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Nomenclature

A The set of airports under consideration

ADi The airport delay at airport i

DDi The delay difference indicator of airport i

D tot
i The total delay (local and propagated) of airport i

Lq The average number of aircraft in the queue

Ls The average number of aircraft in the system

M Markovian (Poisson) process

N m
i The number of aircraft that arrive in queuing system m at airport i

PDi The propagated delay at airport i

Q The set of queues each airport contains

QDi The queuing delay at airport i

T The time period in which is simulated

W m
i The expected delay of node i in queuing system m

Wq The average waiting time in the queue

Ws The average time in the system

λm
i The arrival rate of queuing system m at airport i

µm
i The service rate of queuing system m at airport i

a j Aircraft rate going from airport j to outside of the network

fi j The flight time from airport i towards airport j

h The sub-period of 30 minutes

pi j The routing probability of airport i to airport j
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Executive Summary

The air transportation industry is becoming of greater importance to the world’s economy, since a growing
part of the global population is able to afford air travel. However, the current network is limited in its’ capacity
and therefore, more and more delay is experienced within daily operations. Research has shown that flight
delays have a high economic impact on the air transport industry. Therefore, the understanding of delay and
how it propagates within a network is thus of relevance for the industry.

A lot of research has been performed on identifying the causes of delay, as well as their impact on stake-
holders’ costs and passengers’ satisfaction. However, it is of equal importance to characterize the propagation
of delays within a network of airports thus identifying the role and the sphere of influence airports have with
respect to the network. Based on this a research objective has been formulated as follows,

The research objective of this thesis assignment is to investigate whether different sources of
primary delay induce contrasting dynamics of propagated delay within a network of airports

simulated by a stochastic queuing network model.

Based on this research objective, a new model has been proposed, which uses queues to simulate the dif-
ferent processes aircraft experience during the day, within the context of the United States National Aviation
System. Each airport within the network has been represented by three queuing systems, which simulate the
arrival, turnaround and departure of aircraft. Based on an empirical database of the US domestic market, the
queuing parameters have been determined, which enables the simulation of both local queuing delay as well
as propagated delay airports received from other airports.

To fulfill the research objective, three experiments have been designed, which will be used to test the
performance, accuracy and capabilities of the model. First, six days have been selected with different weather
conditions. Then, a day of the week aggregation is performed to test the difference between different days of
the week. Finally, a case study has been performed to see the influence of zero, one, and five airports under
low IFR conditions.

Based on the results of the simulation model, it can be concluded that the model is capable of simulating
the relationships between airports and their delay sources with the identification of which airports are delay
generators and which airports are delay receivers. Furthermore, the case study showed that it makes a big
difference if one, five or zero airports are affected by capacity limitations. In the scenario with five airports it
even resulted in a network-wide effect with propagation of delay from the East coast until the West coast of
the United States.

Altogether, this project demonstrated that with a relatively simple queuing model, the dynamics of prop-
agated delay could be simulated within a network of airports, but is less capable to mimic the behavior under
extreme conditions. At the same time, the model has shown to be able to provide more information on the
propagation of delay and its’ source. Moreover, this study showed the identification of the different natural
roles airports have within the network.
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1
Introduction

The air transportation industry is becoming of greater importance to the world’s economy, since a growing
part of the global population is able to afford air travel. According to Airbus Group [2],in the upcoming 20
years, the world’s air traffic will grow annually with 4,6% Revenue Passengers Kilometers (RPK), resulting in 15
trillion RPKs in 2034. This large increase in demand can be split up between emerging markets such as China,
India or the Middle East, and developed markets such as Western Europe and North America. According to
Airbus Group [2], these emerging markets will have a yearly growth of 5.8% RPK, where air traffic in developed
markets will grow with a yearly RPK rate of 3.8%.

However, the current infrastructure and demand management systems are limited in capacity and can
not accommodate such growth. When looking at the major airport hubs around the globe, 90% of all long-
haul traffic is on routes to/from/via 47 aviation mega-cities [35]. Of these 47 mega-cities, 39 airports are
scheduled-constrained and do not possess an adequate infrastructure to meet current demand [2].

The net cost of congestion in this interconnected tight network of airports is enormous. A recent study
performed by the Joint Economic Committee from United States (US) Congress, estimated the effects flight
delays had on the U.S. national economy up to a cost of $41 billion in the year 2007, which was the worst
year in on-time performance until now. This estimation comprehended $19 billion of operational cost for
the affected airlines, $12 billion on delay costs for passengers, and around $10 billion of indirect costs, which
affected other industries as well [3] [48]. In a different study, Ball et al. [4] approximated that in the year 2007,
the sum of delay costs in the United States added up to $32.9 billion, which consisted of $16.2 billion in pas-
senger delay costs, $8.3 billion in airlines delay costs, $3.9 billion cost in lost demand and $4 billion indirect
impact on the national Gross Domestic Product (GDP). These studies illustrate the economic relevance of
better understanding the effects delays have on an air transportation network.

Due to rapid growth within air traffic operations, more and more pressure is placed on the network capa-
bility to support on-time operations. Therefore, it is important to investigate the effects of delays and their
dynamics. In this research project, the focus will be on the United States National Aviation System as a net-
work of airports. A lot of research has been performed on identifying the causes of delay, as well as their
impact on stakeholders’ costs and passengers’ satisfaction. However, it is of equal importance to character-
ize the propagation of delays within a network of airports and to identify the roles airports have within the
network.

The goal of this thesis is to investigate the dynamics of propagated delay within a network of airports.
Within this study, a stochastic queuing model will be proposed, which uses queues to simulated the different
processes aircraft experience during the day within the context of the US National Aviation System. Based
on an empirical database of the US domestic market the queuing parameters have been determined, which
enables the simulation of both local queuing delay as well as propagated delay. By performing several simu-
lation experiments the goal of this study will be pursuit.

The remainder of this thesis is organized as follows. In Chapter 2, a literature study is performed on
the modeling of delay propagation within air transportation networks. Second, in Chapter 3 the research
proposal will be presented providing both the research objective as well as the research questions. In Chapter
4, the model specification will be explained. Next, the calibration will be presented in Chapter 5. Followed by
the results in Chapter 6. Then, the verification and validation will be elaborated in Chapter 7. This report will
be concluded with the conclusions and recommendations in Chapter 8.
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2
Literature Study

The relevant literature for this thesis is discussed in this chapter. During the literature study different analysis
and modeling techniques of delay propagation are considered. These will be addressed first. Then, a more
detailed description of the chosen technique, queuing theory, will be treated. Finally, flight delay is discussed.

2.1. Modeling Techniques
During the 1990’s, Peterson et al. [41] performed preliminary research on a simple 2-node problem computing
moments of queue lengths and waiting times. However, within this paper no interaction between airports in
a network was present. Some years later, Beatty et al. [6] provided the first analytical analysis on flight delay
propagation by calculating delay propagation multipliers based on American Airlines flight schedules.

After the preliminary work of both Peterson et al. [41] and Beatty et al. [6], a lot of different models were
created over the last two decades. To properly address the dynamics of delay within a complex network, dif-
ferent analysis and modeling methodologies have been considered in the literature study, namely, the use of
delays trees, statistical based mechanisms, the use of complex network theory, queuing theory, agent-based
modeling, and epidemiology theory. Within this section, every technique is briefly discussed. Based on the
literature study, the most appropriate modeling technique has been chosen to address the research objective
at hand.

First, delay trees were considered. Delay trees can be seen as an oversimplification of the network and not
suitable to fully capture its complexity. Delay trees can be a helpful tool when performing preliminary analysis
on for example an airline flight schedule and the potential effects of delays within such a schedule. However,
delay trees are not suitable to capture the complexity of networks. Thus, delay trees will not be used as the
research methodology.

Next, statistical and econometric models are reviewed. It can be concluded that statistical and economet-
ric models are a suitable tool for analyzing the network and finding causal relationships. However, statistical
models are less suitable in describing the dynamic nature of the network and the actual modeling of this
network. Statistical methods have been used to analyze the network on for example the correlation between
causes of delays and the different airports within the system. Nevertheless, a statistical representation is not
sufficient to capture and simulate the topology and complexity of the examined network.

Third, the use of complex networks is examined. Complex networks are proven to be a suitable application
when analyzing the air traffic network, due to their ability to cover the interconnectedness of the network.
The network can be presented as a weighted graph containing nodes, representing the airports, and edges,
representing the connections between these airports. The appropriate weights can be defined on a database
analysis. However, complex network theory alone was not sufficient to cover all elements that were necessary
to simulate the creation and propagation of delay and so it is not chosen as the final modeling technique.

Fourth, agent-based simulations are considered for modeling purposes. A recent trend is that agent-based
models are more frequently used to describe delay propagation problems. Agent-based models represent the
network on a high level of detail, since every aircraft is considered an agent. Modeling a network with over
thousands of aircraft would create a computationally heavy model. This could result in a more complicated
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and less feasible model than what is needed to address the research gap. Furthermore, agent-based modeling
is a rather young research field which is still open for innovation and has not maturated yet. Therefore, this
research is focused on looking at the network in an aggregated manner, in terms of rates and not so much on
the microscopic level, agent-based modeling is not seen as the best fit to this research problem.

Next, the use of epidemic models is investigated. Currently, only a few papers exist on the application of epi-
demiology in the delay propagation context. For describing delay propagation, epidemiology looks promis-
ing, but certainly needs more research before it can be considered as a solid research approach. However, the
theory behind this methodology could be of help during the creation of the conceptual model.

Last, queuing based models are scrutinized. Queuing theory has proven to be an excellent choice in the
past, when describing delay propagation mechanisms. Within literature, most of the models were based
on queues due to its adaptability to different case studies with a relativly simple model and the ability to
capture the stochastic nature of airport operations. To make this thesis assignment feasible, queuing theory
will be used when designing the conceptual model. By choosing queuing theory as the primary research
methodology, a proper mathematical model can be created which captures the dynamics of delay within the
examined network.

2.2. Queuing Theory
Queuing theory is the mathematical study of waiting in a variety of applications. It uses queuing models to
describe the numerous types of queuing systems [30]. Queuing based models are widely used throughout
literature, and are mostly macroscopic and analytically based models, which are used to make an approxi-
mation of reality ([5], [23] [25], [26], [27], [31], [40], [42], [43], [44], [45], [49], [50], [54]). First, an overview of
queuing models used within literature will be presented. Then, literature based on analytical models will be
reviewed. This chapter will be concluded with examining the queuing based simulation models found within
literature.

2.2.1. General Description
Queuing models are generally described by the mean arrival rate (λ) and the mean service rate (µ), and are
often pictured as in Figure 2.1. Here, queues are presented as multiple squares, severs are presented as cir-
cles, and the routing network is displayed as arrows. Most queuing models only vary in the way λ and µ

are described. Objects will approach a certain server which will provide its service. Afterwards, the objects
will depart again. The air transportation network is generally modeled as a queuing network, where multiple
queues have been used to simulate airport operations and en-route flight operations. In Figure 2.1, one can
see an example of such a network containing two departure queues(airports), four en-route queues and four
arrival queues(airports).

Figure 2.1: An example queuing network [50]



2.2. Queuing Theory 5

The arrival and service rate could be represented by multiple forms in real queuing systems. The M/M/1
queue is a simple model were both the arrival and service rate of a single server queuing system can be de-
scribed with a Poisson distribution. To make queuing models useful for research applications, the assumed
distribution should be sufficiently realistic, so the model produces accurate approximations while at the same
time remains controllable. Therefore, models could be classified based on the used distributions and differ-
ences between analytical(closed form) models and simulation models. First, the analytical models will be
presented followed by the simulation models.

2.2.2. Analytical Models
In the following section analytical models will be discussed.

MarkovianModels
Markovian models(M/M/s) use exponential probability distributions for both arrival and service rates and
have the lowest model fidelity and solution accuracy. Markovian queues use the Markov property of being
memorylessness, which basically means that the future of a process is only based on its present state. Due to
this property, arrivals occur according to a Poisson process. Markovian models are simple in theory but are
difficult to use in practice since the assumption of exponential arrival/departure is not always true in reality.

Markovian Within the literature, Markovian queues have been mostly used to describe microscopic queu-
ing behavior on a specific airport. Nikoue et al. [37] for example, used a M/M/c FCFS queuing model to
predict passenger flows at Sydney International Airport. This is not researched in-depth since it is was con-
sidered outside the scope of this research project.

Sengupta et al. [49] presented a modified Markovian model and a M/M/s approximate solution called
Queuing Network Analyzer(QNA) to analyse the service time and the waiting time on a network of 40 air-
ports. This research can be labelled as macroscopic. The modified Markovian model used a modification to
the standard markovian representation in order to overcome the disability of modeling the network uncer-
tainties. Sengupta et al. [49] used an additional queue which accounts for the variance in delays which is the
result of uncertainty. The researchers showed that the modified Markovian method performed worse when
comparing it to an approximate queue solution of the QNA.

Semi-Markovian The remainder on Markovian literature focuses on Semi-Markovian properties. Instead of
the entire process being Markovian, the process is only Markovian at specified states. Peterson et al. [40] for
example, have used a Semi-Markovian model, which computed airport capacities related to changes in the
weather and looked at the metric mean waiting time. These changes in weather conditions could have a great
effect on the service time of an airport. The arrival rate was modeled here as a deterministic process. A single
hub airport is considered as the focus point in a non-stationary queuing network. The research, showed
promising results, however, only one airport is considered here and interrelationships between airports are
not taken into account. To see the model’s full potential, multiple airports should be considered.

ApproximateModels
In addition to the Markovian models, approximate solutions provide linear equations for the modeling of
the uncertainty in the network. Therefore, approximate solutions are an appropriate method to integrate the
uncertainties of an Air Transportation Network into a queuing network. Approximate solution methods offer
a higher model fidelity and solution accuracy when comparing them to Markovian Queues. Approximate
Queues are mostly explained by using the Kendall’s notation, G/G/1, which means general distribution or that
any probability distribution is allowed. Selecting the right probability distribution or phase-type distribution
is the most difficult part and essential to make a queuing model useful and accurate.

Erlang distribution Within the literature, approximate solution methods are widely used. The current
state-of-the-art for approximate solution models is a network of airports which uses a M/Ek /1 queuing sys-
tem to represent a particular airport. A good example of this is the AND model presented by Pyrgiotis [43],
which models a network consisting of the 34 busiest airports in the United States. In this queuing model the
arrival rate is presented by an exponential distribution(Poisson process), and the service rate is presented by
an Erlang distribution. Due to the stochastic nature of air transportation network, the Erlang distribution is a
good approximation to reality, since it can cope with the uncertainties and variability in day-to-day airports
operations [45]. The metrics, which are used to describe the AND performance are respectively, expected
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upstream delay, the breakdown of delay between local and upstream, the total flight arrival delay and the
fraction of arrivals with expected delay greater than 15 minutes.

These performance metrics can provide a clear picture of the delay propagation within a network and are
therefore used as a source of inspiration for this research project. The developers of the AND model stated
that AND can be considered as an analytical macroscopic model which can create results in a short period of
time. To test AND’s full potential, it should be tested in order to conclude whether it can reproduce trends and
the dynamic behavior of the modeled networks. Lately, Pyrgiotis and Odoni [44] also used the AND model on
a more local scale. With the use of the AND model, the impact of scheduling limits is tested at Newark Liberty
International. Since this analysis is performed locally, it is considered outside the scope of this literature
review.

Due to the ability of incorporating stochastic elements, the M/Ek /1 queuing system is used in multiple
research papers. Baspinar et al. [5] for example, proposed a macroscopic analytical queuing model, which
used a M/Ek /1 model similar to the AND model, but focusing on European airports. Within this paper, the
performance metrics capacity (number of movements per fifteen minutes), and break-point (20% or greater
number of flights takes +15 delay) are used. Baspinar et al. [5] performed an analysis where the link between
capacity reduction and delay generation is researched. By selecting several capacity values, the break-point of
an airport is determined when there is a sudden increase in total delay. The paper shows that airports, which
function above this critical capacity value tend to have less delays and are better in coping with irregularities.

Jacquillat and Odoni [26] also use an M/Ek /1 queuing model to quantify the relationship between flight
schedules, airports capacity and flight delays. Jacquillat and Odoni [26] used their macroscopic model to esti-
mate the average delays and variability in delays on New York’s airports. In their research paper Jacquillat and
Odoni [26] used the metrics, average arrival/departure delay, and actual/predicted queue length. Jacquillat
and Odoni [26] has implemented the model at JFK, EWR and LGA, three of the most congested airports in
the United States. The results showed accurate predictions on both expected values and the variability of the
metrics. Furthermore, the timing, dynamics and magnitude are properly predicted. Since this paper uses a
simple model of demand processes at airports and still obtained good results suggests that in this research
project a simple model should be the starting point as well.

Deterministic distribution Next to the stochastic queuing models, one can also use deterministic distribu-
tions which are fixed over a period of time and do not include variability in the model, i.e. every run of the
model will obtain the same results. Due to the stochastic nature of delay propagation, only a few determinis-
tic analytical examples are found within the literature.

Hansen [25] used a deterministic approach by modeling the runway delay external factors at Los Ange-
les International Airport (LAX), using a deterministic queuing model. Deterministic queues are used on a
microscopic level, since only the delay dynamics on LAX are treated. When only considering LAX stochastic
effects within the network are of less importance. However, it is clear that deterministic queuing methods are
not suitable to represent the delay dynamics within a macroscopic network of airports. Therefore, analytical
deterministic queuing models are considered to be as outside the scope of this research project.

Markovian distribution As discussed earlier, Sengupta et al. [49] used an M/M/s queuing model to repre-
sent a macroscopic model of 40 major airports on the continental US. It was already explained that in ref-
erence [49], the approximate solution method outperformed the Modified Markovian model. Furthermore,
Tandale et al. [50] used an approach which recreated the US national airspace system as a combination of
Center-level open Jackson queuing network with M/M/m nodes.

Results of approximate queuing methods show that by using probability distributions, which are able to
model the stochastic nature of air traffic uncertainties, a satisfactory solution accuracy can be obtained with-
out extensive computational time. However, due to time varying demand and service rates, representation
with probability distributions can become complex.

CoxianQueues
The third category within queuing theory is the application of Coxian queues. Coxian queues have the highest
fidelity level within the domain of queuing theory. Due to high fidelity, Coxian models are able to obtain very
high levels of solution accuracy against a computational cost. Since Coxian models are able to mimic any
kind of arrival or service distribution, these queuing systems can become very complex very quickly. Coxian
queues uses the principle of Chapman-Kolmogorov equations, which can be used to calculate the transition
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probabilities in between states. However, this can become uncontrollable if it would be applied to a network,
due to its larger number of states [49]. This is also the main reason why, within the domain of modeling a
network of airports, no previous literature could be found on Coxian queues. Therefore, Coxian queues will
not be investigated any further and are considered outside the scope of this research project.

2.2.3. Simulation Models
Next to the analytical queuing models, there are also queuing models which use simulation to obtain results.
Within this section, literature which uses queuing based simulations will be explained. Due to the stochastic
nature of air transportation networks, more often simulations have been used, which can simulate the vari-
ability in events. Most of the presented models are already slightly older and have been used by the industries
for a long time.

NASPAC Next to the analytical queuing models, queuing based simulation models have been used to tackle
the problem of simulating the network performance. One of the first researchers were Frolow and Sinnott [21]
from the MITRE Cooperation, who created their National Airspace System Performance Analysis Capability
(NASPAC) model in 1989. NASPAC was one of the first NAS simulations developed and is still being used
today by the Federal Aviation Administration (FAA) [45]. The NASPAC simulation can make an estimation on
a large variety of performance measures, such as system throughput, technical and effective delays. Here,
technical delay refers to delays where aircraft wait for an ATC resource (e.g. a runway) to become available
and effective delay measures the difference between the arrival time and the scheduled arrival time. NASPAC
can be considered as a macroscopic model, since it is capable to assess the impact of system changes on
a NAS scale. However, in the original model no assessment on propagation of delay has been performed.
As NASPAC is a simulation tool, the model fidelity can be very high resulting in a high solution accuracy.
Unfortunately, for a large scale of simulation tools, and queuing simulation models are no exception, the
computation time may become substantial.

