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A B S T R A C T

The use of sensitivity analysis is essential in model development for the purposes of calibration, verification,
factor prioritization, and mechanism reduction. While most contributions to sensitivity methods focus on the
average model response, this paper proposes a new sensitivity method focusing on the extreme response
and structural limit states, which combines an extreme-oriented sensitivity method with polynomial chaos
expansion. This enables engineers to perform sensitivity analysis near given limit states and visualize the
relevance of input factors to different design criteria and corresponding thresholds. The polynomial chaos
expansion is used to approximate the model output and alleviate the computational cost in sensitivity analysis,
which features sparsity and adaptivity to enhance efficiency. The accuracy and efficiency of the method are
verified in a truss structure, which is then illustrated on a dynamic train–track–bridge system. The role of
the input factors in response variability is clarified, which differs in terms of the design criteria chosen for
sensitivity analysis. The method incorporates multi-scenarios and can thus be useful to support decision-making
in design and management of engineering structures.
1. Introduction

Sensitivity analysis (SA) provides an understanding of how a given
model responds to changes in its input factors (i.e., variables and pa-
rameters), which allows for prioritizing the factors, reducing the model
dimensionality, calibrating the model, and evaluating the consistency
between the model input and output. Based on the factor space of inter-
est, sensitivity methods can be classified into two categories: local and
global approaches. Local measures assess the impact of variations in
input factors near their nominal values, while global methods evaluate
model output sensitivity to input factors over their entire domain of
variation.

Various global sensitivity methods have been proposed, including
variance-based methods (e.g., the Sobol method [1] and the Fourier
amplitude sensitivity (FAST) method [2]), regression-based methods
(e.g., standardized regression coefficient [3]), moment-independent
methods (e.g., Borgonovo indices [4]), among others. This paper fo-
cuses on the variance-based approach, which leverages the functional
decomposition of the variance measuring the contribution of each
factor or their combinations to the output variance. Sobol’s indices [1]
and related total-effect indices are commonly used variance-based mea-
sures. These measures can be computed through sampling-based meth-
ods [5] or metamodels [6,7]. The sampling-based methods can come

∗ Corresponding author.
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at a significant computational cost due to the large number of function
evaluations required, which may render the methods infeasible for
computationally demanding models.

Metamodels have received much attention for the computation
of variance-based measures due to their potential to alleviate com-
putational costs. Specifically, polynomial chaos expansion (PCE) and
its variants have been used to derive Sobol’s indices through post-
processing of model coefficients. This approach is originally shown
in [6], using the coefficients of generalized PCE [8], which is ex-
tended using sparse PCE [9,10] and partial least squares-driven PCE
(PLS-PCE) [7] to deal with high-dimensional problems. Furthermore,
advances have been made to account for the dependence in input
factors [11], generalized modeling of both aleatory and epistemic
uncertainty in input factors [12], and derivative-based sensitivity mea-
sures for efficient screening of unimportant factors [13]. These studies
have demonstrated PCE to be a versatile and efficient tool for sensitivity
analysis.

Variance-based sensitivity measures aim to evaluate the influence
of input factors on the variance of a quantity of interest (QoI). Most
often, the QoI refers to the average output of a model, as used in
the Sobol indices and their extensions. These indices, therefore, are
designed to capture the mean behavior of systems. However, they may
vailable online 15 November 2023
951-8320/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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not be sufficient for analyzing safety-critical structures such as railway
tracks.

To address this issue, this paper focuses on the extreme values of
the structural response. Here, extreme values are the maximum and
minimum levels the model output can achieve. Response refers to the
utput of a model that characterizes the structural behavior, which
an be either static or dynamic. The condition of a structure can be
escribed by a group of limit states, each associated with design criteria
or indicators) and thresholds. Failure occurs if the response quantity
xceeds a given threshold.

This concept is closely linked to reliability analysis, making
eliability-oriented sensitivity analysis (ROSA) the natural way to per-
orm SA for safety-critical structures. ROSA is concerned with evalu-
ting the sensitivity of the output of reliability analysis to the model
nputs, where the part of the output space that yields failure is of inter-
st (cf. [14–16]). These studies aim to identify critical input factors with
ore potential to reduce the probability of failure, instead of quantify-

ng the influence of input factors on output extreme values. In parallel,
ome work directs sensitivity evaluation to quantile-based [17] and
igh-order measures (e.g., skewness and kurtosis decomposition [18]),
hich may provide an indication about input factors that drive the
utput towards its extreme values. However, they do not directly
ddress sensitivity analysis near output extreme values.

Limited research has focused on sensitivity methods for extreme
alues. In [19], extremum sensitivities are computed by constraining
he input distribution to regions leading to the output extremum. Monte
arlo filtering is used to model the conditional distribution, which is
sampling-based approach that partitions model realizations within

r outside targeted regions in the input space. Another approach is
ptimization-based [20]. It involves discretizing an input factor within
ts range and searching for the output extremum at each discrete point
y fixing the target factor while perturbing the rest (the so-called A-
AT - all minus one at a time). Then, a curve can be defined by the
xtreme values computed from all discrete points, and the variation of
his curve is evaluated to quantify the main effect of the target factor
n the output extreme values.

In this paper, we aim to advance the field of extreme-oriented SA by
ntroducing a new sensitivity method called the threshold-based sensitiv-
ty method. This method allows for evaluating the model sensitivity near
tructural limit states by generalizing the optimization-based sensitivity
ethod [20] to a wider range of targeted portions of the output space,

rom extreme values to thresholds. The threshold-based method offers
lexibility by allowing the evaluation of multiple decision thresholds
n SA. It also enables visualizing the structural performance (failure or
on-failure) around limit states in the input space, highlighting critical
egions of the input space that may lead to system failure under a
iven threshold. Additionally, we investigate the performance of PCE
n extreme-based SA. While the use of PCE for Sobol’s indices has
een relatively well-studied, research on its effectiveness in extreme-
ased cases remains scarce. Therefore, we compare the performance
f PCE with other commonly used metamodels, such as Kriging and
C-Kriging, to provide insights into its suitability for these types of
nalyses.

Further, we aim to apply this methodology in vehicle–structure
nteraction (VSI) systems, which are safety-critical and highly relevant
o reliability-based design (cf. [21]). Assessing sensitivity near the ex-
remes can provide valuable insights for decision-making in the design
nd management of such systems. A common approach for modeling
SI systems involves coupling a multibody (vehicle) system with a
tructure represented by a finite element (FE) formulation. This formu-
ation involves numerous input factors related to geometry and material
roperties, which are inherently random due to material variability
nd manufacturing-induced tolerances, making it challenging to select
ppropriate values for these factors.

In most cases, the sensitivity of vehicle/structure responses to input
2

actors is assessed using the sampling method, known as One At a
ime (OAT) analysis. OAT implies the SA is approached by perturbing
ne single factor at each time, while the rest are fixed in a given
alue. This method is computationally efficient and well-suited for
A of VSI problems since the models involved can easily become
omputationally intensive. However, it may not provide reliable results
hen nonlinear terms are present in the model [22,23], which, in the
SI models, can be attributed to factors such as wheel–rail contact [24]
nd railpads [25].

A few studies have applied global sensitivity methods to evaluate
SI systems. Xu et al. [26] evaluate a nonlinear vehicle–track model

o identify the factors dominating the system dynamics, with special
ttention on track irregularities. Later, Wan et al. [22] performed a
ynamic global SA in a time-varying train–track–bridge system, com-
aring a Kriging-based approach against a Monte Carlo simulation
cheme. Recently, sensitivity and uncertainty analyses were performed
n tandem [27,28] to analyze the uncertainty propagation in a train–
rack–bridge system and identify factors that are most responsible for
he response uncertainty. However, these studies only directed sensi-
ivity analyses to the average system response using the Sobol method,
hile overlooking the part of the output space that yields failure.

The rest of the paper is organized as follows. Section 2 presents the
CE-based sensitivity method for extreme problems, including the A-
AT method with two formulations (Section 2.1), the basics of polyno-
ial chaos expansion (Section 2.2), and the extension to the threshold-

ased sensitivity method (Section 2.3). The methodology is verified in
truss structure (Section 3) and further applied to a dynamic train–

rack–bridge system to demonstrate the applicability of the proposed
ethod (Section 4). Section 5 discusses the sensitivity results along
ith evaluating the predictive performance of PCE metamodels and the

mpact of design thresholds on the sensitivity results. Final remarks and
uture research lines are drawn in Section 6.

. Methodology

.1. Extreme-oriented sensitivity analysis

In this section, the A-1AT sensitivity method with two strategies to
ormulate the extreme problems are presented: the original problem
ormulation in [20] is provided in Section 2.1.1 for readability and
ts extension to threshold-based sensitivity analysis is presented in
ection 2.1.2.

.1.1. A-1AT upon the output extrema
Let us consider a system whose behavior is described by 𝑔(⋅), where

set of input factors 𝑿 =
{

𝑋1, 𝑋2,… , 𝑋𝑑
}

∈ R𝑑 yields a scalar output
such that

= 𝑔 (𝑿) . (1)

Each input factor is defined within an interval 𝑋𝑖 ∈
[

𝑋𝑙
𝑖 , 𝑋

𝑢
𝑖
]

. First,
hen a factor 𝑋𝑖 is fixed at a specific point 𝑥0𝑖 , the model defined in
q. (1) can reach an extreme value (either maximum or minimum) by
arying the remaining factors within their corresponding intervals. This
xtreme value represents an output extremum of the reduced (i.e., 𝑑−1)
imensional space, which can be denoted as 𝑌𝑖. Then, when considering
he entire range of the factor 𝑋𝑖, we can determine a curve formed by
he output extrema of the 𝑑 − 1 dimensional space (see Fig. A.12 for
n illustrative example). The sensitivity of this curve at point 𝑥0𝑖 can be
efined in terms of finite differences, i.e.,

𝐸𝑥𝑡
𝑖

(

𝑥0𝑖 ;𝑋∼𝑖
)

≃
𝛥𝑌𝑖

(

𝑥0𝑖 , 𝑋∼𝑖
)

𝛥𝑥𝑖
, 𝑥0𝑖 ∈

[

𝑋𝑙
𝑖 , 𝑋

𝑢
𝑖
]

, ∀𝑋𝑖. (2)

The procedure of evaluating the sensitivity of 𝑌𝑖 to 𝑋𝑖 (Eq. (2)) is
provided in the following steps.

tep a. Discretize the factor 𝑋𝑖 in 𝑛𝑖 points within its range
[

𝑋𝑙
𝑖 , 𝑋

𝑢
𝑖
]

;
denote each discrete point of 𝑋 by 𝑥 , 𝑗 = 1,… , 𝑛 .
𝑖 𝑖,𝑗 𝑖
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tep b. For a discrete point 𝑥𝑖,𝑗 , the extreme value of Eq. (1) is obtained
by fixing 𝑋𝑖 at 𝑥𝑖,𝑗 while varying the remaining factors 𝑋∼𝑖
in their corresponding intervals. This poses an optimization
problem for each discrete value of 𝑋𝑖, which is defined by

min
𝐗∈[𝐗𝐥 ,𝐗𝐮]

𝑔 (𝐗)

s.t. 𝑋𝑖 =
{

𝑥𝑖,𝑗
}

, 𝑗 = 1,… , 𝑛𝑖,

𝐗∼𝑖 ∈
[

𝐗𝑙
∼𝑖,𝐗

𝑢
∼𝑖
]

.

(3)

Step c. Save the optimal (i.e., extreme) value at each discrete value of
𝑋𝑖.

tep d. Once the optimal value is determined for all discrete values
of 𝑋𝑖, the curve formed by the output extrema of the 𝑑 − 1
dimensional space, 𝑌𝑖, can be determined and the sensitivity of
the curve is calculated according to Eq. (2).

Specifically, in Step a, different types of discretization can be se-
ected for the input factors, such as equal-, log-, or randomly spaced
iscretization. The degrees of discretization, meaning the number of
iscrete points, can also vary for each input factor. Since the optimal
earch is defined for a specific factor (𝑋𝑖) at a time, the search process is
ndependent of the discretization strategy for the remaining non-fixed
actors (𝐗∼𝑖). The reader is referred to [20] for further details about the
iscretization process.

The optimization problem in Eq. (3) can be solved using either
radient-based methods or (meta)heuristics. As the method is
ptimization-based and our interest here is either the maximum or
inimum, the term optimal value also refers to extreme value in Steps
and d. It is also worth noting that we consider the minimum value
y default to conform to the standard form of defining an optimization
roblem, as shown in Eq. (3). A maximization problem can be treated
y negating the objective function 𝑔 (𝐗).

Further, the following importance measure [20] is defined to rank
he input factors according to their contribution to the total variance
ntroduced by the individual factors to the output extreme values,

𝐸𝑥𝑡
𝑖 =

Var𝑋𝑖

(

𝑌 |𝑥𝑖
)

∑

𝑖 Var𝑋𝑖

(

𝑌 |𝑥𝑖
) , (4)

where Var𝑋𝑖

(

𝑌 |𝑥𝑖
)

represents the variance of the output extreme val-
ues associated with factor 𝑋𝑖.

∑

𝑖 Var𝑋𝑖

(

𝑌 |𝑥𝑖
)

represents the total
variance introduced by the individual factors to the output extreme
values.

As mentioned earlier, the input factors can be discretized either
uniformly or non-uniformly. If non-uniform discretization is used, the
variance in Eq. (4) must be replaced by the weighted variance, i.e.,

Var𝑋𝑖

(

𝑌 |𝑥𝑖
)

=
𝑛𝑖
∑

𝑗=1

𝑤𝑗
∑𝑛𝑖

𝑗=1 𝑤𝑗

(

𝑌𝑖,𝑗 − �̄�
)2 , �̄� =

𝑛𝑖
∑

𝑗=1

𝑤𝑗
∑𝑛𝑖

𝑗=1 𝑤𝑗
𝑌𝑖,𝑗 , (5)

where 𝑌𝑖,𝑗 is the output extremum at the discrete point 𝑥𝑖,𝑗 , and the
weight 𝑤𝑗 is given by

𝑤𝑗 =
1
2
(

𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗−1
)

, ∀𝑗 ∈ [2, 𝑛𝑖 − 1], (6)

and for the first point (𝑗 = 1) of factor 𝑋𝑖, we have 𝑤1 =
1
2

(

𝑥𝑖,2 − 𝑥𝑖,1
)

.
or the last point (𝑗 = 𝑛𝑖) of factor 𝑋𝑖, we have 𝑤𝑛𝑖 =

1
2

(

𝑥𝑖,𝑛𝑖 − 𝑥𝑖,𝑛𝑖−1
)

.

.1.2. A-1AT upon the deviation between the output and given threshold
A limit state refers to a state of impending failure, beyond which

structure can no longer perform its intended function satisfactorily,
n terms of either safety or serviceability. The basic idea of the limit-
tate design approach is to identify all possible modes of failure and
etermine acceptable levels of safety against the occurrence of each
imit state. From this, one limit state function can be evaluated by
3

𝑘 (𝐗) = 𝑔 (𝐗) − 𝑡𝑘 (7)
where 𝐺𝑘 (𝐗) denotes the limit state function of a structure; 𝑔 (𝐗)
describes the actual performance of the structure measured by a design
criterion, and 𝑡𝑘(𝑘 = 1,… , 𝜅) represents the 𝑘th allowable level (i.e., the
threshold) of the corresponding criterion, e.g., maximum allowable
displacement of a beam. 𝜅 denotes the number of decision thresholds
considered for a single criterion.

The sign of 𝐺𝑘 (𝐗) determines the structural reliability state, which
is defined as

• failing state if 𝐺𝑘 (𝐗) > 0;
• reliable state if 𝐺𝑘 (𝐗) < 0;
• limit state if 𝐺𝑘 (𝐗) = 0.

The structure needs to be checked for all groups of limit states to
ensure sufficient margins between the actual structural behavior and
given threshold. However, the determination of the structural state can
be significantly affected by the attitudes of decision-makers towards
the threshold levels. For example, ride comfort is relevant to structural
serviceability, which is associated with a group of evaluation indices
and rating scales (i.e., thresholds). The demand for traveling quality is
however very subjective, and the decision on which rating scale to be
included in the design process can influence the outcomes significantly,
which may also affect the sensitivity analysis result.

To circumvent this issue, we propose to frame the preferences of the
decision-makers into multiple decision thresholds, and the sensitivity of
the model output to each input factor is evaluated for each level. For
this purpose, the extreme problem is reformulated by modifying Step b
in Section 2.1.1 as follows.

min
𝐗∈[𝐗𝐥 ,𝐗𝐮]

𝛥 (𝐗) = min
𝐗∈[𝐗𝐥 ,𝐗𝐮]

(

𝑔 (𝐗) − 𝑡𝑘
)2

s.t. 𝑋𝑖 =
{

𝑥𝑖,𝑗
}

, 𝑗 = 1,… , 𝑛𝑖,

𝐗∼𝑖 ∈
[

𝐗𝑙
∼𝑖,𝐗

𝑢
∼𝑖
]

,

(8)

where 𝛥 (𝐗) represents the squared deviation of the model output from
a given threshold, that is, 𝛥 (𝐗) =

[

𝐺𝑘 (𝐗)
]2.

Recall that for a single design criterion, the output space is defined
by 𝑌 = 𝑔 (𝐗), the present sensitivity method essentially requires two
basic steps: (1) identify the surface of interest in 𝑌 , and (2) analyze the
sensitivity of that surface. In the first step, the surface can be charac-
terized either by the output extrema through optimization (Eq. (3)) or
by being related to a given threshold (Eq. (8)). If the surface related to
a threshold is of interest, the idea is to search for the model output
that approaches the reference threshold, and the goal is to identify
which input factors are critical in reaching that threshold, i.e., the
limit state of the structure. This process, which allows for analyzing
the sensitivity of the surface around the given threshold, is referred to
as threshold-based sensitivity.

An illustrative example of threshold-based sensitivity is shown in
Fig. 1. The figure depicts how changes in a single input factor 𝑋 ∈
[

𝑋𝑙 , 𝑋𝑢] affect the threshold-based response (calculated from Eq. (8))
near three different design thresholds (𝑡𝑘, 𝑘 = 1, 2, 3). Specifically, 𝑡1 is
easy to reach, 𝑡2 is a middle level, and 𝑡3 is extremely hard to achieve.
These thresholds correspond to Scenario 1, 2, and 3, respectively. The
vertical axis (𝑌 𝑘) represents the threshold-based response, which is
denoted by a solid line for each threshold level (the dotted line with
the same color). The value of 𝑌 𝑘 varies depending on whether the
maximum output exceeds the corresponding threshold. In other words,
it poses a binary classification problem, where (1) for solid lines that
fall below the corresponding threshold, the value of 𝑌 𝑘 represents the
actual maximum output of a system, indicating a reliable state; (2)
When a solid line remains stable at a given threshold, it suggests that
the maximum output has either reached or exceeded the threshold,
indicating the limit or failing state of the system. In such cases, the
value of 𝑌 𝑘 is determined by the threshold value.

Note that the term response is used in the context of threshold-based

SA, specifically referring to the threshold-based response, instead of
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Fig. 1. Illustrative example of threshold-based sensitivity. The figure shows three
scenarios: Scenario 1 (red lines) with threshold 𝑡1 (dotted) and threshold-based response
𝑌 1 (solid); Scenario 2 (blue lines) with threshold 𝑡2 (dotted) and threshold-based
response 𝑌 2 (solid); and Scenario 3 (green lines) with threshold 𝑡3 (dotted) and
threshold-based response 𝑌 3 (solid). In each scenario, the region above or below the
orresponding threshold indicates the failure or non-failure domain, respectively. 𝑌 2 is

equal to 𝑌 3 when 𝑋 ∈ [𝑋𝑙 , 𝑋𝑡2), as they both represent the maximum output within this
range, which is independent of the threshold values. Note: the figure is only illustrative.
See Section 5.3 for a detailed analysis of a large-scale numerical example.

the output used in the general context of SA. This distinction is made
because the threshold-based response is not exactly equivalent to the
model output. Its value depends on whether the system reaches the
failure threshold. Therefore, in this paper, the term response is used in
two specific contexts: (1) in structural engineering problems where it
refers to the reaction or behavior of a structure to the input it receives,
as mentioned in Section 1, and (2) in threshold-based SA where the
term threshold-based response is introduced to visualize the impact
of input factors on the model output near the thresholds, which is
elaborated in the following.

As shown in Fig. 1, in Scenario 1, the value of 𝑌 1 (the red solid line)
is constant at the level of 𝑡1, indicating that the current threshold 𝑡1 can
lways be reached for the factor 𝑋 over its range of definition,

[

𝑋𝑙 , 𝑋𝑢].
herefore, 𝑋 is not a critical factor that would impede reaching the
hreshold at 𝑡1. In Scenario 2, the response surface lies below 𝑡2 when
𝑋 ∈ [𝑋𝑙 , 𝑋𝑡2). This suggests that ensuring 𝑋 ∈ [𝑋𝑙 , 𝑋𝑡2) can create a
safe margin between the maximum output (the blue solid line) and the
threshold (the blue dotted line). However, when 𝑋 ∈ [𝑋𝑡2, 𝑋𝑢], the
imit state is (reached or) exceeded, resulting in (impending) system
ailure. Therefore, 𝑋 is critical in reaching the threshold 𝑡2 over its
ntire range of definition

[

𝑋𝑙 , 𝑋𝑢]. Herein, we see that the threshold-
ased SA allows us to visualize how the input factors affect the model
utput near the limit states, indicating areas of the input space that may
ead to undesirable outcomes, such as system failure. This knowledge
an be useful in decision-making and risk management for the design
nd maintenance of engineering structures.

If the threshold is sufficiently large at 𝑡3, the value of 𝑌 3 is deter-
ined by the maximum output of the system (the green solid line).
arying 𝑋 ∈

[

𝑋𝑙 , 𝑋𝑢] will not alter the system reliability state, as
here are sufficient margins between the maximum and 𝑡3. Note that
n this case, the problem is equivalent to maximizing 𝑔 (𝐗), and vice
ersa. This corresponds exactly to the original formulation in Eq. (3).
he threshold-based sensitivity calculated through Eq. (8) essentially
epresents an alternative way of describing the extreme problems, while
t extends the original setting by taking the limit state concept into
ccount and is flexible to allow for assessing multiple decision-making
cenarios, as measured by multi-thresholds, in the SA.

An overview of the extreme-based and threshold-based formulation
s provided in Fig. 2. Both formulations require discretizing the in-
ut factors as the first step, and the discretization strategy remains
onsistent. However, they differ in terms of the target portion of the
utput space (Step 2), formulation of the optimization problem (Step
), and the way the calculation results are post-processed (Step 4). The
xtreme-based formulation is mainly used to quantify and visualize the
4

ain effects of the input factors on the extreme values of the output. On
he other hand, threshold-based sensitivity focuses on visualizing the
mpact of altering an individual input factor over a specified threshold
y introducing the threshold-based response. This formulation clearly
ndicates the system reliability state around limit states in the input
pace, highlighting critical regions that may lead to system failure
nder a given threshold. This knowledge can be leveraged to support
nalyses centered around system reliability, such as reliability-based
esign optimization. Also, the evaluation results obtained from both
ormulations complement each other, providing valuable insight into
he contribution of the input factors across different regions of the
utput space.

.2. Polynomial chaos expansions

Let us recall the mapping 𝑔(⋅) in Eq. (1) to describe the behavior
f a system. Assume that there is uncertainty associated with the input
ector 𝐗, which can be described by a random vector with joint PDF

𝒇𝐗 (𝐱) and marginal PDFs 𝑓𝑋𝑖

(

𝑥𝑖
)

, 𝑖 = 1,… , 𝑑. Here, we consider that
the components of 𝐗 are independent, which is the case for the models
in the present study. Consequently, the model output 𝑌 is also a random
variable that can be approximated using the PCE [29] such that

𝑔 (𝐗) ≈ �̂� (𝐗) =
∑

𝜶∈
𝐜𝜶Ψ𝜶(𝐗), (9)

where �̂� (𝐗) denotes the PCE approximation;  is a set of multi-indices
=

{

𝛼1,… , 𝛼𝑑
}

, 𝐜 =
{

𝐜𝜶 , 𝜶 ∈ 
}

are polynomial coefficients to
be computed, and Ψ =

{

Ψ𝜶 ,𝜶 ∈ 
}

are multivariate polynomials
that are orthogonal with respect to 𝒇𝐗 (𝐱). The independence of input
variables allows us to construct the multivariate polynomials as the
tensor product of univariate orthonormal polynomials with respect to
𝑓𝑋𝑖

(

𝑥𝑖
)

, i.e.,

Ψ𝜶 (𝐗) =
𝑑
∏

𝑖=1
𝛹𝛼𝑖

(

𝑋𝑖
)

, (10)

where 𝛹𝛼𝑖

(

𝑋𝑖
)

is a polynomial of degree 𝛼𝑖 in the 𝑖th input variable.
The expansion is originally formulated with standard Gaussian random
variables with Hermite polynomials [30]. It was later extended into a
broader framework known as the generalized PCE [8] to employ basis
functions from the Askey scheme of orthogonal polynomials with their
underlying random variables. For example, Legendre polynomials can
be associated with uniform random variables. If other types of random
variables appear in the input vector 𝐗, it is possible to perform an
isoprobabilistic transform such that the generalized PCE can be applied
to this variable [29,31].

For computational purposes, the PC expansion in Eq. (9) has to be
truncated, where the polynomials

{

Ψ𝜶 ,𝜶 ∈ 
}

are generally retained
with total degree up to 𝑝 such that

𝑑,𝑝 =

{

𝜶 ∈ N𝑑 ∶ ‖𝜶‖1 =
𝑑
∑

𝑖=1
𝛼𝑖 ≤ 𝑝

}

,

𝐜𝐚𝐫𝐝𝑑,𝑝 ≡ 𝑃 =
(

𝑑 + 𝑝
𝑝

)

,

(11)

where ‖𝜶‖1 denotes the degree of the multi-indices 𝜶; 𝐜𝐚𝐫𝐝 𝑑,𝑝 rep-
resents the number of multi-indices (i.e., the number of coefficients
in the PCE). The coefficient vector 𝐜𝜶 can be determined through
regression approaches [9,29]. However, considering the size of the
basis (𝐜𝐚𝐫𝐝𝑑,𝑝) in Eq. (11), the computational effort in the regression
method grows dramatically with the size of 𝑑 or 𝑝, which makes the
full PCE intractable in the high-dimensional problems (e.g., 𝑑 ≥ 10 or
𝑝 ≥ 10) [29].

This limitation was addressed by a hyperbolic truncation scheme
[29], which defines a new set 𝑑,𝑝

𝑞 of multi-indices as

𝑑,𝑝
𝑞 =

⎧

⎪

⎨

⎪

𝜶 ∈ N𝑑 ∶ ‖𝜶‖𝑞 =

( 𝑑
∑

𝑖=1
𝛼𝑞𝑖

)1∕𝑞

≤ 𝑝

⎫

⎪

⎬

⎪

. (12)
⎩ ⎭
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Fig. 2. Overview of the extreme-based (Path 1) and threshold-based (Path 2) formulation.
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The multi-indices are determined based on 𝑞 (0 < 𝑞 < 1) [29]. For
= 1, the hyperbolic truncation corresponds to the standard total-

egree truncation degree in Eq. (11), where the polynomials of max-
mum total degree of 𝑝 are retained. When 𝑞 < 1, the truncation

penalizes high-degree terms with many interacting variables, while
favoring the main effects and low-order interactions. The reader is
referred to [29] for further details.

Apart from the hyperbolic truncation scheme, an adaptive algorithm
contributes further to an efficient procedure for the selection of polyno-
mials [29]. The algorithm is based on the Least Angle Regression (LAR)
that iteratively enhances the polynomials under construction [29]. In
brief, it provides a collection of PC representations (metamodels) in
such a way that terms in 𝑑,𝑝

𝑞 are added one by one, and at each
teration, the metamodel under construction is given an error estimate
. By defining 𝜀∗ = min(𝜺), one stops the algorithm if 𝜀∗ is less than
he preset target error 𝜀𝑡𝑔𝑡. The PC representation with 𝜀∗ is eventually
etained, associated with the optimal subset ∗. It is said to be sparse
ince it contains a reduced number of terms in ∗ compared to a full
epresentation in Eq. (9).

Once LAR provides a selected set of terms at each iteration, the
oefficients of the related PC representation and the corresponding
can be computed by ordinary least-square regression (OLS), which

ollows the so-called hybrid LAR proposed in [32].
Let

{

𝐱(1),… , 𝐱(𝑁)
}

denote a set of 𝑁 input realizations from an ex-
erimental design (ED), and

{

𝑦(1),… , 𝑦(𝑁)
}

be the corresponding model
valuations, i.e.,

{

𝑦(𝜚) = 𝑔
(

𝐱(𝜚)
)

, 𝜚 = 1,… , 𝑁
}

. The PC approximation
is calculated by Eq. (9), where the coefficients 𝐜 are chosen by min-
imizing the mean-square error between the exact value and its PC
approximation, i.e.,

𝐜 = arg min
𝐜∈R𝐜𝐚𝐫𝐝

E
⎡

⎢

⎢

(

𝑔 (𝐗) −
∑

𝐜𝜶Ψ𝜶(𝐗)
)2

⎤

⎥

⎥

, (13)
5

⎣

𝜶∈
⎦

here E is the mathematical expectation. The solution of Eq. (13) can
e obtained based on the OLS estimates,

̂ =
(

𝐀T𝐀
)−1 𝐀T𝐘, (14)

where 𝐀 is a data matrix of size 𝑁 × 𝑃 and its general entry is defined
y

𝜚𝑗 = 𝛹𝛼𝑗

(

𝐱(𝜚)
)

, 𝜚 = 1,… , 𝑁 ; 𝑗 = 0,… , 𝑃 − 1. (15)

The accuracy of each PC representation in the LAR is evaluated
by the relative leave-one-out error estimate, denoted by 𝜀 as mentioned
above. Let �̂�(−𝜚) be the metamodel that is constructed from the ED while
removing the 𝜚th observation. The leave-one-out error is defined as

𝜀𝐿𝑂𝑂 = 1
𝑁

𝑁
∑

𝜚=1

[

𝑔(𝐱(𝜚)) − �̂�(−𝜚)(𝐱(𝜚))
]2 , (16)

here 𝑔(𝐱(𝜚)) and �̂�(−𝜚)(𝐱(𝜚)) represents the model evaluation at 𝐱(𝜚), and
ts prediction from �̂�(−𝜚), respectively. Then the relative leave-one-out
rror can be given by

=
𝜀𝐿𝑂𝑂
Var𝑌

, (17)

where Var𝑌 denotes the empirical variance of the output 𝑌 , calculated
by

Var𝑌 = 1
𝑁 − 1

𝑁
∑

𝜚=1
(𝑔(𝐱(𝜚)) − 𝜇𝑌 )2, 𝜇𝑌 = 1

𝑁

𝑁
∑

𝜚=1
𝑔(𝐱(𝜚)). (18)

In case an independent dataset is available next to the training and
alidation set (used to construct metamodels), the relative generalization
rror, 𝜀𝑔𝑒𝑛, is a measure commonly used to quantify the accuracy and
redictive quality of the metamodels, which is given by

𝑔𝑒𝑛 =
E[(𝑔(𝐱) − �̂�(𝐱))2]

. (19)

Var𝑌
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2.3. Threshold-based sensitivity analysis using PCE

The proposed method seeks to efficiently evaluate the model sen-
sitivity to the input factors under different design thresholds. The
computation process is presented in Algorithm 1, including two main
procedures: construction of PCE (Procedure 1) and threshold-based
sensitivity evaluation (Procedure 2).

Algorithm 1: PCE-based simulation scheme for sensitivity
analysis near limit states

Input: PDFs of input factors (𝑓𝑋𝑖

(

𝑥𝑖
)

, 𝑖 = 1, ..., 𝑑)
Output: Threshold-based response (𝑌 𝑘

𝑖,𝑗 )
Procedure 1 Construct a PC approximation of the response for a
design criterion

1 𝜀𝑡𝑔𝑡, 𝑝𝑚𝑎𝑥, 𝑞,𝑁 ← Preset the algorithm parameters
2
{

𝐱(𝜚), 𝜚 = 1, ..., 𝑁
}

← Read statistic inputs 𝐗 with
specified 𝑓𝑋𝑖

(

𝑥𝑖
)

; select an ED with sample size 𝑁
3
{

𝑦(𝜚), 𝜚 = 1, ..., 𝑁
}

← Collect the model evaluations
4 for 𝑝 = 1 → 𝑝𝑚𝑎𝑥 do
5 𝑑,𝑝

𝑞 ← Gather a candidate set of 𝑝-order polynomials
6 (𝑝), 𝜀(𝑝) ← Apply LAR to the candidate set 𝑑,𝑝

𝑞
7 if 𝜀(𝑝) < 𝜀𝑡𝑔𝑡 then
8 ∗ = (𝑝), 𝜀∗ = 𝜀(𝑝)

9 break
10 else 𝑝 = 𝑝 + 1
11 end if
12 end for
13 𝐜 ← Compute the coefficients associated with ∗

according to Eq. (13)
14 �̂� ← Retain the final PC approximation with ∗, 𝐜, 𝜀∗

according to Eq. (9)
End procedure 1
Procedure 2 Evaluate the threshold-based sensitivity on �̂�

15 𝑡𝑘, 𝑛𝑖, 𝜅 ← Preset the algorithm parameters
16 𝑋𝑙

𝑖 , 𝑋
𝑢
𝑖 ← Define bounds for each input factor 𝑋𝑖

according to 𝑓𝑋𝑖

(

𝑥𝑖
)

17 𝑥𝑖,𝑗 ← Discretize 𝑋𝑖 in 𝑛𝑖 points within
[

𝑋𝑙
𝑖 , 𝑋

𝑢
𝑖
]

18 for 𝑗 = 1 → 𝑛𝑖, 𝑘 = 1 → 𝜅 do
19 �̄�𝑘 ← Minimize

(
(

�̂� − 𝑡𝑘
)2 , 𝑋𝑖 =

{

𝑥𝑖,𝑗
}

, 𝑋∼𝑖 ∈
[

𝑋𝑙
∼𝑖, 𝑋

𝑢
∼𝑖
]

) according to Eq. (8)
20 𝑌 𝑘

𝑖,𝑗 ← Collect �̄�𝑘

21 end for
End procedure 2

Procedure 1 mainly follows the techniques proposed in [29], as
laborated in Section 2.2. To enhance readability, the algorithmic
ramework for constructing the PCE is presented here. Procedure 1
tarts with selecting values of the algorithm parameters (line 1). It

chooses an ED (e.g., Latin hypercube sequence) and evaluates the
model output at the corresponding sampled points (line 2–3). The least
ngle regression (LAR) is applied to select the optimal set of the basis
∗, which requires an iterative procedure (line 4–12) in the following:

Initially, a candidate set of 𝑝-order (𝑝 = 1) polynomials is deter-
ined by the hyperbolic truncation scheme, i.e., the set 𝑑,𝑝

𝑞 defined
y 𝑞-norm according to Eq. (12) (line 5). The LAR is applied to 𝑑,𝑝

𝑞
o select the optimal set (𝑝) with the lowest error 𝜀(𝑝) according to
q. (16) (line 6). Then, 𝜀(𝑝) is checked against the target error 𝜀𝑡𝑔𝑡. If
(𝑝) < 𝜀𝑡𝑔𝑡, it stops the iterative process (line 9). Otherwise 𝑝 = 𝑝 + 1
line 10), and repeat the process (line 4–12). The optimal set ∗ is
ventually retained, associated with the lowest error 𝜀∗ (line 8). The
orresponding coefficients are determined by OLS estimators (line 13).

The final PCE (�̂�) can be determined (line 14). Note that it is possible for
the error 𝜀(𝑝) to increase from a certain order 𝑝, which can be attributed
6

to overfitting. To ensure proper convergence of the algorithm, an early
Fig. 3. Truss structure with 23 members [33].

stop criterion is introduced. This criterion terminates the process if
the error 𝜀(𝑝) increases for at least two subsequent iterations (𝜀(𝑝) ≥
(𝑝−1) ≥ 𝜀(𝑝−2)). For further details, the reader is referred to [29]. For
he implementation of this algorithm, this study sets the target error
𝑡𝑔𝑡 equal to 0 to minimize the error in the attained PCE metamodels.

Procedure 2 evaluates the threshold-based sensitivity (Section 2.1.2)
n �̂�. It also begins by presetting the parameter values (line 15). Then,
or non-uniformly distributed input factors, the lower (respectively
pper) bound of 𝑋𝑖 is determined by the 1st percentile (respectively
9th percentile) of the corresponding probability distribution (line 16).
𝑖 is then discretized within these bounds into 𝑛𝑖 points (line 17), as
etailed in Section 2.1.1. For each discrete value of 𝑋𝑖 and threshold
evel 𝑡𝑘, the squared deviation is minimized by fixing 𝑋𝑖 at 𝑥𝑖,𝑗 while
arying the remaining factors 𝑋∼𝑖 in their corresponding interval (line
8&19). Finally, save the threshold-based response, 𝑌 𝑘

𝑖,𝑗 , for all the
oints 𝑛𝑖 of 𝑋𝑖 and thresholds 𝑡𝑘, 𝑘 = 1,… , 𝜅 (line 20).

It is worth noting that the sensitivity method, whether in the
xtreme-based (Section 2.1.1) or the threshold-based formulation (Sec-
ion 2.1.2), is independent of the probability distribution of input
actors. This is because the sensitivity is evaluated based on the dis-
retization of the input factors, as emphasized in [20]. However, in the
roposed simulation scheme, the probability distribution is required
s input because the PCE metamodels are developed based on this
nformation.

In terms of computational efficiency, the original A-A1T method
equires solving optimization problems in the order of  {𝑛 × 𝑑}, where

is the average number of discrete points in the non-fixed factor
nd 𝑑 is the total number of input factors. When multiple design
riteria are present (denote the number of criteria by 𝑁𝑐), the number

of optimizations increases to 
{

𝑛 × 𝑑 ×𝑁𝑐
}

. Let 𝑁𝑎 be the average
function calls required by solving one optimization problem. Then,
the total function evaluations required by the original A-A1T will be

{

𝑛 × 𝑑 ×𝑁𝑐 ×𝑁𝑎
}

. On the other hand, the metamodel-based method
requires 𝑁 evaluations of the original model to construct the metamod-
els, in this case, PCE, which is independent of 𝑁𝑐 since responses are
generally returned from a single call.

3. Verification using a truss structure

This section verifies the PCE-based approach against the original
method [20]. The goal is to assess the feasibility of using PCE to
approximate the output of interest and compute sensitivity measures
(Eq. (4)), considering both efficiency and accuracy. Furthermore, the
performance of PCE is compared to other types of metamodels, which
is provided in Appendix A.1.

The verification case concerns a truss structure shown in Fig. 3. The
structure consists of 23 bars, and the upper section is subjected to six
vertical loads. This particular structure has been studied in many works
(e.g., [31–33]) for different purposes, where SA has been conducted
using the Sobol method and not in the extreme case.

Ten random variables (𝑑 = 10) are considered in the example,
including the applied loads (𝑃𝑚, 𝑚 = 1,… , 6); Young’s modulus and

cross sections of the horizontal and diagonal elements (respectively



Reliability Engineering and System Safety 243 (2024) 109818Y. Shang et al.

o

w
T
t
d
t

t
a

r
v
f

𝜉

w
T

𝜔

b
d
q
T
t
6
i

1
e
w
d
m
e
c

(
r
P
(
r
m
m

f
p
e
h
𝑁
i
(
a
n
m
s

Table 1
Truss structure: definition range and discretization of the input factors.

Variable Data proposed by [33] Range Discretization

Distribution Mean Stdv.
[

P0.01 ,P0.99
]

𝐸1 , 𝐸2 (Pa) Lognormal 2.10 × 1011 2.10 × 1010 [1.54 × 1011 , 2.84 × 1011] 50 points (log spaced)
𝐴1 (m2) Lognormal 2.0 × 10−3 2.0 × 10−4 [0.0015, 0.0027] 50 points (equally spaced)
𝐴2 (m2) Lognormal 1.0 × 10−3 1.0 × 10−4 [0.0007, 0.0014] 50 points (equally spaced)
𝑃𝑚 (𝑚 = 1...6) (N) Gumbel 5.0 × 104 7.5 × 103 [26 475, 64 677] 50 points (log spaced)
a

denoted by 𝐸1 and 𝐴1 for the horizontal; 𝐸2 and 𝐴2 for the diag-
nal bars). Accordingly, the input random vector is defined as 𝐗 =

[

𝐸1, 𝐸2, 𝐴1, 𝐴2, 𝑃1,… , 𝑃6
]T. Table 1 provides the range of definition and

the number of discrete points 𝑛𝑖 for each factor 𝑋𝑖. For input factors
ith large ranges, the discrete points are distributed using a log scale.
his choice is based on the suggestion in [20] where, compared to
he linear and random discretization methods, using the log-spaced
iscretization for factors with large ranges ensures the robustness of
he importance measures with a relatively small number of 𝑛𝑖.

The quantity of interest is the midspan deflection 𝜔 (counted posi-
ively downwards). It is obtained by evaluating the FE model, denoted
s 𝑔𝑡𝑟𝑢𝑠𝑠, using the Matlab code [34], i.e., 𝜔 = 𝑔𝑡𝑟𝑢𝑠𝑠 (𝐗). PCE metamodels

(�̂�𝑡𝑟𝑢𝑠𝑠) are constructed to approximate the value of 𝜔 based on 𝐗. The
andom vector 𝐗 is transformed into a standard Gaussian distributed
ector to use Hermite polynomials [30] in constructing the PCE in the
orm [29,31],

𝑖 = 𝛷−1
(

𝐹𝑋𝑖

(

𝑥𝑖
)

)

, 𝑖 = 1,… , 10, (20)

here 𝛷 is the standard Gaussian CDF and 𝐹𝑋𝑖

(

𝑥𝑖
)

is the CDF of 𝑋𝑖.
his results in the following PCE according to Eq. (9),

≈ �̂�𝑡𝑟𝑢𝑠𝑠 (𝝃) =
∑

𝜶∈
𝐜𝜶Ψ𝜶(𝝃). (21)

Latin Hypercube Sampling (LHS) is used to generate the ED. The
ase scenario considers a sample size of 𝑁 = 1000, while the effect of
ifferent sample sizes is evaluated (see Appendix A.1). The FE model is
ueried at the sampled points to generate the corresponding response.
he input–output pairs form a dataset that is randomly divided into
raining, validation, and test sets with the respective percentage of
4%, 16%, and 20%, where five iterations were performed, resulting
n five candidate models.

All PCE models are constructed by varying the 𝑞-norm from 0.5 to
and the maximum degree 𝑝 from 3 to 15. The model performance is

valuated based on the test set using 𝜀𝑔𝑒𝑛 (Eq. (19)), where the model
ith the smallest 𝜀𝑔𝑒𝑛 yields 2.54 × 10−7 for predicting 𝜔. The optimal
egree 𝑝 is 9 and 𝑞-norm is 0.5, associated with 𝜀 = 1.15 × 10−7. This
odel includes 181 polynomial basis elements, while the size of basis

lements for 𝑞 = 0.5 and 𝑝 = 9 is 571, and the size of full basis elements
an be 92 378 for 𝑞 = 1 and the same 𝑝.

Two functions, 𝑔𝑡𝑟𝑢𝑠𝑠 and �̂�𝑡𝑟𝑢𝑠𝑠, are applied to the A-1AT method
Section 2.1.1). The importance measures 𝐼𝐸𝑥𝑡

𝑖 to each factor 𝑋𝑖 are
eported in Table 2. It can be observed that 𝐼𝐸𝑥𝑡

𝑖 returned from the
CE agree well with those calculated from directly calling the FE model
the reference). The reference case also shows differences with the
esult in [31]. This is because [31] employs the Sobol method, which
easures the impact of input factors based on the average value of the
idspan deflection.

The number of function calls to the FE model is also tracked
or both methods. As mentioned earlier, an optimization problem is
resent (Eq. (3)) for each discrete point of 𝑋𝑖 to search for the output
xtremum. In this example, the Matlab algorithm ‘patternsearch’ [35]
as been used. The average number of model runs per optimization
𝑎 was about 165, and the average number of discrete points 𝑛 for

nput factors was 50. Therefore, the reference method requires 82 242
= 𝑛 × 𝑑 × 𝑁𝑎) function calls, which took 42.5 min on a desktop with
n 8-core CPU and 16 GB of RAM. In contrast, the PCE-based method
eeds 𝑁 = 1000 function evaluations to construct and validate the
etamodel. The evaluation of �̂�𝑡𝑟𝑢𝑠𝑠 in the SA took 5.5 min with the

ame computing condition.
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Table 2
Truss structure: comparison of importance measures calculated from the PCE (�̂�𝑡𝑟𝑢𝑠𝑠)
nd actual FE model evaluation (𝑔𝑡𝑟𝑢𝑠𝑠) when 𝑁 = 1000.
Variable Importance measure 𝐼𝐸𝑥𝑡

𝑖

Reference PCE-based

𝐸1 0.3952 0.3965
𝐴1 0.3703 0.3706
𝑃3 0.0652 0.0652
𝑃4 0.0652 0.0649
𝑃5 0.0314 0.0315
𝑃2 0.0314 0.0310
𝐴2 0.0180 0.0177
𝐸2 0.0154 0.0149
𝑃6 0.0040 0.0038
𝑃1 0.0040 0.0038

Function calls 82 242 1000

4. Application to train–track–bridge interaction system

4.1. Modeling of train–track–bridge dynamics

As a typical example of vehicle–structure interaction problems,
the vibration of the train–track–bridge (TTB) system is a fundamental
concern in railway engineering, frequently used to evaluate running
safety, riding comfort, and performance of railway tracks and bridges.
Here, we demonstrate the applicability of the proposed method using
a coupled TTB model [36]. The model, implemented in Matlab, is
formulated based on the FE method. It is capable of simulating the
vertical dynamic interaction between the subsystems, namely the train,
track, and bridge. Fig. 4 provides a schematic representation of the
model, where an articulated train is shown traveling over a ballast
bridge at a specific speed. Equations of motion are defined for each
subsystem, and their features are summarized below.

The train is represented by a succession of vehicles, with each vehi-
cle consisting of one carbody, two bogie frames, and four wheelsets,
treated as rigid bogies. Each bogie is connected to two wheelsets
through the primary suspension, and the main body rests on two bogies
via the secondary suspension. Both vertical and rotational movements
of the carbody (respectively, 𝑧𝑐 and 𝜃𝑐) and bogies (respectively, 𝑧𝑏𝑖
and 𝜃𝑏𝑖, 𝑖 = 1, 2) are considered. A rigid contact is assumed between
the rail and wheelsets. This results in 6 Degrees of Freedom (DOF) for
each vehicle of the train and the displacement vector of a vehicle can
be denoted as 𝐮𝑣 =

[

𝑧𝑐 , 𝜃𝑐 , 𝑧𝑏1, 𝜃𝑏1, 𝑧𝑏2, 𝜃𝑏2
]T.

The railway track considers a ballast track that includes a combina-
tion of components, i.e., rail, pads, sleepers, ballast, and subgrade. The
rail is modeled as an Euler–Bernoulli beam, with each element having
4 DOFs in terms of vertical and rotational motions. The remaining
components are represented as layers of masses and viscoelastic sup-
ports, which is a conventional simplification for modeling the dynamic
behavior of railway tracks. The model used here is a three-layer track
model. Depending on the particular bridge configuration, a bridge
structure can be accurately modeled by finite elements of solid, shell,
and beam. For simplicity and without loss of generality, this demonstra-
tion considers a simply-supported bridge meshed with Euler–Bernoulli
beam elements.

Each subsystem is defined by a set of equations of motion, and their
coupling can be formulated in the following general matrix form,

𝐌 �̈� + 𝐂 �̇� +𝐊 𝐔 = 𝐅 (22a)
𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔
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Fig. 4. Schematic representation of a train–track–bridge model.
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where 𝐌𝑔 , 𝐂𝑔 , and 𝐊𝑔 denote, respectively, the mass, damping, and
stiffness matrices of the global system. 𝐔𝑔 , �̇�𝑔 , and �̈�𝑔 are the dis-
placement, velocity, and acceleration vectors of the global system,
respectively. 𝐅𝑔 is the global force vector. Their expressions are given
by

𝐌𝑔 =
⎡

⎢

⎢

⎣

𝐌𝑣 𝟎 𝟎
𝟎 𝐌𝑡 𝟎
𝟎 𝟎 𝐌𝑏

⎤

⎥

⎥

⎦

, 𝐂𝑔 =
⎡

⎢

⎢

⎣

𝐂𝑣 𝐂𝑣𝑡 𝟎
𝐂𝑡𝑣 𝐂𝑡 𝐂𝑡𝑏
𝟎 𝐂𝑏𝑡 𝐂𝑏

⎤

⎥

⎥

⎦

,

𝐊𝑔 =
⎡

⎢

⎢

⎣

𝐊𝑣 𝐊𝑣𝑡 𝟎
𝐊𝑡𝑣 𝐊𝑡 𝐊𝑡𝑏
𝟎 𝐊𝑏𝑡 𝐊𝑏

⎤

⎥

⎥

⎦

, 𝐔𝑔 =
⎡

⎢

⎢

⎣

𝐔𝑣
𝐔𝑡
𝐔𝑏

⎤

⎥

⎥

⎦

, 𝐅𝑔 =
⎡

⎢

⎢

⎣

𝐅𝑣
𝐅𝑡
𝐅𝑏

⎤

⎥

⎥

⎦

.

(22b)

here the subscripts 𝑣, 𝑡, and 𝑏 denote respectively the train, track, and
ridge subsystems.

The coupled equations of motion, Eq. (22a), is solved by direct nu-
erical integration with the Newmark-𝛽 method to obtain the dynamic

esponses of the subsystems [36], corresponding to the design criteria
onsidered in SA.

.2. Characteristics of input factors and design criteria

The variability space of input factors is defined to perform SA. This
ncludes determining parameters (that are subject to small deviations
nd thereby being treated as deterministic) and variables (that may
ave relevant non-deterministic properties which can lead to a signif-
cant change in model response) in the TTB system. We consider the
ariability in factors related to the structural resistance and excitation
ource. The former is relevant to the train, track, and bridge, while the
xcitation source focuses on the effect of track geometry irregularities
n the TTB dynamics. Table 3 provides an overview of the random vari-
bles defined in the system, along with their corresponding probability
istributions.

Trains exhibit significant variability in terms of their dimensions
nd properties. The ranges of variation for the properties of train
atalogs are location specific and have to be estimated according to
he operating context in which the analysis is taking place. For demon-
tration purposes, the Manchester benchmark model is considered with
ariations in factors including the carbody mass (𝑚𝑐), primary suspen-
ion stiffness (𝑘1), and secondary suspension stiffness (𝑘2) (see Table 3).
hese are selected according to [22], given the fact that the mass of
ehicles varies depending on the occupancy rate of passengers and the
8

uspension stiffness shows variability during its service life. The rest v
f the properties are treated as constants according to the benchmark
odel [39], as presented in Table 4.

Regarding the track structure, the dispersion of supporting compo-
ents, namely, the railpad, sleeper, and ballast, is high. The railpad and
leeper are often associated with a wide range of design alternatives,
hile the ballast properties are very likely to change due to geometry

ssues and maintenance works. Therefore, they are more appropriately
escribed by bounding limits, i.e., uniform distributions shown in
able 3.

It is worth mentioning that for the ballast, it is not straightforward
o find equivalent properties to capture its behavior using the multi-
ayer track model (e.g., the present three-layer model). To this end, Zhai
t al. [38,40] proposed a ballast model to analyze its vibration based
n a hypothesis that the load transmission from the sleepers to the
allast follows approximately a cone distribution. This model defines
function mapping between the input factors relevant to the ballast
aterial properties and the output regarding the equivalent parameter

alues for the ballast block used in the multi-layer track model (see
ig. 4). It has been validated against a field measurement [40] and
pplied to relevant works (e.g., [21]). For details of the mathematical
ormulation, the reader is referred to [38,40].

As shown in Table 3, we consider the variability in ballast prop-
rties, including the density (𝜌𝑏𝑎), elastic modulus (𝐸𝑏𝑎), depth (ℎ𝑏𝑎),
nd load distribution angle (𝛼𝑏𝑎), which are specified according to [21].
hen, the above ballast model is applied to determine the equivalent
arameter values for the ballast, namely, the vibrating mass of ballast
nder a sleeper support (𝑚𝑏𝑎) and the support stiffness 𝑘𝑏𝑎 (see Fig. 4).
he viscous damping coefficient 𝑐𝑏𝑎 is treated as a random variable
eferring to [21,27] to cover the variability in energy dissipation mech-
nisms. Besides, the ballast model includes dimensions of the sleeper
upport such as the sleeper spacing, 𝐿𝑠, to determine 𝑚𝑏𝑎 and 𝑘𝑏𝑎. Since
he dimensions are normally better defined in design specifications,
hey are treated as constants according to [40].

The rail is modeled as Euler–Bernoulli beam elements, whose behav-
or is defined by the elastic modulus (𝐸𝑟), moment of inertia (𝐼𝑟), and
ass per unit length (𝜇𝑟), as presented in Fig. 4. Compared with the bal-

ast, the properties of the steel rail are relatively easy to determine from
ominal design values, and the subgrade properties (𝑘𝑠𝑏 and 𝑐𝑠𝑏) are
lso better defined according to the required bearing capacity. These
roperties are therefore considered deterministic and the corresponding

alues are referred to [40].
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Table 3
Input random variables. Note: the fourth and fifth columns depend on the distribution type. For Gaussian or lognormal distributed random variables, mean values and coefficient
of variation (CV) are used. For uniformly distributed variables, minimum and maximum values are used.

Variable Unit Distribution Mean or Min. CV or Max. Reference

Train random variables

Carbody mass factor – Lognormal 1 0.15 [22]
Primary suspension stiffness factor – Lognormal 1 0.1 [22]
Secondary suspension stiffness factor – Lognormal 1 0.1 [22]

Track random variables

Railpad stiffness (𝑘𝑝) N/m Uniform 1e8 1.5e9 [37]
Railpad damping (𝑐𝑝) N s/m Uniform 1e4 7e4 [37]
Sleeper mass (𝑚𝑠) kg Uniform 220 325 [21]
Ballast density (𝜌𝑏𝑎) kg/m3 Uniform 1500 2100 [21]
Ballast elastic modulus (𝐸𝑏𝑎) N/m2 Uniform 8e7 1.6e8 [21]
Ballast depth (ℎ𝑏𝑎) m Uniform 0.3 0.6 [21]
Ballast load distribution angle (𝛼𝑏𝑎) ◦ Uniform 15 35 [21]
Ballast damping (𝑐𝑏𝑎) N s/m Uniform 4e4 2.8e5 [37]
Irregularity amplitude (𝐼𝑟𝑟) 10−7 rad m Uniform 4.032 10.80 [38]

Bridge random variables

Concrete density weight (𝜇) kg/m Gaussian 69 000 4% [21]
Concrete elastic modulus (𝐸) N/m2 Gaussian 35e9 8% [21]
Structural damping ratio (𝑐) % Gaussian 2 0.3 stdv. [21,27]
Second moment of area (𝐼) m4 Gaussian 51.3 5% [28]
Table 4
Vehicle parameters.

Parameter Notation Value

Carbody mass 𝑚𝑐 32000 kg
Bogie mass 𝑚𝑏 2615 kg
Wheelset mass 𝑚𝑤 1813 kg
Primary suspension stiffness 𝑘1 1220 kN/m
Secondary suspension stiffness 𝑘2 430 kN/m
Primary suspension damping 𝑐1 4 kN s/m
Secondary suspension damping 𝑐2 20 kN s/m
Distance between centers of car and bogie 𝐿𝑐 9.5 m
Distance between centers of bogie and wheel 𝐿𝑏 1.28 m
Full length of vehicle 𝐿𝑣 25 m
Velocity 𝑣 140 km/h

The properties of railway bridges are case-specific, and it is chal-
enging to find a set of properties that can be applied to describe
arge catalogs of bridge structures in general. Herein, we consider

50 m long concrete bridge referring to a specific case [41]. This
lso suggested the default parameter setting for the bridge in the
dopted model [36]. The mean values of bridge properties are first
etermined according to the selected case. Then, Gaussian distributions
re assigned to describe the dispersion of these properties, as reported
n Table 3.

Track irregularities are deviations from the ideal track geometry
hat can significantly affect the dynamic behavior of trains and struc-
ures. It is therefore essential to account for their effect in the dynamic
nalysis of such systems. Random track irregularities are often charac-
erized by power spectral density (PSD) functions, which describe the
everity of track irregularities as a function of the spatial frequency
= 1∕𝜆, where 𝜆 represents the wavelength in meters. Various PSD

unctions have been developed by different railway authorities. Given
ts extensive use in the field of railway engineering, the German track
pectrum for the vertical track profile is adopted with the PSD function
efined as (e.g., [38]),

𝑣 (𝛺) =
𝐴𝑣𝛺2

𝑐
(

𝛺2 +𝛺2
𝑟
) (

𝛺2 +𝛺2
𝑐
) , (23)

where the unit of 𝑆𝑣 (𝛺) is m2∕rad∕m; 𝛺 is the spatial frequency;
𝛺𝑟 and 𝛺𝑐 are cut-off frequencies, set to 0.0206 and 0.8246 rad∕m,
respectively. The magnitude of 𝐴𝑣 (unit: m2 rad∕m) quantifies the track
quality and varies between 4.032 × 10−7 and 1.08 × 10−6 to represents
respectively the limit for low disturbance and high disturbance of track
9

irregularities. Here, we assume that the track quality is represented
by a uniformly distributed random variable within the range. The
function considers wavelengths ranging from 3 to 150 m (referring to
EN 13848-5 [42] ranges D1-D3). To perform time-domain analyses,
track irregularity profiles are generated from Eq. (23) using inverse fast
Fourier transforms.

The performance of the TTB system is controlled by four design
criteria, namely Sperling index (𝑊𝑧), vertical rail displacement (𝑈𝑟),
vertical sleeper acceleration (𝐴𝑠), and vertical deck deflection (𝑈𝑑),
where the dynamic response of each subsystem is accounted for to
capture the overall level of vibration in the system. Of interest for the
present SA are the maximum values of the responses, which are rele-
vant to the occurrence of ‘system failure’, and therefore reflect the most
unfavorable condition of the system. While the remaining response
quantities can be directly obtained from the dynamic simulation, 𝑊𝑧
is a synthetic index calculated based on the carbody acceleration. This
index measures the level of riding comfort and follows the computation
procedure proposed in [43].

5. Results and discussion

5.1. PCE representations of the model output

As the first part of the methodology, PCE metamodels are con-
structed to approximate the model output. This is implemented using
the uncertainty quantification toolbox UQLab [44]. Following the
workflow in Section 3, LHS is employed to generate a ED
{

𝒙(𝜚), 𝜚 = 1,… , 𝑁
}

with a fixed size of 𝑁 = 3000. The choice of a rela-
tively large sample size aims to ensure the accuracy of the metamodels,
as SA is performed around extreme values that may be omitted by
global sampling approaches conducted in a single step. When the ED is
fixed, the LHS technique has been preferred in reliability applications
due to its global representation of the input space [45]. This aligns
with the goal of metamodeling here, which is to develop a globally
accurate metamodel to approximate the original function and enable
the measurement of each input factor’s effect on the output.

The TTB model is queried at the sampled points to obtain the
response

{

𝒚(𝜚), 𝜚 = 1,… , 3000
}

. For a specific sample 𝜚, the response
vector is defined by 𝒚 =

{

𝑊𝑧, 𝑈𝑟, 𝐴𝑠, 𝑈𝑑
}T. The sample data is split

randomly into training, validation, and test sets with the respective
percentage of 64%, 16%, and 20%, where for each design criterion,
ten iterations were performed and the resulting candidate metamodels
are evaluated based on the test set using 𝜀𝑔𝑒𝑛 (Eq. (19)). Fig. 5 compares

the PCE predictions with the actual model evaluations at the test set,
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Fig. 5. Comparison of PCE with the actual model evaluation at the test set: (a) Sperling index 𝑊𝑧; (b) vertical rail displacement 𝑈𝑟 (unit: m); (c) vertical sleeper acceleration 𝐴𝑠
(unit: m/s2); and (d) vertical deck deflection 𝑈𝑑 (unit: m).
and 𝜀𝑔𝑒𝑛 obtained from the optimal PC approximation is indicated for
each criterion.

The PCE metamodels are developed by varying the 𝑞-norm from 0.5
to 1 and the maximum degree 𝑝 from 3 to 15. The one yielding the
smallest 𝜀𝑔𝑒𝑛 to predict 𝑊𝑧 comprises 371 polynomial basis elements,
with 𝑝 = 15 and 𝑞 = 0.5. By comparison, for the same 𝑝, the size of
full basis elements is 9081 when 𝑞 = 0.5 and around 1.55 × 108 when
𝑞 = 1. The index of sparsity, defined in [29] as the ratio of the number
of elements in the sparse representation to the full size of elements
for the same 𝑝 and 𝑞, is 371∕9081 ≈ 0.041. The small ratio indicates
the computational gain that the sparse PCE can bring to the sensitivity
analysis, compared with the full PC representation.

The optimal sparse PCE for predicting 𝑈𝑟 consists of 136 basis
elements, with 𝑝 = 15 and 𝑞 = 0.5. It has an index of sparsity of
136∕9081 ≈ 0.015. As for the response 𝐴𝑠 and 𝑈𝑑 , the optimal PCE
includes 223 and 442 elements, respectively, with the same 𝑝 and 𝑞 as
in the model for approximating 𝑈𝑟. The corresponding index of sparsity
is 223∕9081 ≈ 0.025 for 𝐴𝑠 and 442∕9081 ≈ 0.049 for 𝑈𝑑 .

Additionally, the accuracy and efficiency of PCE are compared
with Kriging and PC-Kriging approaches, which are provided in Ap-
pendix A.2.

Note that the performance of metamodels depends on various fac-
tors, such as the shape and complexity of the function being approx-
imated, the ED size, and the sampling strategies employed. In this
study, we employ the PCE approach in the proposed sensitivity method,
which allows us to efficiently capture the global stochastic behavior
of the system [45,46] and measure the effect of input factors on the
output. In the truss example, PCE performs particularly well with
10
limited ED sizes (see Appendix A.1), which is advantageous when
dealing with expensive models. However, it should be noted that PCE
is most effective for functions that can be well-approximated by global
smooth polynomials. In two engineering problems, PCE outperformed
Kriging (see Appendices A.1 and A.2). Kriging is generally suitable for
managing local variability of the output [46]. This indicates that the
functions involved show global smoothness rather than (highly) local
nonlinearity, thereby contributing to the better performance of PCE.
Furthermore, we assess the sensitivity of a 2-dimensional analytical
function with globally nonlinear behavior to visually compare these
metamodels. The detailed comparison is provided in Appendix A.3.

As mentioned earlier, this study uses LHS with a fixed ED to provide
a global description of the input space. Instead of sampling the ED at
once, it is possible to apply adaptive or sequential sampling techniques
to refine sampling in specific regions of interest. This approach allows
for a more efficient allocation of computational resources, balancing
the exploration and exploitation of the input space while constructing
the metamodel. Note that in this case, the sampling is more focused
on achieving accuracy in the proximity of specific regions, depend-
ing on the degree of exploitation, rather than aiming for a globally
accurate metamodel throughout the entire domain, which is more
exploration-based. The choice of sampling methods can depend on
function complexities. For functions with highly local nonlinearity,
where the extremes are usually local phenomena, a balance of ex-
ploration and exploitation of the input space would be necessary.
Considering the functions in the current engineering problems demon-
strate global smoothness, LHS, which captures the global description of
the ED, is considered suitable for this study.
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Fig. 6. Comparison of sensitivity index of each factor in terms of 𝑊𝑧, 𝑈𝑟, 𝐴𝑠, and 𝑈𝑑 .
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5.2. Ranking of input factors

We employ the PCE models developed in Section 5.1 to assess
the impact of input factors on the variability of extreme responses.
This evaluation is performed on the original sensitivity method (Sec-
tion 2.1.1). The input factors are discretized using an equal number
of points. Similar to the discretization strategy discussed in Section 3,
a log-spaced discretization method is applied for factors with ranges
exceeding 103. After evaluating various discretization options, 𝑛𝑖 = 100
is chosen for each factor to balance the computational cost and the
accuracy of sensitivity indices, which is applied to all design criteria
to ensure consistency in the comparison.

As shown in Fig. 6, importance measures of the input factors are
compared in terms of response 𝑊𝑧, 𝑈𝑟, 𝐴𝑠, and 𝑈𝑑 . The indices are
first presented in descending order for 𝑊𝑧. Then, different rankings
regarding the relevance of the factors are observed for the remaining
criteria. The variability in carbody mass (𝑚𝑐) shows high relevance to
all the criteria considered, indicating that the loading magnitude plays
a significant role in the vibration of the TTB system.

Specifically, the factors relevant to the vehicle (𝑚𝑐 and 𝑘2) and
track geometry quality (𝐼𝑟𝑟) contribute to most of the variability (about
99.47%) in the maximal 𝑊𝑧. Employing the condition 𝐼𝐸𝑥𝑡

𝑖 < 0.01
to sort out unimportant factors allows one to consider 13 out of 16
input factors as unimportant when the design focus lies on the critical
riding condition that passengers may experience. This implies that
those factors could be given a deterministic value to reduce the model
complexity without essentially affecting the extreme response 𝑊𝑧. On
the other hand, the above three factors are deserving of further analysis
or measurement to assign the appropriate values in the model for a
more accurate representation of the riding quality condition.

At the wheel–rail interface, more input factors are involved that
have non-negligible effects on the variability of maximal 𝑈𝑟. These are
𝑚𝑐 , 𝐸, 𝐼 , ℎ𝑏𝑎, 𝑘𝑝, 𝐸𝑏𝑎, and 𝛼𝑏𝑎, with the first two being dominant and
accounting for about 76.60% of variability in maximal 𝑈𝑟. The accuracy
of these factors is of high relevance to the quality of the extreme
response 𝑈𝑟, which should be carefully defined if the rail deflection is
of concern in the design process.

For underlayers of the track structure, the variability of the maximal
vertical sleeper acceleration (𝐴𝑠) is significantly influenced by 𝑚𝑐 and
𝑘𝑝 (about 87.55%). Apart from 𝑚𝑐 , the effect of the railpad stiffness 𝑘𝑝
can be explained by the fact that the railpads are elastic components
introduced to the track structure. Stiff pads contribute to a reduction in
noise and vibration from wheel–rail contact, while soft pads allow for a
lower effect of loads transmitted to underlayers and therefore mitigate
11

e

damage and vibrations to the sleepers and ballast [47]. This indicates
if the designer focuses on the critical condition of the supporting layers
(for example, in the case of transition zones to the railway bridges
where issues with settlement often exist), the values of 𝑚𝑐 and 𝑘𝑝
should be chosen with careful consideration in the modeling process,
especially for 𝑘𝑝 since it often comes with a wide range of values and
is also influenced by the frequency and environmental factors such as
temperature, preload, and aging [25]. If possible, a more advanced
model that captures the effect of those factors on the railpad properties
should be employed for a more accurate representation of the railpad
behavior.

It can also be observed from Fig. 6 that 𝑚𝑠, as the only property
relevant to the sleeper in the modeling, plays a minor role (about
2.83%) in the variability of maximum sleeper accelerations. Despite
the common use of mass elements to represent sleepers in railway
structures, it may be inferred that, in the adopted TTB model, the
sleeper modeling might be over-simplified if the condition of track
supporting layers is of particular concern. Instead, beams or solids are
alternatives to improve the modeling of sleepers. This highlights the
value of using sensitivity analysis based on extremes for the purpose of
validating models.

Track ballast provides a supporting layer to the sleepers, and it be-
comes reasonable that the ballast properties (𝜌𝑏𝑎, 𝐸𝑏𝑎, ℎ𝑏𝑎, 𝛼𝑏𝑎, and 𝑐𝑏𝑎)
play a relatively important role in the sleeper response 𝐴𝑠. However, in
Fig. 6, the sensitivity indices of those factors with regard to 𝐴𝑠 are more
pread out with the individual importance measure no greater than 5%.
his distributed effect may be attributed to the ballast model [38,40]
dopted in the dynamic analysis (see Section 4.2), where the five ballast
roperties were aggregated into two equivalent parameters (𝑚𝑏𝑎 and
𝑏𝑎) that were actually used in the dynamic simulation. It becomes clear
hen measuring the total effect of the ballast properties, which account

or 9.10% of the variability in maximal 𝐴𝑠.
The maximum deck deflection shows the highest sensitivity to the

arbody mass (𝑚𝑐) and bridge properties (𝐸, 𝐼, 𝜇 and 𝑐), which jointly
ccounts for almost all of the response variability (about 99.99%).
pecifically, factors 𝐸 and 𝐼 contribute about 52.51% of the variability,
hich is physically reasonable, given the importance of 𝐸𝐼 in beam
eflection. Therefore, it is important to carefully define these factors
efore performing dynamic analysis if the goal is to evaluate the bridge
esponse.

Note that train speed is not considered a variable in the current
A. It is fixed in its given value since the present work aims at
valuating the impact of input factors with high variability on the

xtreme dynamic response, while the operational speed of the trains
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Fig. 7. Threshold-based response surface of 𝐴𝑠 for each fixed factor. Scenario 1 (red lines) with threshold 𝐴𝑠 = 1.5 g m/s2 (dotted) and threshold-based response �̃�𝑠
1 (solid);

Scenario 2 (blue lines) with threshold 𝐴𝑠 = 2 g m/s2 (dotted) and threshold-based response �̃�𝑠
2 (solid); and Scenario 3 (green lines) with threshold 𝐴𝑠 = 2.5 g m/s2 (dotted) and

threshold-based response �̃�𝑠
3 (solid). In each scenario, the region above or below the corresponding threshold indicates the failure or non-failure domain, respectively. This also

applies to Fig. 8.
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is normally predefined with less uncertainty. The Kelvin foundation
adopted in the TTB model implies a limitation of the train speed to
subcritical velocities. For speeds that are above the critical velocity,
dynamic amplification effects of the response can be observed. This can
cause significant changes in the extreme response surface and therefore
affects the result of sensitivity analysis.

5.3. Impact of design thresholds

The threshold-based sensitivity analysis (Section 2.3) is applied in
the TTB case. Fig. 7 shows the threshold-based sleeper acceleration (�̃�𝑘

𝑠 )
for each fixed factor, considering all input factors for demonstration
purposes. Fig. 8 presents the threshold-based response for the remain-
ing criteria, specifically focusing on the most significant input factors
to maintain brevity.

In Fig. 7, the thresholds are defined referring to [48], where sleeper
accelerations for the plain line are observed in the range of ±2 g
(𝑔 = 9.8 m∕s2, gravitational acceleration). Accordingly, the thresholds
of 1.5 g, 2 g, and 2.5 g m∕s2 are determined for Scenarios 1, 2, and 3,
respectively.
12
When 𝐴𝑠 = 1.5 g m∕s2, it can be seen that only 𝑚𝑐 and 𝑘𝑝 cause
hanges in the response curves (the solid red lines in the corresponding
ubplots), implying their critical contributions to the exceedance of
he current limit state. Guaranteeing either 𝑚𝑐 < 27 500 kg or 𝑘𝑝 <
40 MN∕m, the unfavorable system condition can be avoided. Note
hat a combination of other insignificant factors may also influence
he system reliability state. The current SA aims at quantifying the
nivariate effect of input factors on the model response near the limit
tates, while the joint effect will require further analysis.

In Scenario 2 (𝐴𝑠 = 2 g m∕s2), there are more input factors that
nfluence whether the reliable state of the system can be attained,
.e., 𝑚𝑐 , 𝑘𝑝, 𝑚𝑠, 𝐸𝑏𝑎, ℎ𝑏𝑎, 𝛼𝑏𝑎, and 𝑐𝑏𝑎. Compared with Scenario 1, 𝑚𝑐

or 𝑘𝑝 can take the value in a larger range without taking the risk of
‘failure’, since the design threshold is less restrictive. However, when
𝐴𝑠 = 2.5 gm∕s2, the maximal response is always below the threshold. In
this case, none of the input factors are considered important, as none of
the combinations of the factors taking values in their definition range
will cause ‘failure’. From this, it is highlighted that the chosen threshold
has a substantial impact on the contribution of input factors (whether
critical or not) to the variability of the extreme model response.
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Fig. 8. Threshold-based response surface of (a) 𝑊𝑧, (b) 𝑈𝑟, and (c) 𝑈𝑑 with regard to the most significant factors.
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Fig. 8 shows the threshold-based response of the remaining criteria,
ocusing on the factors that contribute to substantial changes in these
urves. In Fig. 8a, the limits for 𝑊𝑧 are defined according to rating
cales of the Sperling index and the response variability space from
he ED (see Fig. 5a). 𝑊𝑧 < 1 classifies the riding condition as ‘Just
oticeable’; 1 < 𝑊𝑧 < 2 means ‘Clearly noticeable’. 𝑊𝑧 = 1.56
efined for Scenario 2 refers to the nominal value of the limit in [49].
n Fig. 8b, the limits for 𝑈𝑟 are defined referring to [49], where a

range between 0.00102 and 0.0025 m is considered for the rail vertical
deflection. Accordingly, the thresholds of 0.0015, 0.0020, and 0.0025 m
re determined for Scenarios 1, 2, and 3, respectively.

In Fig. 8c, the thresholds for Scenarios 1 and 2 are determined
ased on the response variability space obtained from the ED (see
ig. 5d). The threshold defined for Scenario 3 refers to EN 1990 [50],
hich specifies the maximum permissible vertical deflection for railway
ridges based on factors such as the number of spans, span length,
rain speed, and bridge configuration. For the current bridge case, 𝑈𝑑 =
.058m is derived and defined as the decision threshold for Scenario 3.

Firstly, it is observed from Fig. 8 that in Scenario 1 (the red
ines), the response surfaces consistently align with the corresponding
hresholds for all the criteria. This indicates that the design thresholds
f these criteria can always be attained by a critical combination of the
ariables, where none of the variables play an impeding role.

In Scenarios 2 and 3, deviations occur in the considered criteria.
s shown in Fig. 8a, the response surfaces in Scenario 2 (the blue
olid lines) coincide with those simulated in Scenario 3 (the green solid
ines), and the maximum response values consistently fall below the
hreshold for Scenario 2, 𝑊𝑧 = 1.56. This implies that varying any factor
ithin its range will not alter the system reliability state, as there are

ufficient margins between the actual extreme model response and the
iven threshold.

However, Fig. 8b demonstrates the significant influence of 𝑚𝑐 in
etermining the system reliability states (𝑈𝑟 = 0.0020 m and 𝑈𝑟 =
.0025 m). This observation aligns with the sensitivity index shown in
ig. 6, where 𝑚𝑐 alone accounts for about 65.13% variability of the
13

aximum 𝑈𝑟. Besides, in Scenario 3, despite slight fluctuations caused
y numerical simulations, it is observed that the response curves of
actors 𝐸 and 𝐼 intersect with the threshold 𝑈𝑟 = 0.0025 m, indicating

their relevance in reaching the corresponding reliability state.
In terms of the criterion 𝑈𝑑 , the dominant factors indicated in Fig. 8c

lign with those shown in Fig. 8b. Specifically, in Scenario 2, varying
he values in the range 𝑚𝑐 < 37 000 kg, 𝐸 > 3.12 × 1010 N∕m2, or
𝐼 > 50 m4 can guarantee the maximum 𝑈𝑑 below this threshold. In
Scenario 3, there are always sufficient margins between the maximum
𝑈𝑑 and given threshold 𝑈𝑑 = 0.058 m, suggesting that all the factors
can be considered as non-critical.

6. Conclusions

Different types of methods have been developed for sensitivity
analysis (SA), where the Sobol method is possibly the most prevalent
form of global sensitivity method in engineering applications. However,
this method focuses on the average behavior of the systems, which may
not be sufficient for safety-critical structures where often limit states
and the corresponding extreme values of the response are of particular
concern.

This paper focuses on the extreme response that a structure can
potentially experience. The ‘extreme’ can be interpreted as either the
maximum (or minimum) [20] or the response near a limit state (i.e., the
threshold-based response). When a threshold is large enough, the
threshold-based response implies the maximum value of the response,
and vice versa. Therefore, the threshold-based response can be consid-
ered a generalized extreme response. For this, an efficient method is
proposed to evaluate the sensitivity of the extreme model response to
input factors, which extends the work [20] by incorporating the limit
state design considerations in the formulation of extreme problems,
i.e., the so-called threshold-based sensitivity method.

Further, since the sensitivity method is optimization-based, which
requires iteratively maximizing (or minimizing) the model to search
for the extreme model response, the computational cost involved in SA
may become unaffordable in dealing with models that are computa-
tionally intensive. To circumvent this issue, the random model output
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Fig. A.9. Importance measure of each input factor using true function evaluations (True), PCE, PC-Kriging (PCK), and Kriging metamodel.
is represented by polynomial chaos expansions (PCE), in which the
original expensive model is replaced by an approximation that is faster
to evaluate.

The case study screens the application on railway tracks, with a
focus on the train–track–bridge dynamic interaction. The sensitivity of
the maximum dynamic response is assessed while accounting for the
existence of track irregularities and uncertainty in the factors of the
train, track, and bridge. Four design criteria are defined to capture
the overall level of vibration of the system. The result suggests the
high relevance of loading magnitude to all the criteria considered.
However, we have seen that the sensitivity between the input factors
and each criterion can be very different. This indicates that SA should
be performed with a specific purpose, rather than more generally on
the model.

The threshold-based SA using PCE is applied in the train–track–
bridge system to analyze the model sensitivity near the limit states,
where the relevance of the input factors on reaching a given limit
state is visualized. It helps analysts identify critical regions that lead to
undesirable outcomes in the input design space under a given scenario.
From the case study, it is highlighted that the chosen threshold has
a substantial impact on the contribution of input factors to response
variability. For this reason, the thresholds that determine the system
limit states should be carefully defined for a proper SA.

The current SA method is generic and can be extended to accommo-
date different metamodel approaches. By using PCE, our focus is limited
to functions that can be well-approximated by global smooth polynomi-
als. Future work would be required to explore alternative approaches
14

to handle functions with highly local non-smoothness or nonlinearity.
For example, more involved versions of PCE, such as Stochastic Spec-
tral Embedding, can be explored to fit the PCE in subdomains and
capture local nonlinearities. Another extension of the method involves
conducting a benchmark study to investigate the connection among
function properties (dimensionality and complexity), metamodel types
(and solvers), experimental design size, and sampling schemes.
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Fig. A.10. Accuracy of the importance measure of each input factor using PCE, PC-Kriging (PCK), and Kriging metamodel. The bar heights show the mean and error bars represent
±1 standard deviation over 20 trials.
Fig. A.11. Visualization of the six-hump camel function.
Appendix A. Comparison of PCE with other metamodels

A.1. Results for the truss structure

The importance measures in the truss case are evaluated using
different sample sizes (𝑁) and metamodels (PCE, Kriging, and PC-
Kriging), as shown in Figs. A.9 and A.10. In the alternative metamodels,
15
an ordinary Kriging model with a Matérn 5/2 correlation function is
applied. PC-Kriging considers a sequential formulation [46] where the
set of polynomials and Kriging are determined sequentially. The LAR al-
gorithm (Section 2.2) is applied to select the optimal set of polynomials,
varying the maximum degree 𝑝 from 3 to 15. This set of polynomials is
then used as the trend of a Kriging model with a Gaussian correlation
function, which is further calibrated using maximum likelihood. For
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sensitivity evaluation, the model training is repeated five times for each
approach, and the one with the lowest 𝜀𝑔𝑒𝑛 is chosen.

The comparison of the sample size and metamodels is presented in
ig. A.9. It can be observed that Kriging shows the largest deviation
rom the true values across all sample cases. PCE and PC-Kriging
emonstrate comparable performance, with PCE showing better results
specially when the sample size is small. Note that for 𝑁 = 100,

both Kriging and PC-Kriging provide incorrect rankings for the first
and second important factors (𝐸1 and 𝐴1, respectively). However, as
the sample size increases, the estimated measures gradually converge
towards the true values and align with the true rankings.

The analysis is replicated to account for the uncertainties in exper-
imental designs. Fig. A.10 shows the relative errors of the sensitivity
measures over 20 trials. For small sample sizes (𝑁 = 100 or 400), PCE
demonstrates the best performance in terms of both mean and variation
of the errors, while PC-Kriging shows the largest variation of the errors
when 𝑁 = 100, especially for factors 𝑃1 and 𝑃6 that have a negligible
effect on the model output. However, as the sample size 𝑁 increases
(𝑁 = 700 or 1000), PC-Kriging shows a slight improvement over PCE, as
indicated by the lower mean and variation of the errors. This difference
can be attributed to the fact that PC-Kriging is more prone to overfitting
when dealing with small ED sizes [46]. On the other hand, Kriging
shows considerable bias in the mean of the errors across all the sample
sizes, and no clear improvement in its performance is observed as the
sample size increases.

A.2. Results for the TTB system

The performance of PCE is compared with Kriging and PC-Kriging
16

approaches in the TTB system. The results are presented in Table A.5.
The training of Kriging and PC-Kriging follows the same methodology
as described in Appendix A.1. Ten independent runs are carried out for
each metamodel, and the one with the lowest relative generalization
error 𝜀𝑔𝑒𝑛 is chosen for further comparison. Results from Table A.5
indicate that PCE outperforms the others in terms of 𝜀𝐿𝑂𝑂 and function
evaluation time. PCK performs slightly better than PCE (with the
same order of accuracy) for the relative generalization error 𝜀𝑔𝑒𝑛 of
two response indicators (𝑊𝑧 and 𝑈𝑑). Furthermore, PCE demonstrates
ignificant computational efficiency compared to the other approaches,
hich is advantageous for conducting sensitivity analyses of large-scale
ngineering systems.

.3. Additional verification using an analytical function

In this section, we illustrate the concept of output extreme surfaces
f the 𝑑−1 dimensional space (Section 2.1.1) and further verify the use
f PCE for the extreme-based sensitivity method through an analytical
unction. The six-hump camel function is chosen because it has a global
onlinear behavior, as depicted in Fig. A.11, and involves only two
nput factors, allowing for visualization. This function is defined as

(𝑋1, 𝑋2) = (4 − 2.1𝑋2
1 +

𝑋4
1
3

)𝑋2
1 +𝑋1𝑋2 + (−4 + 4𝑋2

2 )𝑋
2
2 ,

(A.1)

ith 𝑋1 defined in the interval [−2, 2] and 𝑋2 defined in [−1, 1].
Fig. A.12 depicts the output extreme surfaces (𝑓min and 𝑓max) of

the six-hump camel function when fixing each factor at a time. The
estimated importance measures are also displayed for each factor. A
sample size 𝑁 = 100 is considered given the limited dimension of
the problem. The extreme surfaces evaluated from the true function
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Table A.5
Train–track–bridge system: comparing the performance of metamodels to approximate
Sperling index 𝑊𝑧, vertical rail displacement 𝑈𝑟 (unit: m), vertical sleeper acceleration

𝑠 (unit: m/s2), and vertical deck deflection 𝑈𝑑 (unit: m). Minimum values are
highlighted for each index (𝜀𝐿𝑂𝑂 , 𝜀𝑔𝑒𝑛 and average function evaluation time).

Response Metamodel Minimum 𝜀𝐿𝑂𝑂 Minimum 𝜀𝑔𝑒𝑛 Average
function
evaluation
time (s)

𝑊𝑧 PCE 𝟕.𝟏𝟑 × 𝟏𝟎−𝟔 2.92 × 10−5 𝟎.𝟎𝟎𝟒𝟒
Kriging 5.00 × 10−4 5.09 × 10−4 0.1904
PC-Kriging 9.17 × 10−6 𝟐.𝟕𝟑 × 𝟏𝟎−𝟓 0.2168

𝑈𝑟 PCE 𝟓.𝟗𝟑 × 𝟏𝟎−𝟑 𝟔.𝟗𝟖 × 𝟏𝟎−𝟑 𝟎.𝟎𝟎𝟑𝟗
Kriging 1.77 × 10−2 1.42 × 10−2 0.2037
PC-Kriging 7.18 × 10−3 9.17 × 10−3 0.2141

𝐴𝑠 PCE 𝟏.𝟕𝟒 × 𝟏𝟎−𝟑 𝟑.𝟎𝟔 × 𝟏𝟎−𝟑 𝟎.𝟎𝟎𝟒𝟒
Kriging 5.62 × 10−3 5.92 × 10−3 0.1804
PC-Kriging 2.18 × 10−3 3.38 × 10−3 0.2003

𝑈𝑑 PCE 𝟏.𝟒𝟒 × 𝟏𝟎−𝟓 4.51 × 10−5 𝟎.𝟎𝟎𝟕𝟒
Kriging 1.55 × 10−3 4.22 × 10−4 0.1967
PC-Kriging 1.59 × 10−5 𝟑.𝟕𝟕 × 𝟏𝟎−𝟓 0.2513

are shown to compare the accuracy of PCE, Kriging, and PC-Kriging.
It can be observed that both PCE and PC-Kriging effectively capture
the global shape of the function and accurately represent the minimal
surfaces (𝑓min). However, they fail to identify the minimum point
n the maximum surface (𝑓max) for 𝑋2. Despite this, their estimated

importance measures remain close to the true measures. In contrast,
Kriging has limitations in approximating the global behavior of the
function, resulting in a large deviation between the estimated and true
importance measures, especially for the maximum surfaces (𝑓max). Note
that the extreme surfaces are obtained by discretizing each factor at a
time, with 𝑛𝑖 = 50. Therefore, the surfaces may not appear smooth.
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