to specify the semantics of an existing language (Simple). In this
section, we demonstrate the ease with which an existing CBS language specification can be extended, using
the addition of a delimited control operator as a small case study. We also use this case study to demonstrate
how advanced forms of control flow can be specified in CBS.

5.1. Extending Simple with Delimited Continuations

First we extend Simple with syntax for two new forms of statement:

ImpStmt : imp-stmt ::= . . . | ‘shift’ id block | ‘resume’ id ‘;’

Informally, the desired semantics of ‘shift Id Block ’ is that the remainder of the enclosing block is captured
as a delimited continuation, bound to Id , and scoped over Block . Then, Block is executed instead of the

16

function main() {
print (1);
{

print (2);
shift k { resume k; print (3); resume k; }
print (4);
}
print (5);
}

Figure 2: A program that prints the sequence ‘1 2 4 3 4 5’.

remainder of the enclosing block. During execution of Block , the captured continuation can be executed
zero or more times, which is achieved by invoking ‘resume Id ’. This shift statement is essentially Danvy
and Filinski’s [28] shift operator, except formulated as a statement rather than an expression. See Fig. 2 for
an example.

The funcon repository contains several funcons for expressing delimited control (we defer the accompa-
nying rules to Sect 5.2):

Funcon control(: functions(continuations(T ,S),S)) :⇒T (79)

Funcon delimit-cc(:⇒T) :⇒T (80)

Funcon resume-continuation(: continuations(S ,T), : S) :⇒T (81)

The control and delimit-cc funcons correspond closely to Felleisen’s [29] control and prompt operators.
The only difference is that captured continuations have type continuations, which is distinct from the type
functions. The resume-continuation funcon is analogous to apply (Rules 72 & 73).

We formally define the semantics of shift and resume by translation to funcons. In (extended) Simple,
blocks act as delimiters when determining the scope of a captured continuation. The existing translation of
blocks (from Appendix A.3) is simply to execute the statements within the block:

Rule exec J‘{’Stmts‘}’K = exec JStmtsK (82)

We therefore modify this equation to also insert a continuation delimiter:

Rule exec J‘{’Stmts‘}’K = delimit-cc(exec JStmtsK) (83)

The control funcon captures the current continuation in a similar manner to Simple’s shift statement.
However, Simple’s shift statement has an explicit binder as part of the syntax, whereas control takes a
function as its argument and applies that function to the captured continuation. To bridge this mismatch,
the translation of a shift statement to funcons explicitly constructs a function that binds the argument (the
continuation) to the identifier:

Rule exec J‘shift’ Id BlockK =
control(function(closure(scope(bind(id JIdK, given), exec JBlockK)))) (84)

The signature of the control funcon indicates that it computes a value, and thus, in general, the captured
continuation may include an enclosing expression. Consequently, the resume-continuation funcon requires
a value to plug the hole in the expression where control occurred. Conversely, Simple’s shift is a statement,
and thus does not require a value to resume. To bridge this mismatch, the translation of a resume statement
inserts a null value:

Rule exec J‘resume’ Id ‘;’K = resume-continuation(bound(id JIdK), null) (85)

This serves as a representative example of how the definition of a language feature often proceeds. The
funcon repository does not provide a funcon for every possible variation of every possible language feature.

17

Rather, it provides funcons that embody core concepts, and then the translation expresses the semantics of
the language feature as a combination of those funcons.

This completes the addition of delimited continuations to Simple. We only needed to declare the new
syntax, add translation equations for that syntax, and modify one existing translation equation. A cynical
reader may consider that we have ‘cheated’: the complexity of the semantics of shift is in the definition
of control, delimit-cc, and resume-continuation, and we have not included these definitions. But this
is precisely our aim: by providing reusable components with pre-specified semantics, the effort required to
formally specify a programming language is significantly reduced by moving the majority of the specification
work into those reusable components.

5.2. Defining Delimited Control Funcons

We now present the definitions of the funcons that we used to specify the semantics of Simple’s delimited
continuations. These are based on the I-MSOS definitions of similar funcons previously presented by two
authors of this article, together with Torrini [30]. However, the control-flow entities provided by CBS
facilitate a simpler specification than was possible in that prior work.

First we define the continuations type in terms of abstractions, in a similar manner to functions
(Rule 71):

Datatype continuations(S ,T) ::= continuation(: abstractions(()⇒T)) (86)

Next we need to express how control captures the current continuation. The key idea is to use control-flow
entities to communicate between control and its enclosing delimit-cc, in a similar manner to how abrupt
termination is modelled (Sect. 4.4.5). We define control to emit a signal containing the function that is to
be applied to the continuation, and leave a hole in the term:

Rule control(F : functions(,))
control-signal(F)−−−−−−−−−→ hole (87)

The delimit-cc funcon receives the control-signal, constructs the continuation, and applies the received
function to that continuation:

Rule
X

control-signal(F)−−−−−−−−−→ X ′

delimit-cc(X)
control-signal()−−−−−−−−→ delimit-cc(apply(F , continuation(closure(X ′))))

(88)

We also need rules for when the body of delimit-cc does not emit a control-signal, and for when it has been
evaluated to a value:

Rule
X

control-signal()−−−−−−−−→ X ′

delimit-cc(X)
control-signal()−−−−−−−−→ delimit-cc(X ′)

(89)

Rule delimit-cc(V : T) ; V (90)

The resume-continuation funcon takes a value as its second argument and ‘plugs’ it into the hole in the
continuation. This is defined as follows:

Rule
X

plug-signal(V)−−−−−−−−→ X ′

resume-continuation(continuation(abstraction(X)),V : T)
plug-signal()−−−−−−−→ X ′

(91)

Funcon hole :⇒values (92)

Rule hole
plug-signal(V)−−−−−−−−→ V (93)

18

5.3. Remarks

The use of resume-continuation and hole is the main simplification relative to the specification in [30].
The key enabling feature provided by CBS is control-flow entities that allow signals to synchronise between
two funcons, thereby allowing information to flow in either direction. Thus plug-signal can transmit a value
into a sub-term, and control-signal can transmit a value to an enclosing delimiter. In [30], output entities were
used to simulate outward flowing control-flow signals (which worked rather well), and contextual entities
were used to simulate inward flowing control-flow signals (which was undesirable). The main problem with
the latter is that a premise cannot directly detect whether the contents of a contextual entity are used in a
computation step, so it is not straightforward to enforce that a plug-signal is received (this is necessary in
the presence of non-deterministic evaluation order and multiple occurrences of control). This was worked
around by tagging each hole with a special kind of identifier, and then maintaining an auxiliary environment
that accumulated all the values to be plugged into those holes. This was circuitous, and detracted from the
clarity of the specification.

6. Executing Funcon Terms

A CBS language definition is intended to be executable so that a prototype implementation of a language
can be generated from its definition. Each of the three aspects of a CBS definition – abstract syntax
grammars, semantic translation functions, and the I-MSOS rules for funcons – generates a component of
the prototype implementation. In Sect. 7 we discuss the tools involved in generating and connecting the
components responsible for parsing a program and translating the program to a funcon term. In this section
we discuss some of the features of the funcon term interpreters generated in Haskell from CBS funcon
definitions by a compiler for CBS. In particular, we explain that the generated Haskell fragments are as
modular as the funcon definitions that they implement. As a result, generated Haskell modules compose
freely to form interpreters for arbitrary funcon collections and can be reused without recompilation. The
implementation of the reusable funcon library is provided alongside CBS, enabling interpretation for all
languages specified without language-specific funcons. Users employ the CBS compiler only to generate
implementations for any language-specific funcons. We also discuss a suite of values built-in to CBS and
the development of implementation-specific funcons and unit-tests with configuration files.