DPAT As a successor of the NASPAC model, Wieland [54] suggested the Detailed Policy Assessment Tool
(DPAT) which was also created at the MITRE Coorperation. DPAT obtained considerable differences relating
to en-route modeling, worldwide coverage, and computational time. As a lower level of detail model, DPAT
uses an approximation with a cumulative distribution function (CDF) to describe the stochastic nature of
various events within the ATN. DPAT does not use the aircraft itineraries and therefore does not fully capture
the effects of delay propagation within the system. Furthermore, it is stated that airport handling mechanisms
are purely an approximation, by picking a random sample from a user-specified CDF. As its’ most important
input DPAT requires the capacity and demand data. The most important metrics DPAT can predict is the
technical delay. Wieland [54] states that technical delays are referring to congestion-induced queuing delay
and therefore are measuring the congestion in the NAS caused by air traffic demand competing for the same
limiting resources. Lastly, Wieland [54] also tested if delay can be seen as predictable. The DPAT model shows
however that delays are highly unpredictable, and that delay predictability only marginally improved when
a capacity increase is realized. Both the NASPAC and the DPAT model can be seen as very dated models
on the modeling of delay propagation since both models do not incorporate the full propagation dynamics.
Therefore, further research is necessary.

Within the literature, several papers exist which used the DPAT model as their basis [53]. Schaefer and
Millner [47] for example, used DPAT to model changes in capacity due to weather effects. The paper made a
distinction between capacity profile under visual meteorological conditions(VMC) and instrumental mete-
orological conditions(IMC), since these conditions can have major consequences on the number of aircraft
an airport can serve per hour. Under VMC all the examined airports witness no significant delays, therefore
the propagation effect is not detectable. The research paper showed that when airports witnessed IMC un-
der a longer period of time, delays increased locally. The effects of propagated delay are considerable for the
first 5 legs after leaving an airport with IMC. This was only applicable for airports which had a high capacity
over demand ratio. For airports where this ratio was low, IMC operations do not necessarily evolve into large
quantities of propagated delay.

LMINET Another queuing based simulation model is presented by Long et al. [31] and is called LMINET,
which has some features similar to those of AND, presented in section 2.2.2, including the modeling of in-
dividual airports based on queuing theory. At each airport, queues exist for arrival, taxi-in, taxi-out and de-
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parture each based on a Poisson process with a corresponding service rate. Due to the lack of delay prop-
agation and cancellation, LMINET is not suitable for the analysis of delay propagation within in a network.
The researchers who created this analysis tool realized this and therefore created a revision on their model
called LMINET2, which is presented in reference [32]. In Figure 2.2 one can see a schematic representation
of LMINET2 containing an airport queuing delay model, flight schedule delay & cancellation model, and an
aircraft connection and turnaround model.

Figure 2.2: Schematic of LMINET Airport Delay Model

Due to its flexibility and ease of use, LMINET has been used in the past to determine the progression of
different Air Traffic Management(ATM) improvement programs. Specifically, LMINET is used to determine
the throughput advantage of several NextGen programs [33]. The traffic throughput is mostly driven by air-
line flight plannings and the nominal operations and delays. Normally, throughput numbers are determined
under nominal weather conditions. Here, it is of less importance to include modeling blocks containing delay
propagation and flight cancellation. To address traffic throughput and flight delays in off-nominal conditions
the researchers introduced LMINET2. Both LMINET and LMINET2 are full scale NAS models covering 310 air-
ports of the NAS representing 98.6% of all air carrier activity and therefore can be considered as macroscopic
models [32]. Due to its large scale, the solution accuracy and model fidelity can be very high. However, Long
and Hasan [32] stated that the ground turnaround model has been used to estimate the delay propagation.
This model is based on the empirical data and the assumption that every aircraft should have a minimum
turnaround time. By performing a regression analysis, the predicted departure delay is obtained.

Simple Queue Model Carr et al. [14] created a model containing simple queuing dynamics to compute de-
parture flow restrictions at, respectively, Logan International Airport (BOS) and Newark Liberty International
Airport (EWR). The paper was focused around modeling the direct effects of downstream restrictions. Carr
et al. [14] showed the impact of delays on airports by using performance metrics like throughput, departure
congestion and average taxi-out delay. The model is validated via a comparison between a Monte Carlo Sim-
ulation and ten hours of actual operations data collected during a case study.

Carr et al. [14] showed that a simple queuing based network can be an effective way to model the effects
of surface traffic congestion and fix closures. As this model only considered the effects of one particular
airport the model can be considered to be microscopic. The research method used here is not suitable for the
analysis of the dynamics of delays throughout the network of airports, since the model only focused on the
local effects and what will happen with the airport performance metrics.

Continuum Model Lovell et al. [34] presented a continuum approximation to queuing problems located at
one airport. The approximation is derived from the Kolmogorov forward equation of stochastic processes
within the airport problem context. The paper showed a numerical solution based on finite element method.
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The researchers compared their results with stationary results of the M/M/1 process and real demand and
supply data. It has been shown that the results of the approximation both match the mean and the variance
of delay statistics reasonably close. However, the modeling technique is a novel approach and therefore less
suitable for addressing the research gap.

Results of the simulations show that queuing based simulations are a valuable tool for addressing delay prop-
agation problems. However, making the research too complex from the start could result in a less feasible
thesis assignment, due to the limited amount of time within the thesis project. Therefore, a simple network
modeling approach will be the starting point and eventually simulation tool could help to extend the concep-
tual model.

2.3. Flight Delays
Within the topic of flight delays one can make the distinction between primary and propagate delay. This
terminology will be explained first. Then a classification of delay sources will be provided.

2.3.1. Delay Definitions
Before investigating the effects of delays, it should be made clear what distinguishes primary delay and prop-
agated delay. Throughout the literature, multiple terms have been used to describe these two phenomena.

When looking at primary delay as Fleurquin et al. [19], several different definitions have been used over
the past years to describe the type of delay which is originating from external factors on to one aircraft. As
one of the first researchers discussing the effects of flight delays, Beatty et al. [6] described it as initial delay,
the delay which is initially created by the aircraft itself or its conditions. Cook and Tanner [15] used the term
primary delay, or original delay, which is caused by one aircraft. Furthermore, AhmadBeygi et al. [1] referred
to root delay, original root delay as the source of propagation throughout the network. This root delay is inde-
pendent of any other delay created earlier on. Lan et al. [29] called it non-propagated delay or independent
delay which is not a function of routing.

Propagated delay can be caused by four main reasons, namely, aircraft rotation, aircraft equipment, crew
rotation, and transferring passengers. When describing the term delay propagation, Lan et al. [29] gave an ev-
ident definition: " propagated delay is delay that occurs when the aircraft is delayed on a prior flight". However,
this definition only covers aircraft rotation and ignores the effects of crew rotation or transferring passengers.
More recently, Kafle and Zou [28] stated that propagated delay occurs if connected resources are delayed in
a flight downstream. This definition is more broad and is able to cover, not only delay caused by aircraft
rotation, but also crew, passenger and airport resources.

Throughout literature, different terminology has been used in Europe and the U.S. when describing delay
propagation. In Europe the term reactionary delay or reactional delay is commonly used, by for example
Fleurquin et al. [18], Fleurquin et al. [20] and Belkoura et al. [7]. In the U.S., the term propagated delay or
delay propagation is generally used, by for example Pyrgiotis et al. [45], AhmadBeygi et al. [1] or Long and
Hasan [32]. Furthermore, terms as downstream delay [13] or downline delay [6] are also used, but are less
common.

Since all these different terminologies could create confusion, the terms propagated delay or delay propa-
gation and primary delay will be used throughout the rest of this report, when describing the two phenomena.
These terms are used, since they seem to describe it best and are the most consistent, while taking previous
literature into account.
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2.3.2. Classification of Delay Sources
When describing the aircraft operation most commonly a flight profile is provided as in Figure 2.3. A flight
could be separated into five stages, namely, departure, taxi-out, en-route, taxi-in, and arrival. Within each
stage, a certain delay could be incurred. The numbers in parentheses in Figure 2.3 are the average delay
minutes for all flights as recorded in American Flight Database in 2005 [32]. This simplification of aircraft
operations will be used as the basis of the conceptual model.

Figure 2.3: Flight Profile and Delay per Stage [32]

Within literature several examples of queuing network representation of such a flight profile have been
found. Figure 2.4 is one of those examples where each stage is represented with a complementary queue and
server. With this queuing representation a simulation can be performed of the possible waiting times and
thus delay created for each aircraft. The conceptual model will be inspired based on such representations.

Figure 2.4: Queuing Network Abstraction of Flight Profile [36]
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Research Proposal

From the introduction and the literature study it can be concluded that more research is needed to better
understand the propagation of flight delay and the relationships between its dynamic behavior and the orig-
inal sources. To achieve this goal, this research proposal has been set up. Within this chapter, the research
proposal will be explained. First, the research objective is mentioned, which provides guidance and the goal
of this thesis. Next, the research questions are addressed which need to be answered within this project.
Third, the research scope will be explained. Finally, the research methodology will presented, which will be
the backbone of this research project.

3.1. Research objective
From the literature study it was concluded that currently, a lot is unknown about the dynamics of flight delay
and in particular the relationship between propagation throughout a network and the different sources from
whom the delays are originated. Furthermore, it was found that queuing theory was the most appropriate
method of simulation. Therefore, the research objective can be formulated as followed:

The research objective of this thesis assignment is to investigate whether different sources of
primary delay induce contrasting dynamics of propagated delay within a network of airports

simulated by a stochastic queuing network model.

Based on the literature study and the empirical data available, it was determined that the United States
(U.S.) National Aviation System (NAS) will be chosen as the context of the study. Since the U.S. NAS consists
of 310 airports, the Core 30 airport set has been chosen as the scope of this study. These airports account for
80% of the US domestic air traffic thus giving a good representation of both the network as a whole but also
focus on the main contributors of delay within the network [17].

3.2. Research questions
To fulfill the research objective, a research question has been created. Answering the research question will
help in reaching the objective of this study. The main research question could be formulated as followed:

To what extent, and how, do local flight delay sources influence the dynamics of delay propagation
within a network of airports of the U.S. National Aviation System simulated by a stochastic

queuing network model?

To help answering this main research question, it has been divided into four sub-questions, which can be
found below.

1. What are the influencing factors of generation and propagation of delay that should be taken into ac-
count?

2. How can the generation and propagation of delay within a network be modeled properly based on the
key processes within airport operations?

11
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3. How, and to what extent, can the proposed model be used to analyze and identify airport roles in the
propagation of flight delay?

4. How could this model be applied to improve the mitigation of delay propagation in the future i.e. what
is the main contribution of this study?

3.3. Research Scope
From the research questions it becomes clear that this study will focus on the generation and propagation
of delay and the roles airports have within the airport network. Throughout literature different perspectives
are present on the quantification of both delay creation as well as delay propagation. Therefore, the research
scope will be clarified within this section.

3.3.1. Delay Generation
Based on the literature study, three main processes within the aircraft flight profiles have been identified as
the main contributors of delay generation, namely the arrival of aircraft, the turnaround of aircraft, and the
departure of aircraft. A more detailed representation has been considered outside the scope of this study.

Within each of these three processes, the queuing of aircraft will result in some average waiting time in
the queue. This waiting time in the queue indicates the average delay experienced by the aircraft due to
congestion and is called the local queuing delay. For each of the three airport processes a subsequent local
queuing delay term is generated, which together are called the local queuing delay of one specific airport.

3.3.2. Delay Propagation
Within literature, delay propagation is quantified as the amount of delay which is generated at a downstream
airport and is propagated towards a new airport by its incoming flights. Propagated delay can be caused by
several reasons, such as transferring passengers, crew rotation, or aircraft malfunctions. However, within
this study the focus lies on the rotation of aircraft flying their predefined schedule. Thus other causes of
propagated delay are considered outside the scope of this thesis project.

3.4. Research Methodology
The above research questions define what is needed to reach the research objective and could be summarized
in a research framework. The research framework for this project is based on the methodology presented in
[52]. In Figure 3.1, the research framework is presented, indicating the processes and the research questions,
presented with their number in bold, which could be linked to these processes.

Figure 3.1: Research Framework



3.4. Research Methodology 13

Based on this research framework the following methodology will guide in reaching the research objective.

1. Create a conceptual queuing model based on the airport processes.

2. Set up model input and output performance indicators which enable the model assessment under dif-
ferent operational conditions.

3. Performing a case study of 29 US airports, within a representative period of time, in which the dynamics
of propagated delay could be investigated.

These three sub-objectives are important, since they determine when the research objective is reached and
the thesis project can be finalized.

Queuing model
Queuing theory has proven to be an excellent choice in the past, when describing delay propagation mech-
anisms. Within literature, most of the models were based on queues due to its adaptability to different op-
erational conditions and ability to capture the stochastic nature of airport operations. To make this thesis
assignment feasible, queuing will be used as the leading methodology. By choosing queuing theory as the
leading research methodology, a proper mathematical model can be created, which captures the dynamics
of delay within the examined network.

Model assessment
The model requires the input of both arrival and service rates, which simulate the dynamics of the demand
over the day and the capacity of each airport process. Based on all the different metrics, which are discussed
in the literature review, the following performance indicators will be used: the average queuing and propa-
gated delayed, the delay difference indicator, and the delay source distribution indicating its original source.
With these performance indicators the network dynamics will be tried to capture.

Case study
After the creation of the queuing model and the specification of how the model will be assessed, a case study
has been performed within the context of the United States domestic network. As model input, 29 large US
airports have been selected of which the local queuing delay and propagated delay will be simulated by the
queuing model. Three experiments will be conducted wherein the operational conditions and flight days will
be varied to see the effects of delay propagation.
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To simulate delay propagation, a queuing based model is created where aircraft are described by objects
which follow a certain path along predefined nodes based on their daily flight schedules. The queuing model
is based on airports build up in three different queuing systems representing the arrival, departure, and
turnaround process. In this chapter the model formulation, operation of the model, model assumptions,
model inputs, and performance indicators are explained respectively.

4.1. Modeling a Single Airport
Within the literature study, a stochastic queuing network model has been identified as an appropriate method
to represent a network of airports within the US NAS context [31], [32], [43], [49]. The overall approach is
based on the observation that aircraft fly a scheduled itinerary, which results in a certain arrival and departure
rate at every airport. As the day progress these scheduled rates change due to delay within the system. Given
the actual rates of all domestic flights it should then be possible to trace the propagation of delays. The
queuing process is modeled as a chain of queues and servers that describe the itinerary of an aircraft object
which moves from one server to the next server. These queues and servers represent the internal processes
of each airport within the model.

At each airport, aircraft arrive at a queue according to an independent stationary Poisson process with
rate λm

i . [As.2] The rate can interpreted as the average number of aircraft (N m
i ) that arrive per unit time, see

Equation 4.1, in queuing process m at airport i . The arrival rate is computed on a half hourly(b − a = 30)
aggregation of incoming flights. A 30 minute interval is proofed to be the closest approximation to represent
a stationary process.

λm
i = N m

i

b −a
= N m

i

30
,∀ m ∈ Q, ∀i ∈ A (4.1)

The set of queues present at each airport is referred to as Q and the set of airports included in the model is
referred to as A. The same principle is used to calculate the number of aircraft served, µm

i , for each queuing
system within the network.

Since the model does not follow aircraft on their tail number, no individual itineraries are implemented.
Instead, aircraft rotation is being presented as a flow of aircraft going in and out of an airport. The links
between the airports are represented by routing probabilities which are based on the number of flights going
from and to the airports within the network. The flow of aircraft or rates at which they arrive at the different
queues is approximated on a half-hourly arrival rate obtained from the empirical data.

To simulate the airport processes a conceptual model has been created which cover the arrival, turnaround,
and departure process. Each airport within the proposed Delay Airport Model (DAM) will consist of an ar-
rival runway queue (AR queue), turnaround (TA queue), and a departure runway queue (DR queue). The set
of queues is referred to as Q, where Q = {a, t ,d}. A schematic representation of one airport is given in Figure
4.1. First the aircraft flow will be discussed after which the computation of the delay terms is discussed.

Arrivals at the AR queue are considered as departures from the network and as arrivals towards airport i .
Flows from other airports are represented by routing probabilities p j i , ..., pni and flows towards other airports

15
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Figure 4.1: Conceptual representation of a single airport

are represented by pi j , ..., pi n . The flight phase is assumed to be un-capacitated, which means that no delay
will form during flight, nor any delay will be mitigated during flight [As. 9].

Aircraft arrive at the AR queue according to an independent stationary Poisson process with rate λa
i [As.

2]. After being served, with service rate µa
i , the arrivals enter the turnaround system. At the TA queue aircraft

arrive according an independent stationary Poisson process with rate λt
i . After being served at the gates,

with service rate µt
i , aircraft enter the departure runway queue according an independent stationary Poisson

arrival process with rate λd
i . Aircraft are served here with a service rate µt

i . Departures from the DR queue are
considered as departures from airport i and as arrival towards the network.

Within each queuing system a waiting time in queue is generated depending on the local conditions.
With three queuing systems per airports, each airports will contain three different waiting time components,
namely, arrival(W a

i ), turnaround(W t
i ) ,and departure(W t

i ). An additional delay term is propagated from each
departure airport towards the arrival airport which will result in the propagated delay term (PDi ) for each air-
port i . Last, the airport delay term (ADi ) is introduced which indicates the result of both local and propagated
delay. A more extensive explanation of the quantification of delay is found in section 4.5.

Arrival Runway Queue (M/M/1)
The arrival runways are modelled as an M/M/1 queue. The arrival process is assumed to be a independent
stationary Poisson process(M) with arrival rate λa

i , where this rate is based on the amount of actual arrivals
at airport i during period h [As. 2]. The arrivals rate is the summation of all departure flows running from
airport j, λ j , multiplied by the probability aircraft fly from j to i , p j i . An additional stream, a j , is added which
represents all arrival flows from airports which are not included in our model but still contribute to the ar-
rival flow at airport i . In Equation 4.2, one can see the mathematical representation of λa

i . All these rates are
calibrated with the on-time performance database of the BTS [8].

λa
i = a j +

∑
j 6=i

p j i ·λ j ∀i , j ∈ A (4.2)

The service rates indicate the maximum throughput capacity of airport’s runway system that is the ex-
pected number of movements which could be processed if the airport is under continuous demand. This
could be estimated by analytical or simulation models, from field-based estimates, such as the FAA capacity
profiles [45], and on real flight data such as the on-time Performance database of the BTS database [8]. How-
ever, these static representation does not account for day to day changes in the system. Therefore, the service
rate will be based on the actual time it take to serve a landing aircraft in sub period h. This information is
gathered from the BTS database and translated into a mean service rate ,µa

i , for each airport i and sub period
h [As. 3].

By assuming one runway server, queues can arise and no further analysis is needed on the runway con-
figuration and ATM policies used at each individual airport. Since each airport within the network consists of
a different runway system and uses a different runway configuration, assuming one runway for each airport
will simplify the model calibration significantly [As. 4].

Turnaround Queue (M/M/1)
The turnaround queue is modelled as a M/M/1 queue. The arrival process is assumed to be an independent
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stationary Poisson process(M) with arrival rate λa
i , where this rate is based on the amount of actual gate ar-

rivals at airport i during period t [As. 2] Since the prior queue in the network is both Markovian in arrival
and service, the input rate of the turnaround queues is also according an exponential distribution, see Equa-
tion 4.3 [10]. Since both rates are equal it can also be stated that the rate is based on the amount of actual
arrivals at airport i , which are obtained from the on-time performance database of the BTS [8]. However, to
approximate reality with the use of three different queuing system in one airport

λt
i ≡λa

i ∀i ∈ A (4.3)

The service rates, µt
i , for the turnaround queue is determined from the BTS database and are based on the

amount of aircraft which are ready for departure and leave their gate, in other words, the departure rate
[As. 3]. The service-time distribution is assumed to be a stationary exponential(M) distribution with rate
µt

i . Furthermore it is assumed that the turnaround queues have one server, to simplify the modeling of the
turnaround process. One could perform a study on the amount of gates at each airport in the model to in-
crease the accuracy of the model. However, this is outside the scope of this thesis project.

Departure Runway Queue (M/M/1)
The departure runway queue (DR queue) is modelled as a M/M/1 queue in the same way as the arrival run-
way queue [As. 2]. The arrival process is based on a independent stationary Poisson process with rate λd

i .

