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ABSTRACT
Mistakes in boundary conditions are the cause of many bugs in
software. These mistakes happen when, e.g., developers make use
of ’<’ or ’>’ in cases where they should have used ’<=’ or ’>=’.
Mistakes in boundary conditions are often hard to find and manu-
ally detecting them might be very time-consuming for developers.
While researchers have been proposing techniques to cope with
mistakes in the boundaries for a long time, the automated detection
of such bugs still remains a challenge. We conjecture that, for a tool
to be able to precisely identify mistakes in boundary conditions,
it should be able to capture the overall context of the source code
under analysis. In this work, we propose a deep learning model that
learn mistakes in boundary conditions and, later, is able to identify
them in unseen code snippets. We train and test a model on over
1.5 million code snippets, with and without mistakes in different
boundary conditions. Our model shows an accuracy from 55% up to
87%. The model is also able to detect 24 out of 41 real-world bugs;
however, with a high false positive rate. The existing state-of-the-
practice linter tools are not able to detect any of the bugs. We hope
this paper can pave the road towards deep learning models that will
be able to support developers in detecting mistakes in boundary
conditions.

KEYWORDS
software engineering, software testing, boundary testing, machine
learning for software engineering, machine learning for software
testing, deep learning for software testing.

1 INTRODUCTION
Software systems commonly suffer from defects that are caused by
mistakes in boundary conditions. In simple words, these mistakes
happen when developers use ’<’ or ’>’ in cases where they should
have used ’<=’ or ’>=’ (or vice-versa).

As an example, see the two code snippets, extracted from JPac-
Man [4], an educational Java PacMan game used to teach soft-
ware testing, in Listing 1. The method withinBorders() decides
whether the coordinates (i.e., x and y) are within the game map.
To that aim, the method performs four comparisons: whether x
and y are positive numbers, and whether x and y are within the
width and the height of the map. Although each of these conditions
might seem simple in isolation, when put together, the expression
becomes complex and prone to mistakes. A less attentive developer
might, for example, write x > 0 instead of x >= 0, which would
cause a bug in the game. The same type of mistake might also hap-
pen inside loops. Off-by-one errors1 happen when a loop executes
one time too many or too few.

1https://en.wikipedia.org/wiki/Off-by-one_error
2https://github.com/serg-delft/jpacman

/ / I n c o r r e c t code : x > 0
p u b l i c boo l ean w i t h i nBo rde r s ( i n t x , i n t y ) {

r e t u r n x > 0 && x <= getWidth ( ) && y >= 0 &&
y <= ge tHe igh t ( ) ;

}

/ / Co r r e c t code : x >= 0
p u b l i c boo l ean w i t h i nBo rde r s ( i n t x , i n t y ) {

r e t u r n x >= 0 && x <= getWidth ( ) && y >= 0 &&
y <= ge tHe igh t ( ) ;

}

Figure 1: An example of a mistake in a boundary condition.
Code extracted from JPacman2.

These mistakes are particularly difficult to find in source code.
After all, the result of the program is not always obviously wrong,
as it is “merely off by one”. In most cases, the mistake will lead to
an “out of bounds” situation, which will then result in an applica-
tion crash. In worst scenarios, such bugs can even lead to security
breaches, as they might not crash an application, but lead to arbi-
trary code execution or memory corruptions, which are potentially
exploitable by adversaries [3].

Not surprisingly, many software engineering researchers have
been proposing (manual) boundary testing techniques (e.g., [7, 9, 15,
19, 20]) since the early days. However, manually inspecting code for
off-by-one errors is very time-consuming since determining which
binary operator is actually the correct one is usually heavily context-
dependent. The industry has been relying on static analysis tools,
such as SpotBugs or PVS-Studio. SpotBugs promises to identify
possible infinite loops, as well as array indexes, offsets, lengths, and
indexes that are out of bounds. PVS-Studio also tries to identify
mistakes in conditional statements and indexes that are out of
bounds in array manipulation. And while they can indeed find
some of them, static analysis tools are known for providing a high
number of false positives [5, 10, 11].3

In this work, we conjecture that a model based on distributed
path representations of methods [2] is able to learn syntactical
patterns, including code context, that can lead to off-by-one errors.
To examine this, we train and test OffSide, a Code2Vec-like model
on over 1.5 million code snippets, mutated to include errors in
boundary conditions. Our model shows an accuracy from 55% up to
87% (depending on the type of statement where the boundary error
was in). We also mine and manually examine 41 real-world bugs
attributable to off-by-one errors and show that our model is able to
3Although the papers we cite did not focus specifically on the mistakes we are dis-
cussing here, we will later show in our study that these static analysis tools are not
enough in detecting mistakes in boundary conditions.
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identify the locations of 24 of them. Existing state-of-practice linter
tools are not able to detect any of them.