6.1. Funcon Modules

The Haskell funcon framework [31] provides three Haskell modules:

� Funcons.EDSL exports helper functions that are used in the implementation of funcons. For example,
to modify or access semantic entities, or to test side-conditions.

� Funcons.Tools exports helper functions for composing funcon modules. A funcon module is a Haskell
module exporting three collections containing information about funcon, data type, and semantic-
entity definitions, respectively. Each funcon module exports an interpreter, which is aware only of the
components defined in the module.

� Funcons.Core, a funcon module containing the implementation of the funcons in the reusable library.
This includes all the funcons mentioned in this paper except the Simple-specific funcon allocate-
nested-vectors. The implementations have been generated once and for all.

Funcon modules have two noteworthy properties. Firstly, they are independent and do not need to
import other funcon modules; they only need to import Funcons.EDSL, Funcons.Operations (see Sect. 6.5)
and Funcons.Tools. Secondly, funcon modules can be freely composed: a module implementing funcons A
and a module implementing funcons B are composed without restrictions to form a module implementing
funcons A and B. CBS files are thus compiled individually, and the resulting modules can be composed
as needed. Moreover, once a module has been compiled, it can be linked as needed, without requiring
recompilation. This makes it possible to deliver the implementation of the reusable funcon library as an

19

import Funcons.Tools (mkFreshInterpreter)
import Funcons.EDSL

import Funcons.Operations hiding (Values, libFromList)

import Funcons.Tools

main = mkMainWithLibraryEntitiesTypes funcons entities types

entities = []

types = typeEnvFromList
[("returning",DataTypeMembers "returning" []

[DataTypeConstructor "returned"

[TName "defined-values"] (Just [])])]

funcons = libFromList
[("environments",NullaryFuncon stepEnvironments)
, ("scope",NonStrictFuncon stepScope)
, ("returning",NullaryFuncon stepReturning)
, ("returned",StrictFuncon stepReturned)]

Figure 3: Excerpt from a funcon module for a contrived collection of CBS funcon specifications.

isolated package. Enforcing these properties has been a leading principle in the development of the Haskell
funcon framework. For the purpose of illustration we have compiled a contrived CBS file containing the
definitions of environments, scope, and returning (see Rules 25, 29, and 67). Figure 3 shows a fragment
of the funcon module generated from this file. It omits the functions that implement the behaviour of the
funcons, e.g. stepEnvironments.

We represent funcon terms using strings for the names of funcons in a data type, with generic constructors
for funcon application, constants (funcons with no arguments), and literals (built-in values and types).
A funcon module contains a funcon library mapping funcon names to their implementation (funcons in
Figure 3). Similarly, we use maps to associate the names of semantic entities with values (in Figure 3,
entities associates semantic entities with default values). Evaluating funcon terms can thus cause runtime
errors because it involves searching in maps and there are no static guarantees that the required entries are
available. By using strings in these ways we have gained the desired modularity, but lost static guarantees
provided by a Haskell compiler. Instead, we rely on the tools explained in Sect. 7 to ensure that all mentioned
funcons and entities are defined and that their code is indeed generated and included in the final interpreter.

An alternative approach would have been to use the Data types à la carte technique [32] to combine
funcons defined in separate modules into a single data type with a constructor for each funcon. Having
individual Haskell constructors for each funcon would have provided stronger correct-by-construction guar-
antees about the well-formedness of funcon terms. Several authors [33, 34] have used this technique for the
specific purpose of defining modular programming-language constructs in a Haskell setting.

Types are either built-in to CBS (e.g. integers and values), provided as reusable components (e.g. envi-
ronments and identifiers), or defined as part of a language definition. A funcon module generated from a
CBS file provides a funcon implementation for each type and data-type constructor defined in the file (see
funcons in Figure 3). In addition, a funcon module provides a type environment which relates the data
types to their constructors (types in Figure 3). An interpreter uses the type environment for dynamic type
checking.

6.2. Executable Funcons

In Sect. 4.4 we described how each class of semantic entity is implicitly propagated in CBS rules. We
achieve implicit propagation in funcon code by working in a monad, and defining its return and bind
operations such that they implement the desired implicit propagation. A contextual entity corresponds to a
reader monad, a mutable entity corresponds to a state monad, and an output entity corresponds to a writer
monad [35]. Input entities correspond to a restricted form of state monad (input is always consumed in

20

stepScope fargs =
evalRules [rewrite1] [step1 , step2]
where

rewrite1 = do
let env = emptyEnv
env ← fsMatch fargs [PAnnotated PWildCard (TName "environments")

,PAnnotated (PMetaVar "V") (TName "values")] env
rewriteTermTo (TVar "V") env

step1 = do
let env = emptyEnv
env ← lifted fsMatch fargs

[PAnnotated PWildCard (TName "environments")
,PMetaVar "X"] env

env ← getInhPatt "environment" (VPMetaVar "Rho0") env
env ← lifted sideCondition (SCPatternMatch (TApp "map-override"

[TVar "Rho1",TVar "Rho0"]) (VPMetaVar "Rho2")) env
env ← withInhTerm "environment" (TVar "Rho2") env

(premise (TVar "X") (PMetaVar "X’") env)
stepTermTo (TApp "scope" (TTuple [TVar "Rho1",TVar "X’"])) env

step2 = do
let env = emptyEnv
env ← lifted fsMatch fargs [PMetaVar "X1",PMetaVar "X2"] env
env ← premise (TVar "X1") (PMetaVar "X1’") env
stepTermTo (TApp "scope" (TTuple [TVar "X1’",TVar "X2"])) env

Figure 4: Haskell code implementing scope.

order, and each input can only be consumed once), and control-flow entities correspond to a combination
of a reader and a writer monad (except that only one signal may be emitted in each control-flow entity at
once; they do not form a monoid).

We define a data type IMSOS that combines the five semantic-entity classes (we omit the monad in-
stance):

data IMSOS a = IMSOS (MReader → MState → (Either Exception a,MState,MWriter))
data MReader = MReader Contextual ControlFlow
data MState = MState Mutable Input
data MWriter = MWriter ControlFlow Output
data Exception = ...

Each semantic-entity class such as Contextual is implemented by a mapping from entity names to values.
This avoids the need to use monad transformers [36] to add additional entities: our IMSOS monad is fixed.
Using Haskell’s native support for monads, we can generate human-readable funcon code that only refers
to the entities explicitly mentioned in the funcon definition. As a consequence, the code of a funcon is as
modular and compositional as its CBS definition. Moreover, the code is only regenerated if the CBS file
in which the funcon is defined is regenerated. Figure 4 gives an indication of generated funcon code. It
contains the implementation of scope, which was omitted from Figure 3.

