

Delft University of Technology

Orbital Shield
Rethinking Satellite Security in the Commercial Off-the-Shelf Era
Yadav, Nikita; Vollmer, Franziska; Sadeghi, Ahmad Reza; Smaragdakis, Georgios; Voulimeneas, Alexios

DOI
10.23919/3S60530.2024.10592292
Publication date
2024
Document Version
Final published version
Published in
2024 Security for Space Systems, 3S 2024 - Conference Proceedings

Citation (APA)
Yadav, N., Vollmer, F., Sadeghi, A. R., Smaragdakis, G., & Voulimeneas, A. (2024). Orbital Shield:
Rethinking Satellite Security in the Commercial Off-the-Shelf Era. In 2024 Security for Space Systems, 3S
2024 - Conference Proceedings (2024 Security for Space Systems, 3S 2024 - Conference Proceedings).
IEEE. https://doi.org/10.23919/3S60530.2024.10592292
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/3S60530.2024.10592292
https://doi.org/10.23919/3S60530.2024.10592292

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Orbital Shield: Rethinking Satellite Security in the
Commercial Off-the-Shelf Era

Nikita Yadav∗, Franziska Vollmer†, Ahmad-Reza Sadeghi†, Georgios Smaragdakis‡, and Alexios Voulimeneas‡
∗Indian Institute of Science, Bangalore, India

Email: nikitayadav@iisc.ac.in
†Technische Universität Darmstadt, Germany

Email: {franziska.vollmer@stud, ahmad.sadeghi@trust}.tu-darmstadt.de
‡Delft University of Technology, The Netherlands
Email: {g.smaragdakis,a.voulimeneas}@tudelft.nl

Abstract—Satellites have become part of critical infrastructure
utilized for diverse applications, from Earth observation to com-
munication and military missions. Several trends have reshaped
satellite deployment and utilization in recent years, making
satellite systems more accessible and vulnerable to cybersecurity
threats. A notable trend is adopting Commercially Off-the-Shelf
(COTS) hardware and software for satellite systems. However,
this approach renders satellites susceptible to well-known cy-
berattacks. This paper presents a comprehensive exploration of
attacks on satellite systems, with a specific emphasis on the
security aspects of the satellite platform, encompassing both the
bus and payload subsystems. The discussion includes existing
security defenses that can enhance the security of the satellite
platform. Ultimately, we present a real-world security framework
designed to improve the overall security of the satellite platform.

Index Terms—Satellite Security, Space Systems Security

I. INTRODUCTION

In recent years, there has been a growing reliance on satellite
systems. Satellites are used in various critical domains, such as
telecommunications, navigation, and military operations. Due
to their versatility, satellite systems have become an essential
component of global networking and information transmission.
Satellites are anticipated to play an increasingly vital role in
the evolution of telecommunications technology, particularly
with the advent of 5G and the forthcoming 6G systems.
Therefore, it is crucial to safeguard these systems as they are
relied upon. Security risks in space are not limited to physical
threats but also extend to malicious manipulation of complex
software and communication systems [1].
Trends. Several trends have disrupted the space market.
Firstly, the rise of small satellites is projected, with approx-
imately 15,000 expected launches between 2021 and 2030,
90% of them being small satellites [2], which are defined
by their small size, weight, and cost-effectiveness. Second, to
build low-cost satellites, Commercially Off-the-Shelf (COTS)
hardware and software are increasingly used [3]. Third, unlike
traditional satellites dedicated to a single mission or user,
new satellites operate on a multi-tenant model [4]. This
facilitates shared access, enabling various entities to leverage

the satellite’s capabilities for different purposes. However,
it makes the satellite system more susceptible to security
threats. Lastly, Reprogrammable satellites, exemplified by the
standardized OneSat satellites [5], [6], are software defined
and fully reprogrammable in orbit. However, this increased
flexibility also introduces potential security vulnerabilities.
Adversary Model. Satellites often belong to stakeholders
ranging from government agencies and defense organizations
to private companies and research institutions. This diversity
in ownership and operation significantly increases the attack
surface of satellite systems. The multitude of stakeholders
introduces various points of vulnerability that malicious ac-
tors may exploit to compromise satellites. Furthermore, the
interconnected nature of satellite systems means that an attack
on one satellite can potentially impact others within the same
network or constellation. This interconnectedness amplifies the
consequences of successful attacks and underscores the im-
portance of robust security measures and collaborative efforts
among stakeholders to mitigate risks and safeguard satellite
assets and operations.
Attacks on Satellites. Cyber threats on satellites include
unauthorized access attempts, malware infections, and vulnera-
bilities in satellite communication protocols and ground-based
infrastructure. Satellites have been subject to real-world attacks
multiple times [1]. A prominent attack instance occurred
during the Ukraine-Russia war, known as the Viasat attack.
The attackers exploited a security vulnerability in the ground
segment, executing a privilege escalation. The malware used in
the attack made it impossible for thousands of users to connect
to the network [7]. Although real-world attacks on satellites
have been infrequent, the increasing reliance on satellite
technology and the growing usage of commodity hardware
and open satellite architecture and protocols emphasize the
importance of proactive cybersecurity measures to safeguard
satellite systems against potential attacks and mitigate the risks
associated with cyber vulnerabilities.

Satellite attacks can be categorized into two main types: (a)
network attacks, focusing on communication links within a
satellite infrastructure, including jamming and spoofing, and
(b) platform attacks, directed at a satellite’s software and hard-
ware. A network attacker can intercept unencrypted or weakly978-90-9038704-8 ©2024

Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

encrypted RF signals, disrupt signals by transmitting on the
same frequency with higher power [8], and send deceptive
signals to manipulate receiver systems [9]. More sophisticated
attacks include satellite platform attacks, which corrupt data,
obtain access credentials, and even send malicious updates to
the firmware by exploiting software and hardware vulnerabil-
ities [10], [11]. Ensuring the security of the satellite platform
is vital, as otherwise, attackers can take control of the satellite.
This could have severe consequences, especially in critical
domains. As demonstrated in prior works, a satellite can be
hijacked to run vulnerable telecommands [12]. An attacker can
exploit such vulnerabilities to alter the satellite’s orbit, causing
it to crash with other satellites. Hence, it poses a significant
threat to the space missions. While both network and platform
security are crucial, this paper exclusively focuses on platform
security due to its relatively lesser emphasis in prior works. For
satellite network communication security, other works such as
[8], [13], [14] can complement our findings.
Our Focus: Satellite Platform Security. Low-Orbit Satellites
(LEO) or Cube Satellites (CubeSats) are growing rapidly in the
recent years [15], [16]. The CubeSats are generally built using
Commercially Off-the-Shelf (COTS) hardware components
for cost-savings [17], [18]. Other reasons for using COTS
hardware components include availability, rapid technological
advancements and reduced satellite manufacturing time. The
global satellite COTS components market is estimated to
double in the next decade, at a growth rate of 1.21% during the
forecast period 2022-2032 [19], [20]. According to reports by
Microwave Journal, NASA agrees that using COTS hardware
can benefit many satellite applications and guides to test the
reliability of COTS hardware for space applications [21].
However, other types of satellites such as Geostationary Orbit
(GEO) or Medium Earth Orbit (MEO) may have different
design requirements, longer operational lifespans, and higher
reliability standards, which could necessitate the use of more
specialized or radiation-hardened components.

