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Abstract
This paper provides a characterization of expansivematrices A ∈ GL(d, R) generating
the same anisotropic homogeneous Triebel–Lizorkin space Ḟα

p,q(A) for α ∈ R and

p, q ∈ (0,∞]. It is shown that Ḟα
p,q(A) = Ḟα

p,q(B) if and only if the homogeneous
quasi-norms ρA, ρB associated to the matrices A, B are equivalent, except for the
case Ḟ0

p,2 = L p with p ∈ (1,∞). The obtained results complement and extend the

classification of anisotropic Hardy spaces H p(A) = Ḟ0
p,2(A), p ∈ (0, 1], in Bownik

(Mem Am Math Soc 164(781):vi+122, 2003).

Mathematics Subject Classification 42B25 · 42B35 · 46E35

1 Introduction

Let A ∈ GL(d, R) be an expansive matrix and consider an analyzing vector ϕ ∈
S(Rd) for A, that is, a Schwartz function ϕ : R

d → C with Fourier transform
ϕ̂ ∈ C∞

c (Rd\{0}) satisfying

sup
i∈Z

|ϕ̂((A∗)iξ)| > 0 for all ξ ∈ R
d\{0},
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1884 S. Koppensteiner et al.

where A∗ denotes the transpose of A. Denote its L1-normalized dilation by ϕi :=
| det A|iϕ(Ai ·) for i ∈ Z. For α ∈ R and p, q ∈ (0,∞], the associated anisotropic
homogeneous Triebel–Lizorkin space Ḟα

p,q(A) on R
d is defined to consist of all

tempered distributions f ∈ S ′(Rd) (modulo polynomials) with finite quasi-norm
‖ f ‖Ḟα

p,q (A), defined by

‖ f ‖Ḟα
p,q (A) =

∥

∥

∥

∥

(

∑

i∈Z
(| det A|αi | f ∗ ϕi |)q

)1/q∥

∥

∥

∥

L p
, p ∈ (0,∞),

with the usual modifications for q = ∞, and

‖ f ‖Ḟα∞,q (A) = sup
�∈Z,k∈Zd

(

1

| det A|�
∫

A�([0,1]d+k)

∞
∑

i=−�

(| det A|αi |( f ∗ ϕi )(x)|)q dx

)1/q

,

and ‖ f ‖Ḟα∞,∞(A) = supi∈Z | det A|αi‖ f ∗ ϕi‖L∞ .

For the scalar dilation matrix A = 2 · Id , the spaces Ḟα
p,q(A) defined above coincide

with the usual homogeneous Triebel–Lizorkin spaces on R
d as studied in, e.g., [15,

16, 24]. For this particular case, the Triebel–Lizorkin spaces provide a unifying scale
of function spaces that encompasses, among others, the Lebesgue, Sobolev, Hardy and
BMO spaces. The anisotropic Triebel–Lizorkin spaces Ḟα

p,q(A) associated to a general
expansive matrix A were first introduced in [6] and further studied in, e.g., [1, 4, 5,
8, 18–20]. These anisotropic spaces are useful for the analysis of mixed homogeneity
properties of functions andoperators as the dilation structure allowsdifferent directions
to be scaled by different dilation factors. Among others, the anisotropic Triebel–
Lizorkin spaces include Lebesgue spaces and various anisotropic/parabolic versions
of Hardy and BMO spaces as studied in, e.g., [2, 7, 9–11, 14]. See these papers (and the
references therein) for further motivation for considering anisotropic function spaces.

In the present paper, themain objective is to characterizewhen two expansivematri-
ces induce the same anisotropic Triebel–Lizorkin space. The problem of classifying
anisotropic Triebel–Lizorkin spaces can be traced back to [22], where the question of
dependence of the anisotropic Triebel–Lizorkin sequence spaces on diagonal dilation
matrices is raised as [22, Conjecture 11]; see also [23, Section 5.3]. For the case of
anisotropic Hardy spaces H p(A) (= Ḟ0

p,2(A)) with p ∈ (0, 1], a full solution to this
problem for general expansive matrices A has been obtained in [2]. Explicitly, it is
shown in [2, Section 10] that H p(A) = H p(B) for some (equivalently, all) p ∈ (0, 1]
if and only if two homogeneous quasi-norms ρA, ρB : R

d → [0,∞) associated to
the expansive matrices A, B are equivalent, in the usual sense of quasi-norms. See
also [7] for a slightly corrected version and [13] for an extension of the classification
result of [2] to Hardy spaces with variable anisotropy. Analogous to these results on
Hardy spaces, a classification of anisotropic Besov spaces [3] has more recently been
obtained in [12]. The aim of this paper is to provide a complementary characterization
for the scale of Triebel–Lizorkin spaces.
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Classification of anisotropic Triebel–Lizorkin spaces 1885

1.1 Main results

The first result obtained in this paper gives a sufficient condition for two expansive
matrices generating the same anisotropic Triebel–Lizorkin space. Here, as well as
below, two expansive matrices A and B are called equivalent if they have equivalent
homogeneous quasi-norms; see Sects. 2.1 and 2.2 for precise definitions.

Theorem 1.1 If A, B ∈ GL(d, R) are equivalent expansive matrices, then Ḟα
p,q(A) =

Ḟα
p,q(B) for all α ∈ R and p, q ∈ (0,∞].
The following rigidity theorem provides a converse to Theorem 1.1.

Theorem 1.2 Let A, B ∈ GL(d, R) be expansive, α, β ∈ R and p1, p2, q1, q2 ∈
(0,∞].

If Ḟα
p1,q1(A) = Ḟβ

p2,q2(B), then (p1, q1, α) = (p2, q2, β). Furthermore, at least
one of the following conditions hold:

(i) A and B are equivalent, or
(ii) α = β = 0, p1 = p2 ∈ (1,∞) and q1 = q2 = 2.

Theorem 1.2 shows, in particular, that equivalence of two expansive matrices is
necessary for the coincidence of the associated spaces, unless α = 0, p ∈ (1,∞) and
q = 2. That this conclusion might fail for the space Ḟ0

p,2(A)with p ∈ (1,∞) is easily

explained, namely Ḟ0
p,2(A) can be canonically identified with the Lebesgue space L p

for p ∈ (1,∞), see, e.g., [2, 4].
A combination of Theorems 1.1 and 1.2 provides a full characterization of two

expansive matrices inducing the same anisotropic Triebel–Lizorkin space. This char-
acterization extends the classification of anisotropicHardy spaces [2] to the full scale of
Triebel–Lizorkin spaces, while complementing the classification of anisotropic Besov
spaces [12] with a counterpart for Triebel–Lizorkin spaces.

In effect, the aforementioned classification theorems translate the problem of com-
paring function spaces into the comparison of homogeneous quasi-norms. For this
latter problem, explicit and verifiable criteria in terms of spectral properties of the
involved dilation matrices can be given, see, e.g., [2, Section 10], [12, Section 7] and
[7, Section 4].

As an illustration of Theorem 1.2, we note that a matrix B ∈ GL(d, R) is equivalent
to the scalar dilation A = 2 · Id if and only if B is diagonalizable over C with
all eigenvalues equal in absolute value, see, e.g., [2, Example, p.7]. Combined with
Theorem 1.2, this shows that for matrices B that are not of this special form,

Ḟα
p,q(A) �= Ḟα

p,q(B),

unless α = 0, p ∈ (1,∞) and q = 2. In particular, the (homogeneous) Sobolev
spaces L p

α (= Ḟα
p,2(A)) with 1 < p < ∞ and α �= 0 do not coincide with Ḟα

p,2(B)

for non-diagonalizable matrices B.
Lastly, let us mention an application of Theorem 1.1. In [18, 19], we proved contin-

uous maximal characterizations of anisotropic Triebel–Lizorkin spaces Ḟα
p,q(A) and

obtained new results on their molecular decomposition. These results were obtained
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1886 S. Koppensteiner et al.

under the additional assumption that the expansivematrix A is exponential, in the sense
that A = exp(C) for some matrix C ∈ R

d×d . Theorem 1.1 implies that this additional
assumption does not restrict the scale of anisotropic Triebel–Lizorkin spaces. Indeed,
since there always exists an expansive and exponential matrix B that is equivalent
to the given expansive matrix A (cf. [12, Section 7]), it follows by Theorem 1.1 that
Ḟα

p,q(A) = Ḟα
p,q(B) for all α ∈ R and p, q ∈ (0,∞].

1.2 Methods

An essential ingredient in our proof of Theorems 1.1 and 1.2 is a simple characteriza-
tion of the equivalence of two expansive matrices A and B in terms of properties of the
associated covers

(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z of R
d\{0}, where P, Q ⊆ R

d\{0}
are suitable relatively compact sets; see [12, Lemma 6.2] and Sect. 2.3. Explicitly, this
criterion asserts that two expansive matrices A, B are equivalent if and only if the
associated homogeneous covers

(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z satisfy

sup
i∈Z

∣

∣

{

j ∈ Z : (A∗)i Q ∩ (B∗) j P �= ∅
}∣

∣ + sup
j∈Z

∣

∣

{

i ∈ Z : (A∗)i Q ∩ (B∗) j P �= ∅
}∣

∣ < ∞.

(1.1)

The formulation (1.1) of the equivalence of matrices A and B is what is actually used
in the proofs of our main results, as we expand upon next.

Sufficient conditions

In the proof of Theorem 1.1, the criterion (1.1) is used to control the overlap of the
Fourier supports of the A-dilates and B-dilates of the analyzing vectors ϕ and ψ ,
respectively, that are used to define the spaces Ḟα

p,q(A) and Ḟα
p,q(B). Combined with

our maximal characterizations of Triebel–Lizorkin spaces obtained in [18, 19], this
allows to conclude that the analyzing vectors ϕ and ψ for A respectively B define the
same space Ḟα

p,q(A) = Ḟα
p,q(B).

Necessary conditions

In the proof of Theorem 1.2, we show the asserted equivalence of two matrices A
and B by showing that the criterion (1.1) holds. For this, we first carefully construct
auxiliary functions in Ḟα

p,q(A) = Ḟα
p,q(B) whose Fourier supports are contained in

finitely many of the sets (A∗)ik Q and (B∗) jk P , where ik, jk ∈ Z, of appropriate
homogeneous covers

(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z. Then, using adequate estimates
of the norms of these auxiliary functions (see Sect. 5.2), it is shown directly that (1.1)
must hold for the case α �= 0, in which case A and B must be equivalent. The proof
strategy for the case α = 0 is similar, but requires some additional arguments and
tools. For p < ∞, it is shown using the Khintchine inequality that necessarily q = 2
whenever A and B are not equivalent. For p = ∞, we use dual norm characterizations
of Triebel–Lizorkin norms to conclude that A and B must be equivalent.
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Classification of anisotropic Triebel–Lizorkin spaces 1887

As mentioned above, the used criterion (1.1) for equivalent matrices stems from
[12], where it was used for the purpose of classifying anisotropic Besov spaces. For
the actual comparison of function spaces, the approach of [12] consists of showing
that an anisotropic Besov space can be identified with a (Besov-type) decomposi-
tion space [26], which allows to apply the embedding theory [26] developed by the
third named author. In contrast, the Triebel–Lizorkin spaces considered in this paper
cannot be directly treated in the framework [26]; in particular, our main theorems
cannot be easily deduced from [26]. Some of our arguments for proving Theorem 1.2
are, however, inspired by ideas used in [26], most notably the use of the Khintchine
inequality. Nevertheless, all of our calculations and estimates differ non-trivially from
corresponding arguments in [26] as the latter concerns Besov-type norms, which are
technically easier to deal with than the Triebel–Lizorkin norms considered in this
paper.

1.3 Organization

The overall structure of this paper is as follows: Sect. 2 collects various notions
and results related to expansive matrices and associated homogeneous covers. The
essential background on anisotropic Triebel–Lizorkin spaces is contained in Sect. 3.
Theorem 1.1 is proven in Sect. 4, whereas Sect. 5 provides the proof of Theorem 1.2.
Lastly, some technical auxiliary results are postponed to two appendices.

1.4 Notation

For a measurable set 	 ⊆ R
d , we denote its Lebesgue measure by m(	) and the

indicator function of 	 by 1	. The notation | · | : R
d → [0,∞) is used for the

Euclidean norm. The open Euclidean ball of radius r > 0 and center x ∈ R
d is

denoted by Br (x). The closure of a set 	 ⊆ R
d will be denoted by 	.

The Schwartz space on R
d is denoted by S(Rd) and S ′(Rd) denotes its dual,

the space of tempered distributions. For f ∈ S ′(Rd) and g ∈ S(Rd), we define
〈 f , g〉 := f (g), so that the dual pairing 〈·, ·〉 is sesquilinear, in agreement with the
inner product on L2(Rd). The subspace of S(Rd) consisting of functions with all
moments vanishing (i.e.,

∫

xα f (x) dx = 0 for all α ∈ N
d
0 ) is denoted by S0(R

d). The
dual space S ′

0(R
d) is often identified with the quotient S ′/P of S ′(Rd) and the space

of polynomials P(Rd). Lastly, the space of smooth compactly supported functions on
an open set U ⊆ R

d is as usual denoted by C∞
c (U ).

For a function f : R
d → C, its translation Ty f andmodulation My f by y ∈ R

d are
defined by Ty f = f (· − y) and My f = e2π iy· f , respectively. The Fourier transform
of f ∈ L1(Rd) is normalized as ̂f (ξ) = ∫

Rd f (x)e−2π iξ ·x dx for ξ ∈ R
d , where

ξ · x = ∑d
j=1 ξ j x j . The notation F f := ̂f is also sometimes used.