The code for a funcon is formed by one sequence of statements in the IMSOS monad for every rule of
the funcon. The code of Figure 4 shows three rules. The rules rewrite1 and step1 correspond to Rules
31 and 30, respectively. The rule step2 is the congruence rule generated because the signature of scope is
strict in its first parameter. The statements can access or modify semantic-entity values, perform pattern
matching and substitution, and test side conditions and premises. The statements generated for a rule may
raise several kinds of internal exceptions, each representing a particular reason why the rule implemented by
those statements is not applicable. For example, a funcon can be applied to incorrect arguments (e.g. if the

21

first argument of if-true-else was not a Boolean), pattern matching may have failed, or a premise may not
hold. To handle failure, the IMSOS monad contains the Exception component and backtracking is used to
try an alternative rule. If no rules are applicable to a particular term, i.e. all alternatives raise an exception,
then the term is stuck.

The IMSOS monad stores extra information, including the funcon library, runtime options, and collected
meta-data; but we elide those details here. The code for a funcon forms a micro-interpreter that can be
executed independently, given a funcon library with entries for all funcons explicitly mentioned in the
definition of the funcon. As an alternative to input/output simulation, the IMSOS monad also provides
facilities for connecting input and output entities to real console input/output, allowing a user to run a
funcon program interactively.

6.3. Context-free Rewriting

CBS supports two transition relations: computation steps and rewrites (see Sect. 4.1). Computation
steps may depend on semantic entities, making them sensitive to context. Furthermore, computation steps
may modify semantic entities, causing observable side effects. Conversely, the rewrite relation is context
insensitive and never causes observable side effects. To separate rewriting from computation steps we use a
separate monad (not shown), which does not provide access to the semantic entities. This guarantees, by
construction, that rewrites do not access semantic entities.

The properties of the rewrite relation are such that, operationally, it can be applied at any time during
execution anywhere in a term. Thus, funcon term interpreters are free to perform rewriting whenever is
most convenient or efficient. Experience has shown that the choice of strategy to determine when rewrites
are performed has a tremendous influence on the efficiency of funcon term interpreters (see also Sect. 6.7).
A greedy rewriting strategy performs rewrites immediately on every occurrence of a term, possibly resulting
in redundant rewrites (e.g. rewriting all arguments if-true-else). We choose to rewrite a term just before
performing a computational step, and directly afterwards on the term resulting from the step if it was
successful. This strategy exhibits inefficiencies in combination with our backtracking approach. A rule
may turn out to be inapplicable after some rewrites have been performed. The rewrites are forgotten when
backtracking selects the next rule to try. We expect this problem is easy to avoid in a host language providing
mutable references or objects. Our Haskell implementation would benefit from graph reduction, sharing the
effects of rewrites [37].

6.4. Refocussing Optimisation

Directly implementing a small-step operational semantics as the transitive closure of the computation-
step relation is straightforward but inefficient. At each computation step, the interpreter traverses the funcon
term from the root to a subterm (sometimes called the redex), ‘executes’ the subterm by replacing it, and
reconstructs a (mostly identical) term. Simultaneously, the values held by semantic entities are maintained
and possibly modified. This corresponds to constructing a derivation tree in accordance to the I-MSOS rules
(including the implicit congruence rules) of a CBS language definition. The cost of each step is potentially
linear in the size of the funcon term.

To overcome this inefficiency, we have added a refocussing optimisation [38]. The key insight of refo-
cussing is that, in many situations, once execution of a subterm has begun, the subsequent computation steps
will involve executing that same subterm, until it is reduced to a value. Therefore, rather than re-traversing
the term each step, the interpreter can ‘take a short-cut’ and locally continue executing the subterm. This
optimisation is easily implemented and significantly improves the efficiency of the interpreter.

However, it is not always valid to ‘take a short-cut’. In general, deciding the next subterm to be executed
requires checking the conditions of the inference rules. The execution of a computational step, which involves
replacing some subterm r with r′, may be accompanied by a modification to the value held by some semantic
entity. Because of the latter, the conditions for choosing r as the subterm to be executed may no longer
hold, in which case the next subterm to be executed is not r′, invalidating refocussing. For example, when
a control-flow signal is emitted, execution of the current subterm should not continue, as that signal needs
to be handled further up the term. Typically, the handler for a control-flow signal will then change the

22

subterm that is next to be executed (e.g. Rule 63 for handle-thrown in Sect. 4.4.5). Our interpreter checks
for emitted signals and additional output to determine whether to apply refocussing. To guarantee the
validity of refocussing in all cases, we place restrictions on the way semantic entities are used in inference
rules, as suggested by Bach Poulsen [39].

6.5. Values and Value Operations
The CBS framework provides a large suite of values and operations on those values (see Appendix B.2

for examples). Some operations have not been specified in CBS, for example operations on integers and
floating-point numbers. In these cases the operations are manually implemented and exported by the module
Funcons.Operations provided by a separate library [40]. The library is separate from the the Haskell funcon
framework and can be used by other semantic frameworks implemented in Haskell.

Some built-in values are native to Haskell, such as floating-point numbers and ASCII characters. Other
types of values are provided by libraries, such as vectors and multisets.10 Most of the value operations are
directly implemented by a function provided by an existing Haskell library. In other cases, the operation
is easy to define in terms of existing operations or functions. Creating funcon modules that export the
corresponding funcons is done manually by unwrapping values from the funcon term data type, applying
the corresponding operation from Funcons.Operations, and wrapping the result. This work is done once
and for all, as the suite of values and operations is fixed (exported by Funcons.Core).

6.6. Configuration
The interpreters exported by funcon modules are easily configured by command line flags or configuration

files. For example, a user can restrict the number of computational steps performed. This is useful to
determine which steps lead up to unwanted behaviour (arising from an invalid program or an incorrect
specification). The interpreters can print debugging information such as the values of semantic entities, the
number of computational steps performed, or the number of rewrites performed. The documentation of
Funcons.Tools [31] contains an exhaustive enumeration of all configuration options.

Configuration files offer a limited method for defining funcons. A particular use case is to define
implementation-specific funcons representing a particular implementation choice. Language manuals of-
ten leave options for language implementers regarding certain aspects of the language, e.g., the number
of bits used in the binary representation of different forms of numbers. The following excerpt shows the
definition of some implementation-specific funcons in a configuration file:

funcons {

implemented-floats-format = binary64;

implemented-integers-width = 31;

implemented-characters = unicode-characters;

}

Configuration files also offer a simple but effective method for defining unit tests. A configuration file
for a unit test contains an initial term to be evaluated and the expected outcome of evaluating the term.
The expected outcome consists of a result term, as well as the values of some semantic entities. The excerpt
below shows an example configuration file containing a unit test.

general{

funcon-term: give(read,sequential(print(given),print(given)));

}

inputs{

standard-in: 2,3; // provides 2 and 3 as input

}

tests{

result-term: null; // expects null as the result value

standard-out: 2,2; // expects 2 is printed twice

standard-in: 3; // expects 3 as remaining input

}

10The vector and multiset packages on Hackage.

23

Test Program Generated Interpreter K Tool
Unoptimised Refocussing Enabled

exception tests 1 to 15 11.4 1.67 30.3
div-nondet 0.2 0.06 1.9
factorial 2.8 0.18 1.9
collatz 11.3 0.53 1.9

running total 25.6 2.43 35.9

higher-order - 3.02 10.1
matrix - 5.84 2.2
sortings - 6.11 2.9

running total - 17.4 51.1

Table 1: Runtimes in seconds of the generated Simple interpreter on several test programs.