The main contributions of this paper are.
• The proposal of a deep learning model for detecting of mis-
takes in boundary conditions.

• A quantitative and qualitative evaluation of our model in
a training set of more than 1.5 million code snippets and a
testing set of 28k code snippets.

• A research agenda that aims at improving the model.

2 APPROACH
Path representations of graphs are a general technique for embed-
ding graphs into lower dimensions [17]. In the context of source
code, path representations work by walking the AST and encoding
the sequence of nodes encountered by the walks. Those walks usu-
ally start from random terminal nodes and end at other terminal
nodes. By taking various random walks on the AST and embed-
ding the result, models, such as Code2Vec, can learn the context
in which specific token sequences are found as well as an overall
representation of code, given a training label.

OffSide is based on the premise that the attentional layer in
Code2Vec will learn the appropriate weights to enable it to differ-
entiate between cases where path embeddings encode errors in
boundary conditions. Intuitively, to achieve maximum discrimina-
tory power, it should be trained with path embeddings of pairs of
correct and non-correct examples of the same code. Such pairs can
be easily generated by introducing artificial mutation operations
that inject bugs, similarly to Pradel and Shen [18].

3 DATA COLLECTION
To train OffSide, we need both positive (containing bugs) code and
negative code (bug-free). We use Code2Vec’s dataset as a starting
point, and create bugs by performing specially-designed mutations,
inspired by Pradel and Shen [18]. In the following, we discuss each
of these steps in detail.

3.1 Datasets
To train and validate OffSide, we use, as basis, the same java-large
dataset collected by Alon et al. [22]. It consists of 1,000 top-starred
projects from GitHub and contains about 4 million code snippets.
From that dataset, we filter out (1) all methods not containing a ’<’,
’<=’, ’>’ or ’<=’ (hereafter referred to as comparators), (2) construc-
tors, and (3) files that the parser we used, JavaParser4, is unable to
parse. This results in a base dataset of 1,357,210 methods containing
a total of 2,736,573 comparators.

For further analysis of our base dataset and the performance of
OffSide with different sub-types of boundary mistakes, we define
two classifications for each comparator. The type of operator (less,
lessEquals, greater, or greaterEquals) and the type of statement it
occurs in (there are 14 different types: if, for, while, return, ternary
operator, method, assert, do, variable declaration, assign, expression,
object creation, array initialization, and cast). The type of statement

3https://code2vec.org/
4https://javaparser.org/

Table 1: Distribution of the type of statements containing
comparators in our base dataset.

Statement Count Percent Distribution of the comparators
> >= < <=

If 1,382,841 50.53% 41.9% 17.5% 30.0% 10.5%
For 921,946 33.69% 1.4% 3.4% 90.6% 4.6%
While 104,412 3.79% 31.4% 11.8% 49.1% 7.7%
Ternary 100,567 3.65% 44.1% 13.0% 34.5% 8.4%
Return 87,804 3.21% 31.2% 25.5% 23.5% 19.8%
Method 70,268 2.55% 45.4% 19.6% 22.4% 12.5%
Assert 23,708 0.87% 27.6% 31.1% 17.9% 23.4%
Var. decl. 18,500 0.68% 46.2% 18.3% 24.3% 11.2%
Assign 11,129 0.41% 43.1% 21.6% 23.4% 12.0%
Do 9,839 0.36% 35.6% 12.5% 44.8% 7.1%
Expression 4,965 0.18% 41.1% 15.7% 31.3% 11.9%
Obj. creation 558 0.02% 48.6% 25.3% 15.4% 10.8%
Array init. 26 0.00% 38.5% 42.3% 7.7% 11.5%
Cast 10 0.00% 20.0% 30.0% 30.0% 20.0%

containing the comparator is defined by the class of the parent node
in the AST.

The distributions of types of comparators and the types of state-
ments containing those comparators in the base dataset can be seen
in Table 1. We observe that the distributions of comparators and
statement types are not uniform (i.e., the data set is imbalanced).