For two functions f , g : X → [0,∞) on a set X , we write f � g whenever there
exists C > 0 such that f (x) ≤ Cg(x) for all x ∈ X . We simply use the notation
f � g whenever f � g and g � f . We also write A � B for the inequality A ≤ C B,
where C > 0 is constant independent of A and B. In case the implicit constant in �
depends on a quantity α, we also sometimes write �α .
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1888 S. Koppensteiner et al.

2 Expansivematrices and homogeneous covers

This section collects background on expansive matrices and homogeneous quasi-
norms. A standard reference for most of the presented material is [2].

2.1 Expansivematrices

A matrix A ∈ GL(d, R) is said to be expansive if |λ| > 1 for all λ ∈ σ(A), where
σ(A) ⊆ C denotes the spectrum of A. Throughout, we let λ− and λ+ denote numbers
such that 1 < λ− < minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A) |λ|, and define ζ+ :=
ln λ+/ ln | det A| and ζ− := ln λ−/ ln | det A|.

A set	 ⊆ R
d is an ellipsoid if	 = {x ∈ R

d : |Px | < 1} for some P ∈ GL(d, R).
Given any expansive matrix A, there exists an ellipsoid 	A and r > 1 such that

	A ⊆ r	A ⊆ A	A, (2.1)

and m (	A) = 1, see, e.g., [2, Lemma 2.2]. The choice of an ellipsoid satisfying (2.1)
is not unique. Throughout, given an expansive matrix A, we will fix one choice of
ellipsoid 	A associated to A.

2.2 Homogeneous quasi-norms

Let A ∈ GL(d, R) be an expansive matrix. A homogeneous quasi-norm associated
with A is a measurable function ρ : R

d → [0,∞) satisfying the three properties:

(q1) ρ(x) = 0 if and only if x = 0;
(q2) ρ(Ax) = | det A|ρ(x) for all x ∈ R

d ;
(q3) there exists C > 0 such that ρ(x + y) ≤ C(ρ(x) + ρ(y)) for all x, y ∈ R

d .

By [2, Lemma 2.4], any two homogeneous quasi-norms ρ1, ρ2 associated to a fixed
expansive matrix A are equivalent, in the sense that there exists C > 0 such that

1

C
ρ1(x) ≤ ρ2(x) ≤ Cρ1(x) (2.2)

for all x ∈ R
d .

In the sequel, we will primarily work with the so-called step homogeneous quasi-
norm ρA associated to A, defined as

ρA(x) =
{

| det A|i , if x ∈ Ai+1	A\Ai	A,

0, if x = 0,

where 	A is the fixed expansive ellipsoid (2.1); see [2, Definition 2.5]. This quasi-
norm is comparable to the Euclidean norm, in the sense that there exists C ≥ 1 such
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Classification of anisotropic Triebel–Lizorkin spaces 1889

that, for all x ∈ R
d ,

1

C
[ρA(x)]ζ− ≤ |x | ≤ C[ρA(x)]ζ+ , if ρA(x) ≥ 1,

1

C
[ρA(x)]ζ+ ≤ |x | ≤ C[ρA(x)]ζ− , if ρA(x) ≤ 1, (2.3)

see, e.g., [2, Lemma 3.2].
Two expansive matrices A, B ∈ GL(d, R) are called equivalent if the associated

step homogeneous quasi-norms ρA and ρB are equivalent. Note that, by Eq. (2.2), two
expansive matrices are equivalent if and only if all of their associated quasi-norms are
equivalent.

The following characterization is [2, Lemma 10.2].

Lemma 2.1 ([2]) Let A, B ∈ GL(d, R) be expansive. Then A and B are equivalent if
and only if

sup
k∈Z

∥

∥A−k B�ck�∥
∥ < ∞,

where c = c(A, B) := ln | det A|/ ln | det B|.
As a corollary of the previous lemma (see also [12, Remark 4.9]), we see that

equivalence of expansive matrices is preserved under taking transposes.

Corollary 2.2 Two expansive matrices A and B are equivalent if and only if A∗ and
B∗ are equivalent.

2.3 Homogeneous covers

Let A ∈ GL(d, R) be expansive and let Q ⊆ R
d be open such that Q is compact

in R
d\{0}. A cover (Ai Q)i∈Z of R

d\{0} is called a homogeneous cover induced by
A. Given two homogeneous covers (Ai Q)i∈Z and (B j P) j∈Z induced by A, B ∈
GL(d, R), we define

Ji := {

k ∈ Z : Ai Q ∩ Bk P �= ∅
}

and I j := {

k ∈ Z : Ak Q ∩ B j P �= ∅
}

(2.4)

for fixed i, j ∈ Z.
The index sets defined in Eq. (2.4) can be used for characterizing the equivalence

of two expansive matrices as the following lemma shows. See [12, Lemma 6.2] for a
proof.

Lemma 2.3 ([12])Let A, B ∈ GL(d, R)be expansive and let (Ai Q)i∈Z and (B j P) j∈Z
be associated induced covers of R

d\{0}. Then the step homogeneous quasi-norms ρA

and ρB are equivalent if and only if

sup
i∈Z

|Ji | + sup
j∈Z

|I j | < ∞.
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1890 S. Koppensteiner et al.

In addition to Lemma 2.3, we will also make use of more refined estimates on the
cardinalities of the index sets defined in Eq. (2.4). We provide the required estimates
in the following two lemmata. The provided proofs follow arguments in the proof of
Lemma 2.3 (cf. [12, Lemma 6.2]) closely, but are included here for completeness.

Lemma 2.4 Let A, B ∈ GL(d, R) be two equivalent expansive matrices and Q, P ⊆
R

d open such that Q, P are compact in R
d\{0}. Then there exists C > 0 such that

1

C
| det B| j ≤ | det A|i ≤ C | det B| j (2.5)

whenever i, j ∈ Z are such that Ai Q ∩ B j P �= ∅.

Proof If Ai Q ∩ B j P �= ∅, then there exists x0 ∈ Q ∩ A−i B j P . Hence, by
homogeneity of ρA, ρB and the assumption of their equivalence, it follows that

| det B| jρB(B− j Ai x0) = ρB(Ai x0) ≥ 1

C
ρA(Ai x0) = | det A|i

C
ρA(x0).

Since B− j Ai x0 ∈ P , this yields

| det A|i ≤ C
maxx∈P {ρB(x)}
minx∈Q{ρA(x)} | det B| j ,

where maxx∈P {ρB(x)}/minx∈Q{ρA(x)} is finite by Eq. (2.3) as Q, P are compact in

R
d\{0}. The left inequality of (2.5) follows analogously by using that

| det B| jρB(B− j Ai x0) ≤ CρA(Ai x0) = C | det A|iρA(x0),

which completes the proof. ��
We also need the following estimates involving parameters α, β ∈ R.

Lemma 2.5 Let A, B ∈ GL(d, R) be expansive, let α, β ∈ R\{0}, and let Q, P ⊆ R
d

be open such that Q, P are compact in R
d\{0}. If there exists C > 0 such that

1

C
| det B|β j ≤ | det A|αi ≤ C | det B|β j whenever Ai Q ∩ B j P �= ∅, (2.6)

then there exists N ∈ N such that, for all i, j ∈ Z,

Ji ⊆
{

j ∈ Z :
∣

∣

∣ j −
⌊α

β
c i

⌋∣

∣

∣ ≤ N
}

and I j ⊆
{

i ∈ Z :
∣

∣

∣i −
⌊β

α

1

c
j
⌋∣

∣

∣ ≤ N
}

,

where c = c(A, B) := ln | det A|/ ln | det B|.

123



Classification of anisotropic Triebel–Lizorkin spaces 1891

Proof Taking the logarithm of Eq. (2.6) yields

β j ln(| det B|) − ln(C) ≤ αi ln(| det A|) ≤ β j ln(| det B|) + ln(C),

and thus
∣

∣αi ln(| det A|) − β j ln(| det B|)∣∣ ≤ ln(C). This easily implies that

∣

∣

∣i − j
β

α

ln(| det B|)
ln(| det A|)

∣

∣

∣ ≤ ln(C)

|α| ln(| det A|) .

Setting N1 := ⌈ ln(C)
|α| ln(| det A|)

⌉ + 1, it follows that

I j ⊆
{

i ∈ Z :
∣

∣

∣i −
⌊β

α

1

c
j
⌋∣

∣

∣ ≤ N1

}

.

The desired inclusion for Ji is obtained analogously with N2 := ⌈ ln(C)
|β| ln(| det B|)

⌉ + 1,
which completes the proof by setting N := max{N1, N2}. ��

Corollary 2.6 Let A, B ∈ GL(d, R) be equivalent expansive matrices and Q, P ⊆ R
d

open such that Q, P are compact in R
d\{0}. Then there exists N ∈ N such that, for

all i, j ∈ Z,

Ji ⊆ { j ∈ Z : | j − �c i�| ≤ N } and I j ⊆ {i ∈ Z : |i − � j/c�| ≤ N },

where c = c(A, B) := ln | det A|/ ln | det B|.

Proof This follows from Lemmas 2.4 and 2.5 with α = β = 1. ��

Lastly, for a single homogeneous cover (Ai Q)i∈Z, we also define the index set

Ni (A) := {

k ∈ Z : Ai Q ∩ Ak Q �= ∅
}

.

Note that Ni (A) coincides with the index sets in (2.4) for the choice A = B and
Q = P . Therefore, the following is a direct consequence of Corollary 2.6.

Corollary 2.7 Let A ∈ GL(d, R) be expansive and Q ⊆ R
d open such that Q is

compact in R
d\{0}. Then there exists N ∈ N such that, for all i ∈ Z,

Ni (A) ⊆ { j ∈ Z : | j − i | ≤ N }.

3 Anisotropic Triebel–Lizorkin spaces

Throughout this section, let A ∈ GL(d, R) be expansive and 	A be an associated
ellipsoid.
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1892 S. Koppensteiner et al.

3.1 Analyzing vectors

A vector ϕ ∈ S(Rd) is called an A-analyzing vector if its Fourier transform ϕ̂ has
compact support

supp ϕ̂ := {ξ ∈ Rd : ϕ̂(ξ) �= 0} ⊆ R
d\{0} (3.1)

and satisfies

sup
i∈Z

|ϕ̂((A∗)iξ)| > 0, ξ ∈ R
d\{0}. (3.2)

In addition to conditions (3.1) and (3.2), an A-analyzing vector ϕ can be chosen to
satisfy

∑

i∈Z
ϕ̂((A∗)iξ) = 1 for all ξ ∈ R

d\{0}, (3.3)

see, e.g., [6, Lemma 3.6] or [12, Remark 2.3]. In most situations, we will choose an
A-analyzing vector that satisfies (3.3).

3.2 Triebel–Lizorkin spaces

Let ϕ ∈ S(Rd) be a fixed A-analyzing vector. For i ∈ Z, let ϕi := | det A|iϕ(Ai ·).
The (homogeneous) anisotropic Triebel–Lizorkin space Ḟα

p,q(A), with p ∈ (0,∞),
q ∈ (0,∞] and α ∈ R, is defined as the collection of all f ∈ S ′/P satisfying

‖ f ‖Ḟα
p,q (A;ϕ) :=

∥

∥

∥

∥

(

∑

i∈Z
(| det A|αi | f ∗ ϕi |)q

)1/q∥

∥

∥

∥

L p
< ∞, (3.4)

with the usual modifications for q = ∞. The space Ḟα∞,q(A) consists of all f ∈ S ′/P
such that

‖ f ‖Ḟα∞,q (A;ϕ)
:= sup

�∈Z,w∈Rd

(

1

| det A|�
∫

A�	A+w

∞
∑

i=−�

(| det A|αi |( f ∗ ϕi )(x)|)q dx

)1/q
< ∞

if q ∈ (0,∞), and

‖ f ‖Ḟα∞,∞(A;ϕ)
:= sup

�∈Z,w∈Rd
sup

i∈Z,i≥−�

1

| det A|�
∫

A�	A+w
| det A|αi |( f ∗ ϕi )(x)| dx < ∞.

In [6] and the introduction of this paper, the spaces Ḟα∞,q(A), q ∈ (0,∞), are alterna-
tively defined using the cube [0, 1]d instead of an expansive ellipsoid 	A. However,
it is easily seen that both conditions define the same space, see, e.g., [19, Lemma
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2.2]. See also Theorem 3.1 below for the equivalent norm on Ḟα∞,∞(A) used in the
introduction.

Each space Ḟα
p,q(A) is continuously embedded into S ′/P and is complete with

respect to the quasi-norm ‖ · ‖Ḟα
p,q
. In addition, Ḟα

p,q(A) is independent of the choice

of A-analyzing vector ϕ, with equivalent quasi-norms for different choices. See [6,
Section 3] and [4, Section 3.3] for details. We will often simply write ‖ · ‖Ḟα

p,q (A) for

‖ · ‖Ḟα
p,q (A;ϕ) whenever the precise choice of analyzing vector ϕ does not play a role

in our arguments.
For p, q < ∞, the space S0(R

d) is a dense subspace of Ḟα
p,q(A). This fact follows

easily from the various atomic and molecular decompositions of Ḟα
p,q(A), see, e.g.,

[4, 6, 18, 19].