In the low-cost satellites, COTS hardware and software is
employed [3], [22], [23], as exemplified by the use of an ARM-
M processor for the bus system and an ARMv9 processor
for the payload system in the case of FlatSat [24], and ARM
cortex-M3 On-board Controller (OBC) in ESTCube-1 [25].
This leaves the space systems vulnerable to commodity cyber
threats, such as crypto-ransomware, malware, and exploiting
common software and hardware vulnerabilities. Consequently,
the ongoing research in security architectures for cyber-
physical systems (CPS) is directly relevant to satellite systems.

We present the requirements for a secure satellite ar-
chitecture. As modern satellites increasingly utilize COTS
hardware and their architecture becomes widely known, we
draw parallels between the security considerations of satel-
lite systems and cyber-physical systems (CPS). We explore
existing security tools and techniques applied to CPS. We
assess the applicability of these methodologies to meet the
security requirements in the context of satellite platforms. We
conclude our work with a secure satellite design that meets all
the specified security criteria.

Fig. 1: Satellite architecture illustrating the bus-payload sepa-
ration.

This white paper focuses on the conceptual and theoretical
aspects of the security of satellite platforms. Consequently,
it does not include an evaluation or implementation of the
proposed security architecture.

Outline. The paper is organized as follows: Section II
overviews the satellite system architecture. Potential attacks
on the satellite platform are discussed in Section III. Through
analyzing potential attacks, we derive requirements to ensure
comprehensive security for a satellite system (Section V-A).
We assess existing security tools and techniques in Section
V-B to determine their alignment with the defined require-
ments, incorporating insights from prior satellite research for
real-world applicability. Finally, Section V-C introduces a
security framework for the satellite platform.

II. SATELLITE SYSTEM BASICS

Modern satellites feature a bus-payload separation, dividing
the satellite into two components: (a) the satellite bus and (b)
the satellite payload [26]. The Controller Area Network (CAN)
protocol establishes communication between the payload side
and the satellite bus through a CAN bus in CubeSat archi-
tectures. Consequently, our discussion and analysis will be
centred around CubeSats and their CAN bus systems. Figure
1 shows a high-level architecture of the satellite, highlighting
the typical components. This paper collectively refers to the
satellite bus, payload, and CAN bus as the satellite platform.

A. Bus System

The satellite bus controls the satellite and provides support
to the payload side. It includes all the necessary components
for the satellite’s operation and functionality. It is important
to note that the bus system is not reliant on the payload side,
although the payload side is dependent on the bus system.

The Command and Data Handling System (CDHS) is
the most crucial component of the bus system for ensuring
effective data processing and control. The CDHS uses an

2
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

Onboard Controller (OBC) with a microcontroller and mem-
ory. The software running on the OBC is called onboard
software (OBSW). The Electrical Power System (EPS) gen-
erates, stores, and distributes electrical energy. Meanwhile,
the Attitude Determination and Control System (ADCS) sta-
bilizes the satellite’s orientation and position in space. The
Communication Subsystem (COM) also enables bidirectional
communication between the satellite and ground stations.

B. Payload System

The mission’s success heavily relies on the satellite’s pay-
load. It includes mission-critical equipment, such as cameras,
optical receivers, or communication radios, and is accountable
for both payload control and mission data processing. The
Payload Data Handling System (PDHS) is the central compo-
nent within the payload, handling communication, receiving
control data, and processing the sensor data. The payload side
of the satellite offers multi-tenant functionality, i.e., Satellite-
as-a-service (SaaS) [4]. Multiple users can access and execute
their code on the satellite. The satellite resources, such as
peripherals, are shared by all the users.

C. Shared Communication Channel

The Controller Area Network (CAN) bus protocol is com-
monly used to facilitate communication between various de-
vices and subsystems within a Cubesat satellite. The CAN
protocol utilizes a two-wire interface mode for communication
on a shared bus. The two wires are known as ‘CAN Low’ and
‘CAN High’. Electronic Control Units (ECUs) are connected
to the differential data lines and communicate with each other
via the differential bus. The CAN two-wire broadcast topology
enables cost-effective connections of multiple nodes to a single
bus, reducing system and cable costs. The destination address
is transmitted via the bus. ESA states that using a CAN bus can
reduce a satellite’s weight and mass by up to 18% [27]. This is
especially crucial for small satellites, where board space and
size are significant factors. The technical advantages of a CAN
bus make it an ideal choice for satellite use and its ability to
protect systems from high-voltage transients and avoid ground
loops through an isolated CAN bus [28].

III. ATTACKS ON SATELLITE PLATFORM

Attacks on satellite platforms encompass various scenarios,
including attacks on the onboard controller software in the
bus subsystem and software within the payload subsystem and
exploit targeting vulnerabilities in the CAN bus protocol. This
section outlines these attacks and summarizes relevant prior
research. We classify the attacks into two types: (1) targeting
the satellite bus and payload and (2) targeting the CAN bus.

Table I provides a comprehensive overview of the various
types of attacks, including their specific characteristics, tech-
niques, components affected, vulnerabilities exploited, impact,
threat models, and likelihood of successful execution.

A. Satellite Bus and Satellite Payload
a) Denial of Service (DoS): Denial-of-service attacks are

the most common form of satellite attacks and can affect
both the software on the bus and the payload. These attacks
can impact the availability of a satellite and block network-
based services [9], [11]. A DoS attack can be caused by data
overload, which involves sending too much data to the satel-
lite [12]. Some satellite systems employ a Broadcast Controller
(BC) as a central hub responsible for dispatching commands
to various Remote Terminals (RTs) [13]. A DoS attack aims
to prevent the execution of commands by overloading the
BC’s command code. As a result, the RTs intended to receive
these commands become unable to execute them due to the
excessive load imposed on the BC.

b) Data Corruption: In this attack, the attacker intention-
ally alters or destroys data in a computer system or network.
The attacker may manipulate satellite data to access the bus
software. For instance, the attacker can access payload or
flight-critical data and access data of the bus. The data falsified
by the attacker can spread throughout the bus system and
jeopardize the security of the satellite platform [9], [12], [13].

c) Backdoor Attacks: Backdoor attacks aim to exploit
existing backdoors in a satellite’s software or hardware or
to create new ones. This can be achieved by injecting code
into the software. Using these backdoors, attackers can gain
unauthorized access to a satellite and potentially execute
further attacks [9].

d) Cryptographic Key Replacements: Attackers can gain
control of the satellite and its communication channel by
changing the cryptographic keys with malicious ones and
exploiting vulnerabilities in the key management system, re-
sulting in loss of control by the operator [9].

e) Memory Corruption: In these attacks, the attacker
manipulates the system’s memory to install malicious code or
commands on the satellite. The injected commands are then
executed during events such as a system restart to ensure the
code remains on the system even after a reset [9]. Memory
corruption is also possible in TC. Memory vulnerabilities such
as buffer overflows can be exploited by manipulating the
memory [12]. For instance, in the file rename function, the
new filename is copied into a buffer with a static size without
performing any size verification. Similarly, in the AVR32-
QEMU the UHF-TC-Fetcher interface uses a strcat function to
copy a character string from a telecommand (TC) to a buffer.
The telecommand (TC) can be larger than the static buffer,
thus causing a buffer overflow. Such attacks allow the attacker
to execute arbitrary code and gain control of the satellite.
Another method of achieving memory corruption is through
memory leakage attacks in satellite security [32], [33], [34].
These occur when programmes or systems fail to properly
release allocated memory. Over time, this can result in memory
utilisation, performance degradation and potential security
risks. In satellite systems, memory leakage vulnerabilities can
jeopardise critical functions and data. There are different types
of memory leakage attacks, including buffer overreads. In this
type of attack, a program reads beyond the boundaries of an

3
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Overview of security threats and attack techniques in satellites.

