

Delft University of Technology

Advanced Factorization Models for Recommender Systems

Loni, Babak

DOI
10.4233/uuid:0b91c68f-4da7-4745-8d08-c39c0bb00e81
Publication date
2018
Document Version
Final published version
Citation (APA)
Loni, B. (2018). Advanced Factorization Models for Recommender Systems. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:0b91c68f-4da7-4745-8d08-c39c0bb00e81

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:0b91c68f-4da7-4745-8d08-c39c0bb00e81
https://doi.org/10.4233/uuid:0b91c68f-4da7-4745-8d08-c39c0bb00e81

ADVANCED FACTORIZATION MODELS
FOR RECOMMENDER SYSTEMS

ADVANCED FACTORIZATION MODELS
FOR RECOMMENDER SYSTEMS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen ,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op woensdag 12 December 2018 om 15:00 uur

door

Babak LONI

Master of Science in Computer Science,
Technische Universiteit Delft, Nederland,

Geboren te Teheran, Iran

Dit proefschrift is goedgekeurd door de promotoren

Prof. dr. A. Hanjalic
Prof. dr. M. A. Larson

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. A. Hanjalic, Technische Universiteit Delft
Prof. dr. M. A. Larson, Technische Universiteit Delft

Onafhankelijke leden:
Prof. dr. G.J. Houben, Technische Universiteit Delft
Prof. dr. M. Reinders, Technische Universiteit Delft
Prof. dr. A. De Vries, Radboud Universiteit Nijmegen
Prof. dr. J. Wang, University College London
Prof. dr. J. Jose, University of Glasgow

Keywords: recommender systems, collaborative filtering, factorization machines

Printed by: Ridderprint BV | www.ridderprint.nl

Cover Design: Mahboobeh Goudarzi

Copyright © 2018 by Babak Loni

ISBN 978-94-6375-232-9

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

www.ridderprint.nl
http://repository.tudelft.nl/

To my parents, Soodabeh and Mostafa.

Science is a wonderful thing
if one does not have to earn one’s living at it.

Albert Einstein

CONTENTS

Summary xiii

Samenvatting xv

I Prelude 1

1 Introduction 3
1.1 Recommender Systems . 4
1.2 Collaborative Filtering . 4

1.2.1 Memory-based Collaborative Filtering 5
1.2.2 Model-based Collaborative Filtering 5

1.3 Advanced Factorization Models . 6
1.3.1 Factorization Machines . 6
1.3.2 Beyond the User-Item Matrix . 8
1.3.3 Beyond Rating Prediction . 9
1.3.4 Advanced Learning Models . 10

1.4 Contributions of this Thesis. 10
1.4.1 Outline. 11

1.5 How to Read this Thesis . 13
1.6 List of Publications . 13

II Beyond the User-Item Matrix 15

2A Cross-Domain Collaborative Filtering with Factorization Machines 17
2A.1 Introduction . 18
2A.2 Related Work . 18
2A.3 Cross-Domain CF with Factorization Machines 19
2A.4 Experiments . 20
2A.5 Discussion and Future Directions . 21

2B ‘Free-Lunch’ Enhancement with Factorization Machines 23
2B.1 Introduction . 24
2B.2 Background and Motivation . 24
2B.3 Enhancement Approach for FMs . 26

2B.3.1 Factorization Machines . 26
2B.3.2 Cluster Encoding. 27
2B.3.3 Cluster Construction. 27

2B.4 Experiments . 28
2B.4.1 Datasets and Framework. 28
2B.4.2 Results . 28

ix

x CONTENTS

2B.5 Conclusion and Outlook . 30

2C Speeding Up Collaborative Filtering with Factorization Machines 33
2C.1 Introduction . 34

2C.2 Related Work . 34

2C.3 The Slice and Train Method . 35

2C.4 Dataset and Experiments . 37

2C.5 Conclusion . 41

III Beyond Rating Prediction 43

3 Factorization Machines for Data with Implicit Feedback 45
3.1 Introduction . 46

3.2 Background and Related Work . 48

3.3 Learning from Implicit Feedback . 50

3.3.1 Computational Complexity . 52

3.3.2 Analogy Between FM-Pair and BPR-MF 53

3.4 Improved Recommendations with Auxiliary Data 53

3.4.1 Context-Aware Recommendation with FM-Pair 54

3.4.2 Cross-Domain Recommendations 54

3.5 Datasets, Experiments and Evaluation 56

3.5.1 Datasets . 56

3.5.2 Experiments Setup and Evaluation. 57

3.5.3 Comparison of FM-Pair with Other Methods. 58

3.5.4 FM-Pair with Auxiliary Data . 61

3.5.5 Convergence and Complexity of FM-Pair 63

3.5.6 Using WrapRec. 64

3.6 Conclusion and Future Work . 65

4 Top-N Recommendation with Multi-Channel Positive Feedback 67
4.1 Introduction . 68

4.2 Related Work . 69

4.3 Background and Framework . 71

4.3.1 Factorization Machines (FMs) . 71

4.3.2 Bayesian Personalized Ranking 73

4.3.3 Pairwise Factorization Machines 74

4.4 Multiple Channels in FM-Pair . 75

4.4.1 Multiple Channels as Auxilliary Features 75

4.4.2 Multi-Channel Sampling . 76

4.5 Data and Experimental setup . 80

4.5.1 Datasets . 80

4.5.2 Evaluation Method. 82

4.5.3 Experimental Reproducibility . 82

CONTENTS xi

4.6 Experiments . 83
4.6.1 Multi-Channel Sampling versus Conventional Integration of Feed-

back . 83
4.6.2 Comparison of Sampling Strategies 87
4.6.3 Accuracy, Complexity and Coverage of Different Combinations of

Samplers . 89
4.7 Conclusion And Future Work . 91

IV Advanced Learning Models 93

5 Weighted Factorization Machines 95
5.1 Introduction . 96
5.2 Related Work . 98
5.3 Framework . 99

5.3.1 Optimization for Rating Prediction. 101
5.3.2 Optimization for Ranking . 102

5.4 Applications of WFM . 104
5.4.1 Context-aware Recommendation 104
5.4.2 Cross-Domain Recommendation 106

5.5 Datasets and Experiments . 107
5.5.1 Datasets . 107
5.5.2 Evaluation Protocol . 108
5.5.3 Weighted FMs for Rating Prediction 108
5.5.4 Weighted FMs for Ranking . 110
5.5.5 Experimental Reproducibility . 111

5.6 Conclusion and Future Work . 112

V Implementation Framework 113

6 WrapRec, An Evaluation Framework for Recommender Systems 115
6.1 Introduction . 116
6.2 Overview of the Toolkit . 116
6.3 How to Use the Toolkit . 118
6.4 Updates in WrapRec 2.0 . 118
6.5 Outlook . 119

VI Outlook 121

7 Conclusion and Future Work 123
7.1 Discussion . 124
7.2 Future Work. 126

7.2.1 Custom Optimization Methods 126
7.2.2 Factorization and Content-based Features 126
7.2.3 Elicitation of the ‘Right’ Data. 127
7.2.4 Factorization Machines for Other Problems 127
7.2.5 Unified Evaluation Framework. 127

xii CONTENTS

Bibliography 129

List of Figures 141

List of Tables 143

Acknowledgements 147

Curriculum Vitæ 151

SUMMARY

Recommender Systems have become a crucial tool to serve personalized content and to
promote online products and media, but also to recommend restaurants, events, news
and dating profiles. The underlying algorithms have a significant impact on the quality
of recommendations and have been the subject of many studies in the last two decades.
In this thesis we focus on factorization models, a class of recommender system algo-
rithms that learn user preferences based on a method called factorization. This method
is a common approach in Collaborative Filtering (CF), the most successful and widely-
used technique in recommender systems, where user preferences are learnt based on
the preferences of similar users.

We study factorization models from an algorithmic perspective to be able to extend
their applications to a wider range of problems and to improve their effectiveness. The
majority of the techniques that are proposed in this thesis are based on state-of-the-art
factorization models known as Factorization Machines (FMs).

In recommender systems, factorization is typically applied to a matrix, referred to as
the user-item matrix, that reflects the interactions between users and items. Our first
proposal is a set of algorithms, based on FMs, that exploits information that is present
beyond the user-item matrix and that is not exploited otherwise with conventional ma-
trix factorization. We show that such algorithms are able to improve the efficiency and
the accuracy of the recommendations.

Our second proposal is to extend the applicability of FMs to ranking problems in rec-
ommender systems. FMs are originally designed to address the rating prediction prob-
lem, where the underlying model is optimized to learn from and to predict user ratings.
Ranking problems, on the other hand, have a rather different view and approach to gen-
erate recommendations. They are optimized to learn a ranking for items and can be
trained not only using explicit ratings but also using binary or unary user feedback, mak-
ing them a favorable approach to create recommendations when explicit user feedback
is not available. Our second proposal aims to combine the flexibility and expressiveness
of FMs with advantages of ranking models, and to benefit from both approaches. We
propose an adapted optimization technique to be able to properly exploit FMs to im-
plement ranking. This proposal is later extended with further adaptation to be able to
effectively learn from multiple types of positive feedback. We show that the underly-
ing signal (such as click or share) through which user provides feedback, contains useful
information that is not typically exploited by conventional CF models. Our proposal is
able to distinguish such signals from each other to learn models that are more accurate
representations of user preferences.

Our third proposal turns to the underlying training algorithm in FMs and aims to
learn the importance of features with additional weight parameters. This proposal, re-
ferred to as Weighted Factorization Machines (WFM), is applied for both scenarios of rat-
ing prediction and ranking, and their applications on context-aware and cross-domain

xiii

xiv SUMMARY

recommendations. The ability of WFM to learn weights can avoid a time-consuming
search to find optimal weights for features. WFM improves the accuracy of rankings and
maintains competitive accuracy for rating prediction, compared to the state-of-the-art
approaches.

The last chapter of this thesis proposes a set of ideas based on the insights that are
learned in the course of our research on factorization models, and can be further inves-
tigated in future studies.

SAMENVATTING

Recommender-systemen, systemen die aanbevelingen doen, zijn een cruciaal hulpmid-
del geworden voor het aanbieden van gepersonaliseerde inhoud, en voor het promoten
van online producten en media, maar ook om restaurants, evenementen, nieuws en dat-
ingsprofielen aan te bevelen. De onderliggende algoritmen hebben een significante in-
vloed op de kwaliteit van aanbevelingen en zijn het onderwerp geweest van vele studies
in de afgelopen twee decennia.

In dit proefschrift richten we ons op factorisatiemodellen, een klasse van recom-
mendersysteemalgoritmen die gebruikersvoorkeuren leren door een methode dat fac-
torization of factorisatie wordt genoemd. Deze methode is een gebruikelijke aanpak in
Collaborative Filtering (CF), de meest succesvolle en meestgebruikte techniek in recom-
mendersystemen, waarbij gebruikersvoorkeuren worden geleerd op basis van de voorkeuren
van vergelijkbare gebruikers.

We bestuderen factorisatiemodellen vanuit een algoritmisch perspectief om hun toepass-
ing uit te breiden naar een groter aantal problemen en om hun effectiviteit te verbeteren.
De meeste technieken die in dit proefschrift worden voorgesteld zijn gebaseerd op state-
of-the-art factorisatiemodellen die bekend zijn als Factorization Machines (FM’s).

In recommendersystemen wordt het factorisatieproces meestal toegepast op een ma-
trix, die de interacties tussen gebruikers en items weergeeft. Deze matrix wordt de user-
item-matrix genoemd. Ons eerste voorstel is een reeks algoritmen, gebaseerd op FM’s,
die informatie benut die buiten de user-item-matrix aanwezig is en die anders niet wordt
benut met conventionele factorisatiemodellen. We laten zien dat dergelijke algoritmen
in staat zijn om de efficiëntie en nauwkeurigheid van de aanbevelingen te verbeteren.

Ons tweede voorstel is om de toepasbaarheid van FM’s op rangordeproblemen in
recommendersystemen uit te breiden. FM’s zijn oorspronkelijk ontworpen om het prob-
leem om beoordelingen te voorspellen aan te pakken, waarbij het onderliggende model
geoptimaliseerd is om beoordelingen van gebruikers te leren en te kunnen voorspellen.
Rangordeproblemen hebben daarentegen een nogal andere visie en aanpak om aan-
bevelingen te genereren. Ze zijn geoptimaliseerd om items te rangschikken en kunnen
niet alleen worden getraind met behulp van expliciete beoordelingen, maar ook met be-
hulp van binaire of unaire gebruikersfeedback, waardoor ze een gunstige manier zijn om
aanbevelingen te genereren wanneer expliciete gebruikersfeedback niet beschikbaar is.
Ons tweede voorstel is erop gericht om de flexibiliteit en expressiviteit van FM’s te com-
bineren met de voordelen van rangschikkingsmodellen en dus te profiteren van beide
aanpakken. We stellen een aangepaste optimalisatietechniek voor om FM’s goed te kun-
nen exploiteren en hiermee te kunnen rangschikken. Dit voorstel wordt later uitgebreid
met een verdere aanpassing om effectief te kunnen leren van meerdere soorten positieve
feedback. We laten zien dat het onderliggende signaal (zoals muisklikken of deelacties)
waarmee de gebruiker impliciet feedback geeft, nuttige informatie bevat die normaal
niet door conventionele CF-modellen wordt gebruikt. Ons voorgestelde aanpak is in

xv

xvi SAMENVATTING

staat om dergelijke signalen van elkaar te onderscheiden om modellen te leren die accu-
ratere representaties zijn van gebruikersvoorkeuren.

Ons derde voorstel keert zich tot het onderliggende trainingsalgoritme in FM’s en
heeft als doel om het belang van features (kenmerken) met additionele gewichtsparam-
eters te leren. Dit voorstel, Weighted Factorization Machines (WFM) genoemd, wordt
toegepast voor beide scenario’s: het voorspellen en rangschikken van beoordelingen
en hun toepassingen op context-aware en cross-domain aanbevelingen. Het vermo-
gen van WFM om gewichten te leren kan een tijdrovende zoekoperatie om optimale
gewichten voor features te vinden voorkomen. WFM verbetert de nauwkeurigheid bij
het rangschikken en behoudt een concurrerende nauwkeurigheid bij het voorspellen
van beoordelingen in vergelijking met state-of-the-art oplossingen.

Het laatste hoofdstuk van dit proefschrift biedt een reeks ideeën op basis van inzichten
die zijn verkregen tijdens ons onderzoek naar factoriseringsmodellen en die in toekom-
stige studies verder kunnen worden onderzocht.

I
PRELUDE

1

1
INTRODUCTION

Factorization models are state-of-the-art models for collaborative filtering, a class of rec-
ommender systems algorithms that generate recommendations by automatic prediction
(filtering) of user’s interest based on the interests of other users. In this thesis, we focus on
Factorization Machines (FMs), a general factorization framework that can mimic other
factorization models by feature engineering.

In this chapter we first provide a short introduction about recommender systems and col-
laborative filtering. We then briefly describe factorization models and in particular Fac-
torization Machines and further discuss over advantages and limitations of FMs. We fur-
ther introduce some problems in recommender systems and explain how we address those
problems with advanced factorization models, as introduced in the technical chapters of
this thesis.

3

1

4 1. INTRODUCTION

1.1. RECOMMENDER SYSTEMS
Recommender Systems are a subclass of information retrieval systems that seek to gen-
erate recommendations that fit users’ interest. Recommender systems are essential tools
in promoting products and services in a wide range of applications including online
shopping, movie and music streaming services, social networks, professional networks
and news services. Recommendations in YouTube account for about 60% of clicks in its
home page [21]. Netflix reports [32] that 80% of its movies are discovered through recom-
mendations. Spotify [42] and Pandora1, two giant music streaming services, also report
the critical role of recommender systems in the success of their services.

Recommender Systems algorithms are generally classified into two groups: content
based methods and Collaborative Filtering (CF). Content-based methods utilize the fea-
tures of items to recommend similar items to the item that user consumed. CF ap-
proaches generally learn user’s interest by relying on the behavior of similar users. CF
is generally more popular than content-based methods due to its superior performance
and accuracy [22]. CF methods however, suffer from the cold-start problem, that is,
when the system does not have enough information about new users and items. In
such cases the content-based methods are superior [105]. In many real-world scenar-
ios, hybrid methods, combination of content-based and collaborative filtering methods
are used [2, 14].