3.3 Maximal characterizations

For ϕ ∈ S(Rd) and i ∈ Z and η > 0, the associated Peetre-type maximal function
ϕ∗∗

i,η f : R
d → [0,∞] of f ∈ S ′(Rd) is defined by

ϕ∗∗
i,η f (x) := sup

z∈Rd

|( f ∗ ϕi )(x + z)|
(1 + ρA(Ai z))η

, x ∈ R
d .

The following theorem provides characterizations of Triebel–Lizorkin spaces in
terms of Peetre-type maximal functions and will play a key role in Sect. 4. See [18,
19] for proofs.

Theorem 3.1 ([18, 19]) Let A ∈ GL(d, R) be expansive and α ∈ R. Suppose
ϕ ∈ S(Rd) satisfies support conditions (3.1) and (3.2). Then the following norm
equivalences hold:

(i) For p ∈ (0,∞), q ∈ (0,∞] and η > max{1/p, 1/q},

‖ f ‖Ḟα
p,q (A) �

∥

∥

∥

∥

(

∑

i∈Z
(| det A|αiϕ∗∗

i,η f )q
)1/q∥

∥

∥

∥

L p
, f ∈ S ′/P,

with the usual modification for q = ∞.
(ii) For q ∈ (0,∞) and η > 1/q,

‖ f ‖Ḟα∞,q (A) � sup
�∈Z,w∈Rd

(

1

| det A|�
∫

A�	A+w

∞
∑

i=−�

(| det A|αiϕ∗∗
i,η f (x))q dx

)1/q

,

for f ∈ S ′/P,

(iii) and lastly,

‖ f ‖Ḟα∞,∞(A) � sup
i∈Z

| det A|αi‖ f ∗ ϕi‖L∞ , f ∈ S ′/P. (3.5)
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Proof Assertion (i) is part of [18, Theorem 3.5] and holds for general expansive matri-
ces (cf. [18, Remark 3.6]). Similarly, assertions (ii) and (iii) are part of [19, Theorem
3.3] (cf. [19, Remark 3.4]) and [19, Theorem 4.1], respectively. ��

Part (iii) of Theorem 3.1 shows that Ḟα∞,∞(A) coincides with the anisotropic Besov
space Ḃα∞,∞(A) considered in [3]. In [3, Definition 3.1], the space Ḃα∞,∞(A) is defined
via the right-hand side of the equivalence (3.5).

4 Sufficient conditions

This section is devoted to the sufficient conditions of Theorem 1.1 and consists of the
proof of the following theorem. A key ingredient used in the proof is the maximal
characterization of Triebel–Lizorkin spaces (see Theorem 3.1).

Theorem 4.1 Let A, B ∈ GL(d, R) be two expansive matrices. If A and B are
equivalent, then Ḟα

p,q(A) = Ḟα
p,q(B) for all p, q ∈ (0,∞] and α ∈ R.

Proof Let A, B ∈ GL(d, R) be two equivalent expansive matrices. Suppose ϕ,ψ ∈
S(Rd) are analyzing vectors for A respectively B satisfying additionally Eq. (3.3),
i.e., so that Q := {

ξ ∈ R
d : ϕ̂(ξ) �= 0

}

and P := {

ξ ∈ R
d : ̂ψ(ξ) �= 0

}

are relatively
compact in R

d\{0}, and
∑

i∈Z
ϕ̂
(

(A∗)−iξ
) = 1 =

∑

j∈Z
̂ψ

(

(B∗)− jξ
)

for all ξ ∈ R
d\{0}.

Then
(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z are covers of R
d\{0}. Furthermore, a straight-

forward calculation yields ϕ̂i = ϕ̂((A∗)−i ·) and ̂ψ j = ̂ψ((B∗)− j ·), and hence ϕ̂i ≡ 0
outside of (A∗)i Q and ̂ψ j ≡ 0 outside of (B∗) j P . Since A and B are equivalent, so
are A∗ and B∗ (cf. Corollary 2.2.)

For fixed i ∈ Z, define �i ∈ S(Rd) as

�i :=
∑

j∈Ji

ψ j ,

where Ji := { j ∈ Z : (A∗)i Q ∩ (B∗) j P �= ∅} is finite by Lemma 2.3. Clearly,
̂�i = ∑

j∈Ji
̂ψ j ≡ 1 on (A∗)i Q ⊇ {

ξ ∈ R
d : ϕ̂i (ξ) �= 0

}

by construction. Therefore,

ϕi ∗ �i = ϕi for all i ∈ Z. (4.1)

We will use (4.1) to obtain a pointwise estimate of the convolution products f ∗ϕi , i ∈
Z, in terms of the Peetre-typemaximal functionψ∗∗

j,η f for a fixed η > max{1/p, 1/q},
defined by

ψ∗∗
j,η f (x) = sup

z∈Rd

|( f ∗ ψ j )(x + z)|
(1 + ρB(B j z))η

for all x ∈ R
d ;
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see Sect. 3.3. For fixed x ∈ R
d , a direct calculation gives

|( f ∗ ϕi )(x)| ≤
∑

j∈Ji

|( f ∗ ψ j ∗ ϕi )(x)|

≤
∑

j∈Ji

∫

Rd

|( f ∗ ψ j )(x + y)|
(1 + ρB(B j y))η

· (1 + ρB(B j y))η |ϕi (−y)| dy

≤
∑

j∈Ji

ψ∗∗
j,η f (x)

∫

Rd
(1 + ρB(B j y))η |ϕi (−y)| dy

=
∑

j∈Ji

ψ∗∗
j,η f (x)

∫

Rd
(1 + ρB(B j y))η | det A|i |ϕ(−Ai y)| dy

=
∑

j∈Ji

ψ∗∗
j,η f (x)

∫

Rd
(1 + ρB(B j A−i z))η |ϕ(−z)| dz. (4.2)

To bound the integral in (4.2), we note that, since ρA, ρB are equivalent, we have

ρB(B j A−i z) = | det B| j ρB(A−i z) ≤ C | det B| j ρA(A−i z) = C | det B| j | det A|−i ρA(z).

Lemma 2.4 implies that | det A|i � | det B| j for j ∈ Ji with implicit constants inde-
pendent of i ∈ Z, j ∈ Ji . Consequently, (1 + ρB(B j A−i z))η � (1 + ρA(z))η for
all z ∈ R

d . Since ϕ ∈ S(Rd), it follows that for every N ∈ N, there exists CN > 0
such that |ϕ(z)| ≤ CN (1 + ρA(z))−N , see, e.g., [2, Section 3]. Combining these
observations with (2.3) easily yields

∫

Rd
(1 + ρB(B j A−i z))η |ϕ(−z)| dz � 1

with implicit constant independent of i ∈ Z and j ∈ Ji . Using | det A|i � | det B| j

for j ∈ Ji once again, it follows thus that

| det A|αi |( f ∗ ϕi )(x)| �
∑

j∈Ji

| det B|α jψ∗∗
j,η f (x) for all x ∈ R

d , (4.3)

for all i ∈ Z.
The remainder of the proof is split into three cases dealing with p < ∞, p = ∞

and q < ∞, and p = q = ∞ separately.

Case 1 p ∈ (0,∞). We only prove this case for q ∈ (0,∞), since analogous
arguments using suprema yield the case for q = ∞. Hence, for q < ∞, raising (4.3)
to the q-th power and summing over i ∈ Z results in
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∑

i∈Z
(| det A|αi |( f ∗ ϕi )(x)|)q �

∑

i∈Z

(
∑

j∈Ji

| det B|α jψ∗∗
j,η f (x)

)q

�
∑

i∈Z

∑

j∈Ji

(| det B|α jψ∗∗
j,η f (x))q ,

where we used in the last step that supi∈Z |Ji | < ∞ by Lemma 2.3. Since Lemma 2.3
also implies sup j∈Z |I j | < ∞ for I j := {i ∈ Z : (A∗)i Q ∩ (B∗) j P �= ∅}, it follows
that

∑

i∈Z

∑

j∈Ji

(| det B|α jψ∗∗
j,η f (x))q =

∑

j∈Z

∑

i∈I j

(| det B|α jψ∗∗
j,η f (x))q

�
∑

j∈Z
(| det B|α jψ∗∗

j,η f (x))q .

Consequently, we have

‖ f ‖Ḟα
p,q (A) =

∥

∥

∥

∥

(
∑

i∈Z
(| det A|αi | f ∗ ϕi |)q

)1/q
∥

∥

∥

∥

L p

�
∥

∥

∥

∥

(
∑

j∈Z
(| det B|α j ψ∗∗

j,η f )q
)1/q

∥

∥

∥

∥

L p
� ‖ f ‖Ḟα

p,q (B),

where the last equivalence follows from Theorem 3.1. Exchanging the roles of A and
B yields the converse inequality and therefore Ḟα

p,q(A) = Ḟα
p,q(B) in this case.

Case 2 p = ∞, q ∈ (0,∞). Let � ∈ Z be arbitrary. Again, we raise (4.3) to the q-th
power, sum over i ≥ −�, and use the fact that supi∈Z |Ji | < ∞. This gives

∞
∑

i=−�

(| det A|αi |( f ∗ ϕi )(x)|)q �
∞
∑

i=−�

(

∑

j∈Ji

| det B|α j ψ∗∗
j,η f (x)

)q

�
∞
∑

i=−�

∑

j∈Ji

(| det B|α j ψ∗∗
j,η f (x))q .

Corollary 2.6 yields the existence of N1 ∈ N such that Ji ⊆ { j ∈ Z : | j −�ci�| ≤ N1}
for all i ∈ Z, where c = c(A, B) := ln | det A|/ ln | det B|. Hence, j ≥ �−c�� − N1
for all j ∈ ⋃∞

i=−� Ji . By setting �1 := �c�� + N1 + 1 ≥ −(�−c�� − N1), we thus
obtain

∞
∑

i=−�

∑

j∈Ji

(| det B|α j ψ∗∗
j,η f (x))q ≤

∞
∑

j=�−c��−N1

∑

i∈I j

(| det B|α j ψ∗∗
j,η f (x))q

�
∞
∑

j=−�1

(| det B|α jψ∗∗
j,η f (x))q ,
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where in the last step we used that sup j∈Z |I j | < ∞ for I j := {i ∈ Z : (A∗)i Q ∩
(B∗) j P �= ∅}. In combination, the above two estimates show that, for any � ∈ Z,

∞
∑

i=−�

(| det A|αi |( f ∗ ϕi )(x)|)q �
∞
∑

j=−�1

(| det B|α jψ∗∗
j,η f (x))q for all x ∈ R

d .

(4.4)
Let 	A,	B ⊆ R

d be the fixed ellipsoids used in the definition of ρA resp. ρB (cf.
Sect. 2.1). Then A�	A = {x ∈ R

d : ρA(x) < | det A|�}, and thus any x ∈ A�	A

satisfies

ρB(x) ≤ CρA(x) < C | det A|� = C | det B|c� ≤ | det B|�c��+N2

with N2 := max
{

1, �lnC/ ln | det B|�}+N1 ≥ �lnC/ ln | det B|�+1.Consequently,
we have for all � ∈ Z the inclusion

A�	A ⊆ B�c��+N2	B = B�2	B, where �2 := �c�� + N2. (4.5)

Now let w ∈ R
d also be arbitrary. Then (4.4) and (4.5) yield

1

| det A|�
∫

A�	A+w

∞
∑

i=−�

(| det A|αi |( f ∗ ϕi )(x)|)q dx

� 1

| det A|�
∫

B�2	B+w

∞
∑

j=−�1

(| det B|α jψ∗∗
j,η f (x))q dx .

Note that N1 + 1 ≤ N2 and hence �1 ≤ �2. Therefore, we obtain

1

| det A|�
∫

A�	A+w

∞
∑

i=−�

(| det A|αi |( f ∗ ϕi )(x)|)q dx

� 1

| det A|�
∫

B�2	B+w

∞
∑

j=−�2

(| det B|α j ψ∗∗
j,η f (x))q dx

� 1

| det B|�2
∫

B�2	B+w

∞
∑

j=−�2

(| det B|α j ψ∗∗
j,η f (x))q dx, (4.6)

where we used in the last step that | det A|� = | det B|c� ≥ | det B|�c�� � | det B|�2 .
Taking the q-th root and the supremum over �2, � ∈ Z and w ∈ R

d yields

‖ f ‖Ḟα∞,q (A) � sup
�2∈Z,w∈Rd

(

1

| det B|�2
∫

B�2	B+w

∞
∑

j=−�2

(| det B|α j ψ∗∗
j,η f (x))q dx

)1/q

� ‖ f ‖Ḟα∞,q (B),
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where the last equivalence follows again from the maximal characterizations of The-
orem 3.1. Exchanging the roles of A and B yield the converse norm estimate, and
therefore it yields that Ḟα∞,q(A) = Ḟα∞,q(B).