Attack Type Attack Technique Components
Attacked

Used Vulnerabilities Impact Threat Model Attack
Exploi-
tability

Denial of Service [9],
[11] [12] [13], [29]

Jamming, Internet Con-
trol Message Protocol
(ICMP) echo requests
(Ping-flooding)

Satellite Bus, Satel-
lite Payload, CAN
Bus

Deficiencies in security mea-
sures in satellite communica-
tions infrastructure of ground
stations and remote sites

Internal communica-
tions vulnerabilities
of Satellite like high
bit error rate, high
connection delays,
control of transmit
power, and large
round-trip delays.

External attacker with
capacity to overwhelm
network with flood of re-
quests.

High

Data Corruption [30],
[9], [12], [13]

Spoofing Satellite Bus, Satel-
lite Payload

Lack of robust data integrity
schemes (e.g., hashing, check
values, and digital signatures)
and inadequate encryption of
time data

Compromise of
integrity and
confidentiality of
data, specifically
payloads or flight-
critical information,
has potential to cause
disruption to satellite
operations.

Insiders with access to
satellite systems or exter-
nal actors with advanced
capabilities.

Medium

Backdoor Attacks
[30], [9], [31]

Code Injection Satellite Bus, Satel-
lite Payload

Rare monolithic satellite soft-
ware structure and inclusion
of third-party code for various
components

Granting
unauthorized access
to satellite may
potentially result in
further attacks and
data breaches.

Attacker has
system/network
access and detailed
understanding of
architecture and
vulnerabilities of system.

High

Cryptographic Key
Replacement [9]

Over-the-air rekeying
procedures

Satellite Communi-
cation System

Deficiencies in strategy for
key management

Loss of operator
control over satellite,
compromised
communication
security, and potential
data manipulation.

State-sponsored
attackers syndicates
with resources to
exploit communication
protocols

Low

Memory Corruption
[9], [12], [32], [33],
[34]

Buffer-overflow, Code
Injection, Exploitation of
memory leaks, Misuse
of printf-like functions,
Buffer-overreads

Satellite Bus Inadequate security checks or
limitations on input data of
program or application. Dis-
closure of sensitive program
data (e.g., private keys or
code pointer locations) that
has been either inadvertently
or deliberately disclosed.

Installation of mali-
cious code and sub-
sequent takeover of
control of satellite,
compromise data in-
tegrity and confiden-
tiality, bypassing sys-
tem’s security mecha-
nisms.

Advanced threat actors
with capability to ex-
ploit system vulnerabil-
ities and execute mali-
cious code

Medium

Brute Force Attacks
[9], [35]

Brute-Forcing Satellite Payload Weak manufacturer security
passwords

Unauthorized access
to sensitive informa-
tion, increased risk of
unauthorized system
control or data ma-
nipulation, and ability
to update configura-
tion files and control
UHF communications

External attacker with
no specific knowledge of
this particular system.

Low

Bypass Access Con-
trol [12]

Execution of arbitrary
telecommands (TCs)

Onboard Computer
(OBC)

Deactivated encryption and
authentication functions

Complete
compromise of
satellite control and
potential disruption
of mission objectives
or functions.

External actors with
knowledge of satellite
control systems.

Medium

Malicious Firmware
Updates [12]

Transmission of critical
TCs to the CDHS, mod-
ification of existing or
new files

Satellite Bus Outdated or insecure firmware Installation of
unauthorized
software, potential
takeover of satellite
control, disruption of
normal operations.

Malicious insiders or ex-
ternal actors with ac-
cess to firmware update
mechanisms.

High

Unauthorized Node
Injection [36], [37]

Man-in-the-Middle
Attacks (MITM),
Chosen-Plaintext-
/Known-Plaintext-
Attacks

CAN Bus Absence of effective authen-
tication mechanisms in CAN
bus

Potential
manipulation
of critical
communication
systems, compromise
of satellite functions,
Data susceptible
to interception by
unauthorized nodes.

Attackers with access to
CAN bus.

High

CAN-Bus-Message
Tampering [30] [36],
[38]

Impersonation Attacks,
Replay Attacks, Sniffing
Attacks

CAN Bus Absence of effective authen-
tication mechanisms in CAN
bus

Manipulation of
Satellite data and
instrument cluster
data

Attackers with ability to
forge messages

Low

4
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

allocated buffer, which can expose sensitive information stored
in neighbouring memory areas. Another form of attack is the
exploitation of memory leaks, which occur when programs
reserve memory but do not subsequently release it. This can
result in a shortage of resources. In addition, misuse of printf-
like functions or logging mechanisms can inadvertently expose
sensitive data in logs or output streams. The impact of such
attacks on satellites is significant. Leaked data can jeopar-
dise the confidentiality of satellite communications, payload
information and system configuration. Unreleased memory
can lead to resource scarcity and affect the overall stability
and performance of the system. Furthermore, memory leaks
could potentially reveal the critical state of the system, thereby
enabling attackers to circumvent security mechanisms.

f) Brute Force Attacks: Attackers may attempt to gain
access to a satellite’s platform data, including login informa-
tion for user accounts or cryptographic keys. This could allow
them to access the satellite’s software and potentially carry
out further attacks. Brute force attacks are commonly used to
obtain this information. The payload controller is vulnerable
due to the manufacturer’s weak security passwords. If attackers
gain access to these passwords, they can update configuration
files and control UHF communications [9], [35].

g) Bypassing Access Control: Prior works show that
satellites lack proper access control mechanisms [12]. Specif-
ically, the COM radio is directly connected to the OBC in
the satellite’s architecture, using the Cubesat Space Protocol
(CSP), which has deactivated encryption and authentication
functions. External attackers can control the satellite through
the execution of arbitrary telecommands (TCs).

h) Malicious Firmware Updates: Another threat is up-
loading malicious firmware images to the satellite, e.g., via
the flash file system in OPS-SAT [12]. This can be achieved
by modifying existing files or creating new ones. Alternatively,
an attacker controlling the PDHS can send critical TCs to the
CDHS to initiate a malicious firmware update.

