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Abstract

The theory of radiation from an open-ended circular cross-
section waveguide is extended by including the excita-
tion of all possible higher-order waveguide modes at the
waveguide-to- free-space boundary. The theoretical ex-
pressions are formulated using spectral-domain techniques.
The validation is performed using the existing commercial
tool FEKO with the Method of Moments (MoM) solver for
a cylindrical waveguide with the fundamental mode ex-
citation (TE11) and the corresponding higher-order mode,
which has the same azimuthal variation as of the funda-
mental mode, which is (TE12).

1 Introduction

The demand for wideband single-pixel feeds (WBSPFs) is
increasing in radio astronomy applications [1] [2]. Design-
ing a wideband feed for a reflector dish is a challenging
task given the requirements of the dish-feed system, like
the aperture efficiency, return loss, and cross-polarization
levels. Numerical optimizations of horn geometry via nu-
merous parameter sweeps in commercially available full-
wave simulators like FEKO and CST are used to design
such feeding structures. These parameter sweeps can take
hours and days to compute and optimize a horn antenna
feed for a wide range of frequencies with a risk that the
numerical tool will find a sub-optimal solution.

In this paper, we propose a computationally efficient tech-
nique to compute the reflection coefficient from the aper-
ture of a conical horn. The smooth wall conical horn an-
tennas are usually discretized with cylindrical waveguides
with varying cross-sections. The generalized scattering ma-
trix (GSM) of each waveguide junction (at the boundary
of two successive cylindrical waveguides) is computed first
with the mode-matching (MM) technique. The GSM of a
three-waveguide problem is then solved using two consec-
utive junctions. This process is then iteratively carried out
till the final waveguide junction problem is solved. The
generalized scattering matrix computation needs the com-
putation of double integrals across the two-dimensional cir-
cular cross-section [3]. These double integrals are derived
analytically with closed-form solutions in [4, Ch.3, 4]. Due
to the varying cross-sections of the cylindrical waveguides
in the conical profiles, higher-order waveguide modes are

excited. Therefore, the aperture of such antennas is typ-
ically over-moded when some higher-order modes can be
excited locally at the boundary [5]. Hence, there is a need
to compute the reflection coefficients of all such modes at
the waveguide to free space boundary.

In the aperture admittance method with Fredholm integral
equations (Implemented for cylindrical waveguides with a
metal flange at the aperture in [6], [7] and [8]), a Green’s
function approach is used to find the aperture admittance
of the waveguide free-space boundary. However, in [6], [7]
and [8], the locally excited higher-order modes (LHM) ex-
citation at the aperture is not considered due to the awk-
wardness of the expressions of the magnetic current at the
aperture. The shortcomings of this model are that the exact
expressions are known only for the fundamental mode for
cylindrical waveguides when no other higher-order modes
are expected to be excited at the boundary locally.

In this paper, we extend the approach presented in [8]
(referred to below as Mishustin integrals) to consider the
higher order modes and simplify the expressions for the
mode reflection coefficients by transferring double inte-
grals to single ones and introducing Lommel’s integrals for
spectral representations. The LHMs considered excited at
the boundary are chosen based on the coupling among the
modes and have the same azimuthal variations as the fun-
damental mode. A similar approach has been applied in the
case of rectangular waveguides [9]. The reflection coeffi-
cients are derived by equating Rumsey’s reaction integral
[10] on both media (the waveguide and free space). The
fields of the free space are expressed in terms of the spectral
domain Green’s functions of the potentials. The proposed
method is the first attempt at applying Rumsey’s reaction
integral method with cylindrical waveguides to compute the
reflection coefficients by considering LHM excitation at the
boundary to free space transition.