It has been assumed that the queuing systems are independent of each other and thus the rate, λd
i , will be

based on actual departure rates obtained from the BTS on-time Performance database [8].
The service rate for the DR queue is determined in a similar way as the AR queue but now based on the

amount of aircraft which take-off instead of landing. The service rate will be based on the actual amount of
take-offs in sub period h. This information is gathered from the BTS database and will be based on the wheels
off times and translated into rate ,µd

i , for each airport i and sub period h [As. 3].
The DR queue also contains one server, similar to the AR queue [As. 4]. After being served by the DR

queue, aircraft will depart from the airport and will be treated as departures from the network. Aircraft flow
will be separated among the different connections based on the routing probabilities obtained from the air-
port flight schedules. In Equation 4.4 one can see how the rates are split up based on the routing probabilities
pi j and the ai which are the departures to all the airports which are not in the analyzed network.

λd
i = ai +

∑
j 6=i

pi jλi ∀i , j ∈ A (4.4)

4.2. Modeling a Network of Airports
Within the model, the United States National Aviation System (NAS) will be used as the main reference point.
Since delay propagation is mainly a problem at the larger airports, only the 29 largest airports with the highest
volume of traffic, also called the Core 30 airports, will be treated within the model. Let A be the set of airports
in the network [17]. A simplified version of the network is presented in Figure 4.2 which indicates how the
airports are connected and how the aircraft flow is distributed when it leave one airport and goes to next.

Figure 4.2: A simplified representation of the network

Within this simplified representation of the network, seven airports are drawn, two departure airports
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from which aircraft depart, one connecting airport, and four airports which receive aircraft from the con-
necting airport. As an example, aircraft flow from 1 to 5 will be considered. Starting at airport 1, the departure
aircraft are aggregated with a demand rate, λd

1 , and are served at the departure process of airport 1 with a
service rate µd

1 . After being served, a scheduled defined fraction of aircraft,p1,i , will fly from airport 1 towards
airport i. When the aircraft arrive at airport i the three airport processes will be run through. After being
served at the departure process of airport i, a fraction of the aircraft, p5,i will depart towards airport 5 were
it will queue up again for the arrival process. This same process will be repeated until all sub-periods of the
simulation day have been considered. The rate of aircraft coming in from the virtual airport is represented by
ai .

Within the whole model, the same queuing discipline will be used, namely First Come First Serve (FCFS)
[As. 5]. This means that aircraft are served in the order they are entering the system. For most of the American
airports this assumption is valid [51]. Aircraft follow a scheduled itinerary and cannot leave the system..
Therefore, aircraft will wait in the queue until they are served [As. 6]. Furthermore, the same waiting room
capacity is assigned to all queues. Since in the model no demand should be denied, the number of aircraft in
the queues can take any number above zero [As. 6].

A 30th "virtual airport" is added to the model replacing all incoming and outgoing flow to the remaining
US airports [As. 7]. When visiting the virtual airport, it is assumed that aircraft do not experience any further
delays. Furthermore, delay propagated via the virtual airport will not be incorporate in the model analy-
sis. To assure an appropriate calibrated model with the right queuing parameters, the On-time performance
database of the Bureau of Transportation (BTS) has been used, containing aircraft flight schedules, the actual
arrivals and departure times, and the on-time performance.

Since the model is based on the U.S. NAS, multiple times zones are crossed by the aircraft. The US main
land consists of 5 time zones going from -5 UTC (Eastern Standard Time (EST)) until -8 UTC (Pacific Standard
Time (PST)) in the winter and -4 UTC (Eastern Daylight Time (EDT)) until -7 UTC (Pacific Daylight Time
(PDT)) in the summer. During the night, there is low activity which makes it convenient to start the model
during the night. Since time is decreasing from east to west, 4am EST will be used as the starting point of one
simulation ’day’ , that is 3am, Central Time (CT), 2am Mountain Time (MT), or 1am Pacific Time (PT). Since
there will be only mainland airports included in the model, these 4 time-zones are sufficient. All local times
will be converted to EST/EDT to make it possible to compare airports from different timezones.

4.3. Assumptions
To simplify the model several assumptions are made during the creation of the model. In the following sec-
tion these are stated. The first seven assumptions concern the queuing systems. The latter assumptions are
more generally describing the model and the interrelations between airports.

Assumption 1
One simulation ’day’ is subdivided into k sub-periods, h1, ..,hk of the same length. During each sub-period
(hi ) steady-state is assumed, with a constant λ and µ during this sub-period for each queuing system. Flight
times between airports are categorized per sub-period and rounded off to the nearest integer.

Assumption 2
The arrival demand at each queue in the queuing network is modeled as an independent stationary Poisson
process and so the inter-arrival times of aircraft follows an exponential probability distribution with mean
value λ. Each new sub-period, a new mean value is determined, based on an empirical data study.

Assumption 3
The service times of every queuing node follow a stationary Poisson process with a mean value or rate µ. This
value is determined by an empirical data study and remained fixed during a simulation day.

Assumption 4
An airport within the model is represented by one arrival runway server, turnaround server and one depar-
ture runway server.

Assumption 5
Aircraft are served according the First Come First Serve (FCFS) principle throughout the whole network.
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Assumption 6
Aircraft will always wait in line until they can be served, and the number of aircraft in queue can be infinitely
large, so that no demand will be lost.

Assumption 7
Each queuing system of each airport, starts out empty at the start of a new simulation ’day’.

The remaining assumptions are related to the overall model.

Assumption 8
Expected waiting times is assumed to be an adequate representation of average delay during one of the three
sub-processes.

Assumption 9
The flight phase is un-capacitated, which means that no delay will form during flight nor any delay will be
mitigated during flight.

4.4. Model Input
To be able to run a simulation, a certain amount of input data is required. In the following list, the essential
input variables are stated.

• Airports (A)

• Time period (T )

• Arrival rates of the queuing systems (λ)

• Service rates of the queuing systems (µ)

• Routing probabilities (pi j )

• Flight times ( fi j )

While some of these input variables are time and day dependent, others can be fixed and used throughout
every simulation run. In the remainder of this section, each of the input variables are discussed.

Airports
Let A be the set of airports in the network. Within this thesis the US National Aviation System is under con-
sideration. Of the total NAS only the 29 largest airports (Honolulu International, Hawaii is excluded from the
case study) are chosen and modelled explicitly, the remainder of the NAS airports are represented by a 30th
’virtual’ airport. While referring to one of the airports the airport code is commonly used throughout the rest
of the thesis.

Time period
Within the model the time period which is analyzed can be set to multiple time scopes. One can for example
model one day of data but also one month, or maybe one year. For now time period (T), or one simulation
’day’, is set equal to a 24-h period, beginning at a time where there little to no traffic, 4am EST. T is subdivided
into k sub-periods(h), h1, .. ,hk of the same length. At the beginning of the time period T the queuing network
starts out empty [As. 7]. The sub-period are assumed to be 30 minutes of length. In the Chapter 5 a more in-
dept analysis has been performed to justify the appropriate time-interval length.

Arrival rates of the queuing systems
Based on the on-time performance data of the BTS, it is possible to create daily demand profiles for each indi-
vidual airport indicating their arrival and departure rate if aircraft would depart and arrive at their designated
actual time. Based on these demands an arrival and departure rate can be set at the start of a new day.

However, these rates are not fixed during the day and so both arrival and departure rate, λ, are a dynamic
property and will change every sub period. During the calibration phase it will be determined if the assumed
sub period can cover the rate of change in rate.
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Service rates of the queuing systems
The service rates indicate the number of aircraft which could be processed by the specific servers. Within the
model, three different service rates need to be defined, namely, arrival runway, turnaround, and departure
runway. These service times will be based on the BTS data. In chapter 5 the calibration of the model will be
discussed in more detail.

Routing probabilities
To be able to know how aircraft will spread over the network and thus how delays will spread over the net-
work, routing probabilities are necessary so the connectivity of the network can be expressed. Based on the
schedules obtained from the BTS data, a routing matrix can be set up indicating the possible OD pairs of that
sub-period and the corresponding percentage of flights which travel towards that particular destination. For
example, if airport 1 has 10 outgoing flights in period k, and 2 flights are going to airport 2, the routing prob-
ability p12, is equal to 20% or 0.2. Similar to the arrival and departure rates, routing probabilities will change
over the course of the day and can be approximated per defined sub-period.

Flight times
The flight times between the different airports in the model are necessary to describe the temporal redistri-
bution of propagated delay. Since each OD pair has a different flight time, delay will spread with at a different
pace throughout the network. Where short OD pairs could feel an almost immediate effect of propagation,
long OD pairs would be exposed later in time. For example, flying from JFK to ORD would only take 1,5 hours,
while flying from JFK to LAX takes 4,5 hours. Therefore, delays occurred at JFK could already have an affect
on ORD within 2 hours, while at LAX this would take at least 4,5 hours.

To address this temporal effect each OD pair is categorized according to the assumed sub-periods (hi ).
Flight times are obtained from the empirical data-set and are categorized per period of 30 minutes [As. 11].
So when looking at the example above, flying from JFK to ORD would take 3 sub-periods and flying from JFK
to ORD would take 9 sub-periods. Therefore fi j would be equal to 3 and 9 respectively.

4.5. Delay definitions
Before the performance measures can be stated, a clear definition for delay is needed. Since the model is
built on the abstraction level of rates, and not on the level of individual aircraft, the classical delay definition
can not be used.

Instead, aircraft are now aggregated to a time-varying rate, which is constant along each sub-period. And
so the definition of delay needs to be converted to this aggregated definition. Although the examined queuing
network is not stationary over the course of the day, it has been assumed that during each sub-period the
system is in steady state [As. 1]. Therefore, the effects of delays due to air traffic congestion will be expressed
per sub-period as well. This simplification enables the use of steady-state solutions for each sub-period (h).

When looking at existing literature for stationary queues a lot is known about steady-state solutions for
expected waiting times. Little’s Law provides a simple way to convert the expected or average queue lengths
into expected waiting times [24]. In Equation 4.5 and 4.6 one can find these relationships, between both the
average queue length (Lq ) and the average waiting time in queue (Wq ), as well as the average number of
customers in the system (Ls ) and the average time in the system (Ws ).

Lq =λWq (4.5)

Ls =λWs (4.6)

By adapting these Equations towards a more useful representation, the waiting time in queue and waiting
time in the system can be obtained, see Equation 4.7 and 4.9. In Equation 4.7 one can find this relationship
where Lq,i represents the queue length at node i, Wq,i , the waiting time in queue at node i, and λi the average
arrival rate at node i all during the same sub-period [24] [50]. When going to the next sub-period, λi+1, the
rate has changed and so the expected waiting times changes as well. Where Equation 4.7 is derived directly
from Little’s law, Equation 4.9 is obtained by using the relation between the number of aircraft at node i (Ls,i )
and the number of aircraft in queue at node i (Lq,i ) in Equation 4.8. The queue length (Lq,i ) of each queuing
system at node i will be obtained by performing simulation. With the use of Equations 4.7 - 4.9 the other
queuing measures can now be obtained.
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Wq,i =
Lq,i

λi
(4.7)

Ls,i = Lq,i + λi

µi
(4.8)

Ws,i =Wi ,q + 1

µi
(4.9)

With the definition of expected waiting time in the queue it is now possible to specify delay. Within lit-
erature the expected waiting time in the queue is used as the expected delay experience by the aircraft as of
a result of congestion [45] [49] [50]. Within this thesis project the same principle will be used and so the ex-
pected waiting time at queue m in node i (W m

q,i ≡ W m
i ) will be defined as the equivalent of expected queuing

delay. With three queuing systems in place for each airport this results in three different queuing delay terms
per airport i, W a

i , W t
i , and W d

i , as shown in Figure 4.1 and Figure 4.2.
Next, the definition of airport delay and propagated delay are specified. Airport delay(ADi ) is defined as

any delay incurred due to congestion at the current airport plus any delay which is propagated from con-
nected airports and arrives at airport i during the same sub period. Propagated delay is formed by any delay
which is incurred at former airports. Based on these two definitions a mathematical expression can be pro-
vided for both airport delay (ADi ) and propagated delay (PDi ), see Equation 4.10 and 4.11.

ADi (h) =W a
i (h)+W t

i (h)+W d
i (h)+α PDi (h) (4.10)

wi th

PDi (h) =
A∑

i 6=1
ADi (h − f j i ) p j i (h) (4.11)

Here, airport delay of airport i (ADi ) is determined for each sub-period h as being equal to the expected
queuing delay per queuing system at airport i plus the propagated delay term of the same sub-period multi-
plied with a factor α ∈ [0,1] which could be changed during the calibration phase. For now this α is stated to
be equal to 1.

Propagated delay (PDi ) is defined as the summation of the outgoing airport delay at the previous airport
j multiplied with the routing probability (p j i ) from airport j to i for all airports j which are not equal to arrival
airport i. One important note is that the flight time between each OD pair should be incorporated as well.
Therefore, the propagated delay term is also affected by the flight times by assigning the delay term (PDi )
to the appropriate sub-period (h + f j i ) since the delay of airport j will only have effect after aircraft arrive at
airport i. In the following section the performance measures of interest can now be defined with the use of
Equations 4.7 -4.11.
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4.6. Performance Measures of Interest
Within the model, several performance metrics will be used to quantify the dynamics of delay propagation
among the different airports. In this section the performance measures will be explained. A distinction can
be made between local performance measures based on the performance of one airport, and network per-
formance measures which are based on the behavior of the network as a whole. First, the local performance
measures will be discussed followed by the network performance measures.

4.6.1. Local Performance Measures
Local performance measures include expected delay for specific sub-period of the day, or for the entire day,
the maximum expected delay during the day, the arrival and departure delay or the number in queue for
each queuing system. In the remainder of this section these local performance measures of interest will be
discussed.

Expected and Cumulative Queuing Delay
In relationship to the input parameters λi , and µi , it is interesting to see how the expected queuing delay
terms evolve over the course of the day. Local queuing delay(QDi ) is defined as the sum of the waiting times
for each queuing system at one specific airport, see Equation 4.12.

QDi =W a
i (h)+W t

i (h)+W d
i (h) (4.12)

This measure will be computed for each sub-period (h), which shows the distribution of expected delay
during the day at each individual airport for the arrival, turnaround, departure queue. With these measures
it can be seen if delay converges back to zero or if it will become significantly large that during the rest of
the day large delays will retain. Furthermore, busy periods could be identified and relationships between the
different queuing systems could be determined.

Next, the cumulative queuing delay will be determined. Based on Equation 4.12, the cumulative local de-
lay (QDi ) is computed for each airport i. This measure will later be compared to the cumulative propagated
delay term for the same airport i to see which of two is more dominant at the examined airports.

Maximum Expected Queuing Delay
Next to the temporal dimension, it is also interesting to compare expected delay terms of the same airport
or even with other airports. Therefore, the maximum expected local delay is defined for each system at each
airport, see Equation 4.13 where the arrival system is used as an example.

max
h∈1,..,T

[W a
i (h)] ∀ i ∈ A (4.13)

With this Equation three maximum values, for the arrival, turnaround and departure process are obtained.

Arrival and Departure Delay
To compare simulation results with the empirical data both arrival and departure delay have been computed
for each airport within the network. The arrival delay is computed as Equation 4.14, and the departure delay
is computed as Equation 4.15. The arrival delay is calculated for each sub-period h and consists of the de-
lay aircraft obtained at their previous airport (propagated delay), and the local queuing delay obtained when
waiting for the arrival process. The departure delay is calculated for each sub-period h and consists of the
arrival terms plus the local queuing delay obtained when waiting for turnaround and departure.

Ar r Del ay(h) =α PDi (h)+W a
i (h) (4.14)

DepDel ay(h) =W a
i (h)+W t

i (h)+W d
i (h)+α PDi (h) (4.15)

Based on these two measures, the average arrival and departure delay are computed for each simulation day
which can be compared to real data as part of the validation of the model.

Average Queue Length
As one of the main results of the model the average queue length has been computed. Based on the time-
averaged number in queue, see Equation 4.16, Little’s Law has been applied to obtain the local delays.

Lq,i =
∫ b

a Lq,i (t )d t

b −a
(4.16)
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Here, the numerator is defined by an integral indicating the time a certain queue length is present where
a and b define the start and end of the interval of interest. The integral does not have to be calculated in the
usual form of an equation. It can be calculated analytical by an approximation with a sum of the discrete
moments. Thus, each the average queue length has been determined each 30 minutes.

4.6.2. Network Performance Measures
In this section the network performance measures will be explained. Next to the local effects, delays could
also have a mayor effect on other airports within their network. These propagation effects are tried to be en-
captured with the following performance indicators.

Cumulative Propagated Delay
Based on the local delay and the routing probabilities, it is now interesting to see how much propagated de-
lay is experienced by each airport within the network. Based on Equation 4.11, the cumulative propagated
delay is calculated for each airport within the network and plotted during each day. The results of this plot
are compared with the local counterpart.

Total Delay
To quantify the total delay at each individual airport the total delay metric, D tot

i , is introduced, which is a
summation of the local and propagated terms for each airport i , see Equation 4.17.

D tot
i =

k∑
h=1

QDi (h)+PDi (h) ∀ i ∈ A (4.17)

This indicator will be used to compare different airports while experiencing different conditions.

Delay Difference
Based on the distribution of expected queuing delay, a performance indicator is defined, namely the delay
difference indicator. The delay difference indicator(DDi ) refers to the difference between the sum of the local
queuing delay(QDi ) and the sum of the propagated delay(PDi ) at airport i , see Equation 4.18. If there is more
local than propagated delay, the indicator is larger than 1 and vice verse. The indicator shows if an airport is
a source or a sink of delay.

DDi ≡
∑k

h=1 QDi (h)∑k
h=1 PDi (h)

(4.18)

The delay difference is calculated per day and uses the sum of each the expected delay term per sub-period.
This indicator will be used to profile the airports as a sink or source of delay.

Airport profiles
Based on the delay difference indicators, three different airport profiles have been created based on the air-
ports natural behavior under daily demand. The three profiles are delay generator, delay receiver, and a dual
role(both). A delay generator indicates that an airport creates significantly more queuing delay than it receive
propagated delay from other airports. The delay receivers mean that an airport receives significantly more
propagated delay than that it creates itself. The last role is assigned to airport where both roles are visible and
so it is undecided which role is more dominant.

Breakdown of delay sources
It is also interesting to see the relationships between airports and to show causal relationships between
sources and its receivers. To be able to analyze this, a pie chart will be created which indicates the sources of
the delay and their share of the total delay. The share of propagated delay from each airport j will be based
on Equation 4.19.

PD j
i = AD j p j i (4.19)

Where AD j is the local delay at the departure airport j . With each individual share a 100% stacked area chart
will be created to see how the constituent parts will evolve over time. With this pie chart it is possible to
determine the main source of delay per each airport, whether it is local or from another airport.





5
Data Input & Calibration

In this chapter the focus lies on the development, the data input, and the calibration of the model. First the
airport subset A is defined. This set will be the network of airports which will be examined. Afterwards, a
definition is provided of the BTS database used for all the schedule information, the time zone database used
to convert local times, and the FAA capacity profiles used to indicate service rates changes under IFR and
VFR conditions. Then, the data pre-processing and filtering process is explained, which is performed before
useful parameters can be extracted from the flight schedules. Next, the data-set will be made discrete based
on the chosen sub-period time intervals. This decision is based on finding a stationary time window within
the arrival process. Next, the queuing parameters are estimated. Ending this chapter with the experimental
design of the three conducted experiments.

5.1. Development of the Model
During the investigation phase it was decided that the United States domestic market is the research target
area, since the US databases of both the FAA and BTS are publicly available, and because it was not possible
to gather the same amount of data on Europe. Furthermore, the US National Aviation System is an interesting
case to study, since delays are very common within this network plus the propagation of delay is bigger factor
within the US network.