B. CAN Bus

The satellite’s internal connections are formed using the
CAN bus, making it a pivotal security aspect. Current literature
on satellite attacks often neglects to address vulnerabilities in
the CAN bus. Therefore, we incorporate insights from attacks
on the CAN bus in other systems, such as automotive systems,
to enhance our understanding of potential threats.

a) Unauthorized Node Injection : The Controller Area
Network (CAN) bus has some design limitations that rep-
resent weak points. One of these limitations is the lack of
authentication, which allows any node to join the network and
participate in communication. As the data in the CAN bus is
transmitted unencrypted, an unauthorized node can intercept
and understand the data. Furthermore, the unauthorized node
can disseminate incorrect data in the network [36], [37].

b) Denial of Service: Denial of Service attacks are a
possible threat to the CAN bus. Three basic attack methods
can be distinguished. The first method involves sending an
excessive number of request messages to a parameter group

Fig. 2: Entry points for an adversary. An adversary can hijack
satellite’s external communication to send arbitrary commands
and upload a malware on the payload using multi-tenant
functionality.

number (PGN) to cause an overload. The second method is
the sending of a manipulated false request to send (RTS) to
generate a buffer overflow at the receiver. The final process
of a DoS attack discussed in prior works involves keeping
connections open by sending Clear-to-Send (CTS) messages
and occupying the entire network [39].

c) CAN-Bus-Message Tampering: Attackers can forge
or change messages exchanged on the CAN bus. Including
impersonation attacks, where the attacker forges or modifies
messages after they have been confirmed as valid by the recip-
ient. It also includes replay attacks, in which benign messages
are used for fraudulent purposes, and sniffing attacks, in which
the attacker intercepts the content of CAN bus messages [36],
[38].

IV. THREAT MODEL

All satellite platform components are susceptible to attacks,
with three entry points for attackers, as shown in Figure
2: (1) sending malicious commands via hijacked external
communication channels, (2) uploading malicious code on the
satellite payload, and (3) exploiting hardware backdoors.

We assume that the attacker possesses comprehensive
knowledge of the satellite, including its architecture, commu-
nication protocols, hardware, and software components. The
attacker can be located on the network and send vulnera-
ble telecommands. Additionally, the attacker can exploit the
satellite-as-a-service feature to upload their malicious code
onto the satellite payload. We assume that all other software on
the satellite are benign but vulnerable. The attacker can send
vulnerable commands to exploit the vulnerabilities in the other
satellite components. However, we do not consider hardware
backdoor attacks in this work.

V. SECURING THE SATELLITE SYSTEM

Modern satellite systems use COTS hardware and soft-
ware [3]. This introduces several security challenges and

5
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

threats. Firstly, COTS components are designed for general-
purpose applications and may not incorporate the stringent
security measures necessary for satellite operations. This lack
of built-in security features makes COTS components more
susceptible to cyber threats, including malware infections,
unauthorized access, and data breaches. Additionally, the
widespread availability of COTS hardware and software means
that potential attackers have easier access to the same com-
ponents used in satellite systems. This accessibility allows
malicious actors to analyze and exploit vulnerabilities in COTS
hardware to compromise satellite operations and data integrity.
Further, COTS components are sourced from diverse supply
chains with varying levels of security scrutiny. Malicious
actors may attempt to infiltrate the supply chain to introduce
counterfeit or tampered components, posing significant risks to
the security and reliability of satellite systems. The evolving
nature of cybersecurity threats means that satellite systems
using COTS hardware and software must continuously adapt
and respond to emerging security risks. Regular security
assessments, updates, and patches are essential to effectively
mitigate the evolving threat landscape.

The security of satellite platforms concerns various aspects,
such as integrity and isolated software execution, authentica-
tion, and access control. The satellite systems are engineered
with real-time constraints, employing low-power components
with restricted computational and memory capacities. Conse-
quently, security solutions must prioritize efficiency and avoid
burdening system resources significantly.

Despite these challenges, there is an opportunity to leverage
insights and best practices from the cybersecurity domain,
particularly in Cyber-Physical Systems (CPS), to enhance the
security measures of satellites. CPS, like satellites, often rely
on COTS components and face similar security challenges in
ensuring the integrity and resilience of interconnected systems.
Like satellite systems, CPS are crafted for specific tasks and
tailored for optimal low power consumption. By drawing par-
allels between satellite systems and CPS, satellite engineers,
and security experts can explore and adapt security practices,
such as secure execution, intrusion detection systems, secure
communication protocols, and access control mechanisms, to
mitigate security risks in satellite operations.

This section initially defines the requirements for a secure
platform architecture. We then explore established security
tools and methodologies designed to address these security
challenges and analyze their applicability to satellite systems.
The existing solutions and research proposals have their own
set of advantages and drawbacks, both in general and specif-
ically regarding deployment in the satellite context. Hence,
we integrate the beneficial mechanisms for our secure satellite
platform framework.

A. Security Requirements

We outline the requirements for a security solution for satellite
systems.

• R1: Compatibility - The architecture is engineered to
be compatible with satellite systems’ current design and
hardware.

• R2: Secure Operation - The architecture guarantees the
confidentiality of critical data and integrity of operations,
including command handling and firmware updates.

• R3: Multi-tenant Functionality - The architecture supports
the secure simultaneous software execution from multiple
users, preventing interference between them.

• R4: Proof of integrity: The architecture supports attes-
tation of the integrity of operations, including command
handling, firmware updates, and isolated parallel execu-
tion of multiple payload software.

• R5: Secure Communication: The architecture facilitates
secure communication on shared CAN bus, incorporating
access control measures for resource usage and network
monitoring.

• R6: Availability: The system and services are operational
and accessible by legitimate users in a timely manner.

B. Existing Security Tools and Techniques

We discuss the existing security defenses which can meet
the security requirements discussed above. Table II provides
an overview of these defenses. However, note that our paper
focuses exclusively on the security of satellite platform. As
availability can be compromised by network attacks such as
DoS, we will not be discussing defenses against these attacks
in this paper.

Ensuring Secure Operations: Memory Safety Measures.
Memory vulnerabilities, such as stack buffer overflow, heap
overflow, use-after-free, and corruption of code pointers and
data variables, can be exploited by malware and other security
threats to corrupt program data [70]. The memory vulnerabil-
ities can be exploited to deviate the program control flow to
execute arbitrary code sequences, known as code-reuse attacks
or control-flow hijacking attacks. These vulnerabilities can be
present in both the satellite firmware and the payload software.

We can leverage prior techniques to secure operations.
These techniques can be divided into software-based and
hardware-based solutions. Examples of software based
defenses are stack canaries, DEP, ASLR, CFI and softbound.
DEP and ASLR [70] are OS-based memory defenses that
ensure code pages are non-writable and data pages are
non-executable, while also randomizing the address space
layout of the process with each run. Stack canary is a random
data inserted in the program’s stack at runtime to protect
the integrity of the control data such as return addresses.
CFI [40], [71]–[76] ensures that the program’s execution
follows a predefined control flow graph, and deviations from
this graph are treated as potentially malicious. It is typically
achieved by adding runtime checks and validation to detect
any attempt to divert the program’s control flow to unintended
locations. Softbound [77] ensures memory safety in programs
by employing fat pointers. These fat pointers maintain
both the base and bound information for each pointer and

6
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Overview of existing security tools and techniques.