2 Theoretical Derivation

The section explains the aperture reflection with Rumsey’s
reaction integral method mentioned in [10]. Using the same
principles, parameters such as the aperture admittance, the
reflection coefficient, and the excitation coefficients for the
higher-order modes at the aperture are derived for cylindri-
cal waveguides. Let us consider a semi-infinite cylindrical
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waveguide with an infinite ground plane at the free-space
boundary to ensure the absence of free-space radiation in
the left half-space of Fig. 1 outside the waveguide. A cylin-

Figure 1. Geometry of cylindrical waveguide to free-space
transition

drical waveguide’s modes are generally expressed in cylin-
drical coordinates for mathematical simplicity. The tangen-
tial component of the electric field here has both ρ and φ

components, which can be represented as,
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√
NT E

11 (1+Γ)
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Here, only the modes T E1n are considered because they
have the same azimuthal variation with T E11 mode and
have considerable coupling with T E11 mode at the aperture.
The term NT E

1n is a normalization constant for mode T E1,n
mode [4, Ch. 3, eq. 3.63]. The function J is the Bessel
function of the first kind. The superscript ′ refers to the
derivative. The term βρ,(1,n) is the radial wavenumber of
the mode T E1,n. The term Γ is the reflection coefficient.
Similarly, the magnetic fields are
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Therefore, the reaction integral [10] can be written as,

< 1,1 >=
∫ ∫

Sap

(Eρ Hφ −Hρ Eφ )dS (5)

where all field components are considered in the medium
(1) (z < 0). This integral can be reduced to the following

form using Bessel function properties and Lommel’s inte-
grals [11, p. 101].
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Let us introduce the aperture admittance as yap =
1−Γ

1+Γ
,

yap =
< 1,1 >
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Using Green’s function spectral domain representation of
EM fields explained in [9], the magnetic field components
of the second medium can be written as,

H(2)
x (kx,ky) =− 1

ωµkz
(kxkyE(2)

x (kx,ky)+

(k2 − k2
x)E

(2)
y (kx,ky)) (9)
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1
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(kxkyE(2)
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(k2 − k2
y)E

(2)
x (kx,ky)) (10)

The terms kx, ky are the spectral domain wavenumbers in x
and y directions, respectively. The k is the total wavenum-
ber in spectral domain k2 = k2

x + k2
y + k2

z . Therefore, the
reaction integral in the second medium is given by,

< 2,2 >=
1

4π2

∫
∞

−∞
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∞
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The superscript (2) is replaced with (1) because the reac-
tion integrals are found at the aperture, and the boundary
conditions suggest that the tangential fields should be con-
tinuous at the aperture. The expression can be transformed
to the cylindrical domain (kΩ,Θ) from the Cartesian do-
main (kx,ky):

ET E
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where kΩ =
√

(k2
x + k2

y), Θ = arccos( kx
kΩ
) = arcsin( ky

kΩ
) and,
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∫ R

0

(( 1
ρ

J1(βρ,(1,n)ρ)−βρ,(1,n)J
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The integral (13) can be analytically reduced to a single
integral by using the Bessel function properties, and the de-
tailed derivation is given in the appendix [4, eq. C.12] for
TE modes. Similarly the spectrum function of Ey(x,y) can
be found as

ET E
y (kx,ky) =

√
NT E

11 (1+Γ)uT E
11 (kΩ,Θ)

+
∞

∑
n=1,2,..
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)]
ekΩρ cos(φ−Θ)ρdρdφ . The in-

tegral can be found using a similar approach as oT E
1n using

Bessel function properties [4, eq. C.17]. Applying equa-
tions of the form (in terms of kΩ and Θ) (12) and (14) into
the expression of < 2,2 > and finally using it in the equa-
tion (8) for the aperture admittance, we have:

yapY T E
11 = τ1,1 +2dTt+dTTd, (15)

where d vector contains all the excitations of the LHMs
(d =

[
D2, D3, D4, · · · ,D∞

]T), and t has all the mu-
tual admittances between the primary mode at the aperture
and all the LHMs (t =

[
τ1,2,τ1,3,τ1,4, · · · ,τ1,∞

]T), and the
matrix T has the entries:

T =


τ2,2 +Y T E

1,2 τ2,3 ... τ2,∞

τ3,2 τ3,3 +Y T E
1,3 ... τ3,inf

.
τ∞,2 τ∞,3 ... τ∞,∞ +Y T E

1,∞

 (16)

For small variations of the fields at the aperture, it is as-
sumed that the changes of yap are small with respect to Dn.
Therefore using ∂yap

∂Dn
= 0, we have:

d =T−1t (17)

yapY T E
11 =τ1,1 +dTt (18)

Using the yap the reflection coefficient Γ can be found us-
ing yap = 1−Γ

1+Γ
. The mutual admittances τm,n have double

integrals. After separating the expressions with Θ and inte-
grating it from 0 to 2π , we can find the expression for τm,n
as an integral in terms of only kΩ as,