Differences between expected and actual outcome are reported to the standard output. A successful
unit test is silent. Entities not mentioned in a unit test are treated differently depending on the class of the
entity. For example, any value for store is considered acceptable outcome, if the tests does not mention store.
However, a raised abrupted signal is considered a violation if the test did not mention the entity abrupted.

6.7. Evaluation

The Haskell funcon framework is developed together with a CBS compiler that generates funcon modules
from CBS specifications. Using these tools, an interpreter is obtained in two steps. Firstly, the CBS compiler
is used to generate code for any language-specific funcons defined in the specification. Secondly, using helper
functions in Funcons.Tools of the framework, the funcon modules generated for the language are combined
with Funcons.Core, the module containing the implementations of the reusable funcons. In the case of
Simple, the resulting funcon module exports an interpreter capable of executing all funcon terms produced
by translating Simple programs. The interpreter for Simple is available on Hackage [41]. If a specification
does not define language-specific funcons, then no code needs to be generated and the interpreter provided
by Funcons.Core can be used directly.

We have tested the Simple interpreter on some of the Simple test programs that come bundled with
distributions of the K tool [42]. Table 1 presents the runtimes of the interpreter for several of these test
programs, with and without the refocussing optimisation enabled (see Sect. 6.4). For reference, we have
included the runtimes of the same test programs executed with Version 5 of the K tool. These results were
produced on a virtual private server with four 2.2GHz virtual CPUs and 8GiB of RAM, under Ubuntu 18.04.
The Haskell funcon modules were compiled using GHC 8.0.2. The K specification of Simple was compiled
with the Java back end of the K tool and loaded in server-mode to avoid compilation overhead on each run.
Several runs of ‘JVM warm up’ have been performed. The numbers are the average runtimes of 10 runs.

Without refocussing enabled, the tests higher-order, matrix and sortings cause the memory to over-
flow. These tests involve a relatively large number of function calls or loop-iterations, which result in
considerable growth of the funcon term under evaluation, thus increasing the overhead of decomposing and
recomposing the term at each step of the small-step evaluation. Decomposition involves potentially a lot of
backtracking and undoing context-free rewrites unnecessarily, as discussed in Sect. 6.3. With refocussing,
these programs execute in three to six seconds.

This experiment shows that the generated Simple interpreter is adequate for testing the Simple speci-
fication by running basic programs.

7. Integrated Development Environment for CBS

CBS language definitions can be developed, maintained, and tested in Eclipse. We have used Spoofax [8]
to develop an Eclipse-based editor for CBS language definitions, with many useful features for syntax-aware
browsing and editing.

24

� The CBS editor has menu actions for generating language editors, web pages, and funcon indexes from
CBS language definitions; outdated files are detected and regenerated when changes have been made.

� A generated language editor parses programs in the specified language (flagging any text that has
syntax errors or ambiguities) and provides basic syntax highlighting; there is also a menu action for
translating programs into funcon terms.

� The CBS compiler generates modules for any language-specific funcons from CBS language definitions.
These are composed with Funcons.Core to form a language-specific funcon term interpreter. The CBS
compiler and the interpreter are added as external tools so that they can be used from within Eclipse.

The rest of this section discusses these features in more detail.

7.1. Editing CBS Files

The CBS editor analyses all CBS source files in an Eclipse project, updating the analysis in the back-
ground whenever the user edits the text. It checks that the text conforms to the context-free grammar of the
CBS meta-language, adds syntax highlighting, and flags as erroneous any parts of the text that cannot be
parsed. It also creates hyperlinks from uses of symbols to the locations where the symbols are introduced,
flagging missing symbols as errors.

The CBS analysis is independent of the division of language and funcon definitions into files and folders.
For example, we may divide language definitions into sections in the same way as reference manuals, and
put each section in a separate file. The reusable funcons are currently grouped together in files according to
the semantic entities involved, to facilitate browsing of closely related funcons. The hyperlinks in the edited
files allow navigation and browsing of CBS specifications without awareness of the underlying file system.
The analysis was implemented by specifying it in the current Spoofax meta-language for static semantics,
NaBL2 [43], based on the concepts of scope graphs [44].

When a programming language evolves, the syntax and/or semantics of its constructs can change, new
constructs may be added, and existing constructs may be removed. This is achieved by editing the CBS
files that define the language syntax and its translation to funcons. If a new funcon is needed, it can
be added to the language specification for local use (like allocate-nested-vectors). New funcons that are
language-independent may subsequently be submitted for inclusion in the library of reusable funcons.

The screenshot in Figure 5 shows several files open in our integrated development environment (IDE)
during the development of the component-based semantics of Simple. The top-left pane is browsing the
abstract syntax and semantics of variable declarations. In the bottom-left pane, a CBS rule defining the
translation of variable-declaration statements to funcons is being edited; the red mark in the margin flags an
error in the name of the translation function for declarations. The colours and fonts distinguish the names
of syntax non-terminals (green), funcons (red), semantic functions (blue italic), and variables (black italic).
Clicking on a name in a CBS editor shows its definition in a separate pane. The top-right pane shows the
CBS file containing the definition of the reusable funcon scope.

Name analysis and arity checking were specified in NaBL2: the editor resolves all references to names
(with separate namespaces for funcons, syntax sorts, translation functions, and meta-variables) to their
declarations, flagging any missing or duplicate declarations as errors. However, full type checking for CBS
cannot be specified in NaBL2, which does not support structural subtyping.

7.2. Generating Funcon Terms

A generated language editor uses a scannerless generalised LR (SGLR) parser generated from the abstract
syntax grammar of a CBS language definition. An abstract syntax grammar is usually highly ambiguous;
to support disambiguation, disambiguation rules are currently written inside comment blocks in CBS speci-
fications. The language editor has a menu action for translating the abstract syntax trees of disambiguated
programs to funcon terms, executing code generated from the semantic equations. The two panes on the
lower right of Figure 5 show a small test program and part of its translation to funcons.

25

F
ig

u
re

5
:

T
h

e
ID

E
fo

r
C

B
S

in
a
ctio

n
.

26

7.3. Evaluating Funcon Terms

Funcon term interpreters can be added to Eclipse as ‘external tools’. This makes it possible to execute
funcon term files and configuration files with unit tests from within Eclipse, showing the output of the
interpreter in Eclipse’s console. If a language specification defines any language-specific funcons, then the
CBS files that define these funcons need to be compiled with the CBS compiler to produce interpreter code.
The CBS compiler can be added to Eclipse as an external tool as well. The CBS compiler generates modular
interpreters, as described in Sect. 6. If a CBS file containing a language-specific funcon is modified, only
that file needs to be recompiled. The CBS compiler is not needed for any projects that use only funcons
from the reusable library.

8. Conclusion

We have presented CBS, a unified meta-language for the formal specification of programming languages.
Our intent is that a language designer will use CBS to define the syntax and semantics of a source language,
using context-free grammars and translation functions that produce funcon terms (Sect. 3). The funcons
themselves are defined in CBS and are provided as part of a library of over 100 pre-defined funcons that
can be reused in the development of different programming languages. The reuse of formally specified
components is the key novelty compared to other specification frameworks. If required, language-specific
funcons can be defined, and new reusable funcons can be added to the main (open-ended) funcon library;
this is possible because of the modular nature of the underlying formal framework (MSOS).