Defense Type Approaches Implementation Efforts Performance Overhead Applicability to Satellites

Memory Safety Software-based: Canaries, DEP, ASLR, CFI [40],
Softboud; Hardware-based: Intel CET, ARM
pointer authentication

Low Low Software-based approaches
are applicable

Memory Isolation Software-based: Trustvisor [41], ViSA [42], Sanc-
tuary [43]; Hardware-based: SANCUS [44],
TrustLite [45], TyTAN [46], OPEC

Medium Medium software-based approaches
are applicable

Attestation Software-based: SWATT [47], Pioneer [48],
VIPER [49]; Hybrid: SMART [50],
VRASED [51], RATA [52], IDA [53]; Hardware-
based: CFLAT [54], OAT [55], BLAST [56],
Lo-FAT [57], ATRIUM [58], Litehax [59]

Low Medium All software-based and few
hardware-based approaches
given secure hardware is
present (e.g. CFLAT, OAT,
BLAST) are applicable

Isolation using Trusted Execu-
tion Environment

ARMLock [60], SHREDS [61], ERIM [62], CER-
BERUS [63], Donky [64], Capacity [65]

Medium Medium Applicable given that secure
hardware such as Trustzone is
present

Authentication and Access
Control

VeCur [66], IDS [67], IPS [68], EC-SVC [69] Low Low Applicable

include code to perform runtime bounds checks, effectively
preventing out-of-bounds accesses. Hardware-based memory
safety defenses include hardware-assisted CFI [78], ARM
pointer authentication [79] and memory tagging [80].

Supporting Multi-tenant Functionality: Memory Isolation
Techniques. Memory isolation ensures that each software
instance operates within its designated memory space, prevent-
ing unauthorized access or interference from other processes.
This helps contain security breaches and limits the impact of
potential vulnerabilities in one software instance on others,
which is especially relevant in a multi-tenant setting. This
can be achieved using either the software or the hardware.
Examples of hardware-based memory isolation techniques
include SANCUS [44], TrustLite [45], TyTAN [46], and OPEC
[81]. SANCUS [44] implements program-counter-based ac-
cess control and adds new CPU instructions to setup different
modules. In contrast to SANCUS, TrustLite [45] effectively
manages memory access violations and hardware interrupts
without resorting to CPU state and memory resets. TrustLite
employs an execution-aware Memory Protection Unit (MPU)
in the hardware to enforce isolation. Nevertheless, a draw-
back is that it mandates all software to be loaded and their
isolation policies configured during the boot time. On the
other hand, TyTAN extends the idea of TrustLite and offers
dynamic task configuration with real-time guarantees, provid-
ing a more flexible approach compared to TrustLite’s boot-
time constraints. OPEC [81] partitions programs into logically
independent tasks and enforces privilege and resource isolation
at runtime using hardware-supported mechanisms. Although
the hardware-based isolation mechanisms offer an efficient
solution, they necessitate hardware modifications and lack
direct adaptability.

Memory isolation can also be implemented in software.
Memory-protected hardware and hardware for virtualization
can enable efficient software implementations of the isolated
execution environments, making it more suitable for the multi-
tenant payload system. Some examples are Trustvisor [41],
ViSA [42], and Sanctuary [43]. Trustvisor [41] can be

leveraged to implement oracle-like properties, such as
cryptographic primitives, in an application. Further, few
recent works have employed virtualization for securing
satellite systems. ViSA (Virtualised Space Applications)
[42] demonstrates a fault tolerance system leveraging the
Xen Hypervisor. It highlights that COTS hardware is highly
susceptible to radiations, causing single-event effects. The
flight software tasks are replicated, and results are compared
using the ViSA middleware software to detect faults caused
by radiation. Sanctuary [43] proposes a new secure spacecraft
architecture leveraging virtualization that executes onboard
software and the workloads from different vendors in isolated
virtual machines. The hypervisor assigns the hardware to
the VMs, including CPU, memory, and peripheral devices.
It not only provides isolated execution but also implements
remote attestation, a watchdog, and a device manager for
access control, thereby meeting all the requirements except
backward compatibility (R1). Other works include Lua-
based virtualization [82] and a micro hypervisor for flight
computer [83].

Providing Integrity Assurance: Attestation Techniques.
Remote attestation technique allows a remote verifier to
establish trust in the integrity of a remote prover. This
mechanism can be used to measure the program execution on
a remote device, the measurements can then be verified by
the verifier. Remote attestation techniques can be classified
into three main categories: software-based, hybrid, and
hardware-based. Software-based techniques do not depend
on hardware security features and instead utilize a custom
checksum function implemented entirely in software. These
techniques rely on precise timing measurements, which
are effective in scenarios with minimal and consistent
communication delays between the verifier and the prover,
such as between peripherals and a host CPU. Examples of
software-based techniques include SWATT [47], Pioneer [48],
and VIPER [49]. Hybrid techniques merge software with
trusted hardware for integrity measurements. SMART [50],
VRASED [51], RATA [52], and IDA [53] are prominent

7
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

examples of hybrid approaches. SMART [50] employs a
measurement routine in ROM with exclusive access to a
secret key but protects only a single read-only application
and does not handle memory access violations and hardware
interrupts. VRASED [51] proposes formally verified remote
attestation and stores the attestation code and secret key in
ROM while using program counter-based memory access
control to protect the key. RATA [52] and IDA [53] prevent
time-of-check-time-of-use (TOCTOU) attacks, with IDA
also handling interrupts. Other hybrid approaches like
CFLAT [54], OAT [55], and BLAST [56], instrument the
program binary to record control-flow path measurements
and detect control-flow hijacking attacks. CFLAT measures
the executed path and stores basic block IDs in secure
storage, while BLAST minimizes runtime overhead by using
the Ball-Larus Path profiling technique and buffering path
measurements in an in-process isolated protected memory
region. OAT ensures data integrity by adding value-based
define use checks. Hardware-based approaches, such as Lo-
FAT [57], ATRIUM [58], and Litehax [59], utilize hardware
extensions for efficient program measurement recording.

Utilizing Trusted Execution Environments (TEEs) for
Enhanced Security. Many processor architectures for
MCUs provide secure execution, exemplified by technologies
like ARM Trustzone [84]. It offers a trusted execution
environment for securing program execution and memory.
The hardware-enforced isolated execution environment and
secure storage present in these architectures can be used
to run security-critical applications in a secure environment
and design a comprehensive system-wide security monitor.
Another valuable hardware feature available in various
architectures to strengthen security is memory protection
domains. This feature enables the creation of in-process
protected memory regions, safeguarding critical data such as
cryptographic keys and shadow stacks. Notable contributions
in this domain include ARMlock [60], SHREDS [61], ERIM
[62], CERBERUS [63], Donky [64], and Capacity [65]. These
commodity hardware features can be leveraged to enhance
the security of the satellite systems.