3.2 Generating Positive and Negative Instances
For each code snippetm in our dataset, we first identify all state-
ments St of a given type t , t ∈ {i f , f or ,while, ...} (see the full list
in Table 1). For each type of statement t that exists in code snippet
m, we randomly select one s ∈ St . Let C ∈ {>, ≥, <, ≤} be all the
comparators that exist in the statement s . We randomly select one
c ∈ C , and mutate it (i.e., ’<’ is replaced by ’<=’ and vice versa, same
goes for ’>’ and ’>=’). Both the original method (bug-free) and all
its mutations (buggy) are added to our final preprocessed dataset.

This process results in a 54:46 proportion of positive (containing
a bug) and negative (bug-free) instances during training. Overall,
our training set consists of 1,512,785 data points (bug-free and
buggy methods), our validation set of 28,086 data points, and our
test set of 104,958 data points. The split into training, test and
validation datasets is based on the split in the original java-large
dataset collected by Alon et al. [2]. Since that split is done on a
project level, this leads to the test dataset only containing methods
from projects that are not included in the other two datasets and
vice versa.

3.3 Source code representation
After a method has been extracted, it passes through the same
preprocessing pipeline as used in the original Code2Vec paper [2].
The source code of each method is again turned into an AST using
the modified JavaExtractor from [22]. We then select at most 200
paths between 2 unique terminals in the AST of the method. We
encode these terminals into integer tokens using the dictionary
used by Code2Vec [2] and hash the string representation of the
paths with Java hashcode method. This means that each method
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Figure 2: The neural network architecture to identify mistakes in boundary conditions.

in Java code is turned into a set of at most 200 integer tuples of
the format (terminali ,path, terminalj ) whereby i , j and path is
an existing path in the AST between source terminali and target
terminalj .

4 MODEL
4.1 The Neural Network Architecture
OffSide is an attention-based model based on Code2Vec, whereby
the overwhelming majority of the weights are in the embedding
layer of the network. The architecture of the model is shown in
Figure 2. The model takes a set of at most 200 integer token tuples of
the format (terminali ,path, terminalj ) as an input. It embeds these
inputs into a vector with 128 parameters, whereby the terminal
tokens and the path tokens each have their own embedding layer.
These embeddings are concatenated into a single vector and passed
through a dropout layer. These 200 vectors are then combined into
a single context vector using an attention mechanism. The context
vector will be used to make the final prediction. We modify the
output of the Code2Vec model, by adding a Sigmoid activation with
a single (binary) output unit; this enables Code2Vec to classify input
code as buggy or non-buggy.

4.2 Training
We use binary cross-entropy as the loss function and Adam [14] as
the optimization algorithm. The training process is halted after the
accuracy on the validation set did not increase for 2 epochs and the
weights with the lowest validation loss were kept.

The authors of Code2Vec speculate that their pre-trained weights
could be used for transfer learning [2]. We experiment with apply-
ing transfer learning in two ways. Initially, we attempt “feature
extraction” whereby the pre-trained weights of the Code2Vec model
were frozen and only the final layer was replaced and made train-
able. Then, we try “fine-tuning” with pre-trained weights of the
Code2Vec model as the initial value of our model and allow the
model to update all the values as it sees fit, expect the embeddings

weights. Finally, we also train a model with “randomly initialized
weights” as a baseline. We base our further results on the “fine-
tuning” model, as it proved best in terms of F1-score (see results in
the appendix [13]).

4.3 Reproducibility
All the source code and datasets can be found in our code reposi-
tory.5 The dataset we used can be found on Zenodo.6

5 EVALUATION
We define two research questions to evaluateOffSide’s performance:
RQ1. What is the accuracy of OffSide in detecting errors in bound-

ary conditions?
RQ2. How does OffSide perform on real-world errors in boundary

conditions, when compared against the state-of-the-practice
linting tools?

To answer RQ1, we apply OffSide on the test set composed of
104,958 data points (see Section 3.2).We evaluate the performance
of the model by means of traditional binary classification perfor-
mance metrics, such as precision, recall, accuracy, and F1.