Recommender system algorithms typically rely on predicting a utility for user-item
interactions. The items with high utility with respect to a user are recommended to the
user. Most of the early recommender systems are addressing the rating prediction prob-
lem, that is, they are optimized to predict the rating that a user might give to an item. In
such cases user rating is considered as the utility of user-item interactions. The predicted
utility is then used to rank items and the top items are recommender to the user [69].
Another class of recommender system algorithms are optimized to directly rank items
based on the preferences of the users. This class of algorithms is particularly useful when
explicit user ratings are not available. In such cases implicit user feedback (such as ‘click’,
‘bookmark’ or ‘add-to-basket’) are exploited in order to learn a ranked list.

1.2. COLLABORATIVE FILTERING
Collaborative Filtering (CF) is the most popular and successful method in recommender
systems, which is based on the idea that users with common interests in the past are
likely to have similar interests in future. Most of the successful and recent recommender
systems methods are based on CF methods [114]. Collaborative Filtering is also the win-
ner of the Netflix contest competition [10]. Recently efforts have been done to combine
CF methods with deep learning [36, 123] to benefit from the advantages of the two tech-
niques.

In CF techniques, user-item interactions are typically represented by a matrix where
rows represent the users, columns represent the items and each cell contains the rating
of a user to an item, if available. The objective of a rating prediction problem is to pre-
dict the ratings in the missing cells. CF methods can be classified into two categories:
memory-based and model-based methods. In the following we provide a brief overview

1http://www.theserverside.com/feature/How-Pandora-built-a-better-recommendation-engine

http://www.theserverside.com/feature/How-Pandora-built-a-better-recommendation-engine

1.2. COLLABORATIVE FILTERING

1

5

of both techniques.

1.2.1. MEMORY-BASED COLLABORATIVE FILTERING
Memory-based algorithms, also known as neighborhood methods, directly use the stored
ratings to predict the utility of user-item interactions. Memory-based methods take into
account the similarities of users or items to calculate ratings. Recommendations can
be generated from a user-centric point of view, where the predictions are calculated as
weighted average of ratings given by similar (neighbor) users. In this case the similari-
ties of users are considered as weight parameters. From an item-centric point of view,
the similarities of all items to a target item i are calculated and then regarded as weight
parameters to calculate the weighted average of user’s rating for the target item. Simi-
larities can be calculated using Pearson correlation method or by using the cosine simi-
larity method. Users (items) are represented by feature vectors where features are items
(users) and the ratings are the value of the features.

Memory-based methods are simple to implement, and the recommendations are
easy to explain. However, theses methods have limited scalability on large datasets [114].

1.2.2. MODEL-BASED COLLABORATIVE FILTERING
Model-based approaches takes another perspective to predict user ratings. In contrast
to the memory-based methods where the predictions are calculated based on the stored
ratings, model-based approaches use the available ratings to learn a model to predict
the utility of user-item interactions.

Among several model-based CF methods, factorization models [53] are the most
popular model-based CF methods and have attracted majority of CF research due to
their superior accuracy and scalability, as witnessed by the model that won the Netflix
competition [8]. Other model-based methods include Maximum Entropy models [132],
Latent Dirichlet Allocation [56], Singular Value Decomposition [12] and mixture mod-
els [52]. In this section we briefly review factorization models.

Factorization models learn a representation of users and items in a shared latent fea-
ture space. Predictions are calculated based on how similar the users and items are in
this latent space. The features in the latent space are called factors and the process of
learning those factors is referred as factorization. Since user-item interactions are typi-
cally represented as a matrix, this technique is also referred as Matrix Factorization (MF).
The utility of a user-item interaction is calculated as the inner product of the two vectors.
In rating prediction problems, user’s rating is considered as the utility of interactions and
the model learns to predict the ratings. Figure 1.1 illustrates a user-item matrix and the
two factorized matrices of P and Q, which represent the learned factors for users and
items.

Early matrix factorization techniques use Singular Value Decomposition (SVD), a
popular technique to factorize a matrix to a latent semantic space [12]. The SVD tech-
nique however, cannot deal with missing values and thus the missing values are typically
filled with 0, resulting to a poor performance. Moreover, the SVD technique is very prone
to over-fitting and causes the model to be less general. Recent techniques learn the la-
tent factors only from the observed rating by solving an optimization problem. For the
rating prediction problem the latent factors are learned by optimizing a regularized loss

1

6 1. INTRODUCTION

Figure 1.1: Representation of a general matrix factorization model. User and items are factorized (projected)
into a joint latent space. A missing rating (shaded cell in this figure) is predicted by calculating the inner prod-
uct of the learned factors of the corresponding user and item. Parameter k is the dimentionality of factorization
(number of factors).

function (typically squared loss) based on the training data. The optimization problem
can be solved by different techniques, among which Stochastic Gradient Descent (SGD)
and Alternative Least Square (ALS) are two mostly used techniques [55].

1.3. ADVANCED FACTORIZATION MODELS
Factorization models are not only limited to rating prediction problems nor to the user-
item matrix. Real-world scenarios can be more complicated and capabilities of factor-
ization models are also more than predicting users’ rating. In this section we present ad-
vanced factorization models that can address wider range of problems in recommender
systems and can leverage more recent state-of-the-art techniques and learning algo-
rithms. We first introduce Factorization Machines (FMs), an advanced factorization
model that is the basis of most of the models that we proposed in this thesis and fur-
ther discuss about their advantages and limitations. We then present three challenges
that we covered in this thesis, review some related work and discuss how they can be
addressed with advanced factorization models.

1.3.1. FACTORIZATION MACHINES

Factorization Machines [89], are general factorization models that can mimic other fac-
torization models by feature engineering, i.e., using domain knowledge to create features.
In contrast to matrix factorization models where user-item interactions are represented
by a matrix, in FMs each user-item interaction is represented by a feature vector similar
to supervised machine learning approaches. Such representation makes FMs a flexible
model since additional information can be encoded to feature vectors as auxiliary fea-
tures and the underlying model of FMs can seamlessly exploit such features and possibly
learn a more accurate model. For example, if context of user-item interactions are avail-
able in a dataset, such context can be encoded as auxiliary features in FMs and a context-

1.3. ADVANCED FACTORIZATION MODELS

1

7

Figure 1.2: In Factorization Machines user-item interactions are represented in terms of feature vectors. Each
cell (rating) in the user-item matrix is represented by a single feature vector x and the rating is considered as
the output of the model (y) corresponding to that feature vector.

aware model can be learned. In [92], Rendle showed how several factorization models
such as matrix factorization, SVD++ [53] and attribute-aware matrix factorization [26]
can be modeled by factorization machines based on feature engineering. Factorization
Machines have also been successfully applied in context-aware recommendation [99],
Cross-Domain collaborative filtering [78] and Social Recommendations [70]. In addition
to their flexible representation, FMs are accurate and scalable models. In the past few
years, FMs became very popular not only in the academic world, but also as a popular
solution for industries. Recently, FMs have been offered as a managed machine learn-
ing service in Amazon SageMaker 2. Most of the advanced factorization models that we
propose in this thesis are based on FMs.

The standard FMs are designed for data with explicit feedback (such as user ratings).
A user rating in FMs is represented by a sparse feature vector where each user and item
corresponds to a feature (thus the number of features is the sum of cardinalities of users
and items). The target (output) of the FMs model is considered to be the rating, which
we want to predict. Figure 4.1 illustrates how a user-item matrix can be represented by
feature vectors in FMs. The set of feature vectors with their corresponding model output
(rating) is referred as FMs design matrix.

The underlying model of FMs learns to predict the user’s rating given a user-item fea-
ture vector. Similar to the case of matrix factorization, the model parameters in FMs are
learned by optimizing an objective function, which is defined based on the training data.
The objective function is typically a squared loss over training samples together with reg-
ularization terms to prevent over-fitting. The optimization can be done with three dif-
ferent methods [92]: Stochastic Gradient Descent (SGD), Alternating Least Square (ALS)
and Markov Chain Monte Carlo (MCMC).

Factorization Machines have several advantages compared to other factorization mod-
els. In [72] we listed three advantages for FMs, namely, generalization, expressiveness

2https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines.html

https://docs.aws.amazon.com/sagemaker/latest/dg/fact-machines.html

1

8 1. INTRODUCTION

and performance. FMs are general model since they learn from interactions between
any pairs of features (not only user-item interactions). Furthermore, they can learn the
model from higher-order interactions (for example user-item-context interactions). FMs
are expressive due to their flexible representation model. Several factorization tech-
niques can be represented by factorization machines by feature engineering. And finally
FMs are accurate and scalable models as witnessed by several studies [13, 47, 92, 93, 99].

Despite their advantages, the standard model of FMs are only optimized for rating
prediction problems and might not be necessarily an effective model if explicit feedback
is not available. Furthermore, FMs offer a possibility to exploit additional information in
terms of auxiliary features. However, the extent to which auxiliary features are effective
is not thoroughly studied. In Section 1.3.3, we introduce some advance factorization
models based on FMs that cover some of the issues we mentioned.

1.3.2. BEYOND THE USER-ITEM MATRIX

Factorization Machines are not the only models that can exploit information beyond the
user-item matrix. In the past few years a notable body of research has been dedicated to
leveraging additional information that is available beside the user-item matrix. The ad-
ditional source of information can be related to users and items (e.g., user demographic,
item features) or it can be pertained to the user-item interactions, typically reflecting the
context of such interactions.

The side information can be used to pre- or post-filter recommendation results or
can be exploited within the recommendation algorithms [84]. A comprehensive overview
of the collaborative filtering methods that exploit information beyond the user-item ma-
trix can be found in [112]. In their work, Shi et al. introduce three categories of algo-
rithms that exploit side information beyond the user-item matrix: extensions for memory-
based techniques, extensions for model-based techniques and graph-based collabora-
tive filtering methods. In the first category, side information is used to better estimate
similarities between users and items [14, 122]. The second category exploits side infor-
mation in the underlying model. An example in this group is Collective Matrix Factoriza-
tion (CMF) [115] where user-item matrix and side information are jointly factorized. Fac-
torization of side information (such as movie-genre matrix) can alleviate sparsity prob-
lem and lead to more accurate latent factors. The third category leverages graph-based
algorithms where typically connections between users and items are exploited to deal
with the cold-start problem. An example of such approaches is TrustWalker [44], where
knowledge of the trust network among users are exploited based on a random-walk al-
gorithm to alleviate sparsity problems and to learn a more accurate model.

As mentioned earlier, Factorization Machines are also able to leverage side informa-
tion beyond the user-item matrix. The advantage of FMs compared to other models is
that the side information can be exploited by embedding it as additional features and
in contrary to the other approaches the underlying model remains the same or can be
adapted with minor changes. An example of FMs that exploits side information with-
out adapting the underlying model is [99] where FMs have been used for context-aware
recommendations.

The side information can be even beyond user, item and context features and can
be derived from other domains. In Chapter 2 we propose a method based on FMs that

1.3. ADVANCED FACTORIZATION MODELS

1

9

exploits user-item interactions in auxiliary domains (for example user feedback in an
online movie store) to improve recommendations in a target domain (such as a book
store). This method and similar approaches are also referred as cross-domain collabora-
tive filtering methods. A brief survey of such approaches can be found in [63].

1.3.3. BEYOND RATING PREDICTION

In many practical situations user feedback is not available in terms of explicit ratings
and only implicit feedback from users such as click or download is collected. Implicit
feedback is typically unary and positive-only. Examples of feedback in social media and
online shopping that can be considered as positive feedback are ‘like’, ‘add-to-favorites‘
and ‘bookmark’. Examples of implicit feedback, which are typically regarded as positive
signal, are ‘click’, ‘share’ and ‘add-to-basket’. In some systems negative feedback can also
be collected [46, 85]. Due to the absence of explicit ratings in such systems, algorithms
that are optimized to predict ratings are not effective for generating recommendations.
In such scenarios, the recommender model is trained to learn the optimal ranking for
each user. Such approaches are also referred to as top-N recommendation models [24],
as they recommend the top-N items in the ranked list. Learning-to-rank methods in
recommender systems can be very effective also for datasets with explicit feedback [111].

For datasets with implicit feedback, collaborative filtering can also be implemented
with memory-based or model-based approaches. Similar to rating prediction problems,
memory-based methods [69] can generate recommendations by estimating similarities
of users based on their implicit feedback. Alternatively, item similarities [68] can be es-
timated to recommend similar items to the items that user consumed.

Most of the model-based approaches for datasets with implicit feedback are based on
factorization. Factorization-based approaches can be classified into three groups based
on the underlying optimization models. The first group are point-wise methods, which
learn to predict the utility of user-item interactions (i.e., predicting points) based on a
loss function that is optimized for prediction. A successful example from this group is
Weighted Regularized Matrix Factorization (WRMF) [39]. In this method user feedback
is regarded as binary data and the user and the item factors are leaned with an optimiza-
tion technique similar to the matrix factorization. The second group are pairwise meth-
ods. An outstanding example in this group is Bayesian Personalized Ranking (BPR) [97],
which learns user and item factors by learning to rank pairs of items with respect to
users. The third group are list-wise models, where model parameters are learned by di-
rectly optimizing a ranking metric such as Mean Reciprocal Rrank (MRR) [109], Expected
Reciprocal Rank (ERR) [107] or Mean Average Precision (MAP) [108].

In Chapter 3, we introduce model-based approaches for learning from implicit feed-
back, and in particular our proposed model, which is based on Factorization Machines.
In this chapter we borrow the pair-wise optimization idea of BPR and apply it to FMs. We
refer to this model as FM-Pair. We further evaluate the effectiveness of this approach on
two problems of context-aware and cross-domain recommendation (for datasets with
implicit feedback).

Chapter 4, which is built based on the FM-Pair model, adapts the optimization pro-
cess of FM-Pair in such a way that multiple types of user feedback (such as click, or like)
can be exploited simultaneously. The proposed technique in this chapter focuses on

1

10 1. INTRODUCTION

the process that samples the training data points. Among the related work in this area,
Gantner et al. [29] and Rendle et al. [95] propose two approaches where the underly-
ing algorithm of BPR is extended to sample better items from training set resulting to a
faster convergence of the algorithm. A similar direction of research exploits active learn-
ing strategies to elicit “useful” user feedback to generate better recommendations. A
survey of such techniques can be found in the work of Elahi et al. [25]. In Chapter 4,
we exploit the type of user feedback to sample more informative training points in or-
der to learn a more accurate representation of user preferences. We refer to this process
as multi-channel sampling. The performance of the multi-channel sampling method is
also evaluated in terms of item coverage and time-complexity.

1.3.4. ADVANCED LEARNING MODELS

The underlying learning algorithms that are used to learn a collaborative filtering model
have significant impact on the quality and scalability of the models. A vast majority of
research in collaborative filtering is devoted to improving the underlying algorithms of
different CF models or introducing new machine learning techniques for collaborative
filtering. A comparative study of several collaborative filtering algorithms can be found
in [59].

In the scope of factorization, proposed techniques either introduce extensions that
enables the model to exploit additional data, or improve the underlying model of learn-
ing. Bayesian Matrix Factorization [86] and TagiCofi [131] are examples of extensions to
matrix factorization that are capable of exploiting additional data. An example of algo-
rithms that try to improve the underlying factorization models is Non-negative Matrix
Factorization [79], which proposes to solve the optimization in matrix factorization with
a non-negativity constraint.

In the line of research on Factorization Machines, some studies propose to improve
the underlying model of FMs. Gaussian Process Factorization Machines [80] is an ex-
tension of FMs where interaction between features are modeled with Gaussian kernels.
Field-aware Factorization Machines [48] is another extension of FMs, where several rep-
resentations of features are learned depending on the field (group) that the feature be-
longs to. For example, assuming that user, item and context feature each represent a
group of features, two set of latent factors are learned for users where the first set is used
to interact with items and the second set is used to interact with context. Attentional
Factorization Machines [126], employs a neural network model where additional param-
eters are learned to reflect the importance of interactions between features in FMs. In
Chapter 5 we introduce Weighted Factorization Machines, an extension to FMs model
where weight parameters are learned for groups of features. Such weight parameters
can control the contribution of different feature and prevent the model to be negatively
influenced by noisy data.

1.4. CONTRIBUTIONS OF THIS THESIS
The purpose of this thesis is to study and extend the capabilities of factorization mod-
els to a wider range of problems in recommender systems and benefit from their advan-
tages to address real-world recommendation scenarios. The majority of the factorization

1.4. CONTRIBUTIONS OF THIS THESIS

1

11

techniques that we developed in the course of this thesis are based on FMs. In this the-
sis, we propose solutions, mainly based on FMs, for common scenarios in recommender
systems such as cross-domain recommendation, top-N recommendation, and learning
from multiple user feedback. Further details about the contribution of this thesis and
the research questions that we answered are described below.