CBS definitions are executable. This allows the definitions of funcons and programming languages to
be validated through testing, and for prototype interpreters to be generated from CBS definitions of new
languages. We provide a suite of tools to support interactive development of funcon and language definitions
(Sect. 7) as well as generating funcon term interpreters (Sect. 6).

Our hope is that with the release of over 100 validated funcons, supported by several case studies,
CBS could have significant transformative effects: language developers could be encouraged to make use
of formal semantics and experiment with generated prototype implementations during the design process;
domain experts could be empowered to design, specify and implement domain-specific languages themselves;
and researchers and students would be provided with a dedicated portal and online open-access repository
for language and funcon definitions.

Acknowledgements

The authors are grateful to the anonymous reviewers for helpful comments and suggestions for im-
provement. The reported work was supported by EPSRC grants for the PLanCompS project at Swansea
University (EP/I032495/1) and Royal Holloway, University of London (EP/I032509/1).

References

[1] R. Milner, M. Tofte, R. Harper, D. MacQueen, The Definition of Standard ML (Revised), MIT Press, Cambridge, MA,
USA, 1997.

[2] P. Hudak, J. Hughes, S. L. Peyton Jones, P. Wadler, A history of Haskell: Being lazy with class, in: Third Conference on
History of Programming Languages, ACM, 2007, pp. 12:1–12:55. doi:10.1145/1238844.1238856.

[3] P. D. Mosses, M. J. New, Implicit propagation in structural operational semantics, in: Fifth Workshop on Structural
Operational Semantics, Vol. 229(4) of Electronic Notes in Theoretical Computer Science, Elsevier, 2009, pp. 49–66.
doi:10.1016/j.entcs.2009.07.073.

[4] P. D. Mosses, Modular structural operational semantics, Journal of Logic and Algebraic Programming 60–61 (2004)
195–228. doi:10.1016/j.jlap.2004.03.008.

[5] M. Churchill, P. D. Mosses, N. Sculthorpe, P. Torrini, Reusable components of semantic specifications, in: Transactions on
Aspect-Oriented Software Development XII, Vol. 8989 of Lecture Notes in Computer Science, Springer, 2015, pp. 132–179.
doi:10.1007/978-3-662-46734-3_4.

[6] X. Leroy, Caml Light manual, http://caml.inria.fr/pub/docs/manual-caml-light (1997).
[7] PLanCompS project, CBS and funcons beta release, GitHub, [Online, accessed 17th December 2018] (2018).

URL https://plancomps.github.io/CBS-beta

27

http://dx.doi.org/10.1145/1238844.1238856
http://dx.doi.org/10.1016/j.entcs.2009.07.073
http://dx.doi.org/10.1016/j.jlap.2004.03.008
http://dx.doi.org/10.1007/978-3-662-46734-3_4
http://caml.inria.fr/pub/docs/manual-caml-light
https://plancomps.github.io/CBS-beta
https://plancomps.github.io/CBS-beta

[8] L. C. L. Kats, E. Visser, The Spoofax language workbench: Rules for declarative specification of languages and IDEs,
in: International Conference on Object Oriented Programming Systems Languages and Applications, ACM, 2010, pp.
444–463. doi:10.1145/1869459.1869497.

[9] G. Roşu, T. F. Şerbănuţă, K overview and SIMPLE case study, Electronic Notes in Theoretical Computer Science 304
(2014) 3–56. doi:10.1016/j.entcs.2014.05.002.

[10] G. D. Plotkin, A structural approach to operational semantics, Journal of Logic and Algebraic Programming 60–61 (2004)
17–139, reprint of Technical Report FN-19, DAIMI, Aarhus University, 1981. doi:10.1016/j.jlap.2004.05.001.

[11] M. Churchill, P. D. Mosses, Modular bisimulation theory for computations and values, in: 16th International Conference on
Foundations of Software Science and Computation Structures, Vol. 7794 of Lecture Notes in Computer Science, Springer,
2013, pp. 97–112. doi:10.1007/978-3-642-37075-5_7.

[12] P. D. Mosses, F. Vesely, Weak bisimulation as a congruence in MSOS, in: Logic, Rewriting, and Concurrency, Vol. 9200
of Lecture Notes in Computer Science, Springer, 2015, pp. 519–538. doi:10.1007/978-3-319-23165-5_24.

[13] F. Chalub, C. Braga, Maude MSOS tool, Electronic Notes in Theoretical Computer Science 176 (4) (2007) 133–146.
doi:10.1016/j.entcs.2007.06.012.

[14] P. D. Mosses, Teaching semantics of programming languages with Modular SOS, in: Teaching Formal Methods 2006:
Practice and Experience, Electronic Workshops in Computing, BCS, 2006, pp. 275–286.
URL https://ewic.bcs.org/content/ConWebDoc/9093

[15] L. T. van Binsbergen, N. Sculthorpe, P. D. Mosses, Tool support for component-based semantics, in: Companion Pro-
ceedings of the 15th International Conference on Modularity, ACM, 2016, pp. 8–11. doi:10.1145/2892664.2893464.

[16] R. Farahbod, V. Gervasi, U. Glässer, CoreASM: An extensible ASM execution engine, Fundamenta Informaticae 77 (1–2)
(2007) 71–103.

[17] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, R. Strnǐsa, Ott: Effective tool support for the working
semanticist, Journal of Functional Programming 20 (1) (2010) 71–122. doi:10.1017/S0956796809990293.

[18] M. Felleisen, R. B. Findler, M. Flatt, Semantics Engineering with PLT Redex, MIT Press, 2009.
[19] G. Roşu, T. F. Şerbănuţă, An overview of the K semantic framework, Journal of Logic and Algebraic Programming 79 (6)

(2010) 397–434. doi:10.1016/j.jlap.2010.03.012.
[20] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, J. F. Quesada, Maude: specification and program-

ming in rewriting logic, Theoretical Computer Science 285 (2) (2002) 187–243. doi:10.1016/S0304-3975(01)00359-0.
[21] T. Degueule, B. Combemale, A. Blouin, O. Barais, J.-M. Jézéquel, Melange: A meta-language for modular and reusable

development of DSLs, in: Eighth International Conference on Software Language Engineering, ACM, 2015, pp. 25–36.
doi:10.1145/2814251.2814252.

[22] V. Vergu, P. Neron, E. Visser, DynSem: A DSL for dynamic semantics specification, in: 26th International Conference
on Rewriting Techniques and Applications, Vol. 36 of Leibniz International Proceedings in Informatics, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2015, pp. 365–378. doi:10.4230/LIPIcs.RTA.2015.365.

[23] P. D. Mosses, F. Vesely, FunKons: Component-based semantics in K, in: 10th International Workshop on Rewriting
Logic and Its Applications, Vol. 8663 of Lecture Notes in Computer Science, Springer, 2014, pp. 213–229. doi:10.1007/

978-3-319-12904-4_12.
[24] P. D. Mosses, A modular SOS for ML concurrency primitives, BRICS Research Series RS-99-57, Department of Computer

Science, Aarhus University (1999).
URL http://www.brics.dk/RS/99/57/

[25] D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon, C. Strachey, The main features of CPL, The Computer Journal
6 (2) (1963) 134–143. doi:10.1093/comjnl/6.2.134.