Case 3 p = q = ∞. By Eq. (4.3), it follows that

‖| det A|αi ( f ∗ ϕi )‖L∞ �
∑

j∈Ji

‖| det B|α jψ∗∗
j,η f ‖L∞ ≤

∑

j∈Ji

‖| det B|α j ( f ∗ ψ j )‖L∞

for i ∈ Z. Combining this with Eq. (3.5) yields

‖ f ‖Ḟα∞,∞(A;ϕ) � sup
i∈Z

| det A|αi‖ f ∗ ϕi‖L∞

� sup
i∈Z

∑

j∈Ji

| det B|α j‖ f ∗ ψ j‖L∞

� sup
i∈Z

sup
j∈Ji

| det B|α j‖ f ∗ ψ j‖L∞

≤ sup
j∈Z

| det B|α j‖ f ∗ ψ j‖L∞

� ‖ f ‖Ḟα∞,∞(B;ψ),

where it is used that supi∈Z |Ji | + sup j∈Z |I j | < ∞ by Lemma 2.3. Exchanging the
role of A and B yields ‖ · ‖Ḟα∞,∞(A) � ‖ · ‖Ḟα∞,∞(B), and completes the proof. ��

5 Necessary conditions

This section is devoted to the proof of the following theorem involving necessary
conditions for coincidence of two Triebel–Lizorkin spaces. This theorem corresponds
to Theorem 1.2 in the introduction.

Theorem 5.1 Let A, B ∈ GL(d, R) be expansive matrices, α, β ∈ R and
p1, p2, q1, q2 ∈ (0,∞]. If Ḟα

p1,q1(A) = Ḟβ
p2,q2(B), then (p1, q1, α) = (p2, q2, β).

Moreover, at least one of the following two cases holds:

(i) A and B are equivalent, or
(ii) α = β = 0, p1 = p2 ∈ (1,∞), and q1 = q2 = 2.

In the proof of Theorem 5.1, we will often actually use the norm equivalence

‖ f ‖Ḟα
p1,q1

(A) � ‖ f ‖Ḟβ
p2,q2 (B)

, for all f ∈ Ḟα
p1,q1(A) = Ḟβ

p2,q2(B) (5.1)

rather than the coincidence of the spaces Ḟα
p1,q1(A) = Ḟβ

p2,q2(B). By a standard density
argument, the normequivalence (5.1) is equivalent to the same condition being satisfied
for all elements in a dense subspace. Both facts are contained in the following simple
lemma, which will often be used without further mentioning.
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Lemma 5.2 Let A, B ∈ GL(d, R) be expansive matrices, α, β ∈ R and
p1, p2, q1, q2 ∈ (0,∞].

If Ḟα
p1,q1(A) = Ḟβ

p2,q2(B), then there exists a constant C ≥ 1 such that

1

C
‖ f ‖Ḟα

p1,q1
(A) ≤ ‖ f ‖Ḟβ

p2,q2 (B)
≤ C‖ f ‖Ḟα

p1,q1
(A) (5.2)

for all f ∈ Ḟα
p1,q1(A) = Ḟβ

p2,q2(B).

On the other hand, if p1, p2, q1, q2 < ∞ and Eq. (5.2) holds for all f ∈ S0(R
d),

then Ḟα
p1,q1(A) = Ḟβ

p2,q2(B).

Proof If Ḟα
p1,q1(A) = Ḟβ

p2,q2(B), then the identity map ι : Ḟα
p1,q1(A) →

Ḟβ
p2,q2(B), f �→ f is well-defined. Furthermore, since both Ḟα

p1,q1(A) and Ḟβ
p2,q2(B)

continuously embed into S ′/P = S ′
0 (see Sect. 3.2), it is easy to see that ι has a

closed graph. The norm estimates (5.2) follow therefore by the closed graph theorem,
see, e.g., [21, Theorem 2.15]. More precisely, since, by [18, Lemma 5.4] and [19,
Lemma 5.6], both ‖ · ‖Ḟα

p1,q1
(A) and ‖ · ‖Ḟβ

p2,q2 (B)
are r -norms for r := min{p, q, 1},

i.e., both quasi-norms satisfy ‖ f1 + f2‖r ≤ ‖ f1‖r + ‖ f2‖r , it follows that Ḟα
p1,q1(A)

and Ḟβ
p2,q2(B) are F-spaces in the sense of [21, Section 1.8]. Therefore, the closed

graph theorem ([21, Theorem 2.15]) applies to ι and shows that it is bounded, so that

‖ f ‖Ḟβ
p2,q2 (B)

� ‖ f ‖Ḟα
p1,q1

(A) for all f ∈ Ḟα
p1,q1(A) = Ḟβ

p2,q2(B).

The converse estimate is shown in the same way.
For the second part of the lemma, recall that S0(R

d) is norm dense in Ḟα
p1,q1(A)

for p1, q1 < ∞ (cf. Sect. 3.2). Hence, for arbitrary f ∈ Ḟα
p1,q1(A), there exists a

sequence ( fn)∞n=1 in S0(R
d) converging to f in Ḟα

p1,q1(A). Therefore, if (5.2) holds

for all fn ∈ S0(R
d), then ( fn)∞n=1 is a Cauchy sequence in Ḟβ

p2,q2(B) converging to

some g ∈ Ḟβ
p2,q2(B). Since convergence in Ḟα

p1,q1(A), respectively Ḟβ
p2,q2(B), implies

weak convergence in S ′/P (cf. Sect. 3.2), it follows that f = g ∈ Ḟβ
p2,q2(B). This

shows Ḟα
p1,q1(A) ⊆ Ḟβ

p2,q2(B). The reverse inclusion is shown similarly. ��

5.1 Preparations and notation

This section sets up some essential objects and notation that will be used for the proof
of Theorem 5.1. This notation will be kept throughout Sect. 5.

Let A, B ∈ GL(d, R) be expansive matrices. Fix analyzing vectors ϕ ∈ S(Rd) and
ψ ∈ S(Rd) satisfying Eq. (3.3) for A and B, respectively. Then

Q := {

ξ ∈ R
d : ϕ̂(ξ) �= 0

}

and P := {

ξ ∈ R
d : ̂ψ(ξ) �= 0

}

,

are open, relatively compact sets in R
d\{0}. In the following, we mainly consider the

covers
(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z ofR
d\{0}. In particular, wewill take the sets I j
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and Ji defined in Eq. (2.4) to be defined with respect to these two coverings; explicitly,
this means

I j := {

k ∈ Z : (A∗)k Q∩(B∗) j P �= ∅
}

and Ji := {

k ∈ Z : (B∗)k P∩(A∗)i Q �= ∅
}

(5.3)
for i, j ∈ Z. Furthermore, for i ∈ Z, we will use the index sets

Ni (A∗) := {

j ∈ Z : (A∗)i Q ∩ (A∗) j Q �= ∅
}

and

Ni (B∗) := {

j ∈ Z : (B∗)i P ∩ (B∗) j P �= ∅
}

.

As shown in Corollary 2.7, there exists N = N (A, B, Q, P) ∈ N satisfying

Ni (A∗) ∪ Ni (B∗) ⊆ { j ∈ Z : | j − i | ≤ N } for all i ∈ N. (5.4)

Throughout, we fix such an N and define the functions

� :=
N

∑

i=−N

ϕi and � :=
N

∑

j=−N

ψ j .

In view of Eq. (3.3) and because (A∗)i Q ∩ Q �= ∅ can only hold if |i | ≤ N by
Eq. (5.4), it follows that ̂� ≡ 1 on Q and ̂� ≡ 1 on P . In particular, � and � satisfy
the analyzing vector conditions (3.1) and (3.2) for A and B, respectively.

In addition to the above,wefix throughout a non-zero functionφ ∈ S(Rd) satisfying
̂φ ≥ 0 and supp̂φ ⊆ B1(0). For δ > 0, define

φδ(x) := δd φ(δx). (5.5)

Then ̂φδ(ξ) = ̂φ(ξ/δ) and thus supp ̂φδ ⊆ Bδ(0). In order to distinguish an isotropic
dilation as in (5.5) from an anisotropic dilation, we use a Greek letter subscript to
denote an isotropic dilation.

5.2 Norm estimates for auxiliary functions

This subsection consists of two estimates of the Triebel–Lizorkin norms of functions
with specific Fourier support. These functions play an essential role in our proof of
Theorem 5.1 and will be used in the following subsections.

Proposition 5.3 Let A ∈ GL(d, R) be expansive, α ∈ R and p, q ∈ (0,∞]. If f ∈
S(Rd) satisfies supp ̂f ⊆ (A∗)i0 Q for i0 ∈ Z, then

‖ f ‖Ḟα
p,q (A) � | det A|αi0‖ f ‖L p , (5.6)

with an implicit constant independent of i0 and f .
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Proof With notation as in Sect. 5.1, we start by collecting some basic facts about the
convolutions f ∗ ϕi and f ∗ �i0 for f as in the statement of the proposition. First,
note that since ϕ̂i ≡ 0 outside of (A∗)i Q, it follows that f ∗ ϕi = 0 whenever
(A∗)i0 Q ∩ (A∗)i Q = ∅, which holds whenever |i − i0| > N , by Eq. (5.4). Therefore,

f ∗ ϕi ≡ 0 for |i − i0| > N . (5.7)

For the convolution f ∗ �i0 observe that ̂�i0 ≡ 1 on (A∗)i0 Q by construction, and
therefore

f ∗ �i0 = F−1( ̂f · ̂�i0) = f . (5.8)

In the remainder of this proof, we deal with the cases p < ∞, p = ∞ and q < ∞,
and p = q = ∞ separately.
Case 1 p ∈ (0,∞). For the upper bound in Eq. (5.6), we use (5.7) to obtain

‖ f ‖Ḟα
p,q (A;ϕ) =

∥

∥

∥

∥

∥

∥

∥

(

| det A|αi | f ∗ϕi |
)

i∈Z

∥

∥

∥

�q

∥

∥

∥

∥

L p
�p,q,N

i0+N
∑

i=i0−N

| det A|αi‖ f ∗ϕi‖L p .

If p ∈ [1,∞), then Young’s inequality shows

‖ f ∗ ϕi‖L p ≤ ‖ f ‖L p‖ϕi‖L1 �ϕ ‖ f ‖L p .

If p ∈ (0, 1), then, since supp ̂f , supp ϕ̂i ⊆ ⋃N
�=−N (A∗)i0+�Q for |i − i0| ≤ N , an

application of Corollary A.2 yields

‖ f ∗ ϕi‖L p �A,Q,N ,p | det A|i0
(

1
p −1

)

‖ f ‖L p‖ϕi‖L p

= | det A|(i0−i)
(

1
p −1

)

‖ f ‖L p‖ϕ‖L p

�A,N ,ϕ,p ‖ f ‖L p .

Consequently, for arbitrary p ∈ (0,∞)

‖ f ‖Ḟα
p,q (A;ϕ) �p,q,N

i0+N
∑

i=i0−N

| det A|αi‖ f ∗ ϕi‖L p �A,Q,N ,α,p,ϕ | det A|αi0‖ f ‖L p ,

which proves the desired upper bound.
For the lower bound, usingEq. (5.8) and the equivalence‖·‖Ḟα

p,q (A;ϕ) � ‖·‖Ḟα
p,q (A;�)

(see Sect. 3.2) gives

‖ f ‖Ḟα
p,q (A;ϕ) �ϕ,N ,p,q,A,α ‖ f ‖Ḟα

p,q (A;�) =
∥

∥

∥

∥

∥

∥

∥

(

| det A|αi | f ∗ �i |
)

i∈Z

∥

∥

∥

�q

∥

∥

∥

∥

L p

≥ | det A|αi0‖ f ∗ �i0‖L p = | det A|αi0‖ f ‖L p ,

as required.

123



1902 S. Koppensteiner et al.

Case 2 p = ∞, q ∈ (0,∞). As in the previous case, we use Eq. (5.7) for the upper
estimate. This yields

‖ f ‖Ḟα∞,q (A;ϕ) = sup
�∈Z,w∈Rd

(

1

| det A|�
∫

A�	A+w

∞
∑

i=−�

(| det A|αi |( f ∗ ϕi )(x)|)q dx

)1/q

≤ sup
�∈Z,w∈Rd

(

1

| det A|�
∫

A�	A+w

i0+N
∑

i=i0−N

(| det A|αi |( f ∗ ϕi )(x)|)q dx

)1/q

�A,N ,q,α | det A|αi0
i0+N
∑

i=i0−N

‖ f ∗ ϕi‖L∞

≤ | det A|αi0
i0+N
∑

i=i0−N

‖ f ‖L∞‖ϕi‖L1

�N ,ϕ | det A|αi0‖ f ‖L∞ .

For the lower bound, we use the continuous embedding Ḟα∞,q(A) ↪→ Ḟα∞,∞(A) (cf.
[19, Theorem 4.1]), the norm equivalence ‖·‖Ḟα∞,∞(A;ϕ) � ‖·‖Ḟα∞,∞(A;�), and Eq. (3.5)
to obtain

‖ f ‖Ḟα∞,q (A;ϕ) �ϕ,q,A,α ‖ f ‖Ḟα∞,∞(A;ϕ) �ϕ,N ,A,α ‖ f ‖Ḟα∞,∞(A;�)

�ϕ,N ,A,α sup
i∈Z

| det A|αi‖ f ∗ �i‖L∞

≥ | det A|αi0‖ f ∗ �i0‖L∞ = | det A|αi0‖ f ‖L∞ ,

where the final step follows from Eq. (5.8).
Case 3 p = q = ∞. The lower bound ‖ f ‖Ḟα∞,∞(A;ϕ) � | det A|αi0‖ f ‖L∞ has been
shown in the previous case already. For the reverse, observe that (3.5) and (5.7) yield

‖ f ‖Ḟα∞,∞(A;ϕ) � sup
i∈Z

| det A|αi‖ f ∗ ϕi‖L∞ = sup
|i−i0|≤N

| det A|αi‖ f ∗ ϕi‖L∞

≤ sup
|i−i0|≤N

| det A|αi‖ f ‖L∞‖ϕi‖L1 �N ,A,α,ϕ | det A|αi0‖ f ‖L∞ ,

which completes the proof. ��
The following simple consequence is what actually will be used in obtaining

necessary conditions for the coincidence of Triebel–Lizorkin spaces.