Implementing Access Control and Authentication for
Secure Communication over CAN Bus. The Controller
Area Network (CAN) operates on a broadcast-based bus
system and lacks inherent message authentication mechanisms.
This aspect of CAN bus security has been extensively studied,
particularly in applications like automotive systems. VeCur
[66] introduces a message authentication scheme and a trust
group-based structure to enforce access control. It does so
by implementing an additional security layer between the
original CAN interface and the application, by wrapping the
original CAN APIs with additional security features. Lokman
et al. [67] implements an Intrusion Detection System (IDS)
within the CAN bus network for automotive applications,
providing a comprehensive discussion on IDS literature and
a taxonomy specific to CAN bus networks. Abott et al. [68]

propose a real-time Intrusion Prevention System (IPS) that
actively monitors the CAN bus, identifying and eliminating
malicious messages. It employs control codes to detect and
prevent replay attacks and invalid messages. Addressing
confidentiality concerns in the CAN bus network, EC-SVC
[69] proposes a fine-grained, attribute-based access control
system to safeguard message confidentiality from potential
attackers and unauthorized users.

Discussion. We note that many of the approaches from ex-
isting security defenses are applicable to satellite systems, as
illustrated in Table II. Specifically, software-based defenses
for memory safety can be easily incorporated into satellite
firmware and payloads to prevent memory exploits. These
approaches have been successful in preventing attacks and
incur low performance overheads. To ensure protection in
a multi-tenant setting, satellites can leverage software-based
memory isolation techniques without incurring high overhead,
as these have been successfully applied not only in CPS but
also in satellite settings as well [43]. To verify the integrity of
operations, satellite systems can leverage either software-based
or hardware-based techniques that do not require changes to
the hardware and only require the presence of secure hardware,
which is likely to be present in satellite systems. If trusted
hardware is available, it can be used to enhance security
further and implement in-process memory protection regions
in untrusted applications. Finally, the works on CAN bus
security are directly applicable to satellite systems since they
solve similar problems, and these defenses do not require
any special hardware and can be implemented entirely in
software. Based on the analysis of the security requirements
and applicable defenses, we propose a security architecture for
satellites.

C. Secure Satellite Architecture

We propose a security design that fulfills all the
requirements listed in Section V-A and leverages the
existing security defenses. To facilitate compatibility with
the current satellite architecture, our design does not require
any hardware changes. Figure 3 shows the core components
of our security architecture. We implement memory safety
defenses in the firmware and payload software to prevent
memory exploits. We implement a security agent using the
Trusted Execution Environment (TEE), and leverage it to
enable secure boot, isolation, attestation, and access control
over the CAN bus as discussed below.

Secure Platform Setup. To build a secure system, we
must ensure that all components and their configurations are
accurately set during startup. We achieve this through the
implementation of secure boot. The initiation of secure boot
is entrusted to the code stored in read-only memory (ROM),
chosen for its inherent security. The ROM is responsible for
establishing the memory controller and invoking init task,
which, in its execution, configures the filesystem and mounts
devices. Init task verifies the boot configuration file by

8
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Secure satellite architecture Overview

computing its hash. This sequential process continues, with
each component calculating a cryptographic hash of the
subsequent component and comparing it against a reference
value to confirm its unaltered state—the implementation
of secure boot guarantees that the system commences
with unmodified and trustworthy code. Besides loading
validated software, the secure boot process is responsible for
setting up essential system configurations, including memory
management policies and interrupt vector tables. Additionally,
it secures these policies against modification by untrusted
software, including the operating system.

Secure Operations. We employ memory defenses such as
stack canaries, DEP, ASLR and CFI [40], [85] to protect
the firmware and payload from runtime memory exploits.
We can create secure regions for storing critical data,
such as cryptographic keys. This can be accomplished in the
software through software-fault isolation [86] or by leveraging
hardware features like memory protection domains [60].

Secure Multi-tenant Functionality. We assume that the
payload hardware is equipped with a trusted execution
environment (TEE), such as ARM Trustzone. We use this
TEE to secure the operating system code and critical data,
such as page tables, from malicious attacks for the complete
security of the system (e.g. [87]). Further, all the processes
are isolated via memory virtualization, ensuring payloads
from different users run as separate isolated processes.

Secure communication over CAN bus. In a satellite
system, various sensors and devices, such as cameras, sun
sensors, reaction wheels, and gyroscopes, are interconnected
through the CAN bus. Without proper access control
mechanism on the CAN bus, a malicious satellite user could
potentially gain unauthorized access to critical peripherals,
like reaction wheels, leading to the hijacking of satellite
control. Additionally, the CAN bus serves as a broadcast
communication channel, allowing data from a sensor to

be read by all payloads. Since multiple tenants may exist,
data confidentiality becomes a concern, motivating the
need for data confidentiality. The security of the CAN bus
has been extensively researched in other domains. Our
objective is to establish control isolation at the system level
across various components. To achieve this, our design
incorporates a security agent within the Trusted Execution
Environment (TEE) to enforce access control policies. In
addition, the payload software is required to specify its
peripheral accesses in a manifest file upon startup. Prior to
software loading, these specifications undergo verification
to ensure correctness. Additionally, each device tags its
data with a unique identifier. The security agent includes
a communication manager that verifies the origin of data,
forwarding it only to software components with the requisite
device access permissions, thereby ensuring a secure and
controlled data flow. Furthermore, a similar security agent
deployed on the satellite bus can oversee communication
and implement similar security protocols as shown in Figure 3.

Attestation-as-a-Service. By leveraging the security agent,
we can implement an attestation service to generate a proof
of operation integrity. The security agent can periodically
measure the system state such as process memory and system
configurations. It can also record the program execution traces
at runtime. This information can be leveraged to investigate
which software is running and verify the execution and data
integrity. The verification process involves analyzing the col-
lected system state data to detect anomalies indicating unau-
thorized modifications or tampering attempts. By comparing
the current system state with the established baseline, secu-
rity agents can identify discrepancies in software execution,
configuration settings, or data integrity.

VI. CONCLUSION

The increasing reliance on Commercial Off-The-Shelf
(COTS) software and hardware in satellite systems presents
a critical challenge as it exposes satellites to a wide range of
commodity cyber threats. Our paper highlights this growing
vulnerability within satellite platforms, outlining prerequisites
for a secure satellite architecture. We explore how existing
security tools and techniques from the cyber-physical systems
(CPS) domain can be adapted and applied to enhance the se-
curity of satellites. We integrate beneficial techniques and put
forward a security framework for satellite platforms, intending
it to be a foundation for future research and development.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
research and innovations program Horizon Europe under
grant agreements “MLSysOps” (101092912) and “SEPTON”
(101094901), the European Research Council (ERC) under
Starting Grant “ResolutioNet” (679158), the Dutch National
Growth Fund under the 6G flagship project “Future Network
Services”, and the Deutsche Forschungsgemeinschaft (DFG)
SFB 1119 CROSSING/236615297.

9
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Space and Cyber Secuity, “Space Attacks Open Database Project,” https:
//www.spacesecurity.info/en/space-attacks-open-database/, 2024.