[26] C. Strachey, Fundamental concepts in programming languages, Higher-Order and Symbolic Computation 13 (1) (2000)
11–49. doi:10.1023/A:1010000313106.

[27] P. D. Mosses, Pragmatics of modular SOS, in: International Conference on Algebraic Methodology and Software Technol-
ogy, Vol. 2422 of Lecture Notes in Computer Science, Springer, 2002, pp. 21–40. doi:10.1007/3-540-45719-4_3.

[28] O. Danvy, A. Filinski, A functional abstraction of typed contexts, Tech. Rep. 89/12, DIKU, University of Copenhagen
(1989).
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4822

[29] M. Felleisen, The theory and practice of first-class prompts, in: 15th Symposium on Principles of Programming Languages,
ACM, 1988, pp. 180–190. doi:10.1145/73560.73576.

[30] N. Sculthorpe, P. Torrini, P. D. Mosses, A modular structural operational semantics for delimited continuations, in: Post-
proceedings of the 2015 Workshop on Continuations, Vol. 212 of Electronic Proceedings in Theoretical Computer Science,
Open Publishing Association, 2016, pp. 63–80. doi:10.4204/EPTCS.212.5.

[31] L. T. van Binsbergen, N. Sculthorpe, The Haskell funcon framework, Hackage, [Online, accessed 17th December 2018]
(2018).
URL https://hackage.haskell.org/package/funcons-tools-0.2.0.5

[32] W. Swierstra, Data types à la carte, Journal of Functional Programming 18 (4) (2008) 423–436. doi:10.1017/

S0956796808006758.
[33] L. E. Day, G. Hutton, Towards modular compilers for effects, in: 12th International Symposium on Trends in Func-

tional Programming, Vol. 7193 of Lecture Notes in Computer Science, Springer, 2012, pp. 49–64. doi:10.1007/

978-3-642-32037-8_4.
[34] N. Wu, T. Schrijvers, R. Hinze, Effect handlers in scope, in: 2014 Symposium on Haskell, ACM, 2014, pp. 1–12. doi:

10.1145/2633357.2633358.
[35] M. P. Jones, Functional programming with overloading and higher-order polymorphism, in: First International School

28

http://dx.doi.org/10.1145/1869459.1869497
http://dx.doi.org/10.1016/j.entcs.2014.05.002
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1007/978-3-642-37075-5_7
http://dx.doi.org/10.1007/978-3-319-23165-5_24
http://dx.doi.org/10.1016/j.entcs.2007.06.012
https://ewic.bcs.org/content/ConWebDoc/9093
https://ewic.bcs.org/content/ConWebDoc/9093
http://dx.doi.org/10.1145/2892664.2893464
http://dx.doi.org/10.1017/S0956796809990293
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1016/S0304-3975(01)00359-0
http://dx.doi.org/10.1145/2814251.2814252
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.365
http://dx.doi.org/10.1007/978-3-319-12904-4_12
http://dx.doi.org/10.1007/978-3-319-12904-4_12
http://www.brics.dk/RS/99/57/
http://www.brics.dk/RS/99/57/
http://dx.doi.org/10.1093/comjnl/6.2.134
http://dx.doi.org/10.1023/A:1010000313106
http://dx.doi.org/10.1007/3-540-45719-4_3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4822
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4822
http://dx.doi.org/10.1145/73560.73576
http://dx.doi.org/10.4204/EPTCS.212.5
https://hackage.haskell.org/package/funcons-tools-0.2.0.5
https://hackage.haskell.org/package/funcons-tools-0.2.0.5
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1017/S0956796808006758
http://dx.doi.org/10.1007/978-3-642-32037-8_4
http://dx.doi.org/10.1007/978-3-642-32037-8_4
http://dx.doi.org/10.1145/2633357.2633358
http://dx.doi.org/10.1145/2633357.2633358

on Advanced Functional Programming, Vol. 925 of Lecture Notes in Computer Science, Springer, 1995, pp. 97–136.
doi:10.1007/3-540-59451-5_4.

[36] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: 22nd Symposium on Principles of
Programming Languages, ACM, 1995, pp. 333–343. doi:10.1145/199448.199528.

[37] S. L. Peyton Jones, The Implementation of Functional Programming Languages, Prentice Hall, 1987.
[38] O. Danvy, L. R. Nielsen, Refocusing in reduction semantics, BRICS Research Series RS-04-26, Department of Computer

Science, Aarhus University (2004).
URL http://www.brics.dk/RS/04/26/

[39] C. Bach Poulsen, Extensible transition system semantics, Ph.D. thesis, Swansea University (2016).
[40] L. T. van Binsbergen, N. Sculthorpe, Funcons values and value operations, Hackage, [Online, accessed 17th December

2018] (2018).
URL https://hackage.haskell.org/package/funcons-values-0.1.0.3

[41] L. T. van Binsbergen, N. Sculthorpe, Funcon interpreter for the SIMPLE language, Hackage, [Online, accessed 17th
December 2018] (2018).
URL https://hackage.haskell.org/package/funcons-simple-0.1.0.3

[42] The K framework, GitHub, [Online, accessed 17th December 2018] (2018).
URL https://github.com/kframework/k5

[43] H. van Antwerpen, P. Néron, A. P. Tolmach, E. Visser, G. Wachsmuth, A constraint language for static semantic analysis
based on scope graphs, in: 2016 Workshop on Partial Evaluation and Program Manipulation, ACM, 2016, pp. 49–60.
doi:10.1145/2847538.2847543.

[44] P. Néron, A. P. Tolmach, E. Visser, G. Wachsmuth, A theory of name resolution, in: 24th European Symposium on
Programming Languages and Systems, Vol. 9032 of Lecture Notes in Computer Science, Springer, 2015, pp. 205–231.
doi:10.1007/978-3-662-46669-8_9.

Appendix A. Simple Language Definition

This appendix presents our CBS definition of the Simple language. The top-level translation function
is run. We omit the lexical grammar for the non-terminals bool, int, string and id, and the equations for
corresponding translation functions val and id, but they are available to be viewed online [7].