To answer RQ2, we apply OffSide on 41 real-world bugs in
boundary conditions that we extract from the 500 most starred
GitHub Java projects. The analyzed projects are not part of our
training and test sets before, and thus are never seen by our model.
By means of a Pydriller script [21], we extract a list of candidate
commits where authors made a change in comparators (e.g., a ’>’
by a ’<=’). This process return a list of 1,571 candidate commits.
We then 1) randomly select one candidate commit, 2) manually
analyze the change and the commit message to identify whether
it is a bug fix, 3) apply our model to the buggy (where we expect
the model to identify an error) and to the bug-free version (where
we expect our model to not predict an error) of the code, and 4)

5https://github.com/SERG-Delft/ml4se-offside
6https://zenodo.org/record/3606812
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Table 2: Performance metrics of our model per statement
type.

Statement type Total Accuracy Recall Precision F1
If 49,418 0.72 0.6666 0.7462 0.7042
For 39,018 0.8723 0.8565 0.8844 0.8702
While 5,718 0.7272 0.6691 0.757 0.7104
Return 3,558 0.7476 0.6931 0.7779 0.7331
Ternary 3,114 0.6574 0.5466 0.7021 0.6147
Method 1,954 0.6592 0.5916 0.684 0.6345
Assert 608 0.6135 0.5164 0.6408 0.5719
Do 598 0.689 0.5886 0.7364 0.6543
Var. decl. 544 0.6581 0.5368 0.7087 0.6109
Assign 336 0.5982 0.4464 0.641 0.5263
Expression 72 0.6111 0.4167 0.6818 0.5172
Obj. creation 20 0.55 0.4 0.5714 0.4706
Total 104,958 0.7733 0.7303 0.799 0.7631

apply state-of-the-practice linting tools. We stop this process after
identifying 41 bugs, which we deem satisfactory for this analysis.7

We use three different static analyzers as a baseline for our eval-
uation. SpotBugs (v.4.0.0-beta1)8, formerly known as FindBugs[8],
is an open-source static code analyzer for Java. It analyzes Java byte-
code for occurrences of different patterns that are likely containing
a bug. At the time of writing this report, SpotBugs is able to identify
over 400 of such patterns9, out of which six we consider to be rele-
vant for the type of bug we are detecting: IL_INFINITE_LOOP (an
apparent infinite loop), RpC_REPEATED_CONDITIONAL_TEST
(repeated conditional tests), RANGE_ARRAY_INDEX (array index
is out of bounds), RANGE_ARRAY_OFFSET (array offset is out of
bounds), RANGE_ARRAY_LENGTH (array length is out of bounds),
and RANGE_STRING_INDEX (string index is out of bounds). We
also use PVS-Studio (v.7.04.34029)10 which is a proprietary static
code analysis tool for programs written in C, C++, C# and Java. Out
of 75 possible patterns for Java code analysis, two were suitable
for our evaluation: V6003 (potential error in a construct consisting
of conditional statements), and V6025 (index value is outbound
the valid range). Finally, we use the static analyzer integrated into
IntelliJ IDEA Ultimate11 (v. 2019.2.3), a popular IDE among Java
developers.

5.1 RQ1: What is the accuracy of OffSide in
detecting errors in boundary conditions?

In Table 2, we show the performancemetrics of ourmodels, grouped
by statement type and comparator, respectively. In the appen-
dix [13], we discriminate the performance of each statement type
and its all possible comparators.
The average accuracy of the model is around 0.65 to 0.75.
Overall, we observe that our models provided a median accuracy of
0.67 (when looking at the accuracy numbers per statement, Table

7We specifically focused on for loops in the last three bugs, as to increase its presence
in our dataset.
8SpotBugs official GitHub page: https://github.com/spotbugs/spotbugs
9https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
10PVS-Studio official home page: https://www.viva64.com/en/pvs-studio/
11https://www.jetbrains.com/idea/

2) and 0.75 (when looking at the accuracy numbers per comparator,
see Appendix). Moreover, the F1 measures (which, different from
the accuracy metric, takes both false positives and false negatives
into account) present similar numbers.
The accuracy per statement type is correlated to the amount
of training data. We observe that the precision is correlated with
the total amount of data points available for each context type and
the types which have the highest number of occurrences also tend
to produce a higher F1 score. For example, our model achieves an F1
score of 0.87 when detecting bugs in for loops, which are well repre-
sented in our dataset. However, our model only achieves an F1 score
of 0.52 detecting bugs when assigning a boolean value to a variable
with a logical condition, a case that is severely underrepresented in
the training data.