Table 5.1: Core 30 Airports [16]

Airport Code Airport Name Airport Code Airport Name

ATL Hartsfield-Jackson Atlanta Intl LAX Los Angeles Intl
BOS Boston Logan Intl LGA New York LaGuardia
BWI Baltimore/Washington Intl MCO Orlando Intl
CLT Charlotte Douglas Intl MDW Chicago Midway
DCA Ronald Reagan Washington National MEM Memphis Intl
DEN Denver Intl MIA Miami Intl
DFW Dallas/Fort Worth Intl MSP Minneapolis/St. Paul Intl
DTW Detroit Metropolitan Wayne County ORD Chicago O‘Hare Intl
EWR Newark Liberty Intl PHL Philadelphia Intl
FLL Fort Lauderdale/Hollywood Intl PHX Phoenix Sky Harbor Intl
HNL Honolulu Intl 1 SAN San Diego Intl
IAD Washington Dulles Intl SEA Seattle/Tacoma Intl
IAH George Bush Houston Intercontinental SFO San Francisco Intl
JFK New York John F. Kennedy Intl SLC Salt Lake City Intl
LAS Las Vegas McCarran Intl TPA Tampa Intl

1Honolulu Intl. Airport will be excluded from the analysis due to its geographical position w.r.t. the network

25
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Since the US national aviation system consists of 310 airports, which accommodate domestic air travel, a
smaller subset needs to be chosen as the basis of the case study. Because delay and the propagation of delay
is a problem for the bigger airport the core 30 continental US airports listed by the FAA [16], see Table 5.1, are
chosen as the main point of focus. These 30 airports in major metropolitan areas are the airports with the
highest volume of traffic within the United States. With complex high-density operations these airports have
the perfect incentives for traffic congestion and delays thus being an interesting case to examine.

The model has been programmed in Python and has been implemented for the network of 29 Core 30
airports. (This means all Core 30 airports, with the exception of Honolulu.) Figure 5.1 shows a map of these
29 airports. Moreover, a 30st "virtual airport" is added which represents all domestic traffic going from and
towards an airport which is outside of the network [As. 8]. The purpose of this virtual airport is to include
all flights which are somehow connected with any of the 29 airports, going from or towards these airports.
Flights between two external airports are not included in the model, because these flight will not have an
effect on the arrival rates or delay formed within the 29-node network.

Figure 5.1: Airport Map of Core 30 Airports

On a typical day, roughly 16,250 domestic flights are flown, around 6,100 of these flights (38%) are flown
within the network, while 8,400 flights (52%) take place between one of the 29 airport and the virtual and
1,600 flights (10%) are entirely outside the network and thus not considered in the analysis.

To be able to develop this model, multiple sources have been examined to gather the right information.
The main source of information is the Bureau of Transportation On-Time Performance Database [8]. Within
this database all US domestic flights are recorded including their time of departure and arrival, their origin
and destination and if they depart and arrive on time. Based on this database the arrival rates and service rates
for each queuing system are estimated, see section 5.4. Next to the normal service rates, airports sometimes
have a lower throughput capacity if weather conditions are as such that it is impossible to operate under the
normal runway configuration. Therefore the capacity profiles [22] are used to give an approximation of the
capacity difference between VFR and IFR conditions. This factor will be used in the model if the specific
airport at that specific day is operating under IFR conditions.

Since all times in the BTS were recorded in local time it was impossible to directly extract the required
information from the data source. Therefore, it was required to convert the arrival and departure times from
local time to one reference datum time zone. To be able to do this a time zone database has been used
containing the corresponding time zones during winter and summer of each airport within the network [38].
With this database each local time is converted to the reference datum time zone EST(during winter) and
EDT(during summer).
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5.2. Data Input Description
As stated earlier, the BTS database will be the main source of information for the simulation. This section
contains a general description of this data source. The database is build up in rows of flights each containing
109 columns of information. The most important columns are stated here below plus an example of how the
input is formulated:

• Year (e.g. 2016)
• Month (e.g. 9)
• DayofMonth (e.g. 21)
• DayOfWeek (e.g. 2)
• FlightDate (e.g. 21-01-2016)
• Carrier (e.g. AA)
• TailNum (e.g. N525NK)
• FlightNum (e.g. 1)
• Origin (e.g. ATL)
• Dest (e.g. JFK)

• CRSDepTime (e.g. 1515)
• DepTime (e.g. 1640)
• DepDelay (e.g. 85)
• TaxiOut (e.g. 15)
• WheelsOff (e.g. 1655)
• WheelsOn (e.g. 1836)
• TaxiIn (e.g. 11)
• CRSArrTime (e.g. 1744)
• ArrTime (e.g. 1850)
• ArrDelay (e.g. 66)

• Cancelled (e.g. 0)
• Diverted (e.g. 0)
• CRSElapsedTime (e.g. 149)
• ActualElapsedTime(130)
• AirTime (e.g. 101)
• CarrierDelay (e.g. 0)
• WeatherDelay (e.g. 0)
• NASDelay (e.g. 66)
• SecurityDelay (e.g. 0)
• LateAircraftDelay (e.g. 0)

A complete overview of the data columns of this database and the corresponding description can be found
in reference [9]. Since most columns of data are self explanatory, only the less obvious will be explained.
For both the Departure and the Arrival Time two columns exist within the set. The CRSDepTime column
indicate the scheduled departure time and DepTime indicates the actual time the aircraft departed. The same
principle is in place for the CRSArrTime and ArrTime columns, and the CRSElapsedTime and ActualTime
which indicate the scheduled time and the actual time it took to fly from A to B. Where the four figures time
columns indicate the time in hhmm format, the rest of the time related columns indicate the number of
minutes it for example takes to taxi in from the runway towards the gates. The cancelled and diverted columns
will contain an one if the specific flight is cancelled or diverted. The flights have also been excluded from the
dataset. At last a distinction is being made in the causes of delay by indicate one of the five causes(Carrier,
Weather, NAS, Security, and LateAircraft). This cause is only being reported if the flight is officially late(15
minutes or more) and so the amount of data points is limited for most of these categories.

5.3. Data Preparation
Before the key queuing parameters could be estimated, the BTS database needs to be manipulated into the
right format which can be processed by the DAM model. To be able to do this, a data pre-processing script
has been created which manipulates the data in such a way that it can be of use. The data pre-processing
script consists of the following elements:

1. Select flight days and airports

2. include all flights which go from or towards one of the airports in the network

3. Convert time format from hours minutes towards minutes

4. Convert local times to EST/EDT

5. Fix all errors regarding next day arrival

6. Drop all rows which miss data

7. Set timeframe 4am - 4am EST/EDT

8. Convert all airports which are not in the network to the virtual airport

The specification of the data pre-processing and filtering is shown in Figure 5.2. As a result a flight sched-
ule is generated containing each flight from and to the airports in the network within the correct format.
In the first step a few variables need to specified, including which day, which sub-set of airports and which
input file will be used. After this step, all the remaining airports, which are not in the subset A, which will
be included in the virtual airport array and use later on to replace all airports which are not included in the
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Figure 5.2: Specification of the Data Preparation

model. At the same time the network schedule is created containing every flight from and to one of the 29
airports.

Next, the time format is converted from hours and minutes into minutes for example 3:30 is equal to 210
minutes. This is necessary to be able to calculate the minutes of delay that are encountered during flights.
Since all times are registered in local time, all times are converted to one single time zone, namely Eastern
Time(ET). When all times are converted, still a few steps need to be taken. While analyzing the empirical
dataset it turned out that every flight which arrives on a new day, after 12 pm, should be counted above the
already counted minutes. Now the time frame can be set from 4am until 4 am the next day. Next, all rows
with missing data will be dropped from the schedule. As a last step, the airports outside the network will be
replaced with the virtual airport.

5.4. Parameter Estimation
In the following section the parameter estimation will be described. The queuing parameters can be cate-
gorized into four important parameters, namely the inter-arrival time distributions or the arrival rates(λi ),
the service time distribution or service rates(µi ), the routing probabilities(pi j ), and the flight times( fi j ). Now
that it is known which subset of airports and which level of timely aggregation will be used these parameters
can be estimated.

A distinction can be made between the fixed input parameters: service rates, flight times, and the vari-
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able input parameters: arrival rates, routing probabilities. Where flight times and service rates(capacity) are
more or less fixed for routes between airports and airports specifically, arrival rates and routing probabilities
vary heavily during the day. Therefore, the remainder of this section is focused on two aspects, describing
how each of the four queuing parameter is estimated each run, and how the variable parameters will change
during a "simulation day". To calibrate the fixed parameters, the month November 2016 of the BTS On-Time
Performance database is used [9], since in this month the least delay is experienced by the network and thus
the best representation of the network is present, see Appendix A.

5.4.1. Arrival Rates
The first key parameter which is estimated is the mean arrival rate (λ) of each queuing system present in the
model. In Chapter 4 it is defined that each airport consist of three different queuing systems. Therefore, three
arrival rates need to be determined based on an empirical data analysis, namely λa

i (h), λa
i (h), λd

i (h). Where
λa

i (h) is based on the mean arrival rate of aircraft arriving at airport i(column WheelsOn), λt
i is based on the

mean arrival rate of aircraft arriving at the gates of airport i(ArrTime), and λd
i is based on the mean arrival

rate of aircraft that are departing from the gates of airport i (column DepTime).

Figure 5.3: Arrivals Rates example Monday the 21st of November 2016 Atlanta(ATL)

In Figure 5.3, an example is shown where these two rates are plotted based on the half hour aggregation.
Based on this figure, one can see that a constant arrival rate would not give a good representation of the
network demand. Therefore, arrival rates are variable parameters and thus change over the day and will
change with each input day. In this example one can see that each peak of arrivals is followed by a peak of
departures, as expected.

5.4.2. Routing Probabilities
The second important parameter needed for constructing the queuing network are the routing probabilities
(pi j ) of aircraft flying from one airport i towards airport j . These flow fractions can be derived based on
the number of aircraft arriving or departing from a certain airport together with the origin they are coming
from or the destination they are flying towards. In this model, the focus lies on the routing probabilities
(p j i ) aircraft coming from airport j and arrives at airport i , see Equation 4.11. Based on the domestic flight
itineraries obtained from the BTS database the flow fraction can be determined per each sub-period for each
airport present in the network.

Since the routing probabilities are based on the rate of arriving aircraft, each sub-period these probabil-
ities change together with the incoming rate. Therefore, routing probabilities can be considered as variable
inputs parameters. To give an illustration an example is provided in Table 5.2.

5.4.3. Service Rates
The third key parameter are the service rates (µ) of each queuing system present in the model. The service
rates represent the throughput capacity of each airport’s runway system. That is the expected number of air-
craft which can be processed per sub-period if there would be a continuous demand. Normally, service rates
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Table 5.2: Routing probabilities example Monday the 21st of November 2016 between 9:30-10:00

To
From

ATL BOS CLT FLL JFK VRT

ATL 0 2/46 1/46 0 1/46 42/46
BOS 0 0 0 1/6 1/6 4/6
CLT 0 0 0 0 0 2/2
FLL 0 0 1/12 0 0 11/12
JFK 0 0 0 0 0 2/2
VRT 22/49 10/49 6/49 8/49 3/49 0

may vary across sub-periods reflecting changes in for example weather conditions, changes in runway con-
figurations, or Air Traffic Control (ATC) policies. However, in this model the service rates are assumed to be
fixed [As. 3]. The service rates can be obtained from analytical or simulation models, field based estimations,
or empirical data [45]. The latter one is used within this model. Based on the rate of aircraft arriving at the air-
port (column ArrTime), departing from the gate (column DepTime), and taking off (column WheelsOff ), the
service rates for the arrival queue (µa

i ), turnaround queue(µt
i ) and the departure queue (µd

i ) of airport i are
determined respectively, see Table 5.3. The service rates are based on a monthly average of November, to rule
out any randomness in good days and bad days of handling. It should be noted that these values correspond

Table 5.3: Calibrated service rates for 5 of the 29 airports

Airport Code µa (AC/half-hour) µt (AC/half-hour) µd (AC/half-hour)

ATL 62 70 58
BOS 19 26 23
CLT 26 29 26
FLL 16 16 16
JFK 14 21 19

to the service of domestic air traffic and do not represent the total service capacity of the airports, since there
is also international traffic. However, it was not possible to gain information on international flight schedules
since this data was restricted to American citizens. In the final model, the service rates of each of the 29 air-
ports is required as input data. In Appendix B the services rates for each airport and each queuing system can
be found.

5.4.4. Flight Times
The last important parameter is the flight times( fi j ) between each OD pair, which enables the right assign-
ment of propagated delay to the correct sub-period at the arrival airport. The flight times are determined
by taking the time aircraft would take to fly from the origin to the destination (column ActualElapsedTime).
An average is then taken over the whole month of November to cancel out discrepancies. Furthermore, it
has been assumed that difference between the to-from flight In Table 5.4 an example is shown of these flight
times for a sub-set of the total set A, which gives a illustration of the situation. As mention earlier, the flight
times have been converted to sub-periods of similar size since the model works with discrete time-steps of
30 minutes. In Table 5.5 one can find the flight times after they have been converted to discrete time [As. 11].

Table 5.4: Flight times example between 5 airports of the network in minutes

ATL BOS CLT FLL JFK

ATL 0 148 74 100 131
BOS 148 0 135 190 70
CLT 74 135 0 114 110
FLL 100 190 114 0 164
JFK 131 70 110 164 0

These discrete flight times will be used, together with the corresponding OD pair, to assign the propagated
delay term of Equation 4.11 in the correct sub-period (h) and at the correct arrival airport i . In the final model,
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the flight times between every OD pair of the network is defined in discrete time. An overview of this can be
found in Appendix C.

Table 5.5: Flight times example between 5 airports of the network in sub-periods

ATL BOS CLT FLL JFK

ATL 0 4 2 3 4
BOS 4 0 4 6 2
CLT 2 4 0 3 3
FLL 3 6 3 0 5
JFK 4 2 3 5 0

5.5. Alpha testing
Within the model dynamics the parameter α was introduced to account for the persistence of propagated
delay throughout the model. This parameter determines how much of the propagated delay will be passed
through after flights, containing this delay, depart again from the airport. To be able to calibrate the model
properly a small study has been performed to test which setting of α resulted in the closest fit to reality. In
Figure 5.4a and Figure 5.4b the results of this study are presented.

(a) Relative errors in minutes of delay (b) Absolute Errors in Percentage

The relative error in minutes of delay indicates the difference in minutes of delay between the simulation
average delay and the empirical average delay and the absolute error in percentage indicating the difference
in percentage between the simulation average delay and the empirical average delay. In the study α has been
altered from 1.0 to 0.0 with steps of 0.1. It is visible that for both the relative as the absolute errors the set with
α= 1.0 scored best. Therefore, the calibration of α will stay 1.0 throughout the rest of the experiments.

5.6. Experimental Design
This section describes the experimental design of the test that are performed within this study. The exper-
iment consists of three parts. In the first step, the model is calibrated to certain days within the empirical
data. Then, the parameters settings are changed to perform a weekday analysis by looking at pooled data
based on the seven different days in a week. Lastly, a case study is performed with three weather scenarios to
compare the dynamics of delay within the network. To describe the set of input parameters which are used
for the experiments an example is shown in Table 5.6. In the last column a distinction is made between fixed
parameters which are used throughout every experiment and variable parameters which change when the
focus of the experiment changes.

5.6.1. Model input for day based analysis
In the first part of the experiment the new model is calibrated for single days to both test its performance
and accuracy, but also to obtain results on the dynamics. As discussed earlier, the model has been calibrated
with the dataset of November 2016 to determine both the service rates as well as the flight times in between
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Table 5.6: Example input variables

Input Variables Range Fixed / Variable

Number of Iterations(N) 1000 Fixed
Alpha (α) 1.0 Fixed
Time-step(h) 30 [min] Fixed
Airports (A) 29 + 1 Virtual Fixed
Flight Date Flight Day/Day of the week Variable
Weather Conditions VFR-IFR Variable
Demand rates(λ) 0-100 [flight/30min] Variable
Service rates(µ) 0-60 [flight/30min] Variable
Routing probabilities(pi j ) 0-1. [%/30min] Variable
Flight times 0-9 [sub-period] Fixed

airports. For the data input the month September 2016 is chosen, from which days will be picked which will
give the arrival rates and the routing probabilities per airport. For each day, the same time frame is used; 8:00
a.m. UTC to 7:59 a.m. UTC, which is 4:00 a.m. EDT until 3:59 a.m. EDT. To be able to validate the model, six
days have been chosen with all experiencing different weather conditions, two with good weather, two with
average weather conditions, and two with severe weather conditions. In Table 5.7, an overview is given of the
flights dates of the forecast, the number of airports which fly under low IFR and the airport codes. It has been
assumed that if bad weather was present at that specific day, the whole day this airport performed under low
IFR conditions.

Table 5.7: Selected flight days

Day Low IFR Airport ID
09-09-2016 1/29 DTW
11-09-2016 0/29 N/A
06-09-2016 3/29 BOS, MIA, MSP
07-09-2016 3/29 BOS, DTW, ORD

19-09-2016 9/29
ATL, BWI, DFW, DTW, JFK,

LAX, MCO, PHL, SAN

30-09-2016 15/29
BWI, CLT, DCA, DTW, EWR,
IAD, JFK, LGA, MCO, MDW,
MIA, MSP, ORD, PHL, SEA

5.6.2. Model input for day of week based analysis
In the second part of the experiment the model is calibrated for grouped data based on the different day of
the week (Monday-Sunday) to both test its performance and accuracy, but also to test if there are difference
between the days of the week. As discussed earlier, the model has been calibrated with November 2016 as
benchmark. For the data input the month September 2016 is chosen from which the days are categorized
per day of the week. Each simulation ’day’ will run from 4:00 a.m. EDT until 3:59 a.m. EDT. In Table 5.8 an
overview is presented of the flight days and which day of the week they belong to.

Table 5.8: Flight days categorized per day of the week

Day of the week Flight Days
Monday 05-09, 12-09, 19-09, 26-09
Tuesday 06-09, 13-09, 20-09, 27-09
Wednesday 07-09, 14-09, 21-09, 28-09
Thursday 01-09, 08-09, 22-09, 29-09
Saturday 02-09, 09-09, 23-09, 30-09
Sunday 03-09, 10-09, 24-09, 31-09

Since the input data is now aggregated, it is no longer possible to specify the local weather conditions for
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each day and each airport. Therefore, a random number generator is used together with the annual weather
conditions to determine the amount of runs the specific airport should perform under low IFR conditions.
This principle can be explained with a small example. If airport A has 10 % of the time conditions which
result in IFR conditions and the simulation is run for a thousand runs, one hundred of them will be with IFR
capacity.

5.6.3. Model input for Case Study
In the last part of the experiment the model is calibrated for three different cases chosen by the user, with
each case representing different operational conditions at one or several airports. For all three scenarios the
same set of operations is used namely, the average of Tuesdays from 4:00 a.m. EDT until 3:59 a.m. EDT,
which gave the best fit with the empirical data, see validation chapter. In Table 5.9, the 3 different scenarios
are presented.

Table 5.9: The three scenarios of the case study

Capacity levels
Case 1 All airports in optimum capacity
Case 2 ATL in low IFR
Case 3 BOS, EWR, JFK, LGA, PHL in low IFR

In Scenario 1, all airports in the network operate at their optimum capacity for the entire simulation ’day’.
In Scenario 2, the capacity of ATL(Atlanta) is affected by bad weather for the entire day and is reduced to low
IFR conditions. In Scenario 3, six airports in the North East region, BOS(Boston), EWR, JFK, LGA(New York,
PHL(Philadelphia), are affected by a local storm, which decrease their capacity to low IFR conditions for the
whole day.





6
Simulation Results

This chapter discusses the results of the tests performed with the DAM model in the three setups explained
in Section 5.6. In the first part, the day analysis results are treated. In the second part, the day of the week
analysis is considered. Lastly, the case study results are discussed.

6.1. Flight Day Analysis
In the first experimental setup the model performance is assessed for different days of operations found
within the empirical database. Six different days are chosen and used as the input for the model, each day
with different meteorological conditions. Within this chapter a selection of the results is presented to illus-
trate both the results for the performance indicators as well as the potential of the model. From the six tested
days, only three will be presented here, namely 9-09-2016 (VFR conditions), 06-09-2016(3/29 low IFR), 30-09-
2016(15/29 low IFR), to keep the results evident. The simulation of one flight day resulted in a computational
time of 4972 seconds or 83 minutes. The remainder of this section will treat the overall network behavior, pro-
filing of the airports, identify the sources of delay, and presenting a detailed example of the model insights.