Corollary 5.4 Let A, B ∈ GL(d, R) be expansive, α, β ∈ R and p1, p2, q1, q2 ∈
(0,∞].

Suppose that Ḟα
p1,q1(A) = Ḟβ

p2,q2(B). If (A∗)i Q ∩ (B∗) j P �= ∅ for some i, j ∈ Z,
then there exists δ0 = δ0(i, j) > 0 such that for all 0 < δ ≤ δ0, it holds that

| det A|αiδd(1−1/p1) � | det B|β jδd(1−1/p2),

where the implicit constants are independent of i, j, δ, δ0.
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Proof Since (A∗)i Q ∩ (B∗) j P �= ∅ is open, there exists η ∈ R
d and δ0 > 0 such that

Bδ0(η) ⊆ (A∗)i Q ∩ (B∗) j P . For a fixed 0 < δ ≤ δ0, define f (δ) := Mηφδ . Then

supp̂f (δ) = supp Tη
̂φδ ⊆ Bδ(η).

Using the estimates of Proposition 5.3 for ‖ f (δ)‖Ḟα
p1,q1

(A) and ‖ f (δ)‖Ḟβ
p2,q2 (B)

yields

| det A|αiδd(1−1/p1) = | det A|αi ‖ f (δ)‖L p1 � ‖ f (δ)‖Ḟα
p1,q1

(A) � ‖ f (δ)‖Ḟβ
p2,q2 (B)

� | det B|β jδd(1−1/p2),

with implicit constants independent of i, j, δ, δ0. ��
The following proposition provides a more technical version of Proposition 5.3

and involves a linear combination of functions with Fourier supports in (A∗)ik Q for
suitable points ik ∈ Z. The proof strategy resembles the one of Proposition 5.3, but
requires various technical modifications.

Proposition 5.5 Let A ∈ GL(d, R) be expansive, α ∈ R and p, q ∈ (0,∞]. For
K ∈ N, let i1, . . . , iK ∈ Z be increasing with |ik − ik′ | > 2N if k �= k′, where N ∈ N

is as in Eq. (5.4).
Suppose there exists δ0 > 0 and points η1, . . . , ηK ∈ R

d such that:

(a) Bδ0(ηk) ⊆ (A∗)ik Q for all k = 1, . . . , K ,
(b) |φ(x)| ≥ 1

2 |φ(0)| for all x ∈ δ0A−i1	A.

Then, for all 0 < δ ≤ δ0 and c ∈ C
K , the function f = ∑K

k=1 ck Mηk φδ satisfies

‖ f ‖Ḟα
p,q (A) � δd(1−1/p)

∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q
, (5.9)

where the implicit constant is independent of K , c, δ, δ0, η1, . . . , ηK , i1, . . . , iK .

Remark 5.6 Assumption (b) in Proposition 5.5 is only needed for the case p = ∞,
q ∈ (0,∞).

Proof Using the notation from Sect. 5.1, we first state some basic observations for
f ∗ ϕi and f ∗ �ik with f as in the statement. First, note that by assumption (a) it
follows that supp Tηk

̂φδ ⊆ (A∗)ik Q for all k = 1, . . . , K . Since ϕ̂i ≡ 0 outside of
(A∗)i Q, this implies

Mηk [φδ] ∗ ϕi = F−1(Tηk [̂φδ] · ϕ̂i ) = 0 for |i − ik | > N ,

as (A∗)ik Q ∩ (A∗)i Q = ∅ for |i − ik | > N by Eq. (5.4). Furthermore, note that for
fixed i ∈ Z, there can be at most one point ik such that |i − ik | ≤ N due to the pairwise
minimal distance between the chosen points i1, . . . , iK . This implies that

f ∗ϕi =
K

∑

k=1

ck · (Mηk [φδ] ∗ϕi ) =
{

ck · (Mηk [φδ] ∗ ϕi ), if |i − ik | ≤ N ,

0, otherwise.
(5.10)
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Second, for f ∗ �ik , observe that ̂�ik ≡ 0 outside of
⋃ik+N

i=ik−N (A∗)i Q for all
k = 1, . . . , K by construction of �. Since |ik − ik′ | > 2N for k �= k′, it follows by
Eq. (5.4) that

(A∗)ik′ Q ∩
ik+N
⋃

i=ik−N

(A∗)i Q = ∅, for k �= k′.

This implies Mηk′ [φδ]∗�ik = F−1(Tηk′ [̂φδ] ·̂�ik ) = 0 for k �= k′. Since alsô�ik ≡ 1
on (A∗)ik Q ⊇ supp Tηk

̂φδ , necessarily

f ∗ �ik =
K

∑

k′=1

ck′ · (Mηk′ [φδ] ∗ �ik ) = ck Mηk φδ for k = 1, . . . K . (5.11)

The remainder of the proof is divided into three cases and deals with p < ∞,
p = ∞ and q < ∞, and p = q = ∞ separately.

Case 1 p ∈ (0,∞). For the upper bound in Eq. (5.9), set M = d
p + 1. Then, in view

of Eq. (5.10), an application of Lemma A.3 with � = ik shows that

| f ∗ ϕi (x)| = |ck | · |(Mηk [φδ] ∗ ϕi )(x)| ≤ |ck | · (|φδ| ∗ |ϕi |)(x)

�N ,A,d,p,Q,φ,ϕ |ck |δd(1 + |δx |)−M

whenever |i − ik | ≤ N . On the other hand, f ∗ ϕi = 0 if |i − ik | > N for all
k = 1, . . . , K . Therefore, for all x ∈ R

d ,

∥

∥

∥

(

| det A|αi | f ∗ ϕi (x)|
)

i∈Z

∥

∥

∥

�q

≤
( K

∑

k=1

ik+N
∑

i=ik−N

(| det A|αi | f ∗ ϕi (x)|)q
)1/q

�N ,A,Q,d,p,q,φ,ϕ,α

( K
∑

k=1

(| det A|αik |ck | δd (1 + |δx |)−M)q
)1/q

= δd (1 + |δx |)−M
∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q
,

with the usual modification of the argument for q = ∞. Consequently, this yields

‖ f ‖Ḟα
p,q (A;ϕ) =

∥

∥

∥

∥

∥

∥

∥

(

| det A|αi | f ∗ ϕi |
)

i∈Z

∥

∥

∥

�q

∥

∥

∥

∥

L p

�N ,A,Q,d,p,q,φ,ϕ,α

( ∫

Rd
(δd (1 + |δx |)−M )p dx

)1/p∥
∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q

�d,p δd(1−1/p)
∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q
,
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where the last step used that M > d
p , so that

∫

Rd (1 + |x |)−Mp dx < ∞.
For the lower bound, we use the equivalence ‖ · ‖Ḟα

p,q (A;ϕ) � ‖ · ‖Ḟα
p,q (A;�) and

Eq. (5.11) to obtain

‖ f ‖Ḟα
p,q (A;ϕ) �A,p,q,α,ϕ,N

∥

∥

∥

∥

∥

∥

∥

(

| det A|αi | f ∗ �i |
)

i∈Z

∥

∥

∥

�q

∥

∥

∥

∥

L p

≥
∥

∥

∥

∥

∥

∥

∥

(

| det A|αik | f ∗ �ik |
)K

k=1

∥

∥

∥

�q

∥

∥

∥

∥

L p

= ‖φδ‖L p

∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q

�φ,p δd(1−1/p)
∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q
,

as required.

Case 2 p = ∞, q ∈ (0,∞). The upper estimate in Eq. (5.9) follows by an application
of Eq. (5.10):

‖ f ‖Ḟα∞,q (A;ϕ)

≤ sup
�∈Z,w∈Rd

(

1

| det A|�
∫

A�	A+w

K
∑

k=1

ik+N
∑

i=ik−N

(| det A|αi |ck | (|φδ | ∗ |ϕi |)(x)
)q dx

)1/q

≤
( K

∑

k=1

ik+N
∑

i=ik−N

(| det A|αi |ck | ‖|φδ | ∗ |ϕi |‖L∞
)q

)1/q

≤
( K

∑

k=1

ik+N
∑

i=ik−N

(| det A|αi |ck | ‖φδ‖L∞ ‖ϕi ‖L1
)q

)1/q

�A,N ,q,α δd ‖φ‖L∞‖ϕ‖L1

( K
∑

k=1

(| det A|αik |ck |)q
)1/q

.

For the reverse inequality, we again use the A-analyzing vector �. We start by taking
w = 0 and � = −i1 in the supremum below. Note that this choice ensures that the
sum over i ≥ −� = i1 includes all ik for k = 1, . . . , K as they are increasing. By
Eq. (5.11), it follows that

‖ f ‖Ḟα∞,q (A;ϕ)

�A,q,α,ϕ,N sup
�∈Z,w∈Rd

(

1

| det A|�
∫

A�	A+w

∞
∑

i=−�

(| det A|αi |( f ∗ �i )(x)|)q dx

)1/q

≥
(

1

| det A|−i1

∫

A−i1	A

K
∑

k=1

(| det A|αik |( f ∗ �ik )(x)|)q dx

)1/q
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=
(

1

| det A|−i1

∫

A−i1	A

K
∑

k=1

(| det A|αik |ck | |φδ(x)|)q dx

)1/q

≥ min
x∈δA−i1	A

δd |φ(x)|
∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q

≥ δd 1

2
|φ(0)|

∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�q
,

where we used the assumption |φ(x)| ≥ 1
2 |φ(0)| for x ∈ δ0A−i1	A in the last step.

Furthermore, note thatφ(0) > 0 sincêφ ≥ 0 and̂φ �≡ 0, so thatφ(0) = ∫

Rd ̂φ(ξ) dξ >

0.

Case 3 p = q = ∞. Eqs. (3.5) and (5.10) allow to obtain the upper bound:

‖ f ‖Ḟα∞,∞(A;ϕ) � sup
i∈Z

| det A|αi‖ f ∗ ϕi‖L∞

= sup
k=1,...,K

sup
|i−ik |≤N

| det A|αi‖ f ∗ ϕi‖L∞

≤ sup
k=1,...,K

sup
|i−ik |≤N

| det A|αi |ck | ‖φδ‖L∞ ‖ϕi‖L1

�N ,A,α,φ,ϕ δd
∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�∞ .

For the lower bound, combining the norm equivalence ‖ · ‖Ḟα∞,∞(A;ϕ) � ‖·‖Ḟα∞,∞(A;�)

and Eqs. (3.5 and (5.11) yields

‖ f ‖Ḟα∞,∞(A;ϕ) �A,ϕ,N ,α ‖ f ‖Ḟα∞,∞(A;�) � sup
i∈Z

| det A|αi ‖ f ∗ �i‖L∞

≥ sup
k=1,...,K

| det A|αik ‖ f ∗ �ik ‖L∞ = sup
k=1,...,K

| det A|αik |ck | ‖φδ‖L∞

�φ δd
∥

∥

∥

(

| det A|αik |ck |
)K

k=1

∥

∥

∥

�∞,

which completes the proof. ��

5.3 The case˛ �= 0

This subsection is devoted to the proof of the following theorem. In particular, it shows
that two expansive matrices A, B ∈ GL(d, R) are equivalent whenever Ḟα

p,q(A) =
Ḟα

p,q(B) and α �= 0. This proves Theorem 5.1 for the case α �= 0.

Theorem 5.7 Let A, B ∈ GL(d, R) be expansive, α, β ∈ R and p1, p2, q1, q2 ∈
(0,∞]. If Ḟα

p1,q1(A) = Ḟβ
p2,q2(B), then the following hold:

(i) p1 = p2,
(ii) q1 = q2,
(iii) α = β. Furthermore, if α = β �= 0, then A and B are equivalent.
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Proof We prove the three assertions separately.
(i) Since ϕ,ψ ∈ S(Rd) are analyzing vectors for A resp. B, it follows that

⋃

i∈Z
(A∗)i Q =

⋃

j∈Z
(B∗) j P = R

d\{0}. (5.12)

Hence, there exist i0, j0 ∈ Z such that (A∗)i0 Q ∩ (B∗) j0 P �= ∅. By Corollary 5.4,
this implies the existence of some δ0 > 0 such that for, all 0 < δ ≤ δ0,

| det A|αi0δd(1−1/p1) � | det B|β j0δd(1−1/p2),

with implicit constant independent of δ. In turn, this implies

δ1/p1−1/p2 � 1, for all 0 < δ ≤ δ0,

which is only possible for p1 = p2.
(ii) Under the assumption p1 = p2 = p, we show that

‖c‖�q1 � ‖c‖�q2 , for all K ∈ N, c ∈ C
K , (5.13)

where the implied constant is independent of K and c. This easily implies q1 = q2.
Let K ∈ N be arbitrary and let N ∈ N be as chosen in Eq. (5.4). Recall the

identity (5.12) and note that each image set (A∗)i Q, (B∗) j P for i, j ∈ Z is relatively
compact and hence bounded. Therefore, it is not hard to see that there exist points
η1, . . . , ηK ∈ R

d and increasing sequences (ik)
K
k=1 and ( jk)K

k=1 in Z satisfying

|ik − ik′ | > 2N and | jk − jk′ | > 2N for k �= k′,

with
ηk ∈ (A∗)ik Q ∩ (B∗) jk P for all k = 1, . . . , K . (5.14)

Since the sets Q, P are open, there exists δ1 > 0 such that

Bδ1(ηk) ⊆ (A∗)ik Q ∩ (B∗) jk P for all k = 1, . . . , K .