1.4.1. OUTLINE
This thesis is divided into seven chapters. These chapters are grouped into several parts,
with three core parts (Parts II, III, IV) that represent the technical contribution of this
thesis. Each of these three parts consists of one, two or three chapters that study fac-
torization model from one particular aspect. Part II proposes techniques that exploit
information that is not limited to the user-item matrix. In part III, we study factoriza-
tion models that are beyond the rating-prediction problem, and can be applied to rank-
ing problems. Part IV focuses on the learning methods of FMs and proposes improved
learning mechanism for rating-prediction and ranking.

Beside the technical parts, in part V we briefly introduce the implementation frame-
work that we developed in the course of this thesis, which is used for the majority of the
experiments in this dissertation. Below we outline the scope and contribution of each
chapter.

Chapter 1 (this chapter) provides a general overview of recommender systems, out-
lines the two classes of algorithms for generating recommendations and describes in
more details factorization models, a popular and successful model for collaborative fil-
tering. In this chapter we also briefly introduce Factorization Machines and we present
the necessary background to the reader so that the story of the thesis becomes clearer.

In Chapter 2, we address the problems that can be solved based on the standard
model of Factorization Machines for rating prediction. We introduce three different ap-
plications of rating prediction with FMs. The first application (Chapter 2A) exploits FMs
for the task of cross-domain recommendation. We propose a method to encode infor-
mation from auxiliary domains as additional features in the FM model that is trained on
a target domain.

The second application (Chapter 2B) exploits additional information that is inherent
in the user-item matrix (but not directly exploited by conventional matrix factorizaion)
to improve the accuracy of recommendations. We refer to this approach as ‘Free-lunch’
enhancement, since we are not using any additional data beside the user-item interac-
tions.

The third application (Chapter 2C), which is inspired by the first application, pro-
poses an alternative way to train a collaborative filtering model using Factorization Ma-
chines. In this approach, instead of training the model with the entire training dataset,
the model is trained by directly using a slice of interest from the training data while the
rest of data is exploited indirectly by auxiliary features in FMs.

All the above problems are applied for rating prediction problem as the standard
model of FMs are designed for rating prediction. In this chapter we answer the following
research questions:

• Can we use Factorization Machines to address the cross-domain recommendation
problem? How effective can FMs be for this problem?

1

12 1. INTRODUCTION

• Can we use auxiliary features that are extracted from the user-item matrix in FMs
and if yes how effective they are?

• Can we train a recommender model with FMs more efficiently by training on the
‘right’ slice of data?

In Chapter 3, we propose to exploit Factorization Machines for ranking problems in
collaborative filtering. In this chapter we discuss limitations of the standard FMs model
and propose an alternative way to train FMs model when explicit user feedback is not
available. This chapter introduces FM-Pair, an extension of FMs that enables them to
be used for ranking problems (top-N recommendation). We study the effectiveness of
this method in two different recommendation scenarios namely, Context-Aware recom-
mendation and Cross-Domain collaborative filtering. Chapter 3 explains the implemen-
tation details of our extended FMs model and evaluate this model on several datasets. In
this chapter we answer the following research questions:

• Can we use the standard model of FMs for ranking (instead of rating prediction)? Is
that an effective model?

• How can we effectively use FMs for learning-to-rank? Can we apply a pairwise op-
timization model for FMs and use them for datasets with implicit feedback?

• If the answer to the previous question is yes, how effective would be such method for
problems such as context-aware and cross-domain collaborative filtering?

In recommender systems different types of user feedback can be collected. Chapter
4, which is build based on the previous chapter, goes beyond the conventional training
algorithms and propose two methods to exploit multiple types of user feedback (exam-
ple of positive feedback are ‘click’, ‘like’, ‘add-to-basket’ and so on) to improve recom-
mendations. In this chapter, Factorization Machines have been utilized to effectively
learn user preferences from multiple user feedback. We show that conventional integra-
tion of auxiliary information as features is not always the best way to exploit additional
data with FMs. We then propose an adapted sampling mechanism, to sample data from
the training set, in order to better learn the underlying recommender model. This chap-
ter answers the following research questions:

• Does a recommender model that uses multiple types of feedback generally perform
better that a model that does not exploit all feedback channels?

• Can we exploit types of feedback as auxiliary features in FMs and how effective such
method would be?

• Can we use types of feedback to better sample training data from our dataset and
if yes, is it more effective than conventional integration of information in FMs (i.e.,
exploiting such knowledge as auxiliary features)?

• What are the different possibilities of sampling? Which method works best on dif-
ferent datasets?

1.5. HOW TO READ THIS THESIS

1

13

Chapter 5 turns to the underlying model of Factorization Machines and proposes an
extension to the model where the importance of feature can be learned by the model to
potentially train a more accurate recommendation model. We propose weighted Fac-
torization Machines (WFM), where the model learns weights for groups of features and
uses the learned weights to predict the utility of user-item interactions more precisely.
In this chapter we propose two adaptations of FMs optimization algorithms for datasets
with explicit and implicit feedback to learn the weight parameters that we introduced in
the model. Chapter 5 answers the following research questions:

• Can we learn the importance of features as well as other model parameters in Fac-
torization Machines?

• Can we train more accurate recommender models by learning weights for different
groups of features? How can it be applied for datasets with implicit feedback?

In Chapter 6 we briefly present WrapRec, an evaluation framework for recommender
systems, where the majority of the algorithms that we introduce in this dissertation are
implemented. In this chapter we also highlight different approaches for evaluation of
recommender systems using the WrapRec toolkit and describe capabilities of WrapRec
for several types of experiments.

Chapter 7 summarizes this dissertation, draw some conclusions, discusses about the
lessons that are learned, and suggests some future directions in this topic.

1.5. HOW TO READ THIS THESIS
The scientific contribution of this thesis is written in parts II, III and IV. Part V, briefly
describes WrapRec, the framework that we developed in the course of our research. Each
technical chapter of this thesis (except Chapter 3) is connected to one publication, which
is referenced at the beginning of the chapter. In this book, we retain the original form of
publications with minor modifications. Each chapter represents an independent work
that can be read without necessarily reading previous chapters. As a consequence, there
might be similar topics in the introductory and related work sections of the technical
chapters and the notation and terminology might vary slightly across them.

1.6. LIST OF PUBLICATIONS
The papers that are published in the course of this thesis is listed below. For the pa-
pers that are directly connected to this dissertation, the reference to the corresponding
technical chapter is added in parenthesis.

• Loni, Babak, Roberto Pagano, Martha Larson, and Alan Hanjalic. "Top-N Recom-
mendation with Multi-Channel Positive Feedback using Factorization Machines"
In ACM Transactions on Information Systems (TOIS). Accepted. 2018. (Chapter 4)

• Larson, Martha, Alessandro Zito, Babak Loni, and Paolo Cremonesi. "Towards
Minimal Necessary Data: The Case for Analyzing Training Data Requirements of
Recommender Algorithms." In Proceedings of the FATREC Workshop on Responsi-
ble Recommendation. 2017.

1

14 1. INTRODUCTION

• Liang, Yu, Babak Loni, and Martha Larson. "CLEF 2017 NewsREEL Overview: Con-
textual Bandit News Recommendation.", In Proceedings of the CLEF 2017 News-
REEL Challenge. 2017.

• Loni, Babak, Roberto Pagano, Martha Larson, and Alan Hanjalic. "Bayesian per-
sonalized ranking with multi-channel user feedback." In Proceedings of the 10th
ACM Conference on Recommender Systems, pp. 361-364. ACM, 2016. (Chapter 4)

• Loni, Babak, Martha Larson, Alexandros Karatzoglou, and Alan Hanjalic. "Recom-
mendation with the Right Slice: Speeding Up Collaborative Filtering with Factor-
ization Machines." In RecSys Posters. 2015. (Chapter 2C)

• Loni, Babak, Alan Said, Martha Larson, and Alan Hanjalic. "‘Free lunch’ enhance-
ment for collaborative filtering with factorization machines." In Proceedings of the
8th ACM Conference on Recommender systems, pp. 281-284. ACM, 2014. (Chapter
2B)

• Said, Alan, Babak Loni, Roberto Turrin, and Andreas Lommatzsch. "An Extended
Data Model Format for Composite Recommendation." In RecSys Posters. 2014.

• Fazeli, Soude, Babak Loni, Alejandro Bellogin, Hendrik Drachsler, and Peter Sloep.
"Implicit vs. explicit trust in social matrix factorization." In Proceedings of the 8th
ACM Conference on Recommender systems, pp. 317-320. ACM, 2014.

• Loni, Babak, and Alan Said. "WrapRec: an easy extension of recommender system
libraries." In Proceedings of the 8th ACM Conference on Recommender systems, pp.
377-378. ACM, 2014. (Chapter 6)

• Said, Alan, Simon Dooms, Babak Loni, and Domonkos Tikk. "Recommender sys-
tems challenge 2014." In Proceedings of the 8th ACM Conference on Recommender
systems, pp. 387-388. ACM, 2014.

• Basak, Debarshi, Babak Loni, and Alessandro Bozzon. "A Platform for Task Recom-
mendation in Human Computation." In RecSys 2014 CrowdRec Workshop. ACM.
2014.

• Fazeli, Soude, Babak Loni, Hendrik Drachsler, and Peter Sloep. "Which recom-
mender system can best fit social learning platforms?" In European Conference on
Technology Enhanced Learning, pp. 84-97. Springer, Cham, 2014.

• Loni, Babak, Yue Shi, Martha Larson, and Alan Hanjalic. "Cross-domain collabora-
tive filtering with factorization machines." In European conference on information
retrieval, pp. 656-661. Springer, Cham, 2014. (Chapter 2A)

II
BEYOND THE USER-ITEM MATRIX

15

2A
CROSS-DOMAIN COLLABORATIVE

FILTERING WITH FACTORIZATION

MACHINES

Factorization machines offer an advantage over other existing collaborative filtering ap-
proaches to recommendation. They make it possible to work with any auxiliary infor-
mation that can be encoded as a real-valued feature vector as a supplement to the in-
formation in the user-item matrix. We build on the assumption that different patterns
characterize the way that users interact with (i.e., rate or download) items of a certain
type (e.g., movies or books). We view interactions with a specific type of item as consti-
tuting a particular domain and allow interaction information from an auxiliary domain
to inform recommendation in a target domain. Our proposed approach is tested on
a data set from Amazon and compared with a state-of-the-art approach that has been
proposed for Cross-Domain Collaborative Filtering. Experimental results demonstrate
that our approach, which has a lower computational complexity, is able to achieve per-
formance improvements1.

1This chapter is published as Loni, Babak, Yue Shi, Martha Larson, and Alan Hanjalic. "Cross-domain collab-
orative filtering with factorization machines." In European conference on information retrieval, pp. 656-661.
Springer, Cham, 2014.

17

2A

18 2A. CROSS-DOMAIN COLLABORATIVE FILTERING WITH FACTORIZATION MACHINES

2A.1. INTRODUCTION
Cross-domain Collaborative Filtering (CDCF) methods exploit knowledge from auxiliary
domains (e.g., movies) containing additional user preference data to improve recom-
mendation on a target domain (e.g. books). While relying on a broad scope of existing
data in many cases is a key to relieving the problems of sparse user-item data in the tar-
get domain, CDCF can also simultaneously benefits different data owners by improving
quality of service in different domains.

In most CDCF approaches (e.g., [64], [82]) it is assumed that user behavior in all do-
mains is the same. This assumption is not always true since each user might have differ-
ent domains of interest, for example, rating items consistently more frequently or higher
in one domain than in another. In a recent work, Hu et al. [38] argue that CDCF should
consider the full triadic relation user-item-domain to effectively exploit user preferences
on items within different domains. They represent the user-item-domain interaction
with a tensor of order three and adopt a tensor factorization model to factorize users,
items and domains into latent feature vectors. The rating of a user for an item in a do-
main is calculated by element-wise product of user, item and domain latent factors. A
major problem of tensor factorization however, is that the time complexity of this ap-
proach is exponential as it is O(km) where k is the number of factors and m is the number
of domains.

In this chapter we exploit the insight that user preferences across domains could be
deployed more effectively if they are modeled separately on separate domains, and then
integrated to generate a recommendation on the target domain. We therefore address
the problem with factorization machines (FM) [92], which make such modeling possi-
ble. In addition, the FMs are more flexible than the tensor representation regarding the
ways of capturing the domain-specific user preferences and could lead to more reliable
recommendations. Finally, FMs are polynomial in terms of k and m, making them com-
putationally less expensive than tensor factorization models [92].

FMs have already been applied to carry out CF in a single domain, [92, 99], but have
yet to be exploited to address the CDCF problem. Here we apply FMs to cross-domain
recommendation in a way that allows them to incorporate user interaction patterns that
are specific to particular types of items. Note that in this chapter, we define a domain as a
type of item. The set of users is not mutually exclusive between domains, but we assume
that their interaction patterns differ sufficiently to make it advantageous to model do-
mains separately. The novel contribution of our work is to propose an extension of FMs
that incorporates domains in this pattern and to demonstrate its superiority to single
domain approaches and to a state-of-the-art CDCF algorithm.

2A.2. RELATED WORK
Cross-Domain Collaborative Filtering: An overview of CDCF approaches is avail-

able in Li [114]. Here, we restrict our discussion of related CDCF approaches to men-
tioning the advantages of our approach compared to the major classes of existing algo-
rithms. Rating pattern sharing algorithms, exemplified by [64], groups users and items
into clusters and matches cluster-level rating patterns across domains. The success of
the approach depends, however, on the level of sparseness of user-item information per

2A.3. CROSS-DOMAIN CF WITH FACTORIZATION MACHINES

2A

19

domain. Latent feature sharing approaches, exemplified by [82], transfer knowledge be-
tween domains via a common latent space and are difficult to apply when more than
two domains are involved [38]. Domain correlation approaches, exemplified by [110],
use common information (e.g., user tags) to link domains and fail when such informa-
tion is lacking.

Factorization Machines: Factorization Machines (FM) [92] are general models that
factorize user-item collaborative data into real valued feature vectors. Most factoriza-
tion models such as Matrix Factorization can be modeled as a special case of FM [92].
Despite typical CF models where collaboration between users and items are represented
by a rating matrix, in factorization machines the interaction between user and item is
represented by a feature vector and the rating is considered as class label for this vector.
More specifically let’s assume that the data of a rating prediction problem is represented
by a set S of tuples (x, y) where x = (x1, . . . , xn) ∈Rn is a n-dimensional feature vector and
y is its corresponding label. Factorization machines model all interactions between fea-
tures using factorized interaction parameters. In this chapter we adapted a FM model
with order d = 2 where only pairwise interaction between features are considered. This
model can be represented as follows:

ŷ(x) = w0 +
n∑

j=1
w j x j +

n∑
j=1

n∑
j ′= j+1

w j , j ′x j x j ′ (2A.1)

where w j are model parameters and w j , j ′ are factorized interaction parameters and are
defined as w j , j ′ = v j .v j ′ where v j is k-dimensional factorized vector for feature j . For a
FM with n as the dimensionality of feature vectors and k as the dimensionality of factor-
ization, the model parameters that need to be learnt areΘ= {w0, w1, . . . , wn , v1,1, . . . , vn,k }.
Three learning approaches have been proposed to learn FMs [92]: Stochastic Gradient
Descent (SGD), Alternating Least-Squares (ALS) and Markov Chain Monte Carlo (MCMC)
method. We exploit all 3 methods in this chapter.

2A.3. CROSS-DOMAIN CF WITH FACTORIZATION MACHINES
Assume we are given collaborative data of users and items in m different domains {D1, . . . ,Dm}.
The domains are different based on the type of items that exists in them. While rating in-
formation for a user might be very sparse in one domain (e.g. Books), he might have rich
collaborative data in another domain (e.g. movies). The purpose of cross-domain CF
is to transfer knowledge from different auxiliary domains to a target domain to improve
rating predictions in the target domain.

To understand our approach, without loss of generality lets assume D1 is the target
domain and {D2, . . . ,Dm} are the auxiliary domains. Also consider U j and I j as the set
of users and items in domain D j . The standard rating prediction problem in the target
domain D1 can be modeled by a target function y : U1 × I1 →R. We represent each user-
item interaction (u, i) ∈ U1 × I1 with a feature vector x ∈ R|U1|+|I1| with binary variables
indicating which user rated which item. In other words, if user u rated item i the feature
vector x is represented as:

x = (0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
|U1|

,0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
|I1|

) (2A.2)

2A

20 2A. CROSS-DOMAIN COLLABORATIVE FILTERING WITH FACTORIZATION MACHINES

where non-zero elements are corresponding to user u and item i . The feature vector x
can also be represented by its sparse representation x(u, i) = {(u,1), (i ,1)}.