6.1.1. Overall Network Behavior
When looking at the overall network behavior under different operational conditions different observations
could be spotted. In Table 6.1 the network overview is presented of 9,6 and 30 September with the propagated
delay in minutes and the average propagated delay and arrival delay in minutes per flight. Each time a specific
airport operated at low IFR conditions during that day the number are presented in italic. When one or
more airports operate under low IFR conditions one would expect to observe a certain increase in propagated
delays at all the airports within the network.

This is indeed the case when the expected propagated delay terms of Day 1 are compared with situation
of Day 2 and 3. Related to that also the average arrival delay increases with some amount, sometimes quite
significantly. For example, at BOS(Boston) where the arrival delay undergoes an increase of more than 200%
comparing from Day 1 to Day 2. This increase of average arrival delay could have two reasons, namely an
increase in propagated delay or local queuing delay. In our example BOS operates in Day 2 with low IFR
conditions which explains the large increase in arrival queuing delay. Looking at the other two airports which
are in low IFR conditions on 6 September, MIA and MSP, it can be seen that a lower capacity not always result
in a higher average delay. Where the arrival delay at MSP also increase due to higher arrival queuing delay
the arrival delay at MIA actually drops. This could be explained with the fact that not every airport needs its
full capacity to meet its demand. And so if the maximum capacity drops the remaining capacity could still be
sufficient to cope with its demand.

The same happens during Day 3 where there are 15 airports under low IFR conditions. Where each airport
suffers a higher amount of propagated delay, almost every airport under low IFR condition has a large increase
in arrival delay. During the remainder of this section, it will be investigated which role each airport poses from
which airport the largest amount is received, plus a detailed example of the capabilities of the model.

35
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Table 6.1: Expected Propagated Delay and Arrival Delay for the 24-h period

Day 1: 9-9-2016 Day 2: 6-9-2016 Day 3: 30-9-2016
Prop.
Delay

Avg.
Prop.
Delay

Arr.
Delay

Prop.
Delay

Avg.
Prop.
Delay

Arr.
Delay

Prop.
Delay

Avg.
Prop.
Delay

Arr.
Delay

ATL 2172 2.35 3.17 2863 2.46 3.58 4474 2.83 4.68
BOS 1315 5.14 6.88 1831 5.38 14.05 3171 6.43 10.74
BWI 785 3.40 5.21 1091 3.59 5.70 1445 4.07 8.00
CLT 949 3.77 4.68 1148 3.87 5.26 1806 4.51 8.13
DCA 1009 4.94 6.57 1377 5.26 7.76 1815 6.15 10.95
DEN 1837 3.21 4.01 2359 3.31 4.40 3354 3.78 5.70
DFW 1494 3.14 4.01 1875 3.24 4.21 2802 3.73 5.72
DTW 1029 3.29 4.43 1304 3.42 4.68 1995 3.98 7.17
EWR 991 3.62 5.44 1346 3.79 5.97 1759 4.38 10.43
FLL 769 4.83 5.92 926 4.99 6.64 1418 5.83 8.83
IAD 447 4.89 4.99 547 5.51 7.45 781 6.43 8.09
IAH 941 3.05 3.51 1161 3.07 3.83 1735 3.46 5.00
JFK 940 4.27 6.51 1118 4.51 7.52 1582 5.19 11.05
LAS 1534 4.06 6.61 1768 4.16 6.69 2863 4.80 8.58
LAX 2330 4.43 5.89 2786 4.55 6.35 4240 5.14 8.23
LGA 1050 4.36 7.21 1402 4.58 8.26 2069 5.47 12.05
MCO 1040 4.18 5.82 1384 4.40 6.58 2094 5.33 9.86
MDW 717 3.29 4.61 896 3.39 5.04 1330 3.86 7.90
MEM 216 5.01 5.20 254 5.53 5.71 354 6.54 8.63
MIA 787 5.27 5.99 947 5.49 5.94 1303 6.46 8.03
MSP 1082 2.98 3.16 1478 3.51 5.38 2106 4.09 7.28
ORD 1974 3.38 4.10 2753 3.54 4.89 3673 4.13 7.17
PHL 806 4.73 6.01 1039 4.97 7.07 1536 5.91 12.05
PHX 1257 3.49 4.39 1328 3.53 4.39 2406 4.13 6.51
SAN 933 4.61 6.39 1047 4.71 6.67 1638 5.33 8.55
SEA 1260 3.93 5.09 1443 4.04 5.63 2192 4.66 9.29
SFO 1968 4.50 5.61 2424 4.59 6.16 3600 5.29 8.43
SLC 883 3.20 3.98 981 3.24 4.20 1485 3.63 5.24
TPA 692 4.90 5.79 809 5.08 6.47 1259 5.91 8.65

6.1.2. Airport Profiles
In Chapter 4 the delay difference indicators have been introduced providing a tool to profile each airport
based on their ratio between local queuing delay and the propagated delay they receive from other airports.
Based on this performance indicator, three clear profiles could be identified within the model results, namely
the Delay Generator, the Delay Receiver, and the Airport which both receives as well as generates a lot of
delay. In Figure 6.1a, 6.1b, and, 6.1c, an example is shown of a Generator Airport, a Receiver Airport, and an
Airport which consists of both roles.

(a) Delay Generator (BOS) (b) Delay Receiver (MIA) (c) Both Roles(ATL)

Figure 6.1: Delay Profiles based on 06-09-2016 calibration
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Figure 6.2: Airport profiles based on 6 selected flightdays

In all three figures, the total delay of these airports is presented. The total delay is split up with the red area
indicating local queuing delay, which implies delay that is generated at that airport by for example the arrival
queue, and the blue area indicating propagated delay generated by other airports and what is carried with the
aircraft towards that airport. First in Figure 6.1a, Boston(BOS) is presented which in this example is under low
IFR conditions. Due to this capacity restriction, the airport generated a lot of local queuing delay and receives
relatively low propagated delay. Looking at the pattern over time two large increases can be spotted from 6
am until 10 am of which the local delay is going up 1500 minutes, and 6 pm until midnight where there is a
massive increase of 2500 minutes up to more than 6000 delay minutes.

Second, in Figure 6.1b, Miami(MIA) is presented which receives almost all its delay from other airports
and generates very little queuing delay. Looking at the daily pattern, several banks can be spotted with in-
coming flight delivering a lot of delay with the biggest increase around the 8 pm bank where the propagated
delay increases from 800 minutes to 1100 minutes. Third in Figure 6.1c, Atlanta(ATL) is presented which per-
forms both the role as a receiver as well as a generator. At the start of the day most delay is generated locally,
but later on during the day and especially around its afternoon bank it receives more then 2000 minutes of
propagated delay, with a the end of the day a total delay around 6000 minutes splitted up in 2800 minutes of
local delay and 3200 minutes of propagated delay.

With these three roles in mind the airports within the network can be profiled. In Table D.1, an overview is
presented of the six days and their corresponding delay difference indicator. Based on the six days an average
score is calculated. This score is used to determine if an airport is a generator, receiver, or both. Based on
the indicator presented in Chapter 4 all airports below .8 are profiled as receivers, between 0.8 and 1.1 are
profiled as both, and above 1.1 airports are considered being a delay generator. The result of these is given in
Table D.1. The results of the different days will later be compared with the outcomes for the day of the week
calibrated results after which the final profiles are determined.

6.1.3. Detailed Example and Insights

In this section a detailed example of the model results will be presented based on the calibration of flight day
06-09-2016. This day is chosen, because during validation it turned out that this day provided the closest fit
to reality, see Section 7.4. To perform a network analysis a snapshot is taken from the network at four different
times during the day, namely, 10:00, 16:00, 22:00, and 4:00 the next day. Between each step 6 hours of flights
are simulated and processed by the model resulting in both a map with the current network situation and
a bar chart indicating the amount of total delay, split up in the queuing and propagated delay. In Figure
6.3a-6.3h, the network overviews can be found.

Within these figures, local queuing delay is labeled as red and propagated delay is labeled as blue. In the
geographical view, the airport dots are colored based on their most dominant delay component and sizes
based on the magnitude of the total delay. Using the eight figures presented above, a chronological analysis
will be given starting at 10:00 EDT.
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(a) Network Map

(b) Delay Distribution

(c) Network Map
(d) Delay Distribution

(e) Network Map
(f) Delay Distribution

(g) Network Map
(h) Delay Distribution

Figure 6.3: Network Performance at 06-09-2016
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(a) ORD (b) SFO

Figure 6.4: Propagated Delay Sources 6-9-2016

In the morning most of the delay is situated at the East Coast. This is logical because of the time difference
between east and west coast and the low amount of traffic during the early morning hours. However, at the
East Coast there is already some behavior visible. The first thing that stands out is the large amount of delay
already being generated at BOS. Furthermore most of the airports are drawn red which makes sense since
the delay has not spread yet among the network. Moving on to the 16:00 situation, one can already see that
certain roles emerge within the network. Where airports such as BOS, LGA, or IAH mostly generate delay
airports such as ORD, SFO, or MIA mostly receive. While the day progress these roles are getting more and
more clear with BOS, ATL, DEN, IAH, and SEA as the main generators and the remainder of the network
mostly receiving or performing both roles.

But next to the airport roles, it is also very interesting to see the casual relationships between the airports.
For this a delay distribution overview is generated, see Appendix E.1 as well as a pie chart indicating the most
dominant factor for each airports propagated delay. For this example the biggest receivers will be examined,
namely O’Hare Chicago(ORD) and San Francisco (SFO), see Figure6.4a, and 6.4b.

Most of the delay is propagated from airports nearby. Where O’Hare is mostly influence by airports in the
North East region, San Francisco is mostly influenced by airport from the West Coast. However, both airports
also show an East-West relationship. Where ORD is affected by SFO, SFO is affected by both ORD and BOS
which is at the East Coast and so delay originated at one side of the US is propagated to the other coast. This
is an interesting discovery and will be investigated into more detail within the later performed case study.

6.2. Day of the Week Analysis
In the second experimental setup the model performance is assessed for the seven different day of the week
during the month September 2016. As explained earlier, the flight days in the month September are split
up based on the day of the week after which the input data is averaged over these days and so each input is
a representation of a typical Monday, Tuesday, etc. Within this chapter only a selection of these results are
presented since each simulation run resulted in more than 70 figures and tables, and so a total of 490 figures
and tables. Therefore, only the most important findings are presented here. The model took in total 32993
seconds or 9 hours to compute the results of all seven days of the week.

6.2.1. Overall Network Behavior
In this section, the overall network behavior will be discussed. In Table 6.2, an overview is given of the ex-
pected propagated delay per day of the week in minutes. For each day of the week the total amount calcu-
lated and divided by the total amount arrival flights to obtain the average propagated delay per day of the
week. When looking at the overall network behavior per day of the week several observations can be made.
First, one can see that Friday both has the highest total as well as the highest average propagated delay. While
Mondays is the busiest day, the average propagated delay is little bit smaller than Wednesdays and Fridays.
Furthermore, Saturdays is the least busy, which can be explained by the fact that most of the people want to
go home or away before the weekend and return/travel on Monday again. This behavior is visible at most of
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the airports, with Monday and Friday being a busy day with high amounts of delay. However, there are some
exception of which Wednesday is the day with largest amount of delay. Since all airports tend to follow the
same trend, a preliminary conclusion could be that there are little too non difference in the routing probabil-
ities between each day of the week. This should be investigated into more detail to be able generalized such
conclusions.

Table 6.2: Expected Propagated Delay for each day of the week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
ATL 3021 2629 3180 2942 2859 1353 2383
BOS 1957 1665 2042 1888 2079 925 1622
BWI 1099 832 1020 934 1034 656 860
CLT 1284 886 1411 1387 1306 618 1052
DCA 1376 1086 1222 1225 1289 574 1050
DEN 2420 1972 2416 2383 2401 1362 2110
DFW 2052 1564 1985 1851 1931 966 1814
DTW 1383 1224 1381 1372 1405 627 1127
EWR 1301 1064 1394 1337 1273 605 986
FLL 1016 878 977 1000 974 552 814
IAD 560 425 538 511 571 342 477
IAH 1211 966 1187 1118 1240 610 993
JFK 1175 937 1138 1070 1224 667 986
LAS 1905 1603 1926 1836 2111 1245 1798
LAX 2826 2470 2799 2689 2915 1566 2541
LGA 1453 1166 1531 1496 1528 560 1133
MCO 1412 1178 1386 1396 1416 887 1165
MDW 994 818 964 911 974 559 780
MEM 269 195 249 241 243 141 231
MIA 997 881 980 910 958 563 888
MSP 1450 1302 1416 1615 1475 609 1203
ORD 2821 2226 2532 2684 2783 1242 2160
PHL 1080 873 1089 1087 1132 617 860
PHX 1722 1203 1645 1587 1727 875 1496
SAN 1127 942 1128 1088 1203 684 1005
SEA 1694 1348 1597 1469 1720 1062 1376
SFO 2499 1978 2354 2357 2593 1277 2128
SLC 1091 912 1071 1089 1152 536 1024
TPA 917 751 889 803 932 456 750
Total 44111 35973 43443 42277 44446 22734 36812
Arr. Demand 10353 9957 10098 10313 10312 8049 9823
Avg. Prop. Delay 4.26 3.61 4.30 4.10 4.31 2.82 3.75

6.2.2. Airport Profiles
Based on the delay difference indicator, also the day of the week calibrated profiles can be determined. In
Table D.2 an overview can be found with the expected delay difference indicators. Based on the separate
scores, a final score is given for each individual airport after which a Profile is selected similar as in section
6.1.2. These profiles have been compared with the earlier generated profiles with the different flight days as
calibration.

It turned out that the days selected earlier have been a good representation of the average network con-
ditions because the profiles selected earlier are almost similar, only with a few exceptions, namely ATL, LAS,
and PHL, to the profiles based on the day of the week scores. Based on this validation the final profiles have
been determined and so the network can be categorized into the three different airport profiles.

In Figure 6.5, one can see an overview of all the airports colored based on their profile. Red means Delay
Generator, blue means Delay Receiver, and green means Both. As can be seen, each region has its generators
surrounded by receivers, and in the airports who have both roles are mostly focused in the middle of the US.



6.2. Day of the Week Analysis 41

Figure 6.5: Airport Profiles

6.2.3. Day of the Week Comparison
To get to know more about the difference between the different day of the week, a comparison has been per-
formed between the day with the highest delay(Friday) and the day with the lowest delay(Saturday). For this
comparison we will zoom into the network to see the behavior of two specific airports, namely Atlanta(ATL),
and San Francisco(SFO). ATL is a big hub in the center of the US and has an important role within the US
National Aviation with the highest number domestic flights each day. SFO is more international airport, but
has also a large number of connection in the United States.

First the results of ATL will be discussed. In Figure 6.6a one can see the cumulative delay plot. This plot
shows the time course of both the local queuing component in red as well as the propagated term in blue.
One could divide the blue section into different sources from where the propagated delay is originated. The
distribution of this origins is shown in Figure 6.6b. Here the six largest origins are split up into a percentage
of the total propagated delay.

(a) Cumulative Delay during the Day

(b) Delay Sources Distribution

Figure 6.6: ATL situation on Friday

When looking at the results of Friday, it can be seen that the first big increase of delay happens around
8 o’clock, this could be attributed to the first bank of the day were large number of aircraft arrive and leave
the airport. A similar bank is present at around 10 o’clock after which the queuing delay gradually increases
until 22 o’clock. Three other smaller banks can be spotted around 2, 6 and 8 pm. In comparison with the
local component the propagated delay term increases at a higher rate which eventually result in a higher
percentage propagated delay than local queuing delay. The biggest sources of propagated delay at ATL is the
result of delay at La Guardia airport(LGA), namely 9.2 %. The remainder of the top five are MCO, DCA, FLL,
and TPA respectively. In Figure 6.7a, one can see the course of Saturday.
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(a) Cumulative Delay during the Day

(b) Delay Sources Distribution

Figure 6.7: ATL situation on Saturday

The first thing that can be noticed is that at the end of the day only half of the delay is presented when
comparing with Friday. Furthermore, the queuing delay is almost half of the total delay where on Friday the
distribution was 3:2. When looking the sources of delay, a similar distribution is visible with now MCO being
the largest with 8 %, following by LGA, PHL, FLL, and TPA, which are exactly the same airports than on Friday.
Now the results from SFO will be discussed.

(a) Cumulative Delay during the Day

(b) Delay Sources Distribution

Figure 6.8: SFO situation on Friday

When observing the results of SFO on Friday, see Figure 6.8a, one can see that the day operations of
starts 3 hours later at ATL due to the time difference. Furthermore different banks are visible in both the
queuing and propagated delay term during the course of the day at 11, 13, 15, 21, and 22 o’clock. It is also
visible that SFO is highly affected by other airports since the propagated term is a large part of the total delay.
Looking at the sources where this delay comes from it can be observed that both airports within the area are
influencers(LAX, LAS, SAN), but also airports which are in the North of the US(SEA) or in the East side(JFK,
ORD) and so the delay has spread from North to South and from East to West.

Going to the results of Saturday, see Figure 6.9a it can be seen that less banks are visible in the cumulative
delay plot which makes sense since Saturday is in the weekend and so there is less business traffic. Further-
more it can be observed that also the total delay is dropped by half, which is the same as what happened at
ATL. However, the relationship between local and propagated remained more or less the same. In the prop-
agated delay sources chart the same six sources are responsible for the propagated delay as on Friday, see
Figure 6.9b. The same behavior has also been presented for other days in the week and so it can be con-
cluded that there are clear sources for each airport despite the day of the week. This can be explained by the
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(a) Cumulative Delay during the Day

(b) Delay Sources Distribution

Figure 6.9: SFO situation on Saturday

fact that there is not a big variation is the flight schedules, airports have certain routes which are flown each
day with a slight deviation in frequency if the demand is different from the previous day.

Sub-conclusion
For now, it can be concluded that the model is capable of determining the different roles airport have during a
day of operation. Furthermore, it tells us the amount of delays and where those delays originally come from.
This helps us the understand how well connected the network actually is and that delay at one side of the
airport could result in delay at the other side and vice verse. Regarding the differences in day of the week it is
concluded that Friday has the highest average propagate delay and Saturday the lowest. Moreover, the results
imply that there are no big differences between the different days of the week regarding the distribution of
delays.

6.3. Case Study
In the last experimental setup, the model is been used to test three different scenarios to see their different
dynamics and how the model reacts to certain input. Three scenarios have been created each with different
operational conditions at one or several airports. Scenario 1 is used as benchmark scenario with all airports
operating at VFR conditions. In scenario 2, one large hub airport(ATL) is operating under low IFR and in
scenario 3, five different airports (BOS, EWR, JFK, LGA, PHL) in the North East region are operating under low
IFR conditions to simulate a regional storm situation. Simulating a case took the model 5172 seconds or 86
minutes.

6.3.1. Scenario 1 (VFR conditions)
In scenario 1, all airports operate under VFR conditions or normal weather conditions. Therefore, this sce-
nario can be used a benchmark with respect to the other cases. In Figure 6.10a-6.10h, the result of scenario
1 are presented based on a 6 hourly interval from 10:00 EDT until 04:00 EDT the next day. The figures are
labelled in the same manner as in previous section and so all red indicated airports are delay generators and
all blue airports are delay receivers of propagated delay. Around 10:00 EDT most delay is formed at the East
Coast due to the time difference with the West Coast and the low activity in the earlier morning. It can be seen
that ATL is a very big delay generator at the East Coast with almost double of the delay than number 2 LGA.
Furthermore, all airports which are visible in the chart are drawn in red which makes sense since there is too
little time passed for the delay to spread. When moving to 16:00, some new observations could be spotted.
Several delay receivers pop up, namely ORD, DEN and BOS, and other airports tend to go towards real delay
generators, namely, ATL, LGA, MCO, or SEA. Moving on towards 22:00 and 04:00, the airport roles becomes
even more clear where there are clear delay generators at the East Coast, with LGA, EWR, BWI, CLT, and MCO
and two clear generators at the West Coast namely, SEA and LAS. These observations are in line with the ear-
lier determined profiles in Figure 6.5. When looking at the at the amount of delays ATL stands out with the
rest of the airports and so in scenario 2 it will be tested what is the effect of low IFR capacity at this airport.
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(a) Network Map

(b) Delay Distribution

(c) Network Map
(d) Delay Distribution

(e) Network Map
(f) Delay Distribution

(g) Network Map
(h) Delay Distribution

Figure 6.10: Network Performance of Case 1
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6.3.2. Scenario 2 (ATL low IFR)
In scenario 2, the capacity at ATL is affected due to bad weather and so the capacity is reduced for the whole
day to low IFR level, while all the airports within the network operate at their optimum capacity. Under
normal conditions ATL is already quite congested and so under reduced capacity it faces large quantities of
delay. In Figure 6.13a-6.13h the results of case 2 are presented starting with an overview of 10:00 and ending
with an overview of 04:00 the next day. In scenario 2 the first overview is very similar as the benchmark
scenario with delays forming at the East Coast and already a clear role for ATL is visible with delay numbers
twice as high as the rest of the network. As the day progress the delay at ATL grows until it reaches 5000
minutes of queuing delay at the end of the day, see Figure 6.11. During the day, clear banks could be spotted
during peak hours in the morning, afternoon and evening with the bank around 9 in the evening inducing the
largest increase of 1000 delay minutes. Therefore, the queuing delay also increases the most between 16:00
and 22:00.