[2] German Aerospace Centre, “Future market small satellites,” https://
event.dlr.de/en/ila2022/zukunftsmarkt-kleinsatelliten/, 2023.

[3] B. Nussbaum and G. Berg, “Cybersecurity implications of commercial
off the shelf (cots) equipment in space infrastructure,” Space infrastruc-
tures: From risk to resilience governance, pp. 91–99, 2020.

[4] Exodus Orbitals. Satellite-as-a-service: a new approach for
space industry. Exodus Orbitals. [Online]. Available: https:
//www.exodusorbitals.com/files/whitepaper.pdf

[5] European Space Agency, “Reprogrammable satellite launched,”
https://www.esa.int/Applications/Connectivity and Secure
Communications/Reprogrammable satellite launched, 2021.

[6] ESA, “Reprogrammable satellite design finalised,” https:
//www.esa.int/Applications/Connectivity and Secure Communications/
Reprogrammable satellite design finalised, 2021.

[7] N. Boschetti, N. G. Gordon, and G. Falco, “Space cybersecurity lessons
learned from the viasat cyberattack,” in ASCEND 2022, 2022, p. 4380.

[8] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and A. Davis, “Cyber
security in new space: analysis of threats, key enabling technologies and
challenges,” International Journal of Information Security, vol. 20, pp.
287–311, 2021.

[9] R. Peled, E. Aizikovich, E. Habler, Y. Elovici, and A. Shabtai, “Evalu-
ating the Security of Satellite Systems,” 2023.

[10] G. Falco, A. Viswanathan, and A. Santangelo, “CubeSat Security Attack
Tree Analysis,” in 2021 IEEE 8th International Conference on Space
Mission Challenges for Information Technology (SMC-IT), 2021, pp.
68–76.

[11] G. Falco and N. Boschetti, “A security risk taxonomy for commercial
space missions,” in ASCEND 2021, 2021, p. 4241.

[12] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and A. Ab-
basi, “Space Odyssey: An Experimental Software Security Analysis of
Satellites,” in IEEE Symposium on Security and Privacy, 2023.

[13] D. He, X. Li, S. Chan, J. Gao, and M. Guizani, “Security analysis of a
space-based wireless network,” IEEE Network, vol. 33, no. 1, pp. 36–43,
2019.

[14] P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “Satellite-based com-
munications security: A survey of threats, solutions, and research
challenges,” Computer Networks, p. 109246, 2022.

[15] E. Kulu, “NANOSATELLITE & CUBESAT DATABASE,” https://www.
nanosats.eu/database, 2023.

[16] M. A. Swartwout, “CubeSat Database,” https://sites.google.com/a/slu.
edu/swartwout/cubesat-database, 2023.

[17] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, and F. Pa-
trone, “Small satellites and cubesats: Survey of structures, architectures,
and protocols,” International Journal of Satellite Communications and
Networking, vol. 37, no. 4, pp. 343–359, 2019.

[18] P. Shah and A. Lai, “Cots in space: From novelty to necessity,” in 35th
Annual Small Satellite Conference, 2021.

[19] BIS Research, “Satellite commercial-off-the-shelf components enabling
innovation in space technology,” https://bisresearch.com/news/satellite-
commercial-off-the-shelf-components-enabling-innovation-in-space-
technology-, 2023.

[20] S. Research, “Satellite commercial-off-the-shelf components market,”
https://straitsresearch.com/report/satellite-commercial-off-the-shelf-
components-market, 2023.

[21] M. Journal, “The great debate: Should cots components be used
in space?” https://www.microwavejournal.com/articles/38974-the-great-
debate-should-cots-components-be-used-in-space?page=2, 2022.

[22] R. Doyle, R. Some, W. Powell, G. Mounce, M. Goforth, S. Horan,
and M. Lowry, “High performance spaceflight computing (hpsc) next-
generation space processor (ngsp): a joint investment of nasa and afrl,”
in Proceedings of the Workshop on Spacecraft Flight Software, 2013,
pp. 1–19.

[23] K. Karvinen, T. Tikka, and J. Praks, “Using hobby prototyping boards
and commercial-off-the-shelf (cots) components for developing low-cost,
fast-delivery satellite subsystems,” Journal of Small Satellites, vol. 4,
no. 1, pp. 301–314, 2015.

[24] eoPortal, “Flatsat (ground-based testbed for cubesats),” https://www.
eoportal.org/other-space-activities/flatsat#overview, 2021.

[25] ESA eoPortal, “Estcube-1 -2 (estonian student satellite-1 -
2),” https://www.eoportal.org/satellite-missions/estcube-1#estcube-1---
2-estonian-student-satellite-1---2, 2024.

[26] J. R. Wertz and W. J. Larson, Space Mission Engineering: The New
SMAD. Microcosm Press, 2011.

[27] R. E. America, “White paper: Using can bus serial communications
in space flight applications,” Renesas Electronics America, Tech.
Rep. [Online]. Available: https://www.renesas.com/us/en/document/
whp/using-can-bus-serial-communications-space-flight-applications

[28] S. Singer, “White paper: Isolated can bus for small satellite applications,”
Intersil Space and High Reliability Products, Renesas Electronics Corp.,
Tech. Rep., February 2019.

[29] M. Usman, M. Qaraqe, M. R. Asghar, and I. Shafique Ansari, “Mitigat-
ing distributed denial of service attacks in satellite networks,” Transac-
tions on emerging telecommunications technologies, vol. 31, no. 6, p. 9,
2020.

[30] J. Pavur and I. Martinovic, “Building a launchpad for satellite cyber-
security research: lessons from 60 years of spaceflight,” Journal of
Cybersecurity, vol. 8, no. 1, p. tyac008, 2022.

[31] L. del Monte, “Towards a cybersecurity policy for a sustainable, secure
and safe space environment,” in Proceedings of the 64th International
Astronautical Congress (IAC), 2013.

[32] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[33] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 763–780.

[34] K. Pietrzak, “A leakage-resilient mode of operation,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2009, pp. 462–482.

[35] J. Finke, R. Thummala, R. Elbasheer, P. Hansen, W. Henry, D. Mamula,
A. Noor, T. York, K. Zheng, and G. Falco, “Satellite cybersecurity
testbed to improve commercial space security,” 10 2023.

[36] M. Bozdal, M. Samie, and I. Jennions, “A survey on can bus protocol:
Attacks, challenges, and potential solutions,” in 2018 International
Conference on Computing, Electronics & Communications Engineering
(iCCECE). IEEE, 2018, pp. 201–205.

[37] O. Avatefipour and H. Malik, “State-of-the-art survey on in-vehicle
network communication (CAN-Bus) security and vulnerabilities,” arXiv
preprint arXiv:1802.01725, 2018.

[38] L. Dariz, M. Selvatici, M. Ruggeri, G. Costantino, and F. Martinelli,
“Trade-off analysis of safety and security in can bus communication,”
in 2017 5th IEEE International Conference on Models and Technologies
for Intelligent Transportation Systems (MT-ITS). IEEE, 2017, pp. 226–
231.