Given the feature vector x(u, i) in the target domain, our cross-domain CF approach
extend this vector by adding collaborative information of user u from other domains.
Now lets assume that s j (u) represents all items in domain D j which are rated by user u.
For each auxiliary domain D j , j = 2, . . . ,m, our method extend x(u, i) with a vector z j (u)
with the following sparse representation:

z j (u) = {(l ,φ j (u, l)) : l ∈ s j (u)} (2A.3)

where φ j (u, l) is a domain-dependent real valued function. We define φ j based on the
rating of user u to item l and normalize it based on total number of items which is rated
by user u in domain D j :

φ j (u, l) = r j (u, l)

|s j (u)| (2A.4)

where r j (u, l) specifies the rating of user u to item l in domainD j . In the above definition
φ j is a function of r j (u, l) which reflects rating patterns of user u in different domains.
Furthermore, it is normalized by considering the number of items which are rated by
user in an auxiliary domain. This means that if a user is a frequent rater in an auxiliary
domain, the contribution of each single rated item in this domain would be less com-
pared to a rated item in an auxiliary domain with smaller number of user ratings. The
above definition of φ j prevents the model to be overwhelmed by too much information
from auxiliary domains. This is one of the main advantages of factorization machines,
namely to allow control of the amount of knowledge that is transferred from auxiliary
domains. Note that the function φ j can be also defined in other forms to reflect con-
tribution of various domains in different ways. Based on our experiments we found the
above definition ofφ j simple yet effective to transfer knowledge from auxiliary domains.
Given the above definitions, we can now represent the extended vector x with the follow-
ing sparse form:

x(u, i , s2(u), . . . , sm(u)) = { (u,1), (i ,1)︸ ︷︷ ︸
target knowledge

,z2(u), . . . ,zm(u)︸ ︷︷ ︸
auxiliary knowledge

} (2A.5)

The above feature vector serves as the input into the FM model in Equation (1), while
the output variable y is the rating of user u to item i in the target domain. Based on our
proposed feature expansion method, the FM will only need to focus on the users in the
target domain, resulting in an improvement in terms of computational cost.

2A.4. EXPERIMENTS
We conducted our experiments on Amazon dataset [62] which consists of rating infor-
mation of users in 4 different domains: books, music CDs, DVDs and video tapes. The
dataset contains 7,593,243 ratings on the scale 1-5 provided by 1,555,170 users over 548,552
different products including 393,558 books, 103,144 music CDs, 19,828 DVDs and 26,132
video tapes.

2A.5. DISCUSSION AND FUTURE DIRECTIONS

2A

21

We build the training and test set in two different ways similar to [38] to be able to
compare our approach with them. In the first setup, T R75, 75% of data is considered as
training set and the rest as test set, and in the second setup, T R20, only 20% of data is
considered as training set and the rest as test set.

We implemented a recommendation framework with C#2 on top of two open source
libraries for recommender systems: MyMediaLite [30] which implements most common
CF approaches including Matrix Factorization, and LibFM [92] which implements FM
learning algorithms. We first compared FMs with matrix factorization method on two
different single domains and then we compare the results of our proposed method with
the state-of-the-art CDCF work [38] on the same dataset. We also compare our method
with a blind combination of all items from all domains to show that the improvement
of our results is not only due to additional training data. We used mean absolute error
(MAE) and root mean square error (RMSE) as evaluation metrics in our experiments.
Table 1 lists the MAE and RMSE scores on the two different setups T R75 and T R20 and
based on the following approaches:

• MF-SGD (D): Matrix Factorization method using SGD learning algorithm on single
domain D .

• FM-X (D): Factorization Machine method on single domain D based on learning
algorithm X (SGD, ALS or MCMC).

• FM-All-X (D): Combining all rating data into single domain (blind combination)
and testing target domain D by using FM with algorithm X. This approach simply
increases the size of training data by including the rating data of all domains. In
other words, the feature vector x is represented as in equation (2B.2) and all items
in different domains are treated the same.

• FM-X (DT , {D A}): Factorization Machine method on target domain DT and auxil-
iary domains {D A} based on algorithm X.

• PF2-CDCF: The Cross-Domain CF method which is proposed by Hu et al. [38] on
the same dataset.

Comparison of results on single domains in table 1 shows that by using MCMC learn-
ing method, FM method performs better than matrix factorization. Comparison of FM-
MCMC and FM-All-MCMC methods reveals that simply including the rating data of aux-
iliary domains into target domain does not cause any improvement on rating prediction
and it can also hurt the result since the additional data can be noisy for the target do-
main. The best results, FM-MCMC (Book, {Music, DVD,Video}) and FM-MCMC (Music,
{Book, DVD,Video}), are obtained using our adopted cross-domain method with MCMC
learning method and are better than PF2-CDCF on the same dataset.

2A.5. DISCUSSION AND FUTURE DIRECTIONS
In this chapter we adapted a model using factorization machines to exploit additional
knowledge from auxiliary domains to achieve performance improvement in cross-domain

2https://github.com/babakx/WrapRec

https://github.com/babakx/WrapRec

2A

22 2A. CROSS-DOMAIN COLLABORATIVE FILTERING WITH FACTORIZATION MACHINES

Table 2A.1: Performance comparison of different single- and cross-domain factorization models on the Ama-
zon dataset

Method \ Setup T R75 T R20

Target: Book MAE RMSE MAE RMSE

MF-SGD (Book) 0.62 0.86 0.89 1.14
FM-SGD (Book) 0.69 0.92 0.74 0.96
FM-ALS (Book) 0.72 0.99 0.75 1.07
FM-MCMC (Book) 0.60 0.79 0.72 0.94
FM-All-MCMC (Book) 0.60 0.79 0.76 0.99
FM-MCMC (Book, {Music, DVD, Video}) 0.46 0.64 0.69 0.92
PF2-CDCF (Book, {Music, DVD, Video}) [38] 0.50 - 0.76 -

Target: Music
FM-MCMC (Music) 0.71 0.95 0.77 1.00
FM-MCMC (Music, {Book, DVD, Video}) 0.67 0.91 0.74 0.98
PF2-CDCF (Music, {Book, DVD, Video}) [38] 0.70 - 0.82 -

CF. The success of CDCF is highly dependent on effectively transferring knowledge from
auxiliary domains, which can be well exploited with FMs. A key factor of success of our
approach is the ability to encode domain-specific knowledge in terms of real-valued fea-
ture vector, which became possible with FMs and which enables better exploitation of
the interaction patterns in auxiliary domains. The experimental results show that our
adopted method can perform better than state-of-the-art CDCF methods while it bene-
fits from low computational cost of FMs.

In the future, we want to apply our method to more complicated CDCF scenarios
particularly when the source and target domains are more heterogeneous. Another ex-
tension to our approach is to also use contextual information from both target and aux-
iliary domains to investigate whether exploiting context can result in even better CDCF
performance.

2B
‘FREE-LUNCH’ ENHANCEMENT

WITH FACTORIZATION MACHINES

The advantage of Factorization Machines over other factorization models is their ability
to easily integrate and efficiently exploit auxiliary information to improve Collaborative
Filtering. Until now, this auxiliary information has been drawn from external knowl-
edge sources beyond the user-item matrix. In this chapter, we demonstrate that Factor-
ization Machines can exploit additional representations of information inherent in the
user-item matrix to improve recommendation performance. We refer to our approach
as ‘Free Lunch’ enhancement since it leverages clusters that are based on information
that is present in the user-item matrix, but not otherwise directly exploited during ma-
trix factorization. Borrowing clustering concepts from codebook sharing, our approach
can also make use of ‘Free Lunch’ information inherent in a user-item matrix from an
auxiliary domain that is different from the target domain of the recommender. Our ap-
proach improves performance both in the joint case, in which the auxiliary and target
domains share users, and in the disjoint case, in which they do not. Although the ‘Free
Lunch’ enhancement does not apply equally well to any given domain or domain com-
bination, our overall conclusion is that Factorization Machines present an opportunity
to exploit information that is ubiquitously present, but commonly under-appreciated by
Collaborative Filtering algorithms1.

1This chapter is published as Loni, Babak, Alan Said, Martha Larson, and Alan Hanjalic. "’Free lunch’ en-
hancement for collaborative filtering with factorization machines." In Proceedings of the 8th ACM Conference
on Recommender systems, pp. 281-284. ACM, 2014.

23

2B

24 2B. ‘FREE-LUNCH’ ENHANCEMENT WITH FACTORIZATION MACHINES

2B.1. INTRODUCTION
Factorization Machines (FMs) [92] are general models that factorize user-item collabora-
tive data into real-valued feature vectors. FMs have recently attracted the attention of the
recommender system community because of the ease and effectiveness with which they
can integrate information from external sources, for example, context information [99].
However, until now, focus of FM approaches in the recommender system community
has been on integrating new sources of information. In this chapter, we investigate the
potential of FMs to help us make the most of information that we already have. Because
our approach makes use of information that is already present in the user-item matrix,
it has the feel of delivering ‘something for nothing.’ In this spirit, we call our approach
‘Free Lunch’ enhancement of Factorization Machines.

The specific ‘Free Lunch’ effect that we focus on in this chapter arises from known,
but under-appreciated information inherent in the user-item matrix. In general, con-
ventional Collaborative Filtering (CF) approaches, including memory-based and model-
based methods, exploit similarities that are based on sets of rated items. The information
in user-item matrixes can, however, be repackaged to create other representations of
items and users. Specifically, here, we investigate one such repackaging that views users
and items in terms of their overall rating patterns. Overall rating patterns are expressed
as rating histograms, which are ‘trivial’ in the sense that they require simple aggregation
of information inherent in the user-item matrix. However, clustering these histograms
creates user and item categories that constitute new representations of information that
is not otherwise exploited by matrix factorization. In this chapter, we introduce an ap-
proach that uses Factorization Machines to integrate these category labels into a Collab-
orative Filtering algorithms capable of improving recommendation performance. The
approach reveals its full potential when used to exploit information not only from the
user-item matrix of the target domain, but also information from the user-item matrix
of auxiliary domains. In this respect it constitutes a simple, yet effective, method for
Cross-Domain Collaborative Filtering.

2B.2. BACKGROUND AND MOTIVATION
The ‘Free Lunch’ approach does not literally achieve something for nothing. Rather, as
mentioned above, it takes advantage of an underexploited representation of users and
items as rating histograms. A rating histogram encodes the normalized frequency with
which a user assigns a certain rating or an item is assigned a certain rating. Upon first
consideration, rating histograms appear to destroy the very connections between users
and items that provide the basis for CF. Worse, they capture bias in user rating habits,
e.g., the general tendency of individual users to assign very high or very low scores. It is
exactly this bias that many similarity metrics seek to avoid. However, seen from a dif-
ferent perspective, rating habits have the ability to capture something about the ‘rating
style’ of individual users or the ‘style’ of users who rate specific items. Ultimately, the
success of our approach attests to the benefit of taking this perspective.

The perspective is supported by evidence from the literature that similarity of rating
style is connected to similarity in taste in populations of consumers. For example, Tan
and Neetessine [119] presents a study of the Netflix Prize data set that reveals patterns

2B.2. BACKGROUND AND MOTIVATION

2B

25

such as a tendency of people who give higher ratings to watch mainstream movies. In
other words, users who are similarly “generous" or “stingy" with high ratings when rat-
ing movies, may actually have a tendency to prefer the same kind of movies. The basic
insight of our approach is that such relationships already exist implicitly in the user item
matrix, but are not exploited by conventional matrix factorization approaches. Note that
we are not making a claim that rating histograms are optimally suitable for comparing
users. Our ‘Free Lunch’ enhancement still stands to benefit from a weak indicator of sim-
ilarity. Our position is if we can stand to benefit from this information, we should seize
the opportunity. Note that using normalized rating histograms to represent users means
that it is possible to calculate a similarity between two users who have not necessarily
rated the same items. In cases where recommender systems must confront extremely
sparse data conditions, weak indicators of similarity could prove to be particularly use-
ful.

Use of clustering techniques in CF stretches back into early history of recommender
systems, and includes many variants. In the earliest work, clustering was used to reduce
dimensionality, focusing on standard representations of users as vectors of rated items.
Also, clustering has been used as a way to integrate content into CF to create hybrid
recommendation algorithms. For example, in Li and Kim’s approach [66], content-based
information about items is used to create item clusters, which are then represented in
a cluster-based matrix to which CF approaches are applied on. The clustering in our
work differs from previous uses of clustering for CF in that it relies on neither standard
representations, nor or additional information about items or users, but rather uses new
representations of existing information in order to create clusters.

Clustering has proven particularly useful in Cross-Domain Collaborative Filtering
(CDCF) algorithms, algorithms that exploit one domain to make recommendations in
another. Li et al. [64] proposed a clustering approach known as codebook transfer for
CDCF. Their model tries to find similar rating patterns in different domains, and then
transfer cluster-level patterns to improve recommendation in a target domain. The ap-
proach requires additional factorizations on auxiliary domains which makes it compu-
tationally more complex compared to a typical matrix factorization model. Our ‘Free
Lunch’ enhancement approach also uses domain transfer based on clusters. However,
where Li et al. [64] use conventional representations of users and items and co-clustering,
our approach represents users and items in terms of rating histograms. Our approach in-
curs little computational burden with clustering. Rather, in ‘Free Lunch’ Enhancement,
clustering is a pre-processing step, since it is performed off-line on individual domains
and is not part of building the model.

Our previous work [78], established that FMs achieve state-of-the-art performance
in CDCF, and can be straightforwardly applied in the case of joint domains, i.e., cases
in which the target domain and the auxiliary domain do not share the same users. That
work did not use clusters, but rather exploited individual ratings. In this chapter, we take
FM performance as our baseline, and investigate how it can be improved by exploiting
user and item clusters. Our proposed approach also applies to disjoint domains, i.e.,
domains that do not share users.

2B

26 2B. ‘FREE-LUNCH’ ENHANCEMENT WITH FACTORIZATION MACHINES

Figure 2B.1: Encoding of user and item clusters as auxiliary features in Factorization Machines.

2B.3. ENHANCEMENT APPROACH FOR FMS
This section provides the necessary background on FMs and explains the details of our
‘Free Lunch’ enhancement approach, that creates clusters using rating histograms for
integration into FMs.

2B.3.1. FACTORIZATION MACHINES

In contrast to typical Factorization techniques in which the interaction of users and
items are represented by a matrix, in Factorization Machines [92] the interaction of a
user and an item (i.e., when a user rates an item) is represented by a feature vector. To
understand how FMs work, let us assume that the data of a rating prediction problem
is represented by a set S of tuples (x, y) where x = (x1, . . . , xn) ∈ Rn is an n-dimensional
feature vector representing user-item interaction and y is the rating value. Factorization
machines model all interactions between features using factorized interaction parame-
ters. The interactions can be between a pair of features, or it can even be between larger
number of features. In this chapter, we adapted an FM model with order 2 where only
the interactions between pairs of features are taken into account. This model can be
represented as follows:

ŷ(x) = w0 +
n∑

j=1
w j x j +

n∑
j=1

n∑
j ′= j+1

w j , j ′x j x j ′ (2B.1)

where w j are model parameters and w j , j ′ are factorized interaction parameters and are
defined as w j , j ′ = v j .v j ′ where v j is k-dimensional factorized vector for feature j . For an
FM with n as the dimensionality of feature vectors and k as the dimensionality of factor-
ization, the model parameters that need to be learnt areΘ= {w0, w1, . . . , wn , v1,1, . . . , vn,k }.

The parameters of the model can be learnt by three different learning algorithms
[92]: Stochastic Gradient Descent (SGD), Alternating Least-Squares (ALS) and Markov
Chain Monte Carlo (MCMC) method. MCMC learning method proved fastest in our ex-
ploratory work and were adopted for our experiments.

2B.3. ENHANCEMENT APPROACH FOR FMS

2B

27

2B.3.2. CLUSTER ENCODING
Factorization machines require the user-item interactions to be represented by a feature
vector. This characteristic allows us to incorporate any additional knowledge in terms of
real-valued features. We take this advantage of FMs into account and extend the user-
item feature vectors with cluster level features which potentially can improve the rating
prediction task.