Figure 6.11: Delay development during Case 2

Within the network the effects of ATL being in low IFR are also visible. The first observation concerns the
role of certain airports. For example, CLT and MCO, which are closely connected with ATL, change from a de-
lay generator towards a delay receiver. Furthermore, it can be seen that the propagated delay term increase a
lot at different airports within the network. To able to compare the average propagated delay and the average
arrival delay the expected values of each case are presented in Table 6.3.

Figure 6.12: Departures from ATL to airports within the network during Case 2

Almost every airport experienced an increase in the average propagated delay term with Memphis with
the largest increase from 4.92 to 5.39 min/flight. When looking at the delay distribution which airport is
largest influenced by the capacity constraints at ATL, again MEM is at the top with 22% in scenario 1 and 34%
in scenario 2 which is an increase of 9% regarding MEM its total propagated delay. Other airports which are
highly affected are IAD(6.97%), FLL(6.3%), TPA (6.1%), PHL (5.5%), and CLT(5.5%). Both delay distribution
tables can be found in Appendix E.2 and E.3. The pattern which is visible is the large relationship between the
routing of ATL and the airports which are affected the most by its’ local queuing delay. Where there are more
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aircraft coming in from ATL, the propagated delay term goes up. In Figure 6.12, an overview is presented of all
destinations of ATL departures within the network. When comparing the outgoing flights from ATL and the
delay distribution in Appendix E.3, a strong relationship is visible between number of flight coming in from
ATL and the percentage of propagated delay which can be assigned to ATL as well.

Table 6.3: Expected Propagated Delay and Arrival Delay for the 24-h period

Case 1 Case 2 Case 3
Prop.
Delay

Avg.
Prop.
Delay

Avg.
Arr.
Delay

Prop.
Delay

Avg.
Prop.
Delay

Avg.
Arr.
Delay

Prop.
Delay

Avg.
Prop.
Delay

Avg.
Arr.
Delay

ATL 2814 2.20 3.09 2439 2.26 4.26 3774 2.51 3.89
BOS 1545 4.84 6.47 1623 5.02 6.82 2675 5.57 11.53
BWI 843 3.04 4.59 832 3.23 4.96 1359 3.55 5.72
CLT 902 3.30 4.29 945 3.52 4.74 1347 3.86 5.54
DCA 1038 4.59 6.16 1091 4.81 6.58 1920 5.44 8.26
DEN 1857 2.81 3.66 1783 2.91 3.85 2830 3.16 4.51
DFW 1504 2.85 3.64 1563 2.97 3.87 2225 3.22 4.52
DTW 1112 3.09 4.05 1129 3.21 4.29 1909 3.54 5.17
EWR 1071 3.16 4.84 1055 3.30 5.11 1478 3.55 9.40
FLL 807 4.51 5.57 791 4.79 6.13 1716 5.44 7.80
IAD 463 4.70 4.70 484 5.00 5.30 576 5.35 6.05
IAH 868 2.72 3.32 927 2.82 3.53 1388 3.09 4.23
JFK 868 4.13 5.84 944 4.28 6.13 1380 4.63 7.83
LAS 1509 3.62 5.79 1545 3.73 6.04 2053 4.01 6.72
LAX 2257 3.93 5.29 2207 4.05 5.53 3439 4.42 6.49
LGA 1165 3.87 6.79 1202 4.08 7.23 1855 4.44 9.94
MCO 1103 3.96 5.43 1083 4.17 5.84 1827 4.68 7.16
MDW 746 2.97 4.17 794 3.11 4.48 1284 3.41 5.24
MEM 190 4.92 4.92 198 5.39 5.86 269 5.63 6.10
MIA 765 4.93 5.87 862 5.17 6.33 1389 5.80 8.01
MSP 1075 3.01 3.86 1140 3.14 4.14 1844 3.41 4.81
ORD 2263 3.12 4.10 2162 3.24 4.35 3376 3.60 5.30
PHL 879 4.30 5.61 831 4.57 6.18 1232 4.87 9.04
PHX 1115 3.14 3.85 1088 3.23 4.03 1528 3.45 4.58
SAN 861 4.06 5.40 859 4.18 5.64 1178 4.47 6.42
SEA 1213 3.60 4.76 1231 3.70 4.97 1765 3.99 5.71
SFO 1828 3.97 5.21 1944 4.08 5.40 2704 4.46 6.45
SLC 871 2.79 3.43 920 2.87 3.59 1099 3.04 4.02
TPA 718 4.62 5.38 717 4.94 6.00 1143 5.38 6.99

It can be concluded that by limiting the capacity of only one big airport within the network, it can have
large consequences for the whole network. For the current scenario, constraining ATL has the largest influ-
ence on the East Coast since ATL is a big hub at the East of the US and so highly connected with all major
cities at the East of the US. In the following scenario, it will be tested what the effect will be if 5 airports within
a specific region are limited in their capacity and if this could have an effect on the whole domestic network.
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(a) Network Map

(b) Delay Distribution

(c) Network Map
(d) Delay Distribution

(e) Network Map
(f) Delay Distribution

(g) Network Map
(h) Delay Distribution

Figure 6.13: Network Performance of Case 2



48 6. Simulation Results

6.3.3. Scenario 3 (North-East low IFR)
In scenario 3, five airports in the Northeast of the US, namely BOS, EWR, JFK, LGA, and PHL are affected by
a local weather storm which decrease all their capacities to IFR levels for the whole 24-hour period. Under
normal conditions all three New York airports (EWR,JFK, LGA) are considered as congested and Boston(BOS)
also scores high when looking at the normal delay figures. Normally, EWR and LGA have been considered
as delay generators, BOS and PHL as delay receivers, and JFK as being a mix of both. Under capacity con-
straints it can be seen in Figure 6.14a-6.14h however all airports shift towards generators with Boston being
the largest, following by LGA, EWR, JFK and PHL. Also while the day progress queuing day increases in the
Northeast and the rest of the map starts coloring blue.

Taking Boston (BOS) as example, the delay behavior during the day will be presented. At 10 o’clock already
1200 minutes of delay has been encountered with 980 minutes of local queueing delay and only 220 minutes
of propagated delay. Moving to 4 pm, the local queuing delay has doubled to 1800 delay minutes and the
propagated term has become five times larger(900 minutes) which brings the total delay to 2700 minutes.
Between 4 pm and 10 pm the local conditions resulted in a very large increase of local queuing delay adding
up to almost 5000 minutes and so the delay term has increased 3000 minutes in 6 hours, i.e. 500 minutes per
hour. Adding up the propagated delay term the total delay at 10 pm is equal to 7100 minutes. Moving to the
last time period, only the propagated delay term increased to a total of 2700 minutes and so the total delay at
Boston resulted in 7800 minutes of delay.

By the end of the day, only Las Vegas(LAS) is still red, but only with a small lead. In Table 6.3 it can be seen
that every airport within the network is effected by the drop in capacity of the five selected airport. Where
some are more affected than others, all five airports in the Northeast have a huge increase in their average
arrival delay which is mainly affected by the drop in capacity but also due to small increase in propagated de-
lay which means that not only locally the capacity drop increases delay also other airports have trouble due
to this situation which in the end cast this delay back to the original source. This could be explained by the
fact that a lot airports have back and forth routes where aircraft fly from A to B and back from B to A. And so
the increase in local queuing delay will not only increase the propagated delay of other airport but could also
influence themselves. To generalize this conclusion more research should be performed on different cases
where for example all airports in the Southeast or Southwest are under low IFR conditions.

Sub-conclusion
It can be concluded that with the performed case study the effects of one or several airports under low IFR
conditions can be tested. Within this case study is shown that by only setting only one major airport under
capacity constraints this already has large affects on the network and its direct connections. With the test
case of five different airports under low IFR conditions it has been shown that the whole US NAS is affected
from North to South and East to West. Not only will it have effects on its own queuing delay but also on its
own propagated delay due to the function of being a hub of the region.
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(a) Network Map

(b) Delay Distribution

(c) Network Map
(d) Delay Distribution

(e) Network Map
(f) Delay Distribution

(g) Network Map
(h) Delay Distribution

Figure 6.14: Network Performance of Case 3
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Verification and Validation

In this chapter the verification and validation of the model will be explained. For the validation, the months
September and October 2016 have been used as reference data. The Verification and Validation is built up
following the scheme introduced by Sargent [46] and can be defined by four different processes, namely the
Conceptual Model Validity, Computerized Model Verification, Data Validity, and Operation Validity. All four
steps haven been performed within this study and are elaborated in the remainder of the chapter.

7.1. Conceptual Model Validity
Conceptual model validity is defined as determining whether the theory and assumptions of the conceptual
model are valid and if the model representation of the problem statement is reasonable enough to answer the
research question. In the following section first the theory and assumptions behind the model will be tested
on validity by using mathematical analysis and statistical techniques.

7.1.1. Test theory and assumptions
Within this thesis the main theory which has been used is queuing theory. Queuing theory is proven to be
the most reasonable choice within the spectrum of delay modeling for the application of this thesis sub-
ject. Within the literature study multiple different simulation and analysis techniques have been examined
to justify this choice. For a recap of this reasoning one could read Chapter 2 which is a short version of the
prior literature study to this thesis. In the remainder of this section the validity of the model assumptions is
addressed and cases will be discussed in which these assumptions are violated.

Assumption 1
Before the queuing parameters can be estimated it was required to perform a stationary test to both test
whether the analyzed arrival processes are stationary or not, and to determine the length of the discrete sub-
periods in which the queuing parameters will be estimated. If a process is not stationary but time-varying,
steady state solutions cannot be used and thus complicating the analysis of the queuing system with a great
amount. A stationary process can be defined as a stochastic process whose joint probability distribution does
not change when shifted in time. What this actually means is that parameters such as the mean and variance,
do not change over time. This is not the case with the used data set, aircraft do not arrive at a constant rate
but rather follow a pattern where there are peak periods and off-peak periods.

To test if the arrival process can be treated as a stationary process, a cumulative arrival plot has been
created to show the behavior of arrivals during the day [12]. In Figure 7.1 one can see the expected arrivals if
the arrival process would have been stationary (red) and the empirical cumulative arrivals (blue).

It is clear that during the day large variation exist for the arrival rates and so the overall process cannot be
assumed to be stationary. However, the arrival process can be broken up into smaller time intervals which
are assumed to be stationary. To find the appropriate time interval, several possibilities have been examined,
namely one hour, half an hour and 15 minute intervals. In Figure 7.2 one can see the half hour interval
representation and in Appendix I the one hour and 15 minutes representation can be found. By testing these
intervals, it is shown that stationary representation of half an hour is the closest approximation to a steady-
state process and so the remainder of this thesis for all queuing parameters half an hour discrete intervals will
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Figure 7.1: Arrivals at Atlanta on 21-08-2016

be used (h = 30mi n) [As. 1]. Furthermore, flight times are also categorized per sub-period and rounded off
to the nearest integer as it is computational impossible to fly less than 1 sub-period.

Figure 7.2: Arrivals at Atlanta between 8:30 and 9:00 EST on 21-08-2016

Assumption 2
Assumption 2 is a common approximation in airport queuing modeling and is present throughout literature
[31] [45]. To prove the validity of a Markovian arrival process, it needs to be demonstrated that the inter-arrival
times are independent and obey the E xp(λ) distribution:

P {i nter ar r i val t i me > t } = e−λt (7.1)

To prove Equation 7.1, the arrival and departure schedule of Atlanta(ATL) airport has been examined. As
empirical data set, the month September 2016 is taken for both arrivals as well as departures. The data set
consists of 30.965 arrivals and 31.422 departures. From this empirical data the data columns Arrival Time and
Departure Time are used to obtain the inter-arrival time between each arrival and each departure. The inter-
arrival time distribution is then plotted and compared with a fitted Exponential and Erlang distribution(k=2).
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In Figure 7.3 one can see the arriving (Figure 7.3a), turnaround (Figure 7.3b, and departing(Figure 7.3c) inter-
arrival distributions compared to a fitted exponential distribution and Erlang distribution.

(a) Demand arrival runway queue (b) Demand turnaround queue

(c) Demand departure runway queue

Figure 7.3: Inter-Arrival Time Distributions for the Atlanta International Airport(ATL)

As can be seen, both empirical distributions follow their fitted exponential distribution quite well, but can
also be approximated with a second-order Erlang distribution(k=2). Similar results are available for other air-
ports within the network. To test the goodness of fit for both CDF’s a Kolmogorov–Smirnov test (KS test) is per-
formed for each inter arrival distribution, the test results are presented in Appendix J. The arrival, turnaround
and departure process scored a statistic of 0.3052, 0.3763, 0.4136 respectively w.r.t. Exponential distribution,
and a .7077, 0.8002, and .8002 respectively w.r.t. the Erlang distribution. Based on this results the exponential
distribution is considered a better fit than the Erlang distribution for each of the tested data sets.

Next, it is desirable to use exponential distributions since closed-form results are only available for ex-
ponential distributions which simplifies the problem significantly. Furthermore, it should be noted that the
data set only included domestic flights and so the real situation for Atlanta airport is even more crowded than
shown here. As of a result the inter-arrival distributions are expected to look more like the exponential dis-
tribution when including international flights as well. However, due to restrictions for non-US citizens it was
impossible to obtain this data and so international flights are considered outside the scope of this thesis. It
can be concluded that Equation 7.1 holds and so assumption 2 is valid for this application.

Assumption 3
In line with assumption 2, the service process of each queuing system is also assumed to be a Poisson process.
Similar proof as with assumption 2 is necessary to demonstrate this hypothesis. Therefore, a similar analysis
has been performed for the service times at ATL. The same data set has been used as in the previous section,
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however, for assumption 3 an analysis has been performed on the service times distribution of the arrival and
departure process. This service time is indicated in the time difference an aircraft is ready to be served and
the time it has been served, which is applicable for both the arrival process and the departure process. Since
the data set contained insufficient data on the time it actually takes to turnaround an aircraft, excluding its
slack time, it was impossible to perform a similar analysis on the turnaround service time. In Figure 7.4 one
can see the service time distribution of both the arrival runway queue (Figure 7.4a as well as the departure
runway queue (Figure 7.4b.

(a) Arriving aircraft (b) Departing aircraft

Figure 7.4: Service Time Distributions for the Atlanta International Airport(ATL)

It can be seen from Figure 7.4 that the service time distribution follow a different pattern than the inter-
arrival distributions and are less close to the exponential distributions. However, looking at the KS-test results
opposing conclusions could be drawn. The arrival and departure service scored a statistic of 0.1887 and 1.36
respectively for the Exponential distribution, and a statistic of .0902 and 0.1517 respectively for the Erlang
distribution. Where the Erlang distribution is a better fit for the arrival runway process, the exponential dis-
tribution seems to be better when considering the departures. Although it is desirable to use exponential
distributions for both inter-arrival and service time distributions, it is less obvious to pick an exponential ser-
vice time distribution. Since closed-form results are not available for queuing networks with such services
disciplines this research will be limited to exponential distributions only. More research is required to give a
better representation of service times, but this is concerned to be outside the scope of this thesis project.

Assumption 4
Assumption 4 is based on a simplification of the layout of a normal airport and the flight profile each aircraft
will fly through, which starts with departure from airport A, taxi towards the runway, taxing off, flying from A
to B, land op airport B, taxi towards the gate, and turnaround before continuing to its next flight. To simplify
the process, both taxi in and out are included in the arrival and departure processes, four processes remain:
departure, flight, arrival, and turn-around. To simplify the problem even more the flight phase is considered
to be un-capacitated [As. 9] and so each airport consists of three processes with aircraft representing the flow
through and between each airport in the network.

In this setup, arrivals are completely independent from departures. In reality this is not fully correct, since
it could occur that air traffic control uses runways in a mixed configuration with both arrivals and departures
on the same runway. Most of the time arrivals then have a higher priority over departures which could have an
effect on the departure queue. Since there is no data available on used runway configurations it is impossible
to analyze these effects. However, only the 30 largest US airports are considered in this thesis which nearly
all possess multiple runways and so the possibility of them using only one operational runway is negligible
small and to detailed for the simple queuing model considered here.

Assumption 5
A First-Come, First-Served (FCFS) queuing discipline (Assumption 5) is consistent with FAA procedures.
Since most of the airports in the US are operated under the FCFS principle, with New York (JFK, EWR, LGA),
Chicago (ORD) and Washington (DCA) as the exceptions [51], it can be assumed that each airports uses this
policy. During normal conditions aircraft will not overtake another aircraft in the queue, since this physically
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hard on a taxiway or undesirable for ATC. Under heavy congestion conditions, this assumption is almost cer-
tainly violated. However, this is of less importance since the model is designed to investigated delay effects at
macroscopic level. Changing from one aircraft to the other will not have direct effects on the demand rate or
service rate. Therefore, the assumption is considered valid for the current research scope.

Assumption 6
Assumption 6 is based on the fact that it is undesirable to neglect demand for each of queuing systems since
aircraft need to follow their flight itinerary and are not allowed to change because of high traffic. What this
means is that there is always sufficient space at airports to queue up for service. It does not matter whether,
this is in mid-air, on the taxiway, or still at the gate that does not matter. The aircraft eventually needs to go
from A to B regardless of how much time this will take. In other words aircraft have in this model infinite
amount of patience will waiting to get served. This is for example not true when modeling humans instead of
aircraft. Humans tend to have a limited amount of patience when waiting in line, but in this case the aircraft
just follow their preset schedule. Therefore, this assumption is valid for the current setup.

Assumption 7
Stating that each airport starts out empty each new simulation day, 24-hour period, is based on the obser-
vation that during the night almost no activity is present within the network. While looking at for example
Figure 5.3 one can clearly see that between 1 a.m. and 6 a.m. almost no aircraft arrives or departures from
the airport. Therefore, with the exception of extreme conditions, there is always enough time at the end of
the day to return to the original state with no delays. By setting 4 a.m. EST as the beginning of each day, it is
possible to model demand and queue on successive days as independent simulation runs.

Assumption 8
Assumption 8 states that DAM uses expected waiting time in queue, calculated from the number in queue,
to calculate point estimates of delays. Throughout literature, the approach of expected values is used as an
approximation of reality [45] [49] [50]. In [40] extensive computations are performed to opt delays in networks
of queues. Their results were compared to the use of expected values and found the two approaches to be
similar.

To illustrate this assumption, a small example is provided. If an aircraft is scheduled to depart at 10:00,
but it is standing in the queue to depart and so will experience a delay of 15 minutes it eventually departs 15
minutes late, during the flight there is no room for any delay mitigation and so the aircraft arrives 15 minutes
behind schedule at its designated arrival location. If an airline has 15 minutes of spare time included in its
schedule these 15 minutes would not matter and the aircraft will still arrive on time.

In reality, queuing delay happens all the time and will not always result into aircraft being delayed since
airline incorporate such delays into their schedules by adding slack to scheduled block time, also referred to
as padding. This will result in higher delays than the now reported delays by airlines. Since in this thesis, a
non-conventional method is used to represent delay it is less trivial how to compensate for padding effects.
Normally, the slack time, when this is known, would be subtracted from the original delay. However, delays
are in this model calculated on a rate basis and so this technique does not work. Therefore, the effects of slack
in airline schedule should be investigated in more depth in future research.