Appendix A.1. Values

Syntax V : value ::= bool | int | string
Semantics val J : valueK :⇒values

Semantics id J : idK :⇒ids

Appendix A.2. Expressions

Syntax Exp : exp ::= ‘(’ exp ‘)’ | value | lexp | lexp ‘=’ exp | ‘++’ lexp

| ‘−’ exp | exp ‘(’ exps? ‘)’ | ‘sizeOf’ ‘(’ exp ‘)’ | ‘read’ ‘(’ ‘)’

| exp ‘+’ exp | exp ‘−’ exp | exp ‘∗’ exp | exp ‘/’ exp | exp ‘%’ exp

| exp ‘<’ exp | exp ‘<=’ exp | exp ‘>’ exp | exp ‘>=’ exp

| exp ‘==’ exp | exp ‘!=’ exp | ‘!’ exp | exp ‘&&’ exp | exp ‘||’ exp
Rule J‘(’ Exp ‘)’K : exp = JExpK

29

http://dx.doi.org/10.1007/3-540-59451-5_4
http://dx.doi.org/10.1145/199448.199528
http://www.brics.dk/RS/04/26/
http://www.brics.dk/RS/04/26/
https://hackage.haskell.org/package/funcons-values-0.1.0.3
https://hackage.haskell.org/package/funcons-values-0.1.0.3
https://hackage.haskell.org/package/funcons-simple-0.1.0.3
https://hackage.haskell.org/package/funcons-simple-0.1.0.3
https://github.com/kframework/k5
https://github.com/kframework/k5
http://dx.doi.org/10.1145/2847538.2847543
http://dx.doi.org/10.1007/978-3-662-46669-8_9

Semantics rval J : expK :⇒values

Rule rval JV K = val JV K
Rule rval JLExpK = assigned(lval JLExpK)
Rule rval JLExp ‘=’ ExpK =

give(rval JExpK, sequential(assign(lval JLExpK, given), given))

Rule rval J‘++’ LExpK =
give(lval JLExpK, sequential(assign(given, integer-add(assigned(given), 1)), assigned(given)))

Rule rval J‘−’ ExpK = integer-negate(rval JExpK)

Rule rval JExp ‘(’ Exps? ‘)’K = apply(rval JExpK, tuple(rvals JExps?K))
Rule rval J‘sizeOf’ ‘(’ Exp ‘)’K = length(vector-elements(rval JExpK))
Rule rval J‘read’ ‘(’ ‘)’K = read

Rule rval JExp1 ‘+’ Exp2K = integer-add(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘−’ Exp2K = integer-subtract(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘∗’ Exp2K = integer-multiply(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘/’ Exp2K = checked(integer-divide(rval JExp1K, rval JExp2K))
Rule rval JExp1 ‘%’ Exp2K = checked(integer-modulo(rval JExp1K, rval JExp2K))
Rule rval JExp1 ‘<’ Exp2K = is-less(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘<=’ Exp2K = is-less-or-equal(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘>’ Exp2K = is-greater(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘>=’ Exp2K = is-greater-or-equal(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘==’ Exp2K = is-equal(rval JExp1K, rval JExp2K)
Rule rval JExp1 ‘!=’ Exp2K = not(is-equal(rval JExp1K, rval JExp2K))
Rule rval J‘!’ ExpK = not(rval JExpK)
Rule rval JExp1 ‘&&’ Exp2K = if-true-else(rval JExp1K, rval JExp2K, false)

Rule rval JExp1 ‘||’ Exp2K = if-true-else(rval JExp1K, true, rval JExp2K)

Syntax Exps : exps ::= exp (‘,’ exps)?

Semantics rvals J : exps?K : (⇒values)∗

Rule rvals J K = ()

Rule rvals JExpK = rval JExpK
Rule rvals JExp ‘,’ ExpsK = rval JExpK, rvals JExpsK

Syntax LExp : lexp ::= id | lexp ‘[’ exps ‘]’

Rule JLExp ‘[’ Exp ‘,’ Exps ‘]’K : lexp = JLExp ‘[’ Exp ‘]’ ‘[’ Exps ‘]’K
Semantics lval J : lexpK :⇒variables

Rule lval JIdK = bound(id JIdK)
Rule lval JLExp ‘[’ Exp ‘]’K = checked(index(integer-add(1, rval JExpK), vector-elements(rval JLExpK)))

30

Appendix A.3. Statements

Syntax Block : block ::= ‘{’ stmts? ‘}’

Syntax Stmts : stmts ::= stmt stmts?

Syntax Stmt : stmt ::= imp-stmt | vars-decl
Syntax ImpStmt : imp-stmt ::= block | exp ‘;’

| ‘if’ ‘(’ exp ‘)’ block (‘else’ block)? | ‘while’ ‘(’ exp ‘)’ block

| ‘for’ ‘(’ stmt exp ‘;’ exp ‘)’ block | ‘print’ ‘(’ exps ‘)’ ‘;’ | ‘return’ exp? ‘;’

| ‘try’ block ‘catch’ ‘(’ id ‘)’ block | ‘throw’ exp ‘;’

Rule J‘if’ ‘(’ Exp ‘)’ BlockK : stmt = J‘if’ ‘(’ Exp ‘)’ Block ‘else’ ‘{’ ‘}’K
Rule J‘for’ ‘(’ Stmt Exp1 ‘;’ Exp2 ‘)’ ‘{’ Stmts ‘}’K : stmt =

J‘{’ Stmt ‘while’ ‘(’ Exp1 ‘)’ ‘{’ ‘{’ Stmts ‘}’ Exp2 ‘;’ ‘}’ ‘}’K

Semantics exec J : stmtsK :⇒null-type

Rule exec J‘{’ ‘}’K = null

Rule exec J‘{’Stmts‘}’K = exec JStmtsK
Rule exec JImpStmt StmtsK = sequential(exec JImpStmtK, exec JStmtsK)
Rule exec JVarsDecl StmtsK = scope(declare JVarsDeclK, exec JStmtsK)
Rule exec JVarsDeclK = effect(declare JVarsDeclK)
Rule exec JExp ‘;’K = effect(rval JExpK)
Rule exec J‘if’ ‘(’ Exp ‘)’ Block1 ‘else’ Block2K =

if-true-else(rval JExpK, exec JBlock1K, exec JBlock2K)
Rule exec J‘while’ ‘(’ Exp ‘)’ BlockK = while(rval JExpK, exec JBlockK)
Rule exec J‘print’ ‘(’ Exps ‘)’ ‘;’K = print(rvals JExpsK)
Rule exec J‘return’ Exp ‘;’K = return(rval JExpK)
Rule exec J‘return’ ‘;’K = return(null)

Rule exec J‘try’ Block1 ‘catch’ ‘(’ Id ‘)’ Block2K =
handle-thrown(exec JBlock1K,

scope(bind(id JIdK, allocate-initialised-variable(values, given)), exec JBlock2K))
Rule exec J‘throw’ Exp ‘;’K = throw(rval JExpK)

Appendix A.4. Declarations

Syntax Decl : decl ::= vars-decl | func-decl
Semantics declare J : declK :⇒environments

Appendix A.4.1. Variable Declarations

Syntax VarsDecl : vars-decl ::= ‘var’ declarators ‘;’

Syntax Declarators : declarators ::= declarator (‘,’ declarators)?

Rule J‘var’ Declarator ‘,’ Declarators ‘;’ Stmts?K : stmts =

J‘var’ Declarator ‘;’ ‘var’ Declarators ‘;’ Stmts?K

Rule J‘var’ Declarator ‘,’ Declarators ‘;’ Decls?K : decls =

J‘var’ Declarator ‘;’ ‘var’ Declarators ‘;’ Decls?K

Rule declare J‘var’ Declarator ‘;’K = var-declare JDeclaratorK

31

Syntax Declarator : declarator ::= id | id ‘=’ exp | id ranks

Semantics var-declare J : declaratorK :⇒environments

Rule var-declare JIdK = bind(id JIdK, allocate-variable(values))

Rule var-declare JId ‘=’ ExpK =
bind(id JIdK, allocate-initialised-variable(values, rval JExpK))

Rule var-declare JId RanksK = bind(id JIdK, allocate-nested-vectors(ranks JRanksK))

Appendix A.4.2. Array Declarations

Syntax Ranks : ranks ::= ‘[’ exps ‘]’ ranks?