Additionally, by continuity of φ ∈ S(Rd), there exists δ2 > 0 such that

|φ(x)| ≥ 1

2
|φ(0)|, x ∈ δ2(A−i1	A ∪ B− j1	B).

In combination, this shows that the assumptions of Proposition 5.5 are met for
Ḟα

p,q1(A;ϕ)with δ0 := min{δ1, δ2},η1, . . . , ηK and (ik)
K
k=1, aswell as for Ḟ

β
p,q2(B;ψ)

with ( jk)K
k=1 replacing the sequence (ik)

K
k=1.

For showing the claim (5.13), let c ∈ C
K and 0 < δ ≤ δ0 be fixed. Then defining

f (δ) := ∑K
k=1 | det A|−αik ck Mηk φδ gives
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δd(1−1/p)‖c‖�q1 � ‖ f (δ)‖Ḟα
p,q1

(A)

� ‖ f (δ)‖Ḟβ
p,q2 (B)

� δd(1−1/p)
∥

∥

∥

(

| det B|β jk | det A|−αik |ck |
)K

k=1

∥

∥

∥

�q2
. (5.15)

Since (A∗)ik Q∩(B∗) jk P �= ∅byEq. (5.14), it follows byCorollary 5.4 for p1 = p2 =
p that | det A|αik � | det B|β jk for k = 1, . . . , K , with implicit constant independent
of ik, jk . This, together with Eq. (5.15), easily shows the claim (5.13).
(iii) Assuming p1 = p2 = p, it follows by Corollary 5.4 that there exists C ≥ 1 such
that

1

C
| det B|β j ≤ | det A|αi ≤ C | det B|β j whenever (A∗)i Q ∩ (B∗) j P �= ∅.

(5.16)
We consider the cases α = 0 or β = 0, and α �= 0 �= β.

Case 1 α = 0 or β = 0. Suppose first thatα = 0.As a consequence ofEq. (5.12), for
all j ∈ Z, there needs to exist i ∈ Z such that (A∗)i Q ∩(B∗) j P �= ∅. Equation (5.16)
implies therefore that | det B|β j ≤ C as α = 0. Since this holds for all j ∈ Z, and
| det B| �= 0, it follows that necessarily also β = 0. If β = 0, then also α = 0 by
symmetry.

Case 2 α �= 0 �= β. Suppose that α �= 0 �= β. Then, by Eq. (5.16), the assumptions
of Lemma 2.5 are satisfied for

(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z. Hence, there exists
M ∈ N such that with Ji , I j as defined in Eq. (5.3), we have

Ji ⊆
{

j ∈ Z :
∣

∣

∣ j −
⌊α

β
c i

⌋∣

∣

∣ ≤ M
}

, and I j ⊆
{

i ∈ Z :
∣

∣

∣i −
⌊β

α

1

c
j
⌋∣

∣

∣ ≤ M
}

,

where c = c(A, B) := ln | det A|/ ln | det B|. In particular, this implies that

sup
j∈Z

|I j | + sup
i∈Z

|Ji | < ∞.

Therefore, an application of Lemma 2.3 implies that A∗ and B∗ are equivalent, and
hence so are A and B by Corollary 2.2.

It remains to show that α = β. To see this, note that, for all j ∈ Z, it holds that

| det B| j �P m
(

(B∗) j P
)

≤ m
(

⋃

i∈I j

(A∗)i Q
)

≤
∑

i∈I j

m
(

(A∗)i Q
)

�Q

M
∑

k=−M

| det A|� β
α

1
c j�+k �M,A | det A| β

α
ln(| det B|)
ln(| det A|) j = | det B| β

α
j .

Since | det B| �= 0, this is only possible for β
α

= 1, and hence α = β as claimed. ��
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5.4 The case˛ = 0 and p < ∞

In this section, we prove the following theorem, showing that if two Triebel–Lizorkin
spaces coincide and the matrices are not equivalent, then necessarily q = 2. The only
shortcoming of this theorem is that it only applies when p < ∞. We will deal with
the case p = ∞ in the following subsection.

Theorem 5.8 Let A, B ∈ GL(d, R) be expansive, p ∈ (0,∞) and q ∈ (0,∞].
Suppose that

‖ f ‖Ḟ0p,q (A) � ‖ f ‖Ḟ0p,q (B), for all f ∈ F−1(C∞
c (Rd\{0})). (5.17)

If A and B are not equivalent, then q = 2.
In particular, if Ḟ0

p,q(A) = Ḟ0
p,q(B) and A and B are not equivalent, then q = 2.

The following observation will be key in proving Theorem 5.8. It provides a
condition under which the hypotheses of Proposition 5.5 are satisfied for Ḟα

p,q(A).

Lemma 5.9 Let A, B ∈ GL(d, R) be expansive and suppose that sup j∈Z |I j | = ∞,
with I j as defined in Eq. (5.3).

Then, for every K ∈ N, there exist δ0 > 0, j0 ∈ Z, points η1, . . . ηK ∈ R
d , and a

(strictly) increasing sequence i1, . . . , iK ∈ Z with |ik − ik′ | > 2N for k �= k′, where
N ∈ N as in (5.4), such that the following assertions hold:

(i) Bδ0(ηk) ⊆ (A∗)ik Q ∩ (B∗) j0 P for all k = 1, . . . , K ;
(ii) |φ(x)| ≥ 1

2 |φ(0)| for all x ∈ δ0A−i1	A.

In particular, the assumptions (a) and (b) of Proposition 5.5 are satisfied for
Ḟα

p,q(A).

Proof Let K ∈ N be arbitrary. Then, since sup j∈Z |I j | = ∞, there exists j0 ∈ Z such
that |I j0 | ≥ (2N + 1)K . Define Zn := n + (2N + 1) Z for n = 0, . . . , 2N . Since
I j0 = ⋃2N

n=0(I j0 ∩ Zn), there needs to be at least one n0 ∈ {0, . . . , 2N } such that
|I j0 ∩ Zn0 | ≥ K . Hence, we can choose a strictly increasing sequence i1, . . . , iK ∈
I j0 ∩ Zn0 , which in particular implies that |ik − ik′ | ≥ 2N + 1 for k �= k′. Since
(A∗)ik Q ∩ (B∗) j0 P �= ∅ is open for all k = 1, . . . , N , there exist η1, . . . , ηK and a
constant δ1 > 0 such that

Bδ1(ηk) ⊆ (A∗)ik Q ∩ (B∗) j0 P for all k = 1, . . . , K .

Finally, continuity of φ ∈ S(Rd) implies (because of |φ(0)| = φ(0) = ∫

Rd φ̂(ξ) dξ >

0) the existence of δ2 > 0 such that |φ(x)| ≥ 1
2 |φ(0)| for all x ∈ δ2A−i1	A, which

completes the proof by setting δ0 := min{δ1, δ2}. ��
Another key ingredient used in the proof of Theorem 5.8 is Khintchine’s inequality,

see, e.g., [27, Proposition 4.5]. We include its statement for the convenience of the
reader.
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1910 S. Koppensteiner et al.

Lemma 5.10 (Khintchine) Let θ = (θ1, . . . , θK ) be a random vector with θ ∼
U ({±1}K ) (i.e., P(θ = η) = 1

2K for every η ∈ {±1}K ). For any p ∈ (0,∞), denoting
the expectation with respect to θ by Eθ , it holds that

Eθ

∣

∣

∣

∣

K
∑

k=1

θk ak

∣

∣

∣

∣

p

�
( K

∑

k=1

|ak |2
)p/2

for all (ak)
K
k=1 ∈ C

K ,

where the implied constant only depends on p.

We will now provide the proof of Theorem 5.8.

Proof of Theorem 5.8 If A and B are not equivalent, then neither are A∗ and B∗ (cf.
Corollary 2.2). Hence, an application of Lemma 2.3 implies for

(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z that
sup
i∈Z

|Ji | + sup
j∈Z

|I j | = ∞.

By exchanging the roles of A and B if necessary, it may be assumed that sup j∈Z |I j | =
∞, so that the assumption of Lemma5.9 is satisfied.UsingLemma5.9, it will be shown
that

‖c‖�q � ‖c‖�2 for all K ∈ N and c ∈ C
K , (5.18)

where the implied constant is independent of K and c. This easily implies q = 2.
For showing (5.18), let K ∈ N and c ∈ C

K be arbitrary. Then an application of
Lemma5.9 yields some j0 ∈ Z, pointsη1, . . . , ηK ∈ R

d , a strictly increasing sequence
i1, . . . , iK ∈ Z, and δ0 > 0 such that Bδ0(ηk) ⊆ (B∗) j0 P for all k ∈ {1, . . . , K }
and such that the assumptions of Proposition 5.5 are satisfied. Proposition 5.5 thus
implies for fixed but arbitrary 0 < δ ≤ δ0, and any θ ∈ {±1}K that the function

fθ,δ := ∑K
k=1 θk ck Mηk φδ satisfies ‖ fθ,δ‖Ḟ0p,q (A) � δ

d(1− 1
p )‖c‖�q . On the other hand,

it holds supp f̂θ,δ ⊆ (B∗) j0 P for all 0 < δ ≤ δ0, and thus Proposition 5.3 is applicable
for Ḟ0

p,q(B). Consequently, Eq. (5.17) implies that

δd(1−1/p)‖c‖�q � ‖ fθ,δ‖Ḟ0p,q (A) � ‖ fθ,δ‖Ḟ0p,q (B) � ‖ fθ,δ‖L p for all θ ∈ {±1}K .

(5.19)
Using Khintchine’s inequality (Lemma 5.10), we see that if we take θ ∼ U ({±1}K )

as a random vector, then

Eθ‖ fθ,δ‖p
L p = Eθ

∫

Rd

∣

∣

∣

∣

K
∑

k=1

θk ck e2π iηk ·x
∣

∣

∣

∣

p

|φδ(x)|p dx

=
∫

Rd
|φδ(x)|p

Eθ

∣

∣

∣

∣

K
∑

k=1

θk ck e2π iηk ·x
∣

∣

∣

∣

p

dx

�p

∫

Rd
|φδ(x)|p

( K
∑

k=1

|ck e2π iηk ·x |2
)p/2

dx �p,φ δd(p−1)‖c‖p
�2

.

In combination with (5.19), this easily implies that Eq. (5.18) holds. ��
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Classification of anisotropic Triebel–Lizorkin spaces 1911

The finer analysis in the case where α = 0 and q = 2 can be performed by
using that Ḟ0

p,2(A) coincides with the anisotropic Hardy space H p(A) and using the
classification results of [2, Section 10]. The details are as follows:

Theorem 5.11 Let A, B ∈ GL(d, R) be expansive and p ∈ (0,∞). If Ḟ0
p,2(A) =

Ḟ0
p,2(B), then at least one of the following cases holds:

(i) A and B are equivalent, or
(ii) p ∈ (1,∞).

Proof Let p ∈ (0,∞) and denote by H p(A) the anisotropic Hardy space introduced
in [2]. By [4, Theorem 7.1], it follows that Ḟ0

p,2(A) = H p(A). Hence, if Ḟ0
p,2(A) =

Ḟ0
p,2(B), then H p(A) = H p(B).
If p ∈ (0, 1], then by [2, Theorem 10.5] (see also [7, Theorem 2.3] for a corrected

statement), the identity H p(A) = H p(B) implies that A and B are equivalent. Thus,
(i) holds. ��

A combination of Theorems 5.8 and 5.11 yields the following:

Corollary 5.12 Let A, B ∈ GL(d, R) be expansive, p ∈ (0,∞) and q ∈ (0,∞].
Suppose that Ḟ0

p,q(A) = Ḟ0
p,q(B). Then at least one of the following cases holds:

(i) A and B are equivalent;
(ii) q = 2 and p ∈ (1,∞).

5.5 The case˛ = 0 and p = ∞

This section provides the following theorem, which finishes the necessary conditions
of Theorem 5.1.

Theorem 5.13 Let A, B ∈ GL(d, R) be expansive and q ∈ (0,∞]. If Ḟ0∞,q(A) =
Ḟ0∞,q(B), then A and B are equivalent.

The following lemma will reduce the proof of Theorem 5.13 to the case q ≥ 1.

Lemma 5.14 Let A, B ∈ GL(d, R) be expansive and q ∈ (0,∞]. If Ḟ0∞,q(A) =
Ḟ0∞,q(B) and the matrices A and B are not equivalent, then q ≥ 1.