Assumption 9
The model at hand does not include a representation of the airspace and its capacity. It has been assumed
that airports contribute by far the most to the forming of delays. When considering the United States this
assumption seems valid. [43] When for example considering the EU this assumption is already more ques-
tionable since the European airspace is much more crowded. Even for the US certain stochastic elements
could be added in the for example mitigation of delay during flight or the creation of delay during flight.
However, including such mechanisms into the model are considered outside the scope of this thesis project
and could be seen as further research possibilities.

7.2. Computerized Model Verification
After validating the conceptual model, the implementation into a computerized model needed to be veri-
fied. Computerized model verification is defined as determining if the conceptual model is implemented
properly into a computerized model. The most common techniques used to asses that the model has been
implemented correctly are model walkthroughs and traces [46].
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Programming errors are tried to avoid by several different techniques, namely, object-oriented program-
ming, and cyclic programming approach. By creating objects and classes for each element within the model,
repetition of code was not necessary and so less errors could emerge during the creation. Furthermore, the
model has been developed in cyclic way by first creating one queue, then, one whole airport, three airports,
five airports, and eventually the full network of 30 airports including the virtual airport. Between each cycle,
the model has been fully tested with tracing object behavior and input, output relations. Moreover program
modularity has been used to separate different features into different modules to make easier to spot errors
within each code set. Finally, both the time-flow mechanism as well as the , pseudo random number gener-
ator has been tested by checking the time wise behavior of the model with respect to the empirical data and
the pseudo random number generator by letting the model converge to an expected value for both arrival
delay as well as departure delay, which are presented in section 7.4.

7.2.1. Convergence testing
Since the model is of stochastic nature, multiple simulation runs are required to produce an expected value
for the model performance indicators. In general, the prediction of a stochastic model is obtained with Monte
Carlo simulation. However, this raises the question of how many runs of the model are adequate to produce
a meaningful prediction. Therefore, the model is tested on the level of convergence by looking at both the
expected value of arrival and departure delay and by looking at the confidence intervals [11]. While testing,
multiple sets have been used as input, from 100 runs until 5000 runs. In Figure 7.5a and Figure 7.5b one can
see the result after 1000 iterations for both expected arrival and departure delay.

(a) Expected Arrival Delay (b) Expected Departure Delay

Figure 7.5: Convergence testing of both the Arrival and Departure Delay

Where some airports converge already after 100 iterations, others only converge after 500/600 runs. To
determine the amount of runs an analysis has been performed based on the confidence intervals and the
required accuracy need for the model. The minimum number of model runs(N ) can be computed with equa-
tion 7.2 [11].

N =
( zα/2

w
CV

)2
(7.2)

N stands for the number of runs required, zα/2 is the confidence level, which is assumed at 95%, w is the
accuracy width, which is proportional to the mean, and CV stands for to the coefficient of variation.

It is decided that 1000 simulation runs are sufficient for the purpose of this model, since the model reaches
a 2% accuracy for both the mean arrival rate and the mean departure rate, which is sufficient for the purpose
of this model.

7.3. Data Validity
To guarantee valid data, Perry [39] stated three important aspects that need to be addressed. At first, it must
be certain that correct defined input data is used. As main input the BTS On-time performance database has
been used. The Bureau of Transportation (BTS) states the following on their website: "This database contains
scheduled and actual departure and arrival times reported by certified U.S. air carriers that account for at least



7.4. Operational Validity 57

Table 7.1: Minimum number of model runs (N) to achieve desired confidence interval

5% accuracy 2% accuracy 1 % accuracy

Airport Arrival Departure Arrival Departure Arrival Departure

ATL 75 34 469 210 1875 842
BOS 124 182 773 1138 3092 4551
CLT 57 52 355 327 1422 1309
FLL 84 59 527 367 2109 1467
JFK 119 58 741 364 2965 1458

one percent of domestic scheduled passenger revenues. The data is collected by the Office of Airline Information,
Bureau of Transportation Statistics." Since the data was collected by a third party, it was impossible to validate
the accuracy of the data.

However, on the BTS website some information could be found on the data density of the database. In
Table 7.2 the percentage of missing data is presented for several columns to give an indication of the data
coverage. As can be seen, columns who represent general flight information do only miss a very small bits of
data. When looking at ground operations and specific tail numbers the database is already less accurate and
only roughly 80% of all registered flights contain data. The high percentage of missing data in the columns
cause of delay could be explained with the fact that roughly 81 % of all national flights in 2016 arrive on-time
and that only the cause of delay is registered when the arrival delay was above 15 minutes. The second aspect

Table 7.2: Data density of BTS On-time Performance Database

Column Name Percentage Missing
Flight Date < 0.005 %

Destination-Origin < 0.005 %
DepTime / DepDelay 1.76 %

ArrTime / Delay 1.95 / 2.01 %
ActualElapsedTime 2.01 %

TailNum 21.56 %
WheelsOn / WheelsOff 22.8 %

CauseofDelay 89.6 %

concerns the data manipulation process. Before the queuing parameters could be estimated, the database
is manipulated into the proper format. This process has been described in section 5.3. Each step of the pre-
processing is checked by looking what goes in and what goes out, does it still represent the same situation
and do we lose any data in the process. In the data pre-processing several steps have been specified. Within
these steps, three steps could be identified which eliminate or alter the amount of input data, namely:

1. Include only flights from and towards the airports within the network
2. Drop all rows which contain empty data fields
3. Set time frame from 4am EDT until 4am EDT the next day

7.4. Operational Validity
Operational validity is defined as determining that the model’s outputs are sufficient accurate to fulfill the
purpose of the model. The validation is performed by comparing the model results with the traffic statistics
recorded in the BTS database. The comparison will be performed on both arrival delay and departure delay.
Since queuing delay and propagated delay are not terms that are registered within the BTS database it was
not possible to validate these data entries. Within this section a distinction is being made between the day
calibrated experiment and the weekday calibrated experiment. First the validation based on single days is
presented. Next, the weekday calibrated model is validated. While reviewing the validation results it should
be taken into account that the DAM model does not capture several important characteristics of the U.S.
National Aviation System. A non-exhaustive list is given below:

• En-route congestion
• Transferring passengers and crew/aircraft rotations
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• Airline and/or ATM reactions to congestion

7.4.1. Model Calibrated for Specific Flight Days
First the validation results of model calibration of specific flight days is discussed. Within Section 5.6, six
different days are designated as the test case for the model. These six days represented 3 different weather
conditions (good, average, and severe) to indicate how well the model performed under different operational
conditions. To be able to compare different days, a weighted average of relative errors and a weighted average
of absolute errors is taken for both the arrival delay as well as the departure delay, see Figure 7.6a and Figure
7.6b.

(a) Weighted Average of Percentage Errors (b) Weighted Average of Absolute Errors

Figure 7.6: Comparison of Average Errors per Flight Day

One can see that that for both the percentage errors as well as the absolute errors the departure gate de-
lay is a better fit with the empirical data than the arrival gate delay. This could be explained by the fact that
the average departure delay is better represented by the model. Since departure delay is mainly caused by
congestion problems at the departing airport. Furthermore, factors which could contribute to arrival delay
are fully represented by the model such as en-route congestion. Overall the model contained a deviation of
around 30 % from the empirical data which could be explained with the all the simplifications and assump-
tions made during the development of the model.

When comparing the differences relating operational conditions, it is clear that the average absolute er-
rors, see Figure 7.6b increase significantly when changing from good to severe weather conditions. However,
the same trend is not visible when looking at the percentage errors in Figure 7.6a. To investigate this further,
the departure delay from both the model and the empirical dataset are plotted next to each other for the days
9, 6 and 30 September in Figure 7.7a, Figure 7.7b, and Figure 7.7c respectively. Here the model results are
plotted in red, the empirical data is plotted in blue and the confidence interval with a confidence of 95 % is
plotted with the black line. The arrival delay plots of the three days can be found in Appendix F. Furthermore
a T-test has been performed for both the arrival and departure delay for all days. The results of these T-test
can be found in Appendix G.

It can be seen that for 9 September the delays are sometimes overestimated and sometimes underesti-
mated where for both 6 and 30 September the results are under estimated or are close to the real data. When
there are large peaks for example in Figure 7.7b the model was unable to simulate this behavior, for example
the departure delay at September 6 of BOS, which could be attribute to the decrease in capacity since this air-
port was in low IFR conditions. At the other hand it is also visible that model will over estimate if there are little
to no capacity restriction. On September 9th only DTW was under low IFR conditions, but still for multiple
airports the model expected a higher average delay than in reality was present. This could be explained with
the fact that in the current model setup no implementation of slack or delay mitigation is present. In reality,
small numbers of delay could be countered with integrating slack time in the aircraft schedules and so the
overall delay could be mitigated. These effects are less present when the average delay tend to increase since
then the slack terms are not sufficient anymore to counteract all the delay aircraft encounter. To improve the
model on this matter a more refined implementation of slack is required.

When considering 30th September, the model had quite some trouble to represent the network behavior.
This can be attributed to a few things. First, while under severe weather conditions airports tend to change
their flight schedule quite drastically, flights are cancelled and delayed with large number due to the big
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drop in capacity. This will have major effects on the average departure delay as can be seen in Figure 7.7c.
Second, the model does not included any transferring passengers and or crew/aircraft rotation problems.
When experiencing large delays airlines will have problems with the transfer of their passengers as well as
the predefined schedules of both crew and aircraft. Such effects are not implemented in the model and so
it has a very hard time to simulate such behavior. Third, it is very hard to predict the amount of delay when
there is severe weather, since it will results in a different dynamics in comparison with congestion problems.
To be able to simulate severe weather conditions the model needs further research on these topics. When
observing the T-test scores of both the arrival and departure delays of each day, it can be seen that September
6th scored overall best following by September 9th and September 30th. This strengthens the conclusion that
the model is performing best with average weather conditions. However, the result also show that the scores
are not really significant and that there is still room for improvement.

(a) Departure Delay on 09-09-2016 (Good Weather Conditions)

(b) Departure Delay on 06-09-2016 (Average Weather Conditions)

(c) Departure Delay on 30-09-2016 (Severe Weather Conditions)

Figure 7.7: Average Departure Delay per Airport

It can be concluded that the model represents the behavior of the network quite well when there is an av-
erage day with average weather conditions and no extreme peaks in specific locations. It will under estimate
delay if the specific airport has very high average delay numbers and will over estimate if the network has
lower capacity restrictions.
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7.4.2. Model Calibrated for Aggregated Days of the Week
Second, the validation results of the model calibration of days of the week are discussed. Within Section
5.6, an overview was presented where all flight days of September 2016 are categorized per day of the week.
Each day represents a typical Monday, Tuesday, etc. in September and are used to see if there are difference
in both network behavior as well as model performance when using different weekdays as input. A similar
comparison as the previous section is performed with the weighted average of percentage errors, see Figure
7.8a, and the weighted average of absolute errors, see Figure 7.8b.

(a) Weighted Average of Percentage Errors (b) Weighted Average of Absolute Errors

Figure 7.8: Comparison of Average Errors per Weekday

Here, the same trend is visible in the difference of arrival and departure delay as with the calibrated flight
days. Again Departure Gate Delay is better represented by the model than Arrival Delay. However, still a
deviation of 30% with real data is in place. When looking at the differences in weekdays no obvious trend is
visible. To get more information a more detailed comparison is performed for both Tuesdays(the best fit), see
Figure 7.9a and 7.9b, and Thursdays(the worst fit), see Figure 7.10a and 7.10b. In appendix H, the t-test score
can be found of both the arrival and departure delay of Tuesday and Thursday.

(a) Arrival Delay

(b) Percentage Error Arrival Delay

Figure 7.9: Average Arrival Delay by Airport on Tuesdays

While observing both Tuesdays and Thursdays it can be seen that the model is less capable of predicting
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high peaks and low bottoms. Where Tuesday has a couple of high peaks, for example BOS or SFO, on Thurs-
day multiple peaks exists. This difference can also be seen in the Percentage errors plots where it is obvious
that the overall errors is way higher not because the model has a deviant behavior but because the empirical
data consists of higher expected values. It is suspected that external factors contribute to these delays which
are not accounted for by the DAM model. When investigating this even further by looking at the weather con-
ditions each day in September it becomes clear that each weekday which had higher errors rates contained
some days in the set with very severe weather conditions and so the conclusion that severe weather cannot
be represented by the model is also applicable here. However, it is not impossible that other factors also can
play a role in errors. While observing the scores of the T-test, it is obvious that Tuesdays score way better than
Thursdays. Where Thursday is very off for every airport, Tuesday sometimes scores reasonable but the results
were not static significant.

(a) Arrival Delay

(b) Percentage Error Arrival Delay

Figure 7.10: Average Arrival Delay by Airport on Thursdays

It is clear now that the model is not suitable for detailed analysis on specific airports. It should be used
more on the overall behavior of the network to analyze the casual relationships between airports and their
delay figures. Furthermore the model is capable of prediction macroscopic effects of the network if aver-
age operational conditions are in place, but further research is needed on both delay mitigation as well as
operational constraints when severe weather conditions are in place.





8
Conclusion and Recommendations

The conclusions of this research are elaborated in this chapter. First, the main results from the study are
discussed. Second, the contributions to literature and industry is discussed. Then, the limitations of the
DAM model are treated. Ending this chapter with the recommendations for future research.

8.1. Concluding on the results
In the literature study it was concluded that still a lot is unknown about the dynamics of flight delay and in
particular the relationship between propagation throughout a network and the source of the primary delay.
It is found that a queuing based model is suitable to perform a dynamic stochastic simulation of the network
dynamics, which can be used to investigate the behavior of propagated delay within the context of US major
airports in a domestic network. Therefore, the following research question was formulated:

To what extent, and how, do local flight delay sources influence the dynamics of delay propagation
within a network of airports of the U.S. National Aviation System simulated by a stochastic

queuing network model?

The dynamic model proposed in this study is modeled using Queuing Theory as the main modeling tech-
nique with a combination of a delay propagation algorithm to distribute local queuing delay among its con-
nections. During the development of the model, the model has been calibrated with the On-time Perfor-
mance Database of the BTS, which includes all domestic traffic within the United States. The conclusions
on the model creation and calibration are firstly discussed in the following section. Afterwards, the model
capabilities will be discussed based on the results obtain from the three experiments performed within this
study. Finally, the model accuracy, which have been determined in the verification and validation phase, will
be treated.

8.1.1. Model Creation and Calibration
The first two research sub-questions regarding the creation and calibration were formulated as followed:

1. What are the influencing factors of generation and propagation of delay that should be taken into ac-
count?

2. How can the generation and propagation of delay within a network be modeled properly based on the
key processes within airport operations?

It has been determined that the conceptual airport model consists out of three different processes, namely,
arrival, turnaround and departure. At each simulated airport these three local processes will generate local
queuing delay, which will later be propagated among the network. A selection of 29 US airports has been
selected as the scope of this thesis, since these airports are the major airports within the US national aviation
system.

The proposed model combines an empirical and parametric approach to determine the important queu-
ing and propagation parameters. A study showed that a parameter aggregation of 30 minutes resulted in the
best fit with the empirical data. Based on this 30 minute aggregation the model queuing parameters have

63
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been determined for the full set of airports within the network. Where some parameters have been fixed for
each simulation, such as the service rates or flight times, others are kept dynamic and change each simulation
time step, such as the arrival rates and the routing probabilities in between airports.

Based on this calibration, the model has been tested on convergence to evaluate after how many itera-
tions the output values reach their expected values. It has been found that after 1000 iterations, the model
converged for both the expected arrival and expected departure delay for all the individual airports. After-
wards, the delay persistence parameter α have been calibrated to see which number resulted in the best fit
with the empirical data. It turned out that an α= 1 resulted in the best fit.

As a final step of the calibration phase, the experimental setup has been designed for the three different
experiments, which have performed within this study. The first experiment contained an analysis of day to
day operation based on six different flight days from the month September 2016. From this month six days
have been chosen based on a small study of the operational conditions at each airport. Next, two days have
been chosen with little to non capacity restrictions, two other days have been chosen with a few airports
operating under low IFR conditions, and finally two days are chosen where there were a large number of
airports operating under low IFR conditions. Next, the second experiment contained a calibration for each
day of the week by aggregating all input data to obtain results of a typical Monday, Tuesday, etc. Finally, a case
study has been performed with three different scenario chosen by the user. Within these scenarios, one or
several airports have been put under low capacity manually to simulate a specific scenario. Based on these
three experiments the results have been obtained.

8.1.2. Model Capabilities and Accuracy
The third research sub-question concerned the capabilities of the proposed model and to what level of accu-
racy simulation results could been generated.

3. How, and to what extent, can the proposed model be used to analyze and identify airport roles in the
propagation of flight delay?

It can be concluded that the model is capable of displaying the network delay dynamics and the roles air-
ports have within this network. Based on all three experiments it was possible to get a better understanding
of the overall network behavior and the casual relationships which exist inside the network. The first find-
ing was the profiling of airports. Based on the Delay Difference indicators it was possible to categorized all
the airports within the network into three different categories, namely delay generator, delay receiver, or a
dual role. These natural roles showed how the network is build up in different regions with the generators
connected with, most of the time, close-by receivers.

By comparing flight days with different operational conditions it has been shown that even if there are
no capacity restriction some airports already generate a lot of delay, what could be explained with the fact
that airport operate very close to their maximum capacity. Furthermore, it has been shown that even with
a small group of airports operating under low IFR conditions it still resulted in an noticeable increase of
propagated delay for the whole network. When this was extended to half of the network the propagated
delay term doubled at almost every airport within the network. Finally, in a detailed example the results of
one specific day are extensively researched. By providing four network snapshot on a 6-hour interval, the
geographical and statistical overview are presented.

In the second experiment it was concluded that Fridays contain the highest average propagated delay and
Wednesdays result in the lowest average propagated delay. Moreover, the small difference between the delay
distributions between the different days of the week implied that small differences exist between the demand
and routing probabilities per day of the week. By looking at the sources of delay, it was also visible that one
single source has a sphere of influence which could cover the whole network.

In the last experiment it has been shown how large the effects can be if one major airports or several
airports are influenced by capacity constraints. By only inducing low IFR conditions at ATL a large part of
the network was influenced. In the scenario with five airport it even resulted in an network wide effect with
propagation of delay from the East coast until the West coast of the United States. Not only had the reduced
server capacity an effect on the local queuing delay, but also on its own propagated delay.

Overall, the model produced an average percentage error ranging from 30% on good days and 50% on
bad days and an average relative error of couple of minutes on good days and eight minutes on bad days. The
model has been validated first for separate flight days and later for the aggregated days of week. It has been
concluded that the model is capable of simulating a day with average weather conditions and no extreme
peaks at certain airports. However, there is still room for improvements as the model was less capable of
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simulating divergent behavior when for example the network needed to cope with severe weather conditions.
It should therefore be used to learn more about the overall behavior of the network. In addition the theory and
assumptions behind the model, the validity of the data, and the computational model verification have been
tested. Since the model has been developed for macroscopic analysis it can be concluded that the model is
sufficiently accurate for the original purpose it was designed for.

Altogether, this project demonstrated that with a relative simple queuing model the dynamics of propa-
gated delay could be simulated within a network of airports but is less capable to mimic the behaviour under
extreme conditions. At the same time the model has shown to be able to provide more information on the
propagation of delay and its source.

8.2. Contributions to Literature and Industry
The last research sub-question concerned the contributions to literature and industry, which will be dis-
cussed in this section.

4. How could this model be applied to improve the mitigation of delay propagation in the future i.e. what
is the main contribution of this study?

The contribution of this study can be seen as two folded, namely the contribution to literature and the
contribution to the industry. Looking at the contribution to literature, three different aspects could be iden-
tified. First, this study showed an original approach by modeling airport congestion with queuing theory to
simulate both delay creation as well as delay propagation. With a relative simple dynamic queuing model, a
complex system such as the air transportation network could be modeled with sufficient accuracy. This ap-
proach can be used to quantify delay propagation under different capacity or flight schedule scenarios, while
accounting for the original sources of these delays.

Second, the United States Core 30 airports have been classified based on the role they play within the
US NAS. To the best of our knowledge, this represent a first attempt to classify airport based on their natural
roles. It is shown that three roles are present within the network, namely, delay generator, delay receiver, and
a dual role. Based on this division of roles, more in-depth analysis can be performed to better understand
where these roles come from and more importantly how delay effects can be mitigated.