We observe that the model can also perform well with boundary
mistakes in moderately underrepresented classes such as return
statements (F1 score of 0.73) and while loops (F1 score of 0.71). This
might indicate that the problems were similar enough for the errors
in if statements and for loops for the model to generalize. We con-
jecture that the most underrepresented classes like assigning value
to a variable are noisy and the model was not able to generalize
towards those classes.
The model is biased towards for loops. A detailed analysis
shows that the classical for loop (with < operator) scores are signifi-
cantly higher than others (86-89% accuracy). This might be due to
for loops with comparators such as (int i = 0; i < number; i++) being
considered as a boilerplate in Java code. We also observe that the
model is biased towards predicting <= in a for a loop as a bug and
< not as a bug. This can be explained by the balance of the training
set where the majority of the for loops contain a < operator. Hence,
we conjecture that the model learns to classify our mutated code
with <= operator as faulty.
Training on all types of statements seems to benefit specific
statements. We were also surprised by the positive results in if
statements, as the model achieved an accuracy and F1 score of 0.72
and 0.70, respectively. If statements have no default structure, as for
loops have, and thus, knowledge of the context is needed in order
to make a good prediction. To better understand our results, we
trained a model specifically for if conditions to see how it would
perform on the test data. 12 Interestingly, the results are not better
than the model trained with all mutations and the model performs
worse when judging if statements that contain a > operator (F1 score
0.63 vs 0.34). One possible reason for this might be that the model
can generalize the relationship better with more data, independent
of the contexts like if conditions or for loops.

RQ1 summary: Deep learning models can learn how to iden-
tify mistakes in boundary conditions. Our initial models pro-
vides an average accuracy of 65% to 75%. The amount (and
quality) of training data plays an important role in the process.

12The results of this specific model can be seen in our appendix [13].
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5.2 RQ2: How does OffSide perform on
real-world errors in boundary conditions,
when compared against the
state-of-the-practice linting tools?

We present the performance of OffSide in the 41 real-world bound-
ary mistakes (both in the buggy version as well as in the fixed
version of the code snippet) in Table 3.
The model is able to detect real-world bugs, but with a high
false positive rate.We observe that our tool was correctly able to
identify the bug in 24 out of the 41 cases, or 58% of the cases. Out
of these 24 correct predictions, the tool was able to also correctly
label the non-buggy version of the code as bug-free 16 times (66%
of the 24 correct predictions, or 39% of the 41 total cases).
The state-of-the-practice linter tools did not find any of the
real-world bugs. We also note that these bugs are indeed not
trivial to be identified. In fact, they were not identified by any of
the state-of-the-practice linting tools. Therefore, we did not include
their results in the table.

RQ2 summary: The model presents a reasonable perfor-
mance in real-world bugs. The current false positive rate, how-
ever, is high. The state-of-the-practice linters, on the other
hand, do not identify such bugs.

6 DISCUSSION AND FUTUREWORK
We consider our initial exploration on whether deep learning mod-
els can learn to identify mistakes in boundary conditions to be
successful. Our models had an average accuracy of 0.75 and, in
real-world bugs from projects never seen before by the model, an
accuracy of almost 60%. However, much still needs to be before this
model can be used in the real-world:
A better, larger, and more balanced dataset. In the first version
of the model, we had a training dataset of around 1.5M methods.
Other similar papers make use or larger datasets, e.g., around 12M
snippets in Code2Vec’s paper [2] and around 5M snippets in Deep-
Bugs [18]. Moreover, we can see in Table 2 that elements with more
data present higher accuracy. We therefore expect that a larger
dataset will naturally give us better accuracy.

Moreover, as we show in Section 3.1, our initial dataset contains
four times fewer usages of >= or <= compared to usages of > or
<. We also have a larger number of i < x, rather than <=, >, or >=,
inside for loops. These differences can lead to biased training and, as
a result, models tending to give false positive results in case of >=
or <=. One way to mitigate the issue is to create a balanced dataset
with a more equal distribution of binary operators, as well as the
distribution of the places of their occurrence (if-conditions, for-
and while-loops, ternary expressions, etc.) In addition, while the
amount of method duplication is small in Code2Vec’s dataset [1],
removing duplicates might improve our accuracy; and while our
approach does not currently suffer from equivalent mutants [6],
this is indeed a point of attention for the future when we will make
use of more advanced mutation techniques.

Table 3: Results of applying OffSide in 41 real-world bound-
ary bugs.The value 1 means that the tool marked the ana-
lyzed snippet as buggy. A ✓ indicates where OffSide made
the right decision.