[39] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, “Practical dos
attacks on embedded networks in commercial vehicles,” in Information
Systems Security: 12th International Conference, ICISS 2016, Jaipur,
India, December 16-20, 2016, Proceedings 12. Springer, 2016, pp.
23–42.

[40] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 13, no. 1, pp.
1–40, 2009.

[41] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in 2010
IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 143–158.

[42] D. Sabogal and A. D. George, “Towards resilient spaceflight systems
with virtualization,” in 2018 IEEE Aerospace Conference, 2018, pp. 1–
8.

[43] D. Koisser, B. Ferdinand, P. Jauernig, E. Stapf, M. Wallum, D. Fischer,
and A.-R. Sadeghi, “Hardware-based isolation for advanced safety and
security in spacecraft,” in Proceedings of the International Conference
on Space Operations, 2023.

[44] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base,” in 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 479–498.

[45] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A
security architecture for tiny embedded devices,” in Proceedings of the
Ninth European Conference on Computer Systems, 2014, pp. 1–14.

[46] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “Tytan: Tiny trust anchor for tiny devices,” in Proceedings of the
52nd annual design automation conference, 2015, pp. 1–6.

10
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

[47] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt: Software-
based attestation for embedded devices,” in IEEE Symposium on Security
and Privacy, 2004. Proceedings. 2004. IEEE, 2004, pp. 272–282.

[48] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla, “Pi-
oneer: verifying code integrity and enforcing untampered code execution
on legacy systems,” in Proceedings of the twentieth ACM symposium on
Operating systems principles, 2005, pp. 1–16.

[49] Y. Li, J. M. McCune, and A. Perrig, “Viper: Verifying the integrity of
peripherals’ firmware,” in Proceedings of the 18th ACM conference on
Computer and communications security, 2011, pp. 3–16.

[50] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure
and minimal architecture for (establishing dynamic) root of trust.” in
Ndss, vol. 12, 2012, pp. 1–15.

[51] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “VRASED: A Verified Hardware/Software Co-Design for
Remote Attestation,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1429–1446.

[52] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik,
“On the toctou problem in remote attestation,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 2921–2936.

[53] F. Arkannezhad, J. Feng, and N. Sehatbakhsh, “IDA: Hybrid Attestation
with Support for Interrupts and TOCTOU,” in NDSS, 2024.

[54] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embedded
systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 743–754.

[55] Z. Sun, B. Feng, L. Lu, and S. Jha, “OAT: Attesting operation integrity of
embedded devices,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 1433–1449.

[56] N. Yadav and V. Ganapathy, “Whole-program control-flow path attesta-
tion,” in Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, 2023, pp. 2680–2694.

[57] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow
attestation in hardware,” in Proceedings of the 54th Annual Design
Automation Conference 2017, 2017, pp. 1–6.

[58] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under memory
attacks,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 384–391.

[59] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
lightweight hardware-assisted attestation of program execution,” in 2018
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2018, pp. 1–8.

[60] Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “Armlock: Hardware-based
fault isolation for arm,” in Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security, 2014, pp. 558–
569.

[61] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-grained
execution units with private memory,” in 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 2016, pp. 56–71.

[62] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, Efficient In-process Isolation
with Protection Keys (MPK),” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1221–1238.

[63] A. Voulimeneas, J. Vinck, R. Mechelinck, and S. Volckaert, “You shall
not (by)pass! practical, secure, and fast PKU-based sandboxing,” in
European Conference on Computer Systems (EuroSys), 2022.

[64] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, “Donky: Domain Keys–Efficient {In-
Process} Isolation for RISC-V and x86,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1677–1694.

[65] K. Dinh Duy, K. Cho, T. Noh, and H. Lee, “Capacity: Cryptographically-
enforced in-process capabilities for modern arm architectures,” in Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 874–888.

[66] Q. Wang and S. Sawhney, “Vecure: A practical security framework to
protect the can bus of vehicles,” in 2014 International Conference on
the Internet of Things (IOT). IEEE, 2014, pp. 13–18.

[67] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar, “Intrusion detection
system for automotive controller area network (can) bus system: a re-

view,” EURASIP Journal on Wireless Communications and Networking,
vol. 2019, pp. 1–17, 2019.

[68] S. Abbott-McCune and L. A. Shay, “Intrusion prevention system of
automotive network can bus,” in 2016 IEEE International Carnahan
Conference on Security Technology (ICCST). IEEE, 2016, pp. 1–8.

[69] D. Yu, R.-H. Hsu, J. Lee, and S. Lee, “EC-SVC: Secure can bus in-
vehicle communications with fine-grained access control based on edge
computing,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 1388–1403, 2022.

[70] Ú. Erlingsson, “Low-level software security: Attacks and defenses,” in
International School on Foundations of Security Analysis and Design.
Springer, 2006, pp. 92–134.

[71] J. Ligatti, M. Abadi, M. Bidiu, and U. Erlingsson, “Control flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and communications security, 2005.

[72] M. Zhang and R. Sekar, “Control flow and code integrity for cots bina-
ries: An effective defense against real-world rop attacks,” in Proceedings
of the 31st Annual Computer Security Applications Conference, 2015,
pp. 91–100.

[73] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in Detection of Intrusions and
Malware, and Vulnerability Assessment: 12th International Conference,
DIMVA 2015, Milan, Italy, July 9-10, 2015, Proceedings 12. Springer,
2015, pp. 144–164.

[74] P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert,
“Analyzing control flow integrity with llvm-cfi,” in Proceedings of the
35th Annual Computer Security Applications Conference, 2019, pp. 584–
597.

[75] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2014, pp. 577–587.

[76] ——, “Per-input control-flow integrity,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015,
pp. 914–926.

[77] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial safety for c,” in Proceedings of
the 2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, June 2009.

[78] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation,” in Proceedings of the 51st Annual Design
Automation Conference, 2014, pp. 1–6.

[79] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “PAC it up: Towards pointer integrity using ARM pointer
authentication,” in 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 177–194.

[80] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
Enforcement of Application Security Policies Using Tagged Memory,”
in OSDI, vol. 8, 2008, pp. 225–240.

[81] X. Zhou, J. Li, W. Zhang, Y. Zhou, W. Shen, and K. Ren, “Opec:
operation-based security isolation for bare-metal embedded systems,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 317–333.

[82] S. Park, H. Kim, S.-Y. Kang, C. H. Koo, and H. Joe, “Lua-based
virtual machine platform for spacecraft on-board control software,” in
2015 IEEE 13th International Conference on Embedded and Ubiquitous
Computing, 2015, pp. 44–51.

[83] H. Joe, H. Jeong, Y. Yoon, H. Kim, S. Han, and H.-W. Jin, “Full
virtualizing micro hypervisor for spacecraft flight computer,” in 2012
IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), 2012.

[84] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[85] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in The Continuing Arms Race: Code-Reuse
Attacks and Defenses, 2018, pp. 81–116.

[86] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proceedings of the fourteenth ACM
symposium on Operating systems principles, 1993, pp. 203–216.

[87] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 90–102.

11
Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2024 at 07:50:52 UTC from IEEE Xplore. Restrictions apply.