Furthermore, an attempt has been done to quantify the influence sphere of certain airports. By tracking
the sources of propagated delay it has been shown that the network is largely connected and the congestion
of only one airport could have effects on the network as a whole. And so this study contributes to a better
understanding of delay propagation and the interconnectedness of an air transportation network.

When looking at the contributions to industry also three aspects could be identified. First, by better under-
standing the relationship between the creation of delay at one airport and the propagation towards others,
airlines could have more information in their policy decision making. While knowing from which sources
most of the delay is coming from, airlines could adjust their schedules to incorporate for such delays and in
the end reduce the effects of propagated delay.

Second, the identification of airport roles is also useful information for the airports themselves. When
knowing your role within the network and from which sources (local, network) it is originating, certain mea-
sures could be taken to improve conditions and in the end reduce delay costs.

Finally, with the model capability of testing under different operational conditions or scenarios, the model
is also useful in policy analysis. By extending the model with more detailed input data it could be used by
airports or airlines to test scenarios such as capacity improvements or flight schedule adjustments. Based on
the model results it can than be decided if these adjustments will give the right outcomes without actually
implementing it.

8.3. Limitations of the Model
The model developed within this thesis project has several limitations. These limitations will be addressed in
the following section.

Use of aggregated flight schedules
Due to the aggregation of flight schedules into rates, aircraft specific schedules are neglected. This made it
impossible to monitor delay in the conventional way since normally delay is measured by the difference be-
tween the scheduled time and the actual time an aircraft arrives or departs. Furthermore, without taking the
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flight itineraries into account it is impossible to track the aircraft on tail number, which made it impossible to
see how deep certain delay has spread. However, it was a conscious choice to use queuing theory as the main
modeling technique and thus neglecting the effects of individual flight schedules.

Schedule padding
Normally, queuing does not necessarily mean that aircraft are delayed since airlines incorporate time in their
schedules for such events. This extra time or slack, enables airlines to mitigate delays during the day before it
can become a problem. This behavior was simulated by the α parameter, but did not resulted in better model
results. It could be investigated further if the additions of individual flight schedules and the introduction of
schedule padding into a complementary model would improve the model accuracy. For this thesis project it
was considered outside the scope of the project.

Airline reaction to congestion
The current model does not account for airlines reactions to delay. Normally, when airlines experiencing
heavy congestion problems, they will take action by for example cancelling flights, swapping of aircraft or
crew, utilization of spare aircraft at hubs etc. These reactions are meant to reduce the experienced delay and
could be incorporated in future work.

En-route Congestion
The proposed model contains the assumption that the flight phase is un-capacitated, which means that no
delay will be formed during flight nor that any delay will be mitigated en-route. However, in reality there is a
possibility that aircraft experience delay due to weather or capacity constraints. Furthermore, airlines some-
times incorporate extra time in their schedules to mitigate delay on the go. To improve the model, flight time
uncertainty could be added to simulate the possibility of flying a longer or shorter time period.

Input Data
Currently, the model is calibrated with a limited amount of input data. The model now only simulates domes-
tic flights with one aircraft type. However, to get the full picture regarding arrival and departure demand also
international flights should be added plus a deviation should made between different types of aircraft since
it matters if a flight is domestic or international or if its a large or a small airplane. Furthermore, operational
conditions were assumed for the whole day and were not time dependent. In reality the weather conditions
will change during the course of the day and it could be that in the morning VFR conditions are present while
in the afternoon it changes towards IFR conditions. However, the amount of input data was limited due to
the simple reason that there is only limited amount of data available for non-US citizens. When there is a
possibility to obtain more detailed demand and service data the model could be improved.

8.4. Recommendations for future research
During the development and the analysis of the model, several recommendations have been found, which
will be discussed within this section. The recommendations are additional to the recommendations follow-
ing from the limitations presented in the previous section.

Delays unrelated to congestion
Right now, the model is only accounting for congestion related delay during arrival, turnaround and depar-
ture. However, in reality more factors are influencing the delay of aircraft. For example, transferring passen-
gers, crew rotation problems, or the defect of an airplane. All situations related to airline problems are now
modeled by the turnaround server, which is a big simplification. To implement the effects of for example
transferring passengers more research is necessary.

Taxi-in and taxi-out queues
At this moment, the model contains three queues for the arrival, turnaround and departure process, which is
a simplification of reality. To improve the simulation accuracy, the model could be expanded with a more de-
tailed representation of the airport operations. The model could be extended with two additional queues for
the taxi-in process and the taxi-out process. Similar implementation have been found throughout literature
[31] [32].
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Slot control at US Airports
Within the current model, the queuing principle First Come First Serve has been used, which is applicable
for the air traffic policies of most US based airports. However, to reduce delay some airports (JFK, EWR,
LGA, ORD, and DCA) within the US are starting to use slot priority systems. To improve the accuracy of the
model different queuing principles could be used simultaneously [51]. Furthermore, the model could also be
used within different context settings such as the EU or Asia where airports mostly use slots to manage flights.

Simulation of Special Events
The current developed model is able to simulate an average day under average weather conditions. The cur-
rent setup is insufficient when simulating special events for example severe weather since it is unable to coop
which such big changes. For special events a different approach should be used to calculate the expected
delay. A solution might be to use data pooling for specific days where it is known that severe weather con-
ditions where present. However, this method could be quite labor intensive since it is hard to find even two
days within the dataset which have similar operational conditions let alone two days with severe weather in
the same geographical region.

Optimization of Model Parameters
To simplify the current model several model parameters have been fixed or simplified during the run of a
simulation day. However, it could be tested if the results of the model would improve when for example the
value of α would be varied for each airport or even each time step. The same could be tested for the service
rates, which are currently fixed for each airport. By using a optimization algorithm the optimal value of α and
µ could be tested. Also the service times have been assumed to be exponential. However, during validation is
has been shown that the service distribution also can be approximated with an Erlang distribution. It could
be tested if another service distribution would improve the simulation results.

Perform more Case Studies
Within the current project only one case study has been performed on the domestic market of the United
States. Nonetheless, a large variation is possible within the selection of airports which are opposed with low
IFR conditions. Furthermore, a similar study could have been performed in another geographical region such
as the EU to test if the same dynamics behavior is also present there.

Adapt Performance Indicators
In this study, several new performance indicators have been introduced such as the delay difference indicator
or the airport profiles. Currently, these indicators are based on the absolute delay and so when comparing
airports with each other it can sometimes give a distorted picture. Therefore, a normalized performance
indicators could be added based on the amount of flight movement of each airport.





A
Statistical Overview

Figure A.1: On-Time Performance - Flight Delays of 2016 for all mayor US Airports
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B
Service Rates

Airport ID µa µt µd low IFR
capacity

ATL 62 70 58 81%
BOS 16 26 23 71%
BWI 17 19 19 85%
CLT 26 29 26 79%
DCA 15 13 14 84%
DEN 46 50 48 88%
DFW 32 45 37 71%
DTW 31 45 37 76%
EWR 19 21 19 72%
FLL 16 16 18 77%
IAD 11 15 15 78%
IAH 38 30 34 89%
JFK 14 21 19 64%
LAS 21 22 23 80%
LAX 32 31 34 79%
LGA 14 17 16 90%
MCO 19 20 20 87%
MDW 16 21 19 81%
MEM 5 7 7 80%
MIA 17 23 19 72%
MSP 32 38 36 83%
ORD 43 47 42 80%
PHL 16 20 18 70%
PHX 32 35 29 70%
SAN 15 18 22 87%
SEA 25 28 20 73%
SFO 29 28 27 68%
SLC 35 39 32 79%
TPA 16 14 13 80%
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D
Airport Profiles

Table D.1: Delay difference indicators and airport profiles of the different flight days

ID 6-9-2016 7-9-2016 9-9-2016 11-9-2016 19-9-2016 30-1-2016 Score Profile
ATL 0.97 0.84 1.04 1.15 1.76 0.75 1.08 Both
BOS 2.42 1.92 0.78 0.88 0.55 0.47 1.17 Both
BWI 1.10 1.09 1.29 1.45 1.55 1.34 1.30 Generator
CLT 0.80 0.77 0.90 0.88 0.64 1.16 0.86 Receiver
DCA 1.07 1.02 1.39 1.31 0.97 1.78 1.26 Generator
DEN 0.65 0.59 0.69 0.76 0.53 0.49 0.62 Receiver
DFW 0.78 0.76 0.94 1.01 2.39 0.61 1.08 Both
DTW 0.62 1.14 1.54 0.78 1.15 0.91 1.02 Both
EWR 1.25 1.18 1.48 1.33 1.09 2.11 1.41 Generator
FLL 0.67 0.63 0.69 0.79 0.49 0.49 0.63 Receiver
IAD 0.33 0.11 0.06 0.19 0.05 0.26 0.17 Receiver
IAH 0.94 0.76 0.82 0.92 0.72 0.68 0.81 Receiver
JFK 1.00 0.75 0.99 1.15 1.25 1.39 1.09 Both
LAS 0.99 1.01 1.08 1.60 0.82 0.78 1.05 Both
LAX 0.70 0.62 0.75 0.69 1.26 0.52 0.76 Receiver
LGA 1.45 1.39 1.70 1.58 1.33 1.27 1.45 Generator
MCO 0.97 0.90 1.08 1.19 1.06 1.00 1.03 Both
MDW 1.09 0.85 1.12 1.23 0.87 1.38 1.09 Both
MEM 0.10 0.17 0.21 0.04 0.16 0.12 0.13 Receiver
MIA 0.34 0.39 0.16 0.57 0.33 0.22 0.34 Receiver
MSP 0.96 0.50 0.64 0.25 0.49 0.79 0.61 Receiver
ORD 0.76 1.04 0.81 0.97 0.68 1.14 0.90 Both
PHL 0.82 0.61 0.78 0.93 0.84 1.26 0.88 Receiver
PHX 0.73 0.77 0.86 0.90 0.60 0.61 0.75 Receiver
SAN 0.74 0.69 0.81 0.76 0.81 0.56 0.73 Receiver
SEA 1.00 1.02 1.17 1.06 0.79 2.27 1.22 Generator
SFO 0.87 0.81 0.89 0.82 0.69 0.61 0.78 Receiver
SLC 0.65 0.61 0.62 0.69 0.55 0.42 0.59 Receiver
TPA 0.73 0.68 0.77 0.83 0.57 0.52 0.68 Receiver
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Table D.2: Delay difference indicators and airport profiles of the different weekdays

ID Monday Tuesday Wednesday Thursday Friday Saturday Sunday Score Profile
ATL 1.11 1.15 1.13 1.07 1.10 1.05 1.07 1.10 Generator
BOS 0.82 0.88 0.83 0.84 0.81 0.73 0.85 0.82 Receiver
BWI 1.14 1.18 1.14 1.13 1.05 0.86 1.20 1.10 Generator
CLT 0.77 0.91 0.88 0.77 0.83 1.06 0.93 0.88 Receiver
DCA 1.08 1.19 1.09 1.06 1.06 0.84 1.14 1.07 Both
DEN 0.67 0.72 0.69 0.65 0.67 0.70 0.67 0.68 Receiver
DFW 0.91 0.99 0.97 0.82 0.93 1.03 0.71 0.91 Both
DTW 0.83 0.62 0.75 0.81 0.74 1.44 0.92 0.87 Both
EWR 1.21 1.35 1.24 1.15 1.17 1.06 1.13 1.19 Generator
FLL 0.64 0.64 0.67 0.61 0.59 0.96 0.76 0.69 Receiver
IAD 0.05 0.06 0.06 0.06 0.05 0.04 0.07 0.05 Receiver
IAH 0.90 0.97 0.84 0.91 0.92 0.88 0.84 0.89 Both
JFK 0.88 0.84 0.74 0.83 0.78 0.97 1.03 0.87 Both
LAS 1.19 1.00 1.25 1.19 0.91 1.51 1.01 1.15 Generator
LAX 0.90 0.89 0.87 0.87 0.86 0.89 0.85 0.88 Both
LGA 1.57 1.54 1.39 1.34 1.20 1.01 1.27 1.33 Generator
MCO 1.01 0.98 0.95 0.95 0.98 1.63 1.14 1.09 Both
MDW 1.03 1.11 0.95 0.96 0.99 1.19 1.11 1.05 Both
MEM 0.08 0.06 0.09 0.05 0.05 0.10 0.06 0.07 Receiver
MIA 0.55 0.50 0.54 0.49 0.41 0.46 0.58 0.50 Receiver
MSP 0.65 0.72 0.63 0.66 0.66 0.60 0.25 0.60 Receiver
ORD 0.94 0.91 0.60 0.81 0.77 0.86 0.91 0.83 Both
PHL 0.70 0.77 0.73 0.36 0.62 0.91 0.75 0.69 Receiver
PHX 0.83 0.76 0.84 0.84 0.84 0.90 0.90 0.84 Receiver
SAN 0.64 0.66 0.63 0.62 0.65 0.69 0.68 0.65 Receiver
SEA 1.19 1.19 1.15 1.11 1.16 1.32 1.22 1.19 Generator
SFO 0.79 0.80 0.76 0.73 0.74 0.78 0.77 0.77 Receiver
SLC 0.61 0.64 0.63 0.55 0.54 0.60 0.57 0.59 Receiver
TPA 0.71 0.68 0.64 0.59 0.61 0.89 0.74 0.70 Receiver
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F
Arrival Delay Validation

(a) Arrival Delay on 09-09-2016 (Good Weather Conditions)

(b) Arrival Delay on 06-09-2016 (Average Weather Conditions)

(c) Arrival Delay on 30-09-2016 (Severe Weather Conditions)

Figure F.1: Average Arrival Delay per Airport
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G
T-test scores day calibration

Table G.1: T-test scores of Arrival Delay

6-sep 9-sep 30-sep

statistic p-value statistic p-value statistic p-value

ATL -35.53 1.96E-179 -309.30 0 -290.70 0
BOS -399.00 0 -54.60 4.16E-302 -733.94 0
BWI -14.09 2.81E-41 -99.01 0 -213.88 0
CLT 76.22 0 -13.43 6.50E-38 -98.39 0
DCA 9.83 8.14E-22 55.34 1.63E-306 -306.28 0
DEN -98.70 0 -391.94 0 -65.84 0
DFW -422.71 0 -114.09 0 -346.14 0
DTW -130.01 0 72.70 0 -464.04 0
EWR -823.90 0 -197.54 0 -808.44 0
FLL 3.49 0.00051135 62.67 0 -631.00 0
IAD -10.99 1.33E-26 137.06 0 -384.27 0
IAH -20.43 8.94E-78 -245.91 0 -72.54 0
JFK -194.86 0 -32.97 7.23E-162 -553.03 0
LAS 33.88 3.97E-168 -43.47 1.51E-232 60.60 0
LAX -122.61 0 -400.58 0 -34.71 8.10E-174
LGA -195.38 0 38.92 2.15E-202 -1528.77 0
MCO 4.51 7.22E-06 77.53 0 -400.56 0
MDW 80.17 0 108.60 0 -85.42 0
MEM -104.98 0 52.31 2.46E-288 -16.85 3.09E-56
MIA -566.83 0 202.97 0 -1302.80 0
MSP -1355.75 0 -350.29 0 36.13 1.72E-183
ORD -140.22 0 -133.04 0 -405.50 0
PHL -3.26 0.001146297 12.34 1.21E-32 -680.65 0
PHX -92.72 0 -102.23 0 34.75 4.28E-174
SAN 110.83 0 19.23 2.40E-70 26.82 8.39E-120
SEA -150.17 0 -133.11 0 42.93 5.11E-229
SFO -6.71 3.18E-11 -562.85 0 -373.39 0
SLC -57.75 1.38536007094e-320 -31.08 6.47E-149 -26.70 5.58E-119
TPA 93.39 0 124.18 0 -443.74 0
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84 G. T-test scores day calibration

Table G.2: T-test scores of Departure Delay

6-sep 9-sep 30-sep

statistic p-value statistic p-value statistic p-value

ATL 84.90 0 6.07 1.79E-09 -319.65 0
BOS -465.29 0 107.07 0 -544.72 0
BWI 0.80 0.421996992 89.99 0 -71.98 0
CLT -5.41 7.91E-08 125.89 0 -99.03 0
DCA 111.65 0 138.52 0 6.60 6.82E-11
DEN -100.24 0 -101.12 0 -73.27 0
DFW -93.11 0 61.34 0 -172.86 0
DTW -13.96 1.33E-40 56.50 2.29257655297e-313 -166.23 0
EWR -543.37 0 -136.21 0 -370.68 0
FLL 27.85 8.16E-127 87.41 0 -742.42 0
IAD -173.93 0 -249.09 0 -144.90 0
IAH 41.82 9.43E-222 -357.56 0 -269.87 0
JFK -35.57 9.94E-180 22.14 1.02E-88 -637.94 0
LAS 49.33 5.33E-270 4.42 1.12E-05 49.66 4.95E-272
LAX -31.08 6.81E-149 -194.20 0 -35.51 2.72E-179
LGA -20.17 3.87E-76 0.21 0.833032871 -1154.13 0
MCO 34.73 5.61E-174 -10.33 7.42E-24 -350.55 0
MDW 72.76 0 66.25 0 -89.80 0
MEM -42.56 1.25E-226 -516.34 0 -37.66 6.81E-194
MIA -160.34 0 -211.18 0 -1321.59 0
MSP -675.39 0 -131.10 0 -140.67 0
ORD -315.43 0 -84.71 0 -182.24 0
PHL -6.85 1.32E-11 -42.96 3.04E-229 -335.80 0
PHX 98.71 0 5.70 1.62E-08 106.00 0
SAN 41.47 2.22E-219 9.34 6.32E-20 11.21 1.50E-27
SEA 16.14 2.93E-52 13.00 8.38E-36 144.54 0
SFO -27.81 1.73E-126 -207.76 0 -171.41 0
SLC -10.41 3.73E-24 -109.86 0 30.18 1.04E-142
TPA 51.11 4.86E-281 126.32 0 -193.41 0



H
T-test scores weekday calibration

Table H.1: T-test scores of Arrival Delay

Tuesdays Thursdays

statistic p-value statistic p-value

ATL -116.38 0 -242.22 0
BOS -204.13 0 -127.15 0
BWI 15.21 3.76E-47 -71.15 0
CLT -13.25 4.94E-37 -278.09 0
DCA -4.80 1.84E-06 -100.38 0
DEN -141.49 0 -512.73 0
DFW -224.91 0 -373.66 0
DTW -18.39 2.66E-65 -107.73 0
EWR -154.39 0 -554.01 0
FLL -115.61 0 -173.72 0
IAD -29.82 2.99E-140 -160.39 0
IAH -83.68 0 -273.52 0
JFK -81.84 0 -250.77 0
LAS 24.20 3.23E-102 -332.95 0
LAX -142.04 0 -224.77 0
LGA -21.57 5.01E-85 -301.32 0
MCO -90.52 0 -240.20 0
MDW 60.17 0 -140.92 0
MEM -28.81 2.22E-133 -99.62 0
MIA -117.39 0 -260.54 0
MSP -421.67 0 -296.40 0
ORD -66.97 0 -306.57 0
PHL -63.07 0 -731.74 0
PHX -103.08 0 -200.00 0
SAN -15.12 1.16E-46 -101.40 0
SEA -29.84 2.00E-140 -106.41 0
SFO -600.93 0 -428.95 0
SLC -165.23 0 -277.74 0
TPA 25.35 6.97E-110 -214.96 0
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I
Stationary Arrivals

Figure I.1: Arrivals at Atlanta between 8:30 and 9:30 EST on
21-08-2016

Figure I.2: Arrivals at Atlanta between 8:30 and 8:45 EST on
21-08-2016
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J
Kolmogorov–Smirnov Test

Table J.1: KS tests for the inter-arrival time distributions and the service time distributions

Distribution fitting D p k

Arrival Demand expon 0.3052 0 n/a
erlang 0.7077 0 non-integer

Turnaround Demand expon 0.3763 0 n/a
erlang 0.8002 0 non-integer

Departure Demand expon 0.4136 0 n/a
erlang 0.8002 0 non-integer

Arrival Service expon 0.1887 0 n/a
erlang 0.0902 2.50E-219 k=5

Departure Service expon 0.136 0 n/a
erlang 0.1517 0 k=4
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