Rule J‘[’ Exp ‘,’ Exps ‘]’ Ranks?K : ranks = J‘[’ Exp ‘]’ ‘[’ Exps ‘]’ Ranks?K

Semantics ranks J : ranksK : (⇒nats)+

Rule ranks J‘[’ Exp ‘]’K = rval JExpK
Rule ranks J‘[’ Exp ‘]’ RanksK = rval JExpK, ranks JRanksK

Funcon allocate-nested-vectors(: nats+) :⇒variables

Rule allocate-nested-vectors(N : nats) ;

allocate-initialised-variable(vectors(variables),

vector(left-to-right-repeat(allocate-variable(values), 1,N)))

Rule allocate-nested-vectors(N : nats,N+ : nats+) ;

allocate-initialised-variable(vectors(variables),

vector(left-to-right-repeat(allocate-nested-vectors(N+), 1,N)))

Appendix A.4.3. Function Declarations

Syntax FuncDecl : func-decl ::= ‘function’ id ‘(’ ids? ‘)’ block

Rule declare J‘function’ Id ‘(’ Ids? ‘)’ BlockK =
bind(id JIdK, allocate-variable(functions(tuples(values∗), values)))

Semantics initialise J : declK :⇒null-type

Rule initialise J‘var’ Declarators ‘;’K = null

Rule initialise J‘function’ Id ‘(’ Ids? ‘)’ BlockK =
assign(bound(id JIdK), function(closure(

scope(match(given, tuple(patts JIds?K)), handle-return(exec JBlockK)))))

Syntax Ids : ids ::= id (‘,’ ids)?

Semantics patts J : ids?K : patterns∗

Rule patts J K = ()

Rule patts JIdK = pattern(closure(bind(id JIdK, allocate-initialised-variable(values, given))))

Rule patts JId ‘,’ IdsK = patts JIdK, patts JIdsK

32

Appendix A.5. Programs

Syntax Pgm : pgm ::= decls

Semantics run J : pgmK :⇒values

Rule run JDeclsK = scope(collateral(declarations JDeclsK),
sequential(initialisations JDeclsK, apply(assigned(bound(“main”)), tuple())))

Syntax Decls : decls ::= decl decls?

Semantics declarations J : declsK : (⇒environments)+

Rule declarations JDeclK = declare JDeclK
Rule declarations JDecl DeclsK = declare JDeclK, declarations JDeclsK

Semantics initialisations J : declsK : (⇒null-type)+

Rule initialisations JDeclK = initialise JDeclK
Rule initialisations JDecl DeclsK = initialise JDeclK, initialisations JDeclsK

33

Appendix B. Funcon Signatures

This appendix lists the signatures of all funcons and value operations that appear in this article.

Appendix B.1. Funcons

abrupt(: values) :⇒empty-type

allocate-initialised-variable(T : types, : T) :⇒variables

allocate-nested-vectors(: nats+) :⇒variables

allocate-variable(: types) :⇒variables

apply(: functions(S ,T), : S) :⇒T

assign(: variables, : values) :⇒null-type

assigned(: variables) :⇒values

bind(: identifiers, : values) :⇒environments

bound(: identifiers) :⇒values

checked(: (T)?) :⇒T

closed(:⇒T) :⇒T

closure(: S⇒T) :⇒abstractions(S⇒T)

collateral(: environments∗) :⇒environments

control(: functions(continuations(T ,S),S)) :⇒T

effect(: T *) :⇒null-type

delimit-cc(:⇒T) :⇒T

fail :⇒empty-type

give(: S , : S⇒T) :⇒T

given : T⇒T
handle-return(:⇒T) :⇒T

handle-thrown(: S⇒T , : X⇒T) : S⇒T
hole :⇒values

if-true-else(: booleans, :⇒T , :⇒T) :⇒T

left-to-right-repeat(: integers⇒T , : integers, : integers) :⇒(T)∗

match(: values, : values) :⇒environments

print(: values∗) :⇒null-type

read :⇒values

resume-continuation(: continuations(S ,T), : S) :⇒T

return(: T) :⇒empty-type

scope(: environments, :⇒T) :⇒T

sequential(: (⇒null-type)∗,⇒T) :⇒T

stuck :⇒empty-type

throw(: T) :⇒empty-type

while(:⇒booleans, :⇒null-type) :⇒null-type

Appendix B.2. Value Operations

abstraction(: S⇒T) : abstractions(S⇒T)

continuation(: abstractions(()⇒T)) : continuations(S ,T)

function(: abstractions(S⇒T)) : functions(S ,T)

34

index(: nats, : values∗) :⇒values?

integer-add(: integers∗) :⇒integers

integer-divide(: integers, : integers) :⇒integers?

integer-modulo(: integers, : integers) :⇒integers?

integer-multiply(: integers∗) :⇒integers

integer-negate(: integers) :⇒integers

integer-subtract(: integers, : integers) :⇒integers

is-in-set(: T , : sets(T)) :⇒booleans

is-in-type(: values, : types) :⇒booleans

is-less(: integers, : integers) :⇒booleans

is-less-or-equal(: integers, : integers) :⇒booleans

is-greater(: integers, : integers) :⇒booleans

is-greater-or-equal(: integers, : integers) :⇒booleans

is-equal(: values, : values) :⇒booleans

length(: values∗) :⇒nats

lookup(: maps(S ,T ?), : S) :⇒(T ?)?

map-override(: maps(S ,T)∗) :⇒maps(S ,T)

not(: booleans) :⇒booleans

null : null-type

pattern(: abstractions(values⇒environments)) : patterns

returned(: values) : returning

thrown(: values) : throwing

tuple(: T *) : tuples(T *)

variable(: locations, : types) : variables

vector(: (T)∗) : vectors(T)

vector-elements(: vectors(T)) :⇒(T)∗

35

	Introduction
	Component-Based Semantics
	Executability of CBS
	Novel Features of CBS
	Contributions and Overview

	Background and Related Work
	Theoretical Foundations
	The PLanCompS Project
	Other Semantic Frameworks

	Specifying Programming Languages in CBS
	Abstract Syntax Definitions
	Translation Functions
	Language-Specific Funcons
	Remarks

	Specifying Fundamental Constructs in CBS
	Transition Relations
	Funcon Signatures
	Values and Types
	Semantic Entities
	Contextual Entities
	Mutable Entities
	Output Entities
	Input Entities
	Control-flow Entities

	Functions and Closures
	Remarks

	Case Study: Delimited Continuations
	Extending Simple with Delimited Continuations
	Defining Delimited Control Funcons
	Remarks

	Executing Funcon Terms
	Funcon Modules
	Executable Funcons
	Context-free Rewriting
	Refocussing Optimisation
	Values and Value Operations
	Configuration
	Evaluation

	Integrated Development Environment for CBS
	Editing CBS Files
	Generating Funcon Terms
	Evaluating Funcon Terms

	Conclusion
	Simple Language Definition
	Values
	Expressions
	Statements
	Declarations
	Variable Declarations
	Array Declarations
	Function Declarations

	Programs

	Funcon Signatures
	Funcons
	Value Operations