Proof The claim is trivial for q = ∞; therefore, we can assume that q < ∞. Since
A and B are not equivalent, Corollary 2.2 and Lemma 2.3 again imply for the covers
(

(A∗)i Q
)

i∈Z and
(

(B∗) j P
)

j∈Z that

sup
i∈Z

|Ji | + sup
j∈Z

|I j | = ∞,

where we may assume sup j∈Z |I j | = ∞ by interchanging A and B if necessary.
For K ∈ N arbitrary, we now invoke Lemma 5.9 to obtain j0 ∈ Z, η1, . . . , ηK ∈

R
d , a strictly increasing sequence i1, . . . , iK ∈ Z, and some δ0 > 0 such that the

assumptions of Proposition 5.5 are satisfied and such that Bδ0(ηk) ⊆ (B∗) j0 P for all
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1912 S. Koppensteiner et al.

k ∈ {1, . . . , K }. Proposition 5.5 thus implies for any 0 < δ ≤ δ0 that each of the
functions

fc,δ :=
K

∑

k=1

ck Mηk φδ, c ∈ C
K ,

satisfies ‖ fc,δ‖Ḟ0∞,q (A) � δd ‖c‖�q . Since supp ̂fc,δ ⊆ (B∗) j0 P , Proposition 5.3 is

applicable for Ḟ0∞,q(B). Consequently, and recalling (5.2), we see that

δd ‖c‖�q � ‖ fc,δ‖Ḟ0∞,q (A) � ‖ fc,δ‖Ḟ0∞,q (B) � ‖ fc,δ‖L∞ ≤ ‖c‖�1 ‖φδ‖L∞ � δd ‖c‖�1 ,

which can only hold for q ≥ 1. ��

By duality, we now provide a proof of Theorem 5.13.

Proof of Theorem 5.13 Arguing by contradiction, we assume that A and B are not
equivalent. Then Lemma 5.14 implies that q ≥ 1.

First, suppose that q ∈ (1,∞], so that its conjugate exponent q ′ satisfies q ′ ∈
[1,∞). Then [5, Theorem 4.8] shows that Ḟ0∞,q(A) is the dual space of Ḟ0

1,q ′(A) (with

equivalent norms). Likewise, it follows that Ḟ0∞,q(B) is the dual space of Ḟ0
1,q ′(B) (with

equivalent norms). By the first part of Lemma 5.2, we have for f ∈ [Ḟ0
1,q ′(A)]′ =

Ḟ0∞,q(A) = Ḟ0∞,q(B) = [Ḟ0
1,q ′(B)]′ that

‖ f ‖[Ḟ0
1,q′ (A)]′ � ‖ f ‖Ḟ0∞,q (A) � ‖ f ‖Ḟ0∞,q (B) � ‖ f ‖[Ḟ0

1,q′ (B)]′ .

Therefore, by the usual dual characterization of the norm, it holds that

‖g‖Ḟ0
1,q′ (A)

= sup
f ∈[Ḟ0

1,q′ (A)]′
‖ f ‖[Ḟ0

1,q′ (A)]′≤1

|〈 f , g〉| � sup
f ∈[Ḟ0

1,q′ (B)]′
‖ f ‖[Ḟ0

1,q′ (B)]′≤1

|〈 f , g〉| = ‖g‖Ḟ0
1,q′ (B)

, g ∈ S0(Rd ).

Second, if q = 1, then it follows directly from Proposition B.6 that

‖g‖Ḟ01,∞(A)
� sup

f ∈Ḟ0∞,1(A)

‖ f ‖Ḟ0∞,1(A)
≤1

|〈 f , g〉| � sup
f ∈Ḟ0∞,1(B)

‖ f ‖Ḟ0∞,1(B)
≤1

|〈 f , g〉| � ‖g‖Ḟ01,∞(B)
, g ∈ S0(Rd ).

In combination, for any q ∈ [1,∞], this yields ‖g‖Ḟ0
1,q′ (A) � ‖g‖Ḟ0

1,q′ (B) for all

g ∈ S0(R
d). Since A and B are not equivalent, an application of Theorem 5.8 shows

that q ′ = 2 and hence q = 2. But for p = 1, q = 2, the above norm equivalence holds
on a commondense subset, hence Ḟ0

1,2(A) = Ḟ0
1,2(B) by the second part of Lemma5.2.

Now Theorem 5.11 implies that A and B need to be equivalent, a contradiction. ��
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Appendix A: Miscellaneous results

This section contains two results used in the proofs of the main theorems. The most
important such result is the following convolution relation, which is [24, Proposition
in Section 1.5.1] with the implied constant written out explicitly. A proof can also be
found in [26, Theorem 3.4].

Proposition A.1 ([24]) Let K1, K2 ⊆ R
d be compact and p ∈ (0, 1]. If f , ψ ∈ S(Rd)

satisfy supp ̂ψ ⊆ K1 and supp ̂f ⊆ K2, then the following quasi-norm estimate holds:

‖ f ∗ ψ‖L p ≤ [m (K1 − K2)]
1
p −1‖ f ‖L p‖ψ‖L p ,

where m (K1 − K2) denotes the Lebesgue measure of K1 − K2 := {u − v : u ∈
K1, v ∈ K2}.
Corollary A.2 Let A ∈ GL(d, R) be expansive, let K ⊆ R

d be compact, and let
N ∈ N and p ∈ (0, 1). Then there exists a constant C = C(A, K , N , p) > 0 with the
following property:

If f , g ∈ S(Rd) satisfy supp ̂f , supp ĝ ⊆ ⋃N
�=−N (A∗)i+�K for some i ∈ Z, then

‖ f ∗ g‖L p ≤ C | det A|i
(

1
p −1

)

‖ f ‖L p‖g‖L p .

Proof By compactness of K ⊆ R
d , there exists R = R(A, K , N ) > 0 such that

N
⋃

�=−N

(A∗)�K ⊆ B R(0).
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Setting K1 := K2 := (A∗)i B R(0), it follows that supp ̂f ⊆ K1, supp ĝ ⊆ K2, and

m (K1 − K2) ≤ m
(

(A∗)i B2R(0)
)

= | det A|i · m (

B2R(0)
)

.

Hence, an application of Proposition A.1 easily yields the claim. ��
The second result is the following technical estimate.

Lemma A.3 Let A ∈ GL(d, R) be expansive, let M > 0, N ∈ N, and Q ⊆ R
d

be bounded. Further, let ϕ, φ as in Sect.5.1. Then there exists a constant C =
C(d, M, N , Q, φ, ϕ, A) > 0 with the following property:

If i, � ∈ Z and δ > 0 are such that |i − �| ≤ N and Bδ(η) ⊆ (A∗)�Q for some
η ∈ R

d , then

(|φδ| ∗ |ϕi |
)

(x) ≤ Cδd(1 + |δx |)−M

holds for all x ∈ R
d .

Proof Let R = R(Q) > 0 be such that Q ⊆ BR(0). Then

Bδ(0) ⊆ Bδ(η) − Bδ(η) ⊆ (A∗)�Q − (A∗)�Q ⊆ (A∗)� B2R(0),

and thus (A∗)−� B1(0) ⊆ B2R/δ(0), so that ‖(A∗)−�‖ ≤ 2R/δ. Therefore,

‖A−i‖ = ‖(A∗)−i‖ = ‖(A∗)−�(A∗)�−i‖ �A,N ‖(A∗)−�‖ ≤ 2R/δ,

where it is used that |i − �| ≤ N . Thus, given any y ∈ R
d , it follows that |δy| ≤

C1 |Ai y| for a certain constant C1 = C1(A, N , Q) ≥ 1. This implies, for arbitrary
x, y ∈ R

d , that

1 + |δx | ≤ (1 + |δ(x − y)|)(C1 + |δy|) ≤ C1(1 + |δ(x − y)|)(1 + |Ai y|).

By rearranging, this shows (1+ |δ(x − y)|)−M ≤ C M
1 (1+ |δx |)−M (1+ |Ai y|)M for

all x, y ∈ R
d .

Next, since φ, ϕ ∈ S(Rd), there exists C2 = C2(φ, ϕ, M, d) > 0 such that

|φ(x)| ≤ C2(1 + |x |)−M and |ϕ(x)| ≤ C2(1 + |x |)−(M+d+1)

for all x ∈ R
d . Hence,

(|φδ| ∗ |ϕi |
)

(x) ≤ δd | det A|i
∫

Rd
|φ(δ(x − y))||ϕ(Ai y)| dy

≤ C2
2 δd | det Ai |

∫

Rd
(1 + |δ(x − y)|)−M (1 + |Ai y|)−(M+d+1) dy

≤ C M
1 C2

2 δd (1 + |δx |)−M
∫

Rd
| det Ai |(1 + |Ai y|)−(d+1) dy
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= C M
1 C2

2 δd(1 + |δx |)−M
∫

Rd
(1 + |z|)−(d+1) dz.

This easily implies the claim of the lemma. ��

Appendix B: Equivalent norm for Ḟ01,∞(A)

This section provides a dual characterization for the norm of Ḟ0
1,∞(A), which is used in

the proof of Theorem 5.13. Its proof hinges on associated Triebel–Lizorkin sequence
spaces for which we recall the basic objects first.

Let A ∈ GL(d, R) be an expansive matrix and letDA be the collection of all dilated
cubes

DA = {

D = Ai ([0, 1]d + k) : i ∈ Z, k ∈ Z
d}

associated to A. The scale of a dilated cube D = Ai ([0, 1]d + k) ∈ DA is defined
as scale(D) = i ; alternatively, scale(D) = log| det A| m(D). The tent over D ∈ DA is
defined as

T (D) := {

D′ ∈ DA : m(D′ ∩ D) > 0 and scale(D′) ≤ scale(D)
}

.

The following lemma provides a convenient cover for the union of elements of a tent
and will be used in two proofs below.

Lemma B.1 There exists N = N (A, d) ∈ N such that for all D ∈ DA, we have

⋃

D′∈T (D)

D′ ⊆
⋃

n∈Zd

|n|≤N

(D + Ascale(D)n).

Proof First, let D′ = Ai ([0, 1]d + k) ∈ DA with i ≤ 0. Then

diam(D′) := max
z1,z2∈D′ |z1 − z2| = max

x1,x2∈[0,1]d
|Ai (x1 − x2)| ≤ Cλi−

√
d, (B.1)

where the inequality used that |Ai x | ≤ Cλi−|x | for all x ∈ R
d , see, e.g., [2, Equations

(2.1) and (2.2)]. Since λ− > 1, we can choose R > 0 such that R > Cλi−
√

d for
all i ≤ 0. Then, for arbitrary D′ ∈ T ([0, 1]d), it follows that D′ ∩ [0, 1]d �= ∅, and
hence dist(x, [0, 1]d) < R for all x ∈ D′, so that D′ ⊆ [0, 1]d + BR(0). Therefore,

⋃

D′∈T ([0,1]d )

D′ ⊆ [0, 1]d + BR(0) ⊆
⋃

n∈Zd

|n|≤N

([0, 1]d + n) (B.2)

for some N = N (A, d) > 0.
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Second, if D′ = Ai ([0, 1]d + k) ∈ T ([0, 1]d + �) for some � ∈ Z
d , then D′ ∩

([0, 1]d + �) �= ∅ implies that dist(x, [0, 1]d + �) ≤ diam(D′) < R for all x ∈ D′
by the arguments following (B.1). Therefore, by Eq. (B.2),

⋃

D′∈T ([0,1]d+�)

D′ ⊆ [0, 1]d + BR(0) + � ⊆
⋃

n∈Zd

|n|≤N

([0, 1]d + � + n). (B.3)

At last, let D = A j ([0, 1]d + �) ∈ DA be arbitrary. Then D′ = Ai ([0, 1]d + k) ∈
T (D) means m(D′ ∩ D) > 0 and i ≤ j by definition of T (D). This is clearly
equivalent to

| det A| jm
(

Ai− j ([0, 1]d + k) ∩ [0, 1d ] + �
)

= m
(

A j (Ai− j [0, 1]d + k) ∩ A j ([0, 1]d + �)
)

> 0

and i − j ≤ 0. Thus, D′ = Ai ([0, 1]d + k) ∈ T (D) if and only if

A− j D′ = Ai− j ([0, 1]d + k) ∈ T ([0, 1]d + �).

Using Eq. (B.3), it follows therefore that

⋃

D′∈T (D)

D′ ⊆ A j
(

⋃

n∈Zd

|n|≤N

([0, 1]d + � + n)

)

=
⋃

n∈Zd

|n|≤N

(D + A j n),

as required. ��
The Triebel–Lizorkin sequence spaces ḟ01,∞(A) and ḟ0∞,1(A) are defined as the

collections of all complex-valued sequences c = (cD)D∈DA satisfying

‖c‖ḟ01,∞(A) :=
∫

Rd
sup

D∈DA

m(D)−1/2|cD|1D(x) dx < ∞

and

‖c‖ḟ0∞,1(A) := sup
D′∈DA

1

m(D′)

∫

D′

∑

D∈DA
scale(D)≤scale(D′)

m(D)−1/2|cD|1D(x) dx < ∞,

(B.4)

respectively.
The following simple characterization of f0∞,1(A) will be used below. This equiva-

lence is already claimed in [4, Remark 3.5], but a short proof is included for the sake
of completeness.
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Lemma B.2 For all complex-valued sequences c = (cD)D∈DA ,

‖c‖ḟ0∞,1(A) � sup
D′∈DA

1

m(D′)
∑

D∈T (D′)
m(D)1/2|cD|, (B.5)

where T (D′) denotes the tent over D′ ∈ DA.

Proof First, note that interchanging the sum and integral in Eq. (B.4) yields that

‖c‖ḟ0∞,1(A) = sup
D′∈DA

1

m(D′)
∑

D∈DA
scale(D)≤scale(D′)

m(D)−1/2|cD|m(D ∩ D′), (B.6)

which easily implies the claimed inequality � in Eq. (B.5).
For the reverse inequality, let D′ = A j ([0, 1]d + �) ∈ DA be arbitrary. Then an

application of Lemma B.1 yields N = N (A, d) ∈ N such that

TD′ := 1

m(D′)
∑

D∈T (D′)
|cD|m(D)−1/2m(D)

= 1

m(D′)
∑

D∈T (D′)
|cD|m(D)−1/2

∑

n∈Zd

|n|≤N

m
(

D ∩ A j ([0, 1]d + � + n)
)

≤ 1

m(D′)
∑

D∈DA
scale(D)≤ j

∑

n∈Zd

|n|≤N

|cD|m(D)−1/2m
(

D ∩ A j ([0, 1]d + � + n)
)

=
∑

n∈Zd

|n|≤N

1

| det A| j

∑

D∈DA
scale(D)≤ j

|cD|m(D)−1/2m
(

D ∩ A j ([0, 1]d + � + n)
)

.