τm,n =
∫

∞

0

√
NT E

1,n NT E
1,mβρ(1,n)βρ(1,m)π
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1,m
22 (kΩ))−

k2
Ω(I

1,n
00 (kΩ)I

1,m
22 (kΩ)+

I1,n
22 (kΩ)I

1,m
00 (kΩ))

)
kΩdkΩ (19)

where,

kz(kΩ) =− j
√
−(k2 − k2

Ω
) (20)

The analytical forms of Lommel’s integrals I22 and I00 have
two different forms ([4, eq.3.19]) and ([4, eq.3.85]): one
when the arguments are the same and one when the ar-
guments are different. Therefore, Lommel’s integrals with
the same arguments can be used at the vicinity of the pole
locations in the above integral expression of τm,n (19) to
avoid having the singularities. While computing the in-
tegral, it is also important not to cross the branch cut of
the square root function kz(kΩ). The real part has a branch
cut because there is an immediate sign change when the
real line is crossed. The imaginary part is always nega-
tive. In the Riemann sheet convention, with the expression

kz(kΩ) = − j
√

−(k2 − k2
Ω
), the top Riemann sheet is con-

sidered for the integration path (ℜ(− j
√
−(k2 − k2

Ω
)) > 0,

and ℑ(− j
√

−(k2 − k2
Ω
)) < 0) as the integral is from 0 till

∞. The branch cut and the integral path are shown in Fig.
2. Interestingly, the integral from 0 to k0 yields the real part
of the admittance, whereas the integral from k0 to ∞ yields
the imaginary part. The K space integrals have advantages
over the Mishustin integrals as they also can compute the
mutual admittance between different e-modes in the waveg-
uide. Furthermore, they are mathematically more elegant
than Mishustin’s integral because the poles at |kΩ|= βρ(1,1)

(same as η = χ
′
(1,1)
k0R in Mishustin’s case) can be avoided

by using the different versions of the Lommel’s integrals
as a step function. Similarly, in the case of mutual admit-
tance when (m ̸= n), the poles can be avoided at the points
|kΩ|= βρ(1,m) and |kΩ|= βρ(1,n).

Figure 2. Integration path, branch cuts, branch points and
poles to integrate K space integral

3 Results and Discussions

The simulation was carried out for the transition problem
of Fig. 1 with the fundamental mode T E11, and T E12 mode
excitation using the proposed approach and the FEKO soft-
ware with MoM approach. For T E11 mode, the reflection
coefficient is shown in Fig. 3a. For T E12 mode, the re-
flection coefficient is shown in Fig. 3b. In the legend, HM
stands for LHMs. Therefore, 0HM has no LHMs, and 3HM
is with 3 LHMs.

For T E11 mode, the results proposed by this model are
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Figure 3. (a) Reflection coefficient for fundamental mode T E11 mode excitation inside the waveguide (b) Reflection coefficient
for T E12 mode excitation inside the waveguide.

very close to Mishustin’s integral results and with FEKO.
Certain ripples are observed in the commercial tool results
for the reflection coefficient. This can be explained by the
irregular approximate geometry considered in the meshed
models of FEKO. For the T E12 mode excitation, the results
are very close to the FEKO results. Supposing no higher-
order modes are assumed to be excited at the boundary in
the existing model, the results are very close to Mishustin’s
approach. It is also interesting to note that if higher-order
modes are considered at the boundary, the proposed model
is closer to the FEKO results than Mishustin’s integrals.

4 Conclusions

This paper proposes a new computationally efficient ap-
proach to compute the reflection coefficient of an open-
ended cylindrical waveguide using spectral domain tech-
niques. The approach considers the excitation of higher-
order waveguide modes at the aperture to free space tran-
sition. It is assumed that the higher-order modes excited
at the boundary have the same azimuthal variation as the
mode with which the waveguide is excited. The proposed
technique computes the reactance and the reflection coeffi-
cients of modes of type T E1,n. The integrals for computing
the reactance have been reduced from double to single nu-
merical integrals over the radial axis. To simplify further
the expressions, Lommel’s integrals are used to compute
spectral integrals. This has a positive impact on compu-
tational time. The results obtained for a single cylindri-
cal waveguide show that the reflection coefficients of T E
modes agree with the FEKO results.
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