# Bug fix Statement Type Bug Prediction No-Bug Prediction
1 >= to > Var. decl ✓ ✓

2 <= to < If ✓ ✓

3 >= to > Method ✓ ✓

4 <= to < If ✓ ✓

5 > to >= Method ✓ X
6 >= to > If ✓ ✓

7 >= to > If X ✓

8 < to <= For X ✓

9 > to >= Var. decl X ✓

10 >= to > If X ✓

11 > to >= If ✓ ✓

12 >= to > If ✓ ✓

13 > to >= If X X
14 > to >= If X ✓

15 > to >= If ✓ X
16 >= to > If ✓ ✓

17 >= to > If ✓ ✓

18 > to >= If ✓ ✓

19 <= to < While ✓ ✓

20 <= to < If ✓ X
21 > to >= If ✓ X
22 > to >= Method ✓ X
23 > to >= Method X X
24 > to >= Method ✓ ✓

25 > to >= If X ✓

26 > to >= If X ✓

27 >= to > Assign X X
28 > to >= If ✓ ✓

29 < to <= Ternary ✓ X
30 > to >= If X X
31 >= to > If X ✓

32 > to >= Assert ✓ X
33 >= to > If X X
34 < to <= For X ✓

35 > to >= While ✓ ✓

36 > to >= While X X
37 > to >= While ✓ X
38 < to <= If X X
39 <= to < For ✓ ✓

40 > to >= For ✓ ✓

41 < to <= For X X

Finally, while we identified 41 real-world off-by-one-bugs, a
larger dataset of real bugs might be of great importance in evaluat-
ing the accuracy of our model. The development (or even the reuse)
of datasets like Defects4J [12] is, thus, an important future work.
Support inter-procedural analysis. Currently, we only analyze
one method at a time. However, to detect more complex bugs in
boundary conditions, we conjecture that this knowledge is essen-
tial, and omitting the contents of called methods might lead to
unpredictable results. We plan to explore techniques that would
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allow us to expand the context of the code representation, as in Li
et al. [16].
Better understand the differences in RQ1 and RQ2. Interest-
ingly, our accuracy was higher in the results of our RQ1 than in
RQ2. By manually analyzing the 41 bugs we selected for RQ2, we
see no reason for the model to have a lower accuracy. We intend to
better understand the root cause of this difference in future work.
Fine-grained bug identification. Our model currently predicts
boundary mistakes at method-level. That is, the model predicts
whether a method contains a boundary mistake or not. It is not
able to detect exactly which boundary is buggy. While we argue
that this is already helpful for developers (developers could, for
example, increase their code review efforts in methods marked as
buggy by our model), future work should focus on identifying, in a
fine-grained manner, where the bug is.
The generalization to other languages and problems. Mis-
takes in boundary conditions might happen in source code of any
programming language. We wonder howmuch our approach would
generalize to other (not only static, but also dynamic) languages
and, whether deep learning models would be able to learn such
bugs. Moreover, right now we solely focus on off-by-one errors. Fu-
ture work can explore the effectiveness of our models in detecting
any types mistakes in boundaries (e.g., not only detect a > that was
mistakenly a >=, but also mistakenly a <, <=, ==, or ,).

6.1 Threats to Validity
Internal validity.We consider a boundary to happen in “any exist-
ing inequality expression in the source code”, i.e., any source code
construct that makes use of >, >=, <, and <=. Given that our method
makes use of mutations to generate buggy instances, and therefore,
a clear limitation of our model is that it never learns to detect the
absence of a boundary check. We expect future researchers to work
on models that detect not only “bugs in boundaries that are already
expressed in the source code”, but also “missing boundary checks”.
External validity. More replications of this work (including in-
dustry systems) are required before we claim generalizability.

7 RELATEDWORK
DeepBugs by Pradel et al. [18] uses a deep learning model to iden-
tify bugs related to swapped function arguments, wrong binary
operators and wrong operands in binary operation. DeepBugs feeds
method and argument names into Word2Vec to calculate identifier
embeddings and then aggregats those in a feed-forward neural
network that predicts whether a code is buggy or not. Interestingly,
the model is trained on artificially created bugs.

8 CONCLUSION
Developers are prone to make mistakes in boundary conditions.
Offering them mechanisms to detect such mistakes before they
become bugs in their software systems is fundamental. Given that
such mistakes are highly dependent on context, traditional static
analysis tools currently do not yield accurate results. This paper
explores the idea of identifying such mistakes by means of learning
deep models. Our initial exploration shows promising results.
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