Note that j = scale(A j ([0, 1]d +�+n)) = scale(D′). Therefore, taking the supremum
over all D′ = A j ([0, 1]d + �) for j ∈ Z and � ∈ Z

d gives that

sup
D′∈DA

TD′ ≤
∑

n∈Zd

|n|≤N

sup
j∈Z,�∈Zd

1

| det A| j

∑

D∈DA
scale(D)≤ j

|cD |m(D)−1/2m
(

D ∩ A j ([0, 1]d + � + n)
)

�d,N sup
D′∈DA

1

m(D′)
∑

D∈DA
scale(D)≤scale(D′)

|cD |m(D)−1/2m(D ∩ D′),

which completes the proof. ��
For obtaining the actual dual characterization of the spaces ḟ01,∞(A) and ḟ0∞,1(A),

the following lemma will be used. It is [17, Proposition 1.4] applied to the special case
of dilated cubes; see also [25, Theorem 4] for the case of isotropic dilations.
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Lemma B.3 ([17]) Let a = (aD)D∈DA be a fixed but arbitrary sequence of non-
negative reals. Then for every C > 0, the following assertions are equivalent:

(i) The sequence a = (aD)D∈DA is a C-Carleson sequence, i.e.,

∑

D∈D′
A

aD ≤ Cm

(

⋃

D∈D′
A

D

)

(B.7)

for every subcollection D′
A of the dilated cubes DA.

(ii) For every sequence b = (bD)D∈DA of non-negative reals, the estimate

∑

D∈DA

aDbD ≤ C
∫

Rd
sup

D∈DA

bD1D(x) dx

holds.

The significance of a Carleson sequence (B.7) for the purpose of the present paper
is that it characterizes membership of ḟ0∞,1(A). Although this fact is well-known
for isotropic dilations (cf. [17, 25]), the anisotropic version requires some additional
arguments due to the fact that dilated cubes are not necessarily nested. The details are
provided in the next lemma.

Lemma B.4 Let A ∈ GL(d, R) be expansive and let (cD)D∈DA be a complex-valued
sequence. Then c ∈ ḟ0∞,1(A) if, and only if, there exists C > 0 such that

∑

D∈D′
A

|cD|m(D)1/2 ≤ Cm

(

⋃

D∈D′
A

D

)

(B.8)

for every subcollection D′
A ⊆ DA. Moreover,

‖c‖ḟ0∞,1(A) � inf

{

C > 0 :
∑

D∈D′
A

|cD|m(D)1/2 ≤ Cm

(

⋃

D∈D′
A

D

)

for all D′
A ⊆ DA

}

,

(B.9)
with implicit constant independent of c.

Proof First, it will be shown that if (cD)D∈DA satisfies (B.8), then (cD)D∈DA ∈
ḟ0∞,1(A). For this, let D′ ∈ DA be arbitrary. Then for any C > 0 satisfying (B.8),
we have, by Lemma B.1,

∑

D∈T (D′)
|cD |m(D)1/2 ≤ Cm

(

⋃

D∈T (D′)
D

)

≤ Cm

(

⋃

n∈Zd

|n|≤N

D′ + Ascale(D′)n
)

� Cm(D′),

with implicit constant independent of D′. Hence,

1

m(D′)
∑

D∈T (D′)
|cD|m(D)1/2 � C,
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which yields ‖c‖ḟ0∞,1(A) � C by Lemma B.2. This also implies � in Eq. (B.9).

Conversely, let D′
A ⊆ DA be any subcollection. Note first that if, for all N ∈ N,

there exists some D′ ∈ D′
A with scale(D′) > N , then

m

(

⋃

D∈D′
A

D

)

≥ m(D′) = | det A|scale(D′) > | det A|N .

Hence, m
( ⋃

D∈D′
A

D
) = ∞ and (B.8) is trivially satisfied. Therefore, suppose

throughout the remainder of the proof that there exists N ∈ N such that scale(D) ≤ N
for all D ∈ D′

A. Set j1 := max{scale(D) : D ∈ D′
A} ≤ N , and define

D′′
1 := {D ∈ D′

A : scale(D) = j1}.

Furthermore, set (D′′
1)

c := {D ∈ D′
A : D /∈ T (D′) for any D′ ∈ D′′

1}. Observe that
the elements ofD′′

1 are pairwise disjoint up tomeasure zero.Moreover, by construction,
the unions

⋃

D′∈D′′
1

D′ and
⋃

D∈(D′′
1 )c D are disjoint up measure zero and D′

A ⊆
⋃

D∈D′′
1
T (D) ∪ (D′′

1)
c.

For � ≥ 2, we define D′′
� inductively as follows: Set j� := max{scale(D) : D ∈

(D′′
�−1)

c},

D′′
� := {D ∈ (D′′

�−1)
c : scale(D) = j�},

and (D′′
� )c := {D ∈ (D′′

�−1)
c : D /∈ T (D′) for any D′ ∈ D′′

� }. Then, by construction,
the dilated cubes in D′′

A := ⋃∞
�=1D′′

� are pairwise disjoint up to measure zero and

D′
A ⊆

∞
⋃

�=1

⋃

D∈D′′
�

T (D) =
⋃

D∈D′′
A

T (D).

Based on this construction, a direct calculation using Lemma B.2 yields

∑

D∈D′
A

|cD|m(D)1/2 ≤
∑

D′∈D′′
A

∑

D∈T (D′)
|cD|m(D)1/2 � ‖c‖ḟ0∞,1(A)

∑

D′∈D′′
A

m(D′)

= ‖c‖ḟ0∞,1(A) m

(

⋃

D′∈D′′
A

D′
)

≤ ‖c‖ḟ0∞,1(A) m

(

⋃

D∈D′
A

D

)

,

where the last inequality used that D′′
A ⊆ D′

A. Hence ‖c‖ḟ0∞,1(A) satisfies Eq. (B.8),

which also implies the inequality � in (B.9). ��

A combination of Lemmata B.3 and B.4 yields the following dual characterization.
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Corollary B.5 Let A ∈ GL(d, R) be expansive. Then, for all c ∈ ḟ01,∞(A) and c′ ∈
ḟ0∞,1(A),

|〈c, c′〉| :=
∣

∣

∣

∣

∑

D∈DA

cDc′
D

∣

∣

∣

∣

� ‖c‖ḟ01,∞(A)‖c′‖ḟ0∞,1(A). (B.10)

Moreover, it holds that

‖c‖ḟ01,∞(A) � sup
{|〈c, c′〉| : c′ ∈ ḟ0∞,1(A), ‖c′‖ḟ0∞,1(A) ≤ 1

}

. (B.11)

Proof For c′ ∈ ḟ0∞,1(A) and c ∈ ḟ01,∞(A), define sequences by aD := |c′
D|m(D)1/2

and bD := |cD|m(D)−1/2 for D ∈ DA. Then, by Lemma B.4, we see that (aD)D∈DA

is a C-Carleson sequence, where C � ‖c′‖ḟ0∞,1(A). By Lemma B.3, this implies

∑

D∈DA

|cDc′
D| =

∑

D∈DA

aDbD ≤ C
∫

Rd
sup

D∈DA

bD1D(x) dx � ‖c‖ḟ01,∞(A)‖c′‖ḟ0∞,1(A),

showing Eq. (B.10).
To obtain the dual characterization (B.11), we follow [28, Section 69] and define

the associate norms of ‖ · ‖ḟ01,∞ by ‖ · ‖(0) := ‖ · ‖ḟ01,∞ and

‖c‖(n) := sup

{

∑

D∈D′
A

|cDc′
D | : ‖c′‖(n−1) ≤ 1

}

= sup{|〈c, c′〉| : ‖c′‖(n−1) ≤ 1}, n ≥ 1,

where the equality can be shown using the solidity of the associate norms and choosing
sequences c′ with appropriate (complex) signs; see also [28, Section 69, Theorem 1]
for details. In the following, we consider ‖ · ‖(1) and ‖ · ‖(2) in more detail. Starting
with ‖ · ‖(1), we interpret the supremum as an infimum over all upper bounds. Then
the characterizations of Lemma B.3 and B.4 give

‖c‖(1) = sup

{

∑

D∈D′
A

|cDc′
D | : ‖c′‖ḟ01,∞ ≤ 1

}

= inf

{

C > 0 :
∑

D∈D′
A

|cDc′
D | ≤ C‖c′‖ḟ01,∞ for all c′ ∈ ḟ01,∞(A)

}

= inf

{

C > 0 :
∑

D∈D′
A

|cD |m(D)1/2 ≤ Cm

(

⋃

D∈D′
A

D

)

for all D′
A ⊆ DA

}

� ‖c‖ḟ0∞,1(A)
.

The Lorentz-Luxemburg duality theorem for normed Köthe spaces (see, e.g., [28,
Section 71, Theorem 1]) states that ‖ · ‖ḟ01,∞ = ‖ · ‖(2) provided ‖ · ‖ḟ01,∞ satisfies the
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Fatou property. Since the latter is a straightforward consequence of Fatou’s lemma
and [28, Section 65, Theorem 3]), we obtain

‖c‖ḟ01,∞(A) = ‖c‖(2) = sup
{|〈c, c′〉| : ‖c′‖(1) ≤ 1

} � sup
{|〈c, c′〉| : ‖c′‖ḟ0∞,1(A) ≤ 1

}

for arbitrary c ∈ ḟ01,∞(A). This completes the proof. ��

The final result of this section is the desired dual norm characterization of Ḟ0
1,∞(A).

Proposition B.6 Let A ∈ GL(d, R) be expansive. Then, for all g ∈ S0(R
d),

‖g‖Ḟ01,∞(A) � sup
f ∈Ḟ0∞,1(A)

‖ f ‖Ḟ0∞,1(A)
≤1

|〈 f , g〉|.

Proof By [4, Theorem 3.12], there exists a function ψ ∈ S(Rd) with compact Fourier
support such that the operator Cψ f = (〈 f , ψD〉)D∈D is bounded from Ḟ0

p,q(A) into

ḟ0p,q(A) and furthermore the operator Dψc = ∑

D∈D cDψD is bounded from ḟ0p,q(A)

into Ḟ0
p,q(A) for all p, q ∈ (0,∞]. Moreover, their composition Dψ ◦ Cψ is the

identity on Ḟ0
p,q(A). Here, for D = A j ([0, 1]d + k), the function ψD is defined as

ψD(x) = | det A|− j/2ψ(A− j x − k); see [4, Equation (2.9)].
Next, [6, Lemma 2.8] implies for all f ∈ Ḟ0∞,1(A) ⊆ S ′/P ∼= S ′

0(R
d) and g ∈

S0(R
d) ⊆ Ḟ0

1,∞(A) that

〈 f , g〉 =
∑

D∈DA

〈 f , ψD〉〈ψD, g〉 =
∑

D∈DA

〈 f , ψD〉〈g, ψD〉 = 〈

Cψ f ,Cψ g〉.

Combining both facts with the estimate (B.10), it follows that

|〈 f , g〉| = |〈Cψ f ,Cψ g〉| � ‖Cψ f ‖ḟ0∞,1(A)‖Cψ g‖ḟ01,∞(A) � ‖ f ‖Ḟ0∞,1(A)‖g‖Ḟ01,∞(A).

For the reverse inequality, first note that sinceDψ ◦Cψ is the identity on Ḟ0
1,∞(A),

and since these operators are bounded, we have

‖g‖Ḟ01,∞(A) = ‖DψCψ g‖Ḟ01,∞(A) � ‖Cψ g‖ḟ01,∞(A) � ‖g‖Ḟ01,∞(A)

and thus ‖Cψ g‖ḟ01,∞(A) � ‖g‖Ḟ01,∞(A). Next, note that by Corollary B.5, there exists a

sequence c′ ∈ ḟ0∞,1(A) with ‖c′‖ḟ0∞,1(A) = 1 such that

|〈Cψ g, c′〉| � ‖Cψ g‖ḟ01,∞(A).
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Now, setting f := Dψc′ ∈ Ḟ0∞,1(A), note that

〈 f , g〉 = 〈Dψc′, g〉 =
∑

D∈DA

c′
D 〈ψD, g〉 =

∑

D∈DA

c′
D (Cψ g)D = 〈c′,Cψ g〉.

It follows that

|〈 f , g〉| = |〈c′,Cψ g〉| = |〈Cψ g, c′〉| � ‖Cψ g‖ḟ01,∞(A) � ‖g‖Ḟ01,∞(A).

Since Dψ : ḟ0∞,1(A) → Ḟ0∞,1(A) is bounded, we have ‖ f ‖Ḟ0∞,1(A) ≤ C‖c′‖ḟ0∞,1(A) ≤
C . Hence, normalizing f by C > 0 if necessary yields that

‖g‖Ḟ01,∞(A) � sup
f ∈Ḟ0∞,1(A)

‖ f ‖Ḟ0∞,1(A)
≤1

|〈 f , g〉|,

which finishes the proof. ��
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