In FMs, a standard rating prediction problem is represented by a target function y :
U × I → R. We represent each user-item interaction (u, i) ∈ U × I with a feature vector
x ∈R|U |+|I | with binary variables indicating which user rated which item. In other words,
if user u rated item i the feature vector x is represented as:

x = (0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
|U |

,0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
|I |

) (2B.2)

where non-zero elements correspond to user u and item i . The feature vector x can also
be represented by its sparse representation x(u, i) = {(u,1), (i ,1)}.

Our cluster encoding algorithm extends the above feature vector by user and item
clusters. Therefore, the target function would be y : U × I ×Cu ×Ci →Rwhere Cu and Ci

are user and item cluster spaces. User and item clusters can also be drawn from other,
auxiliary domains. In other words, the clusters that users and items belong to in auxiliary
domains can also be identified and added to the feature vector. More specifically, we can
represent the sparse form of a cluster-enhanced feature vector as follows:

x(u, i) = {(u,1), (i ,1), (c j (u),1), (c j (i),1) : j = 1. . .m} (2B.3)

where c j (u) and c j (i) are user and item cluster ids in domain j and m is the total number
of domains.

Figure 2C.2 illustrates our proposed approach to building feature vectors from a user-
item matrix. For each rating, a binary feature vector is created in which the correspond-
ing user and item are indicated by 1s and the remaining features are 0s. This feature
vector is then extended by additional binary features which specify the user and item
cluster in different domains. The rating values are specified as the output of each vector.
Using FM we try to predict the output of the test samples.

2B.3.3. CLUSTER CONSTRUCTION
Our clustering approach considers users with similar rating patterns to be similar, as-
signing them to the same cluster. In the context of our work, rating patterns are based
on the histogram of rating values. More specifically a user u j is represented by the fea-
ture vector u j = (u j 1, . . . ,u j p) where p is the upper bound of rating values in the dataset
domain and u j k is the number of items which are rated with value k by user u j . Simi-
larly, an item i j can be represented by i j = (i j 1, . . . , i j p). Given the above representations,
we calculate user and item clusters using the K-means clustering algorithm. The dis-
tance between vectors is calculated based on Euclidean distance. We choose K-means
due to its simplicity and efficiency, which distinguishes it from alternative clustering al-
gorithms [4].

For cross-domain scenarios, we create clusters of users and items in auxiliary do-
mains, and for each user and item in the target domain the most similar clusters are

2B

28 2B. ‘FREE-LUNCH’ ENHANCEMENT WITH FACTORIZATION MACHINES

identified by measuring the distance of a user or an item to the center of clusters. The
most similar clusters in the auxiliary domain are then used to extend the user-item fea-
ture vector in Equation 2B.3.

2B.4. EXPERIMENTS
In this section we explain the datasets and frameworks that we used and describe the
experiments that we did with their results. We further analyze and discuss the results to
find out whether the improvements obtained by our method is significant or not.

2B.4.1. DATASETS AND FRAMEWORK

We conducted our experiments on a dataset from Amazon [62] consisting of four joint
domains, Movielens and Epinions datasets, each having a different set of users and items.
The four domains in the Amazon dataset are books, music CDs, DVDs and video tapes.
The Amazon dataset contains 7,593,243 ratings on a 1-5 scale provided by 1,555,170 users
over 548,552 different products including 393,558 books, 103,144 music CDs, 19,828 DVDs
and 26,132 VHS tapes. We use the Movielens 1 million dataset, which consists of 1,000,209
ratings on a 1-5 scale, 6,040 users and 3,883 items. The Epinions dataset contains 664,865
ratings also on a 1-5 scale, 49,289 users and 139,737 items. The data is split into a training
set (75%) and a test set (25%).

We implemented our approach within our recommendation framework [77] using
C#, which is built on top of two open source libraries for recommender systems: My-
MediaLite [30], which implements the most common CF approaches, and LibFM [92],
which implements FMs algorithms.

2B.4.2. RESULTS

We evaluated our ‘Free Lunch’ enhanced FM approach with respect to three different en-
hancement scenarios, and a range of different settings for the number of clusters, which
were created with K-means clustering. Figures 2B.2 and 2B.3 present the performance
of our approach on the Amazon Books and and the Amazon Music datasets in terms
of Root Mean Square Error (RMSE). Each graph shows the performance of the dataset
under our three scenarios: 1) Target domain clusters: user and item clusters from the
same domain (i.e., a single target domain) are used to extend the feature vectors (i.e.,
Equation (3) with j = 1). 2) Target and joint auxiliary domain clusters: user and item
clusters from a joint auxiliary domain are used (i.e., Equation (3) with j > 1). 3) Target
and disjoint auxiliary domain clusters: user and item clusters from a disjoint auxiliary
domain are used (i.e., users do not overlap). To show the effectiveness of our approach,
we compare the performance of each scenario with a baseline in which no user or item
clusters are used. In other words, for our baseline, the user-item interactions are simply
represented by feature vectors as described in Equation (2). The results in Figure 2B.2
and 2B.3 demonstrate that our method outperforms the baseline on both datasets and
in all three scenarios. The best performance is achieved on joint domains, which is not
unexpected since the domains share users, and the auxiliary domain brings additional
information about items rated by these users into play. What is more surprising is that
clustering applied in the single domain case, or applied in the case of joint domains is

2B.4. EXPERIMENTS

2B

29

Figure 2B.2: Performance of our proposed method on the Amazon Books dataset based on different number
of clusters and different enhancement scenarios. The baseline (no clusters) is represented by the straight line.

able to come very close to the performance in the joint domains. Figures 2B.2 and 2B.3
also reveal that for all three scenarios, the performance also improves as the number of
clusters is increased, until it reaches a point where there is no improvement, at k = 10.

We investigate the results achieved in the joint domain scenario with a statistical
analysis of the results (in terms of RMSE). This analysis reveals that the improvements
obtained for the Amazon Books dataset (Figure 2B.2) when extended with clusters from
Amazon Music are statistically significant (p < 0.05) regardless of the number of clusters
used when compared to the results from the baseline (no clusters). However, a simi-
lar analysis of the results obtained for the Amazon Music dataset enriched with clus-
ters from Amazon Book (Figure 2B.3) does not point to significance (p > 0.2). We note
that the performance of the joint and disjoint scenarios on each dataset track the perfor-
mance of the single domain scenario. This fact suggests that a strongly performing target
domain is critical for the approach to benefit from joint domains. Strong performance
of the target domain could be related to size, here, 400 thousand books vs.100 thousand
music CDs.

Next we turn to investigate the ‘target domain cluster’ scenario involving a single do-
main in more detail. Table 2B.1, summarizes the results from the Amazon Books and
Amazon Music data set, and also reports further results calculated on the Movielens and
Epinions datasets (both RMSE and MAE evaluation metrics). The performance on the
different data sets is reported for k=10 clusters, the best condition determined in the
previous experiment, and compared with the no-clustering baseline. These results con-
firm that the performance improvement delivered by ‘Free Lunch’ enhancement is not
limited to Amazon data sets, but is achieved on other data sets as well. The relative im-
provement on the Amazon Book dataset (12% in terms of RMSE) is the largest. The rela-
tive greater improvement on the Amazon data set may be attributable to the fact that it
is sparser than the Movielens or Epinions sets.

As the results in Table 2B.1 show, the best improvement is achieved on the Ama-
zon Book dataset (12% in terms of RMSE), while there are less dramatic improvements

2B

30 2B. ‘FREE-LUNCH’ ENHANCEMENT WITH FACTORIZATION MACHINES

Figure 2B.3: Performance of our proposed method on Amazon Music dataset based on different number of
clusters and different enhancement scenarios. The baseline (no clusters) is represented by the straight line.

on the Movielens and Epinions datasets. This can be due to the fact these datasets are
denser compared to the Amazon dataset, implying that the underlying similarities be-
tween users and items are already well captured, and clustering information is of less
importance. ‘Free Lunch’ enhancement can apparently contribute more to the rating
prediction task in cases where datasets are sparse, meaning that additional representa-
tions of the information in the user-item matrix have more to contribute.

Table 2B.1: Comparison of our cluster-enhanced approach with the no-cluster baseline

No clusters 10 clusters
Dataset RMSE MAE RMSE MAE
Amazon Books 0.933 0.841 0.825 0.778
Amazon Music 0.984 0.861 0.945 0.832
Movielens 0.936 0.862 0.890 0.838
Epinions 1.082 0.920 1.024 0.891

2B.5. CONCLUSION AND OUTLOOK
We have presented a ‘Free Lunch’ enhancement approach that makes use of the ability
of Factorization Machines to easily and effectively integrate additional information. Our
approach demonstrates that it is not necessary to turn to outside resources to find ad-
ditional information useful for improving Factorization Machines, but instead we can
make better use of information already at hand. The larger message is that FM ap-
proaches that do not first attempt to maximize the benefit they can derive from infor-
mation at hand, i.e., ‘Free Lunch’, are missing opportunities.

In this work, we have focused on clusters formed using rating histograms. We show
that this information can be used to improve rating prediction in cases where only a
single, target domain is available, or in cases where an auxiliary domain (joint or dis-

2B.5. CONCLUSION AND OUTLOOK

2B

31

joint with the target domain) is also available. Our future work will also investigate other
possible types of ‘Free Lunch’ information. The list of sources that we are interested in
ranges from popularity information to random assignment of users to user-groups. Fur-
ther, we will work to make more detailed understanding of what makes a domain partic-
ularly a suitable target domain for ‘Free Lunch’ enhancement, and how to best identify
useful auxiliary domains.

2C
SPEEDING UP COLLABORATIVE

FILTERING WITH FACTORIZATION

MACHINES

In this chapter We propose an alternative way to efficiently exploit rating data for collab-
orative filtering with Factorization Machines. Our approach partitions user-item matrix
into ‘slices’ which are mutually exclusive with respect to items. Thanks to advantage of
Factorization Machines where user-item interactions can be represented with feature
vectors, our approach make use of this advantage and extend user-item feature vectors
with complementary information which can improve recommendations. Our ‘Slice and
Train’ method consists of two steps: in the first step the slices are created by leveraging
existing item categories or by clustering. In the second step the training is done by only
using the ratings from the slice of interest (target slice) while the rating from other slices
are exploited indirectly as complementary features. We demonstrate, using experiments
on two benchmark datasets, that same performance as using the complete dataset can
be achieved while the time complexity of training can be reduced significantly1.

1This chapter is an extension of Loni, Babak, Martha Larson, Alexandros Karatzoglou, and Alan Hanjalic. "Rec-
ommendation with the Right Slice: Speeding Up Collaborative Filtering with Factorization Machines." In Rec-
Sys Posters. 2015.

33

2C

34 2C. SPEEDING UP COLLABORATIVE FILTERING WITH FACTORIZATION MACHINES

2C.1. INTRODUCTION
In this chapter, we investigate the idea that the ‘right’ data, rather than all data, should be
exploited to build an efficient recommender system. We introduce an approach called
‘Slice and Train’ that trains a model on the right slice of a dataset (a ’sensible’ subset con-
taining the current items that need to be recommended) and exploits the information
in the rest of the dataset indirectly. This approach is particularly interesting in scenarios
in which recommendations are needed only for a particular subset of the overall item
set. An example is an e-commerce website that does not generate recommendations
for out-of-season or discontinued products. The obvious advantage of this approach is
that models are trained on a much smaller dataset (only the data in the slice), leading to
shorter training times. The magnitude of this reduction is illustrated in Fig. 3.7, which
depicts training times on the two datasets that are used in the experimental investiga-
tion in this chapter, and shows that training time on the average slice, is much less than
on the whole dataset. The ‘Slice and Train’ approach also has, however, a less expected
advantage, namely, that it offers highly competitive performance with conventional ap-
proaches using the whole dataset, and in some cases even improves the performance.
This advantage means that it is advantageous to apply ‘Slice and Train’ even in cases in
which predictions are needed for all items in the dataset, by training a series of separate
models, one for each slice.

Our approach consists of two steps: first the data is partitioned into a set of slices
containing mutually exclusive items. The slices can be formed by grouping items based
on their properties (eg. the category of item), availability (eg. whether or not an item is
available or it is a historical/discontinued item), or by more advanced slicing methods
such as clustering. In the second step the model is trained using the samples in the slice
of interest, i.e., target slice, while other slices are indirectly being exploited as auxiliary
slices. To efficiently exploit information from auxiliary slices our approach trains the
recommender model using Factorization Machines [92]. Factorization Machines (FMs)
generate recommendations by working with vector representations of user-item data.
A benefit of these representations is that they can easily be extended with additional
features. Such extensions are usually used to leverage additional information [99], or
addition domains [78], to improve collaborative filtering.

This chapter makes two contributions: first, it introduces the ‘Slice and Train’ method
that offers computational speed up, while at the same time maintaining or improving
prediction performance, and, second, it demonstrates the robustness of the improve-
ment by experiments with multiple learning methods, and by comparing the indirect
exploitation of information from other slices, with a conventional source of additional
information used in Factorization Machines, namely item context (i.e., properties).

2C.2. RELATED WORK
Partitioning data and training different subsets has been studied before, but from other
perspectives [1, 23, 43]. These approaches are mainly based on fusion and in this way are
different from our approach. The ‘Right Slice’ approach bears a superficial resemblance
to fusion or ensemble methods, such as the work of Decoste [23], however, although we
train multiple models on subsets of the user-item matrix, the prediction is made with the

2C.3. THE SLICE AND TRAIN METHOD

2C

35

Figure 2C.1: Complexity of training a model when only a sensible subset of data is used versus using the com-
plete dataset.

‘Right Slice’ model only, and the information in the other slices is exploited indirectly. In
contrast, in the fusion methods the prediction is mainly done by aggregating the judg-
ment from all the slices. One advantage of our method compared to ensemble methods
is that in the cases that we are interested on recommendations on a particular subset of
data we do not need to train all slices and we can benefit from lower training complexity.
Other studies have been done to increase scalability of recommendation by clustering
data [18, 67], but these have not proposed any means of exploiting the information from
other clusters to maintain or improve performance.

Another body of work related to this chapter are the studies that use FMs for rec-
ommendation. Several research efforts have been carried out that use FMs to efficiently
embed additional information for collaborative filtering. Rendle et al. [99] exploited FMs
for context-aware recommendation. Other recent studies with FM have been done for
Cross-Domain collaborative filtering [78] and exploiting social network information for
recommendation [129]. The approach proposed in this chapter is different from other
previous work on FMs in the way that the auxiliary features are created and transferred.

2C.3. THE SLICE AND TRAIN METHOD
To convey an understanding of our method, we first introduce the general framework
of Factorization Machines, and we then explain our extension to FMs to implement the
slice and train method that is used by the ‘Right Slice’ approach.

FMs are general predictors, working with real-valued feature vectors, that are opti-
mized for sparse data [92]. In FMs, a typical rating prediction problem can be repre-
sented by a set of feature vectors with their corresponding labels. The user-item inter-
actions are represented by feature vectors and the ratings are considered as the output.
More specifically let us assume that the data of a rating prediction problem is repre-
sented by a set D of pairs (x, y) where x = (x1, . . . , xn) ∈ Rn is a n-dimensional feature
vector and y is its corresponding output. The vector x ∈ R|U |+|I | is defined as a binary
vector that indicates which user rated which item, and the user rating is considered to

2C

36 2C. SPEEDING UP COLLABORATIVE FILTERING WITH FACTORIZATION MACHINES

Figure 2C.2: Slicing process (a), and feature construction of the ‘Slice and Train’ method (b) compared with
context-aware training (c) using Factorization Machines.

be the corresponding output y . In other words, if user u rated item i the feature vector x
can be represented by its sparse representation as x(u, i) = {(u,1), (i ,1)}, where non-zero
elements correspond to user u and item i .

Representing user-item interaction, with feature vectors makes it possible to engi-
neer features or expand them with additional features to train better models. In this
work, we exploit this advantage of FMs to enhance the user-item feature vectors with
additional features that are translated from auxiliary slices.

Figure 2C.2-a and 2C.2-b show our proposed ‘Slice and Train’ method. The left part of
the Figure illustrates the slicing step where dataset is divided into a set of slices based on
properties of item or based on clustering. In the second step as illustrated in Figure 2C.2-
b, the feature vectors are built for training the model. Each row represents one feature
vector x with its corresponding output y (i.e., rating). The feature vectors consist of two
parts. The first part consists of binary values that indicate which user rated which item
in the target slice. The second part consists of real-valued features which are calculated
based on the rating information of other auxiliary slices. We compare our method with
a context-aware method [99], illustrated in Figure 2C.2-c, in which item properties are
used to extend the feature vectors.

The auxiliary features are build based on connecting the users in different slices. Ba-
sically for each binary user-item interaction in the target slice, our approach looks for
the ratings that are provided from same user in auxiliary slices and then it normalizes
the ratings and add them to the feature vectors. To understand how the auxiliary fea-
tures are built, assume that the dataset is divided into m slices {S1, . . . ,Sm}. Let us also
assume that the items that are rated by user u in slice S j is represented by s j (u). By
extending the feature vector x(u, i) with auxiliary features, we can represent it with the
following sparse representation:

x(u, i) = {(u,1), (i ,1)︸ ︷︷ ︸
target slice

,z2(u), . . . ,zm(u)︸ ︷︷ ︸
auxiliary slices

} (2C.1)

where z j (u) is sparse representation of auxiliary features from slice j and is defined as:

z j (u) = {(l ,φ j (u, l)) : l ∈ s j (u)} (2C.2)

2C.4. DATASET AND EXPERIMENTS

2C

37

whereφ j (u, l) is a normalization function that defines the value of the auxiliary features.
Trivial choices for φ j are to just consider it as an indicator of feature (with binary value
of 1) or consider the rating as its value. However, we introduce a more advance normal-
ization function which features better performance in our exploratory experiments. We
define φ j based on the ratings that user u gave to items in slice j and normalize it based
on the average value of user ratings as follows:

φ j (u, l) = r j (u, l)− r̄ (u)

rmax − rmi n
+1 (2C.3)

where r j (u, l) indicates the rating of user u to item l in slice j , r̄ (u) indicates the average
value of user ratings, and rmax and rmi n indicate the maximum and minimum possible
values for rating items.

For context-aware training with FM [99], as illustrated in Figure 2C.2-c the feature
vectors x(u, i) can be extended with features corresponding to context or attributes of
users and items. In this work we used same context features that we use for creating
slices. The slices are created based on the genre or category of items. Therefore the
additional features can be binary features indicating the genre or category of items and
can be represented as x(u, i ,c(i)) = {(u,1), (i ,1),zc (i)} where zc (i) is sparse representation
of context features and similarly as Eq. (2) can be defined as zc (i) = {(l ,1) : l ∈ sc (i)}
where sc (i) are feature ids of the category or genres of items. Note that the context-aware
training method uses the complete dataset to train the model whereas the ‘Slice and
Train’ method only uses the samples in auxiliary slices and the information of other slices
are exploited as additional features. In other word the size of training samples (number
of rows in design matrix) for the sliced training is equal to the number of samples in
the target slice while for the context-aware training the number of training samples is
equal to the total number of samples in the dataset. As the complexity of training in FMs
depends on the size of train samples, the sliced training can benefit from a reduced time
complexity compared to context-aware training. In the next section we will show that the
sliced training can gain competitive performance compared to context-aware training
while the time complexity of training and recommendations is significantly lower.

2C.4. DATASET AND EXPERIMENTS
In this chapter, we tested our method on two benchmark datasets of MovieLens 1M
movie ratings dataset2 and Amazon reviews dataset3 [62]. Table 5.1 lists the statistics of
the two datasets that we used in this chapter. The Amazon dataset contains product rat-
ings in four different groups of items namely books, music CDs, DVDs and Video tapes.
We use these four groups as natural slices that exists in this dataset. For the MovieLens
dataset we build slices based on the genre of movies. As movies in this dataset can have
multiple genres, we create slices by clustering movies using their genres. To perform the
clustering each movie is represented by a binary feature vector indicating the genres of
the movie. The movie vectors are the clustered using a k-means clustering algorithm.
Various number of clusters (i.e., slices) can be made for this dataset. Via exploratory ex-
periments we found that two or three slices perform well. Table 5.1 lists the statistics

2http://grouplens.org/datasets/movielens/
3https://snap.stanford.edu/data/amazon-meta.html/

2C

38 2C. SPEEDING UP COLLABORATIVE FILTERING WITH FACTORIZATION MACHINES

Table 2C.1: The statistics of the datasets used for the ‘slice and train’ method

Dataset No. Users No. Items No. Ratings
MovieLens 3,706 6,000 1,000,029
Amazon (total) 15,994 84,508 269,947
– Books 15,994 40,884 90,563
– Music CDs 15,994 23,798 62,373
– Video tapes 15,994 9,995 57,590
– DVDs 15,994 9,831 59,421

of the two datasets that we used in this chapter. Note that to be able to test our aux-
iliary feature enhancement mechanism we choose a subset of Amazon dataset where
user population is the same in all four groups, i.e., each user has at least one rating in
each group (slice).

In order to test our approach, the data in target slices are divided into 75% training
and 25% test data. For every experiment 10% of training data is only used as validation
set to tune the hyper-parameters of learning methods.

Factorization Machines can be trained using three different learning methods [92]:
Stochastic Gradient Decent (SGD), Alternating Least Square (ALS) and Markov Chain
Monte Carlo (MCMC). Each of these three learning method has its own advantage and
disadvantages. The SGD and ALS methods are highly dependent to the initialization of
hyper-parameters such as learning rate, regularization values and initialization of fac-
torized interactions whereas the MCMC method has an advantage that the regulariza-
tion values are learned automatically during training. This makes MCMC a favorable
choice since with this method there is no need to search for optimal hyper-parameters
anymore. On the other hand, MCMC in practice is slower than the other two learning
method, although Rendle [92] claims the same order of computational complexity for
MCMC as the other two learning methods. To ensure that our proposed sliced training is
insensitive to the learning method we tested our approach using all the three methods.
As mentioned earlier, ALS and MCMC require searching for optimal hyper-parameters
which is a time-consuming pre-processing step. We used a greedy method to search
each parameter by fixing all other parameters. Note that these parameters are depen-
dent on dataset and the experimental setups. The sub-optimal hyper-parameters that
we found for the three learning methods are listed in Table 2C.2.

The experiments are implemented in the WrapRec open source toolkit[77] and the
source code is available online 6. The underlying optimization algorithms are imple-
mented in LibFM [92]. Furthermore, we compare the performance of FM with Matrix
Factorization (MF) to ensure our FM-based solution is competitive with other state-of-
the-art factorization methods. We used an SGD-based implementation of MF in My-

4Regularization paramters are bias term regularization, 1-way interactions regularization and 2-way interac-
tion regularization.

5This is the standard deviation of the normal distribution that is used to generate the initial values for the
factorizaed parameters.

6http://babakx.github.io/WrapRec/

2C.4. DATASET AND EXPERIMENTS

2C

39

Table 2C.2: The hyper-parameters and design choices of the three FM learning methods

Parameter \ Dataset MovieLens Amazon
Num. Factors (all methods) 5 5
Num. Iterations (all methods) 50 50
SGD - Learning rate 0.005 0.002
SGD - Regular.4 (bias,1-way,2-way) 0,0,0 0.1,0.1,0.1
SGD - Stdev.5 0.1 0.1
ALS - Regular. (bias,1-way,2-way) 1,1,1 0.1,0.1,0.5
ALS - Stdev. 0.1 0.2
MCMC - Stdev. 0.1 0.1

MediaLite7 toolkit. We also further optimize the training time by using an optimization
technique namely block structure extensions [94] which save memory and computation
effort by finding similar patterns in feature vectors.

Table 2C.3 lists the performance of our sliced training method compared with context-
aware and other methods. The experiments are evaluated using Root Mean Squared Er-
ror (RMSE) and Mean Absolute Error (MAE) evaluation metrics. The six different setups
that are compared are the followings:

• FM-ALL: FM applied on the complete dataset. In this setup no auxiliary features
are used.

• FM-ALL-CTX: Context-aware FM applied on the complete dataset. Context for
Amazon dataset is the category of item and for MovieLens is the genres of items.

• FM-SL: FM applied on independent slices. No context or auxiliary features are
used for this setup. The reported metrics are average results over all slices.

• FM-SL-AUX: FM applied to the independent slices with feature vectors that are
extended by auxiliary features derived form auxiliary slices.

• FM-SL-CTX: FM applied on independent slices while context features from items
in the same slice is being used. In this method no auxiliary information is used.

The first two lines of Table 3 report results when all the data is used. The improve-
ment of performance between FM-ALL and FM-ALL-CTX confirms that FMs are able to
exploit additional context information related to items. The effectiveness of FM as our
model is also confirmed when we compare FM-ALL baseline with Matrix Factorization
(MF). The same setup trained with MF results to RMSEs of 1.2927 and 0.8939 for Amazon
and MovieLens datasets which are slightly worse than the FM-ALL results.

Comparing the remaining lines yields four interesting insights. First, the difference
between FM-ALL and FM-SLICE is actually quite small. Recall that FM-SLICE trains a
FM on only one slice of the data, and discards the rest. It is a surprising result that dis-
carding such a large portion of the data (up to 50% depending on the slice, cf. Table 5.1)
does not result in a larger performance deterioration.

7http://www.mymedialite.net

2C

40 2C. SPEEDING UP COLLABORATIVE FILTERING WITH FACTORIZATION MACHINES

Table 2C.3: The performance of the proposed ‘Slice and Train’ method compared to other experimental setups
in terms of RMSE and MAE.

Eval. Metric RMSE
Dataset Amazon MovieLens
Setup \ Learning ALS MCMC SGD ALS MCMC
FM-ALL 1.0490 1.1610 1.2574 0.8962 0.8894 0.8842
FM-ALL-CTX. 1.0349 1.0755 1.1688 0.8861 0.8613 0.8867
FM-SLICE 1.0659 1.2330 1.2525 0.9046 0.8974 0.9018
FM-SLICE-AUX 1.1011 1.0539 1.1348 0.8958 0.8644 0.8974
FM-SLICE-CTX 1.0932 1.1240 1.2026 0.9045 0.8738 0.9026

MAE
Dataset Amazon MovieLens
Setup \ Learning ALS MCMC SGD ALS MCMC
FM-ALL 0.8169 0.9533 1.0396 0.8325 0.8387 0.8270
FM-ALL-CTX. 0.8088 0.9164 0.9850 0.8286 0.8244 0.8347
FM-SLICE 0.8321 0.9915 1.0451 0.8356 0.8427 0.8369
FM-SLICE-AUX 0.8488 0.9017 0.9116 0.8321 0.8260 0.8414
FM-SLICE-CTX 0.8363 0.9411 1.0025 0.8352 0.8312 0.8380

Second, performance generally improves when moving from FM-SLICE to FM-SLICE-
AUX. In other words, using data from the target slice, and adding auxiliary features that
are derived from the other slices, performs comparably with the case that the whole
dataset is used (FM-ALL). This result is highly desirable, given the computational speed
up associated with training a FM model only on one slice of the dataset (cf. Fig. 1) since
in such case the number of training points (i.e. number of rows in the FMs design matrix)
are significantly smaller.

Third, the performance of FM-SLICE-AUX actually improves in many cases over the
performance gained using the whole dataset (i.e., FM-ALL). This result reveals the ability
of the ‘Right Slice’ approach to yield benefit both in terms of speed-up and prediction.
We note that this effect is highly consistent across datasets and metrics with MCMC.
This consistency suggests the robustness of the effect. We highlight MCMC because the
regularization values are optimized during training. In contrast, SGD and ALS do not
represent fully optimized settings because their parameters were optimized on FM-ALL
and used for the rest of the conditions.

Fourth, we note that FM-SLICE-CTX, the condition that trains on only one slice of the
data, and adds context information from that slice, performs quite well. It is unable to
achieve the performance of FM-ALL-CTX, but actually does approach the performance
of FM-ALL. This comparison is interesting since it demonstrates that in cases in which
only one slice of the dataset is available, it is still possible to approach the performance of
using all the data, if context information on items is added. Overall, however, the ‘Right
Slice’ method FM-SLICE-AUX is a better choice than FM-ALL-CTX.

2C.5. CONCLUSION

2C

41

2C.5. CONCLUSION
In this chapter, we have presented an alternative method, referred to as the ‘Slice and
Train’ method, to exploit additional information contained in the training data for col-
laborative filtering based on Factorization Machines. Using two benchmark datasets, we
show that the ‘Slice and Train’ method can maintain similar performance as using the
complete dataset while speeding up the training time.

III
BEYOND RATING PREDICTION

43

3
FACTORIZATION MACHINES FOR

DATA WITH IMPLICIT FEEDBACK

Factorization Machines (FMs) are generic factorization models for Collaborative Filter-
ing (CF) that offer several advantages compared to the conventional CF models. They
are expressive and general models that can mimic several CF problems, their accuracy is
state-of-the-art, and their linear complexity makes them fast and scalable. Factorization
Machines however, are optimized for datasets with explicit feedback (such as ratings)
and they are not very effective for datasets with implicit feedback. Although FMs can
also be used for datasets with implicit feedback by a trivial mapping of implicit feedback
to explicit values, but we will empirically show that such trivial mapping is not optimized
for ranking. In this work, we propose FM-Pair, an adaptation of Factorization Machines
with a pairwise loss function, making them effective for datasets with implicit feedback.
The optimization model in FM-Pair is based on the BPR (Bayesian Personalized Ranking)
criterion, which is a well-established pairwise optimization model. FM-Pair retains the
advantages of FMs on generality, expressiveness and performance and yet it can be used
for datasets with implicit feedback. We also propose how to apply FM-Pair effectively
on two collaborative filtering problems, namely, context-aware recommendation and
cross-domain collaborative filtering. By performing experiments on different datasets
with explicit or implicit feedback we empirically show that in most of the tested datasets,
FM-Pair beats state-of-the-art learning-to-rank methods such as BPR-MF (BPR with Ma-
trix Factorization model). We also show that FM-Pair is significantly more effective for
ranking, compared to the standard FMs model. Moreover, we show that FM-Pair can
utilize context or cross-domain information effectively as the accuracy of recommenda-
tions would always improve with the right auxiliary features. Finally, we show that FM-
Pair has a linear time complexity and scales linearly by exploiting additional features.

45

3

46 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

3.1. INTRODUCTION
The role of Recommender Systems (RS) as a tool to provide personalized content for
users is becoming more and more important. Among different techniques that have
been introduced for recommender systems in the past two decades, Collaborative Fil-
tering (CF) has become the most successful and widely-used technique. Early CF tech-
niques were mainly based on neighborhood approaches [100] while recently model-
based techniques such as Matrix Factorization (MF) [104] attracted more attention due
to their superior performance and scalability [55]. Matrix factorization techniques gen-
erally learn a low-dimensional representation of users and items by mapping them into
a joint latent space consisting of latent factors. Recommendations are then generated
based on the similarity of user and item factors.

Factorization Machines (FMs) [88] are general factorization models that not only
learn user and item latent factors, but also the relation between users and items with any
auxiliary1 features. This is done by also factorizing auxiliary features to the same joint
latent space. In contrast to the conventional factorization techniques where the training
data is represented by a matrix, the input data for FMs are feature vectors just similar
to the input data for the other supervised learning methods such as Support Vector Ma-
chines or regression models. This creates a great flexibility for FMs by allowing them
to incorporate any additional information in terms of auxiliary features. Thanks to the
flexibility of FMs on representing the data, FMs can mimic other factorization models
by feature engineering without the need to change the underlying model. In [92] Ren-
dle shows how several factorization model such as Matrix Factorization [55], Attribute-
Aware models [27] and SVD++ [54] can be mimic by FMs. Factorization Machines have
been successfully applied in different collaborative filtering problems including context-
aware recommendation [99], cross-domain collaborative filtering [78] and social recom-
mendation [130]. Factorization Machines have linear time complexity and thus are scal-
able for large datasets. They have been shown [99] to be significantly faster than tensor
factorization [50], a popular context-aware CF method. Moreover, an effective parallel
optimization method for FMs has been developed [47], reporting significant speed-up
in training time compared to the standard training models.

Despite the great advantages of Factorization Machines, the FMs model is not opti-
mized for data with implicit user feedback. All the aforementioned studies have been
developed for datasets with explicit feedback. Implicit user feedback (such as clicks)
are typically unary or positive-only feedback, and thus there are no explicit real-valued
scores for user-item interactions. A trivial approach to train FMs with such datasets, is
to map positive feedback to a real-value number such as +1. Negative examples can be
sampled from unobserved interactions and can be assigned a real-valued label of 0 or
-1. The model can then be trained just like the standard FMs model. However, such
mapping methods are associated with two problems: firstly, the sampled interactions
with negative labels might not be a real negative feedback as the user might not have
the chance to observe the item [97]. Secondly, due to the point-wise optimization tech-
niques in FMs, the model learns to correctly predict +1s and -1s, which is not necessarily
the optimal model for ranking. We experimentally show that such trivial mapping is not

1We use the term “auxiliary" for any additional information that is available next to the user-item matrix. Aux-
iliary features can be user and item attributes, context, content, information from other domains and so on.

3.1. INTRODUCTION

3

47

an accurate model for learning from implicit feedback.
The existing work on FMs with implicit feedback is limited and the scope of exist-

ing experimental studies is narrow. In a recent work, Guo et al. [34] introduce PRFM
(Pairwise Ranking Factorization Machines), where they adapt a pairwise optimization
technique to learn from implicit feedback. This work however, has not fully exploited
one of the main advantages of FMs, namely the ability to encode additional informa-
tion as auxiliary features. In PRFM, contextual information has been exploited to adapt
the sampling stage of the learning method and thus the model needs to be re-adapted
for different types of auxiliary information. Furthermore, PRFM was only tested on one
explicit dataset. In [34], explicit feedback was mapped to unary positive-only feedback,
and thus it is not clear how PRFM performs on datasets with inherent implicit feedback.
In another work, Nguyen et al. [80] introduced Gaussian Process Factorization Machines
(GPFM), a non-linear adaptation of Factorization Machines. In GPFM, interactions be-
tween users, items and context are captured with non-linear Gaussian kernels. They also
introduced a pairwise optimization model for GPFM for datasets with implicit feedback
and used it for context-aware recommendations. However, GPFM is not linearly scal-
able as the underlying optimization method relies on calculating the inverse of Gaussian
kernels, which is a computationally-intensive task. Furthermore, the GPFM model is de-
pendent on the choice of kernel, thus making it more complex compared to the standard
FMs model. Nevertheless, we empirically compare the performance of GPFM with our
method based on the training time and recommendations accuracy, in Section 5.5.

In this work we consolidate previous work on FMs and introduce a generic Factoriza-
tion Machines framework for datasets with implicit feedback. Similar to [34], we adapt
a pairwise optimization method based on BPR (Bayesian Personalized Ranking) crite-
rion [97]. BPR is an state-of-the-art learning-to-rank method for collaborative filtering
that learns to correctly rank pairs of items with respect to a user. BPR has been success-
fully applied for datasets with implicit feedback and it has been shown [97] to be more
effective than other learning-to-rank methods such as Weighted Regularized Matrix Fac-
torization (WRMF) [40]. Unlike [34], our proposed training model does not depend on
the sampling method. We adapt the optimization model of BPR based on the existing
auxiliary information that are represented as additional features. We refer to our imple-
mentation as FM-Pair since we are using a pair-wise optimization method for FMs. FM-
Pair is a linear model that can exploit additional information as auxiliary features just
like the standard FMs, without requiring any adaptation to the underlying model. We
further propose two applications of FM-Pair on context-aware and cross-domain col-
laborative filtering problems. We test FM-Pair on four implicit and explicit datasets with
different tasks. We find that by using the right data, FM-Pair outperforms state-of-the-
art methods for learning from implicit feedback data. We also show that FM-Pair is sig-
nificantly more effective than the trivial implicit-to-explicit mapping method. Further-
more, we empirically demonstrate the effectiveness of FM-Pair on exploiting auxiliary
features (i.e., context or cross-domain information). We also empirically show that FM-
Pair scales linearly by increasing dimensionality of factorization or number of auxiliary
features.

FM-Pair is publicly available as a part of WrapRec2, an open-source evaluation frame-

2https://github.com/babakx/WrapRec

https://github.com/babakx/WrapRec

3

48 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

work for recommender systems and can be used simply on different datasets.
The contributions of this chapter can be summarized as follows:

• An extension to Factorization Machines is introduced that allows the use of FMs
for datasets with implicit feedback. Inspired by BPR [97], FM-Pair is implemented
with a pairwise loss function without requiring explicit feedback for user-item in-
teractions.

• We propose to apply FM-Pair to exploit context and provide context-aware recom-
mendations for datasets with implicit feedback. Similarly, we propose a method to
apply FM-Pair for the task of cross-domain collaborative filtering.

• We release the implementation of FM-Pair as a part of WrapRec, an evaluation
framework for recommender systems. The usage of WrapRec framework is briefly
described in this chapter. More details about WrapRec can be found in Chapter 6.

In the remainder of this chapter we first provide a brief introduction to FMs and dis-
cuss some background and related work. In Section 3.3, we introduce FM-Pair and its
pairwise optimization method in detail. In Section 3.4, we propose two applications of
FM-Pair for context-aware and cross-domain collaborative filtering. In Section 3.5 we
describe the datasets, our evaluation method and the experiments that we performed in
this chapter and further elaborate on the results of those experiments. We conclude this
chapter by summarizing the contributions and discussing about possible extensions in
Section 3.6.

3.2. BACKGROUND AND RELATED WORK
In this section we briefly introduce the model of Factorization Machines for explicit feed-
back datasets and explain how the input data is represented in FMs. We also review the
related work on Factorization Machines in more details.

Factorization Machines represent each user-item interaction by a real-valued feature
vector x with a corresponding output value of y . Typically the feature vectors are binary
vectors with two non-zero features corresponding to user and item. In case of explicit
user feedback, the output value y would be the actual rating given by the user. Figure
3.1 illustrates how the user-item rating matrix can be modeled by the feature vectors
x and output values y . Each rating in the user-item matrix is represented by a feature
vector. The feature vectors indicate which user rated which item and if auxiliary infor-
mation (such as context) is available for the user-item interactions, it is represented by
real-valued auxiliary features.

More specifically, let us assume that the input data is represented by a set S of tu-
ples (x, y) where x = (x1, . . . , xn) ∈ Rn is a n-dimensional feature vector and y is its corre-
sponding output value. Factorization Machines learn a model based on the interaction
between features. The FM model with the order of 2, where the interactions up to order
of 2 (i.e., pairs) are considered, is represented as follows:

f (x) = w0 +
n∑

j=1
w j x j +

n∑
j=1

n∑
j ′= j+1

w j , j ′x j x j ′ (3.1)

3.2. BACKGROUND AND RELATED WORK

3

49

where w j are first order interaction parameters and w j , j ′ are second order factorized
interaction parameters and are defined as w j , j ′ = 〈v j .v j ′〉 where v j = (v j ,1, . . . , v j ,k) is
k-dimensional factorized vector for feature j . In fact, FMs factorize any feature that
is represented in a feature vector x and consider the terms x j x ′

j as weight parameters

for the pairwise interactions between the factorized parameters. As you might notice,
the FM model is similar to a polynomial regression model. However, FMs differ from a
standard polynomial regression model by the fact that the parameters w j , j ′ are not in-
dependent parameters as they are inner product of two factorized vectors. This makes
the total number of parameters much lower (compared to the regression model) and
makes FMs favorable for problems with sparse and high dimensional data such as col-
laborative filtering. For a FM with n as the dimensionality of feature vectors and k as
the dimensionality of factorization, the model parameters that need to be learned are
Θ= {w0, w1, . . . , wn , v1,1, . . . , vn,k }.

Rendle [92] proposes three learning methods to learn the parameters of FMs: Stochas-
tic Gradient Descent (SGD), Alternating Least-Squares (ALS) and Markov Chain Monte
Carlo (MCMC) method. In principal all the three methods find the optimal parameters
by optimizing the same objective function but they use different techniques to solve the
optimization problem. The objective function is defined by summing up the losses of in-
dividual samples in the training set. A regularization term is also added to the objective
function to prevent over-fitting. The objective function L with square loss over training
set S is defined as:

L(Θ,S) = ∑
(x,y)∈S

(f (x|Θ)− y)2 + ∑
θ∈Θ

λθθ
2 (3.2)

where θ ∈ Θ are model parameters and λθ is regularization value for parameter θ. The
optimal parameters ΘOPT are found by minimizing the objective function, i.e., ΘOPT =
argminΘL(Θ,S). Rendle [92] showed that all three learning methods has the same time
complexity. The advantage of MCMC over the other two optimization techniques is
that it is insensitive to hyper-parameters (such as regularization values) which can avoid
time-consuming search for hyper-parameters. On the other the advantages of the SGD
technique are its simplicity and lower storage complexity. Details about the optimization

Figure 3.1: An overview of data representation in Factorization Machines.

3

50 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

techniques can be found in [92].
Factorization Machines have several advantages compared to other factorization meth-

ods:

• Generalization: Factorization Machines are general factorization models. Despite
other factorization models (such as matrix factorization) where specific entities
(e.g. user, item) are factorized, in FMs any dimension that can be represented in
terms of a feature can be factorized to a low-dimensional latent space. In ma-
trix factorization, predictions are generated by taking into account the interaction
between user and item, but in FMs the predictions are generated by taking into
account the pairwise interaction between any pair of features (including user and
item). FMs can even take into account higher order interactions between features.

• Expressiveness: The fact that the input data in FMs are represented by feature
vectors, not only makes FMs easy to use but also makes it possible to mimic sev-
eral collaborative filtering methods such as Tensor Factorization [50] by feature
engineering. This obviate the need to introduce a new prediction and inference
methods for such cases. Other example of CF methods that can be represented
by FMs are SVD++ [54], Attribute-Aware matrix factorization [27] and Joint Matrix
Factorization [114].

• Performance and Scalability: The complexity of prediction and inference in FMs
are linear in terms of number of latent factors and the number of non-zero fea-
tures [92] and thus FMs can be scaled for large datasets. Furthermore, a parallel
implementation of FMs with shared-memory architecture has been proposed [47]
that can achieve noticeable training speed-up on large datasets.

3.3. LEARNING FROM IMPLICIT FEEDBACK
In this section we introduce FM-Pair, an adaptation of Factorization Machines with a
pairwise optimization methods. Previous studies [80, 97, 113] have reported better per-
formance for pairwise learning-to-rank methods compared to point-wise methods for
datasets with implicit feedback. While FM-Pair benefits from the effectiveness of pair-
wise learning-to-rank, it can also leverage the arbitrary auxiliary features that might be
available in the input data.

The optimization technique in FM-Pair is inspired by the BPR [97] optimization cri-
terion. The BPR method comes with an assumption that all observed positive feedback
is preferred over the missing preferences. The training data in BPR consist of a user and
a pair of items where the first item, referred as the positive item, is chosen from the user
positive feedback and the second item, referred as the negative item, is sampled from
the unobserved interactions. More specifically, the training data in BPR would be a set
of tuples SP = {(u, i , j)|i ∈ I+u ∧ j ∈ I \I+u } where I+u is set of all positive feedback from user
u, i is an item with positive feedback from u and j is a missing item for that user which is
sampled uniformly from the unobserved items. The BPR optimization technique learns
to correctly rank the items in any given pair of items, with respect to a given user.

In FM-Pair arbitrary information can be represented by auxiliary features and thus
the pairwise learning method should be able to exploit those features. Let us assume

3.3. LEARNING FROM IMPLICIT FEEDBACK

3

51

that z(u, i) are the auxiliary features associated with user u and item i . Then the tuple
(u, i , j) ∈ SP indicates user u prefers item i over item j under the observed auxiliary fea-
tures z(u, i). Auxiliary features can be user features, item features, context or additional
information about user-item interaction. FM-Pair finds the optimal parameters Θ by
maximizing the following likelihood function:∏

(u,i , j)∈SP

p(i >u,z j |Θ) (3.3)

where i >u,z j indicates item i is preferred over j by user u under auxiliary features z =
z(u, i). Similar to the BPR model, the probability p(i >u,z j |Θ) is defined by mapping a
utility function gz(u, i , j) to a value between 0 and 1. This can be done by the sigmoid
function σ(x) = 1

1+e−x . Therefore:

p(i >u,z j |Θ) =σ(gz(u, i , j |Θ)) (3.4)

The utility function g captures the interaction between user u, item i and item j with
presence of auxiliary features z(u, i). Similar to BPR, the utility function g is defined by
calculating the difference between the utility of individual interactions. FM-Pair calcu-
lates the utility of individual interactions by taking into account the auxiliary features
z(u, i). We define the utility function g as:

gz(u, i , j |Θ) = fz(u, i |Θ)− fz(u, j |Θ) (3.5)

The utility of individual interactions fz(u, i |Θ) can be calculated using equation (4.3).
In this case the input feature vector x is a sparse vector in which features corresponding
to user u, item i and z(u, i) are non-zero. Thus the vector x can be represented with the
following sparse form:

x(u, i ,z) = xu,i ,z = {(u, xu), (i , xz), {(z, xz)|z ∈ z}} (3.6)

where xz is the value of feature z and can be a real value number. The parameters xu

and xi are considered to be 1 to indicate the corresponding user and item of a feedback
(see Figure 3.1 for clarity). By replacing xu,i ,z in equation (4.3), and expanding w j , j ′ , the
individual utility function fz(u, i |Θ) can be written as:

fz(u, i |Θ) = f (xu,i ,z|Θ) = w0 +wu +wi +
∑
z∈z

wz xz +
k∑

f =1
vu, f vi , f

+∑
z∈z

xz

k∑
f =1

vu, f vz, f +
∑
z∈z

xz

k∑
f =1

vi , f vz, f

(3.7)

By replacing (4.9) in (3.5), the pairwise utility function g can be written as:

gz(u, i , j |Θ) = wi −w j +
k∑

f =1
vu, f (vi , f − v j , f)+∑

z∈z
xz

k∑
f =1

vz, f (vi , f − v j , f) (3.8)

3

52 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

Now we define the FM-Pair objective function by taking the logarithm of the likeli-
hood function in equation (3.3) and adding regularization terms:

L(Θ,SP) = ∑
(u,i , j)∈SP

lnσ(gz(u, i , j |Θ))− ∑
θ∈Θ

λθθ
2 (3.9)

Since the FM-Pair objective function is based on likelihood, the optimal parameters
are found by maximizing this function, i.e.,ΘOPT = argmaxΘL(Θ,Sp).

To find the optimal parameters, optimization is done with Stochastic Gradient De-
scent (SGD) technique. First the parameters are initialized and then they are updated by
iterating over the tuples (u, i , j) ∈ SP using the following update rule:

θ← θ−η∂L(Θ,SP)

∂θ
(3.10)

where η is the learning rate. By replacing (3.9) in (3.10), the update rule would be:

θ← θ+η(
egz

1+egz

∂gz

∂θ
+λθθ) (3.11)

Based on equation (4.11), the gradients of gz with respect to θ is defined as:

∂gz

∂θ
=

1 if θ = wi

−1 if θ = w j

vi , f − v j , f if θ = vu, f

vu, f +
∑

z∈z xz vz, f if θ = vi , f

−vu, f −
∑

z∈z xz vz, f if θ = v j , f

xz (vi , f − v j , f) if θ = vz, f

0 otherwise

(3.12)

The parameters wi are typically initialized by 0 and the factorization parameters v∗, f

should be initialized by a zero-mean normal distribution with standard deviation σ0 for
a better performance. The parameter σ0 is one of the hyper-parameters of SGD that
typically is tuned by cross-validation or by using a validation set.

The SGD algorithm typically iterates over the entire training data and updates the
parameters according to the update rule. [97] suggests to draw the positive feedback
from the input data by bootstrapping with replacement to prevent consecutive updates
on a same user or item for faster convergence. FM-Pair first draws a positive feedback
(u, i ,zu,i) from the input dataset D and then samples a negative item j from I \I+ uni-
formly. In the next step, the utility function g is calculated and then the parameters are
updated according to the update rule (3.11). Figure 2 summarizes the FM-Pair learning
algorithm.

3.3.1. COMPUTATIONAL COMPLEXITY
FM-Pair have a linear learning and prediction time complexity. The main effort in the
FM-Pair SGD algorithm is to calculate gz(u, i , j) (line 6 in Figure 2). According to (4.11),
this can be done in O(k +|z|k). Sampling positive pairs (u, i) and negative items j (lines

3.4. IMPROVED RECOMMENDATIONS WITH AUXILIARY DATA

3

53

Algorithm 1: Learning FM-Pair with Stochastic Gradient Descent.

Input: Training Data D
Output: Model parametersΘ

1 initializeΘ
2 do
3 sample (u, i) from D and create xu,i ,z

4 sample j from I \I+u create xu, j ,z

5 let gz(u, i , j |Θ) = f (xu,i ,z|Θ)− f (xu, j ,z|Θ)
6 updateΘ according update rule (3.11)
7 while convergence
8 returnΘ

4 and 5 in Figure 2) can be done efficiently [95] in O(1). Updating the parameters are
done according to (3.11) and (3.12). For each point (u, i , j ,z) in the training data only the
parameters corresponding to that point is updated since the gradient of the other pa-
rameters are 0. Thus the complexity of updating the parameters for each training point
(line 7 in Figure 2) is O(|z|k) according to (3.12). Putting it all together, the complexity
of one iteration in FM-Pair SGD algorithm is O(k(|z| + 1)) and the complexity of a full
iteration on the entire training data D is O(k(|z| +1)|D|). Therefore, the computational
complexity of FM-Pair is linear in terms of number of latent factors k and number of
auxiliary features z. In the experiments section we empirically demonstrate the training
time of FM-Pair based on k and z.

3.3.2. ANALOGY BETWEEN FM-PAIR AND BPR-MF
FM-Pair can mimic other factorization methods with feature engineering, similar to the
standard Factforization Machines. A specific model that can be represented with FM-
Pair is BPR-MF (BPR with Matrix Factorization utility) [97]. The matrix factorization
model calculates the utility of a user-item interaction as the inner product of the user
and item factors, that it, f MF (u, i) = ∑k

f =1 vu, f vi , f . By considering f MF as the utility

function of matrix factorization model, the utility of triples (u, i , j) in BPR-MF is defined
as:

g MF (u, i , j) =
k∑

f =1
vu, f (vi , f − v j , f) (3.13)

By comparing the above equation with (4.11), one can notice that g MF is a special
case of gz(u, i , j) where z =; (i.e., no auxiliary features) and the parameters wi and w j

are 0. In fact when there are no auxiliary features, FM-Pair, compared to BPR-MF, learns
two additional parameters wi and w j that can be regarded as global item biases for pos-
itive and negative items.

3.4. IMPROVED RECOMMENDATIONS WITH AUXILIARY DATA
A great advantage of Factorization Machines as mentioned earlier, is that they are ca-
pable of exploiting arbitrary information as auxiliary features to improve recommen-

3

54 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

dations. In this section, we propose to apply FM-Pair for the context-aware and cross-
domain collaborative filtering for datasets with implicit feedback.

3.4.1. CONTEXT-AWARE RECOMMENDATION WITH FM-PAIR
Context is a dynamic set of parameters describing the state of the user at the moment
of experience. Some studies also consider user and item attributes as a type of con-
text [3]. Context-aware recommendation relies on this additional information to better
learn from the interactions between users and items. In FM-Pair, context can be consid-
ered as one type of auxiliary features for user-item interactions. We represent the context
of a user feedback with the following sparse representation:

z(u, i) = {(z, xz)|xz 6= 0} (3.14)

where z is a context and xz is its corresponding value. For example, if available context
of an interaction (u, i) are user mood (e.g. “happy") and movie genre (e.g. “action"),
then we can represent the context of interaction with z(u, i) = {(happy,1), (action,1)}. By
expanding the feature vector x with context features, the feature vector x would have the
following sparse form:

x(u, i ,z) = xu,i ,z = {(u, xu), (i , xi)}∪z(u, i) (3.15)

and the following expanded form:

xu,i ,z = (0, . . . ,0, xu ,0, . . . ,0︸ ︷︷ ︸
|U |

,0, . . . ,0, xi ,0, . . . ,0︸ ︷︷ ︸
|I |

, xz1 , . . . , xzm︸ ︷︷ ︸
|Z |

) (3.16)

where Z is the set of contextual feature and m = |Z |. The parameters xu , xi and xz are
the actual values of features, which be seen as weight parameters specifying the strength
of features. The parameters xu and xi are typically considered to be 1 to just indicate
the presence of features. The parameters xz can be assigned with any real-values to
control the weight of contextual features. For the categorical context such as user mood
typically binary values are used similar to xu and xi . However, the binary values can also
be replaced with real values. If the features are continuous by their nature (e.g. user age,
time of the day and number of clicks), a real value can be considered as the value of the
feature. According to [99] it is often desirable that the value of auxiliary features sum up
to 1. Continuous features can also be mapped to categorical features by forming several
bins. With our preliminary experiments we found that mapping continuous context to
categorical features results to better accuracy. In Section 5.5, we describe our feature
mapping on the two datasets with contextual features.

3.4.2. CROSS-DOMAIN RECOMMENDATIONS
Cross-Domain Collaborative Filtering (CDCF) methods exploit additional information
from source3 domains to improve recommendations in a target domain. The main idea
of CDCF is that a user’s taste in one domain (e.g., movie) can be exploited to better learn

3The source domains are also referred as “auxiliary" domains. In this chapter we used the term “source" to
avoid confusion with auxiliary features.

3.4. IMPROVED RECOMMENDATIONS WITH AUXILIARY DATA

3

55

user’s taste on another domain (e.g., music). Different methods for the problem of CDCF
have been proposed. A great overview of the existing solutions can be found in [15].
Among different techniques that have been developed for cross-domain CF, in an earlier
study [78] we proposed a method for the problem of CDCF with Factorization Machines
for the rating prediction problem. In this section, we propose a similar technique that
has been adapted for FM-Pair and thus can be applied for datasets with implicit feed-
back.

Thanks to the flexibility of Factorization Machines in exploiting additional features,
the information from source domains can be translated to auxiliary features to expand
the feature vectors in the target domain. The expanded feature vectors can be then used
as the input data for FM-Pair to train a model. With the same assumption as the case
of context-aware recommendation, the extra features can enrich the feature vectors to
better learn the user preferences. We refer to our proposed cross-domain CF method
with FM-Pair as FM-Pair-CD. The advantage of FM-Pair-CD is that it does not require any
adaptation to the underlying FM-Pair model and thus the model can be used out-of-the-
box. FM-Pair-CD proposes a simple and yet effective way to exploit features from source
domains in order to improve the performance of recommendations in the target domain.
Here the domain refers to the type of item that user interacted with. For example, if user
provides a feedback for a movie, the domain is “movies".

To understand how FM-Pair-CD represents the auxiliary features, suppose p is the
number of source domains and I j (u) is the set of items in domain j that user u inter-
acted with. FM-Pair-CD proposes to use one auxiliary feature for every item that user
interacted with in the source domains. Therefore, the feature vectors x in the target do-
main can be represented with the following sparse form consisting of both target and
source domain features:

x(u, i) = { (u,1), (i ,1)︸ ︷︷ ︸
target domain features

,∪p
j=1{(z, xz (u, j))|z ∈ I j (u)}︸ ︷︷ ︸

source domains’ features

} (3.17)

where xz (u, j) is the value of feature z, i.e., the weight that should be considered for the
interaction of user u with item z in the source domain j . We propose the following two
approaches to define the feature values xz (u, j):

• Binary indicator: In this case similar to the representation of user and item, the
presence of a source domain feature is specified by indicator value of 1. We denote
xB

z (u, j) as binary representation of features. In other words, in this case, with
binary values we indicate which items have been rated by the user in the source
domains.

• Normalized by count: In this case the values of source domain features are nor-
malized by the number of feedback that user provided in the source domain. The
normalized value xC

z (u, j) is defined by:

xC
z (u, j) = 1

|I j (u)| (3.18)

The auxiliary features in the FM-Pair-CD method, are in fact the items in source do-
mains with feedback from the user. The normalization of auxiliary features ensures that

3

56 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

Figure 3.2: Representation of feature vectors in FM-Pair-CD.

the target features are not dominated by auxiliary features. Figure 3.2 illustrates how
FM-Pair-CD represents feature vectors for input data. In this example the target domain
is the “movie" domain and source domain is the “music" domain. The music items that
same user has interacted with are considered as auxiliary features for the interactions in
the target domain. As you might notice from Figure 3.2, the total number of auxiliary
features is the number of items in source domains. We found that using only a fraction
of user feedback from source domains results in almost same improvement compared
to the case that all user feedback from source domains are used. Such feature selection
makes the size of feature vectors smaller and thus the training and prediction become
faster. The selected features can be based on most popular items, highly rated items,
or just randomly chosen items. In fact, by applying this feature selection method, the
auxiliary features in (5.22) can be represented as:

∪p
j=1 {(z, xz (u, j))|z ∈ I j (u)∧ z ∈ I S (u)} (3.19)

where I S (u) are the selected features. Since finding the most informative items from
source domains is not the focus of this work, we just consider I S (u) to be random items
from source domains.

3.5. DATASETS, EXPERIMENTS AND EVALUATION
In this section we first introduce the datasets that we used in this chapter, we then de-
scribe our evaluation method, and then we explain our experiments.

3.5.1. DATASETS
We used the following four datasets in this chapter, ranging from the popular MovieLens
dataset to a recent industry dataset of XING. These datasets are chosen so that we can
test different scenarios with auxiliary features and to cover both implicit and explicit
feedback scenarios.

3.5. DATASETS, EXPERIMENTS AND EVALUATION

3

57

Table 3.1: Statistics of the dataset used in this chapter.

Dataset #Users #Items #Feedback Sparsity(%) Scale
MovieLens 100K 943 1,682 100K 93.74 1-5
Amazon 15,994 84,508 270K 99.98 1-5
Frappe 957 4,082 96K 97.54 Implicit
XING 9,751 9,821 223K 99.76 Implicit

• MoviLens 100K: The MovieLens 100K dataset4 is a popular benchmark dataset for
recommender systems with explicit feedback consisting of 100K user rating on the
scale of 1 to 5. This dataset also contains several user and item attributes that can
be used as auxiliary features in FM-Pair.

• Amazon: The Amazon dataset [62] consists of user ratings on the products on the
Amazon website. The ratings are on the same scale as the MovieLens dataset. The
products belong to four different domains: Books, Music CDs, Video tapes and
DVDs. This dataset has been used for some previous work on cross-domain CF [38,
78].

• Frappe: Frappe is a context-aware mobile app discovery tool. It logs number of
time users run an application on their mobile phone. It also logs several contexts
such as time, date, location and weather. The Frappe dataset [7] consists of 100K
implicit positive feedback. An observation is considered as a positive feedback if
user runs an application at least one time. We used this dataset because of the
presence of several contextual features. This dataset has also been used in one of
the related work [80].

• XING: XING5 is a professional social network and a job discovery platform. This
dataset is a subset of the RecySys 2016 challenge6 and consists implicit user feed-
back on job postings. Users can either click on a job posting, bookmark it or apply
for it. We consider any user action on a job positing as a positive feedback. Since
the original dataset was extremely sparse, we densified the dataset by considering
users and items with at least 20 interactions.

Table 5.1 list the statistics of the three datasets that we used in this chapter.

3.5.2. EXPERIMENTS SETUP AND EVALUATION
All experiments in this chapter are done with four-fold cross-validation to make sure the
hyper-parameters are not tunned for one particular test set. FM-Pair is implemented
as a part of the WrapRec[77] open source project. WrapRec can be used as a command
line tool in different platforms. The source code and documentation can be found in
http://wraprec.crowdrec.eu/.

4http://grouplens.org/datasets/movielens/
5http://www.xing.com/
6http://2016.recsyschallenge.com/

http://wraprec.crowdrec.eu/

3

58 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

EVALUATION METHOD

The performance of our experiments are evaluated with two ranking metrics namely Re-
call and NDCG (Normalized Discounted Cumulative Gain). To calculate these metrics on
datasets with positive-only feedback, typically for each user in the test set a rank list is
created. The metrics are then calculated based on the presence of test feedback on top of
the list. However, when auxiliary features such as context are available for the feedback,
this strategy is not suitable as it is not clear based on which context the scores (i.e., the
utility of a user-item interaction) should be generated. To make an unbiased estimation
of performance when auxiliary features are available, we applied the approach known as
One-plus-random [9, 19] where the following procedure is applied: For every user-item
interaction in the test set (which is a positive feedback with possible auxiliary features),
1000 random items which are not observed with that user are scored based on the same
user and auxiliary features. Then a ranked list including the target item is created. The
position of the target item in the ranked list is used to calculate the metrics. If the tar-
geted test point appears in the top N positions of the list, then it would be considered as
a hit. In case of a hit, the recall of a single test point would be 1 and otherwise it would
be 0. The overall metric is calculated by averaging on all points. That is:

Recall@N = 1

|T |
|T |∑
i=1

I(ri ≤ N) (3.20)

where ri is the rank of the i th test sample in the generated list, I is the indicator function
and |T | is the size of test set. The above metric can be interpreted as the hit rate of the
test samples where a hit is defined as presence of the relevant test point in the top N
positions of the ranked list.

Based on the one-plus-random evaluation method, we also adopted the MRR metric
as follows:

MRR@N = 1

|T |
|T |∑
i=1

1

ri
I(ri ≤ N) (3.21)

We use the MRR metric since it also takes into account the position of the relevant
item in the list. Note that these metrics are not absolute metrics [9] and their value does
not reflect the real performance of the system. However, they are reliable metric to com-
pare the performance of different experiments.

3.5.3. COMPARISON OF FM-PAIR WITH OTHER METHODS
The proposed FM-Pair algorithm is compared with several methods on the four datasets.
In this experiment no auxiliary or context features are used, and the methods are com-
pared only based on the positive feedback in the user-item matrix. The following setups
have been tested in this experiment:

• Most-Popular: This is a baseline method where the most popular items are rec-
ommended to the users.

• FM-Map: In this setup the training is done similar to the FMs for rating predic-
tion. For the positive feedback in the training set the output value of +1 is consid-
ered. Same number of unobserved interactions are sampled uniformly and they

3.5. DATASETS, EXPERIMENTS AND EVALUATION

3

59

are considered as negative feedback with output value of -1. The positive and
sampled negative feedback is used to train the FMs model. To resemble the ex-
periment for datasets with explicit feedback, the ratings higher than user’s average
were mapped to +1 and negative feedback were sampled in the same way as the
implicit feedback datasets.

• BPR-MF: This method is an implementation of BPR method with Matrix Factor-
ization as the utility function [97]. With this method there is no possibility to in-
corporate auxiliary information.

• FM-Pair: This is the proposed method in this chapter. The FM-Pair algorithm is
listed in Figure 2. For the two datasets of MovieLens and Amazon with explicit
feedback, the ratings above user’s average rating is considered as positive feed-
back.

HYPER-PARAMETERS AND EXPERIMENTAL REPRODUCIBILITY

The three datasets of MovieLens, Amazon and Frappe are publicly available. For the
experiments in this section, the number of factors (parameter k) is set to 10 and the
number of iterations of the SDG algorithm on the training data is set to 300. The stan-
dard deviation of the the normal distribution for initialization (parameter σ0) is set to
0.1. The learning rate of the SGD algorithm (parameter λ) varies per dataset. The follow-
ing learning rates are used for each dataset: XING: 0.075, Frappe and MovieLens: 0.005,
Amazon: 0.001. The two hyper-parameters of σ0 and λ are found with a grid search with
our four-fold cross-validation experiments. That is, the hyper-parameters that result to
the best performance on the average of all folds are chosen, thus they are not optimized
for one particular test set.

DESCRIPTION OF THE RESULTS

Table 3.2 lists the performance of the above five methods on the four datasets based on
Recall@10 metric7. As it can be seen from the table, in three out of the four datasets,
the FM-Pair is performing better than the other baselines. In the XING dataset, BPR-FM
is slightly performing better than FM-Pair. It is worth mentioning that when there are
no auxiliary features (such as this experiment) the underlying model of FM-Pair is very
similar to BPR-MF (see Section 3.3.2). This can explain the close performance of the
two methods. Nevertheless, the additional parameters of FM-Pair contribute to some
accuracy gain in three out of the four datasets. Another observation that you can see
in this table, is that the FM-Map method is not really effective for ranking compared to
the two pairwise methods in our experiments. This can be explained by the fact that
the standard FMs optimization method is a pointwise method that in principle learns
to correctly predict the mapped scores and it is not optimized for ranking. Note that
we also tried to map the sampled unobserved feedback to other values than -1, but in
practice the result were very similar. For the two datasets of Amazon and MovieLens
with explicit feedback, we did an additional experiment where the model is trained with
the standard FM with original ratings. The ranked lists are then generated based on the

7Other ranking metrics such as MRR and NDCG are also calculated, but due to the high correlation between
the values, we only report Recall@10 for this experiment.

3

60 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

Table 3.2: Comparison of different learning-to-rank methods on the four dataset based on Recall@10. The
numbers in parentheses are standard deviations of the results in the four folds.

Method / Dataset XING Frappe Amazon MovieLens
Most-Popular 0.0306 (0.0005) 0.1643 (0.0087) 0.0222 (0.0010) 0.1180 (0.0012)

FM-Map 0.0287 (0.0015) 0.1230 (0.0260) 0.0348 (0.0014) 0.0728 (0.0036)

BPR-MF 0.2925 (0.0030) 0.1428 (0.0167) 0.0962 (0.0056) 0.2278 (0.0024)

FM-Pair (this chapter) 0.2920 (0.0077) 0.1816 (0.0161) 0.0972 (0.0030) 0.2357 (0.0016)

predicted ratings. For this experiment we achieved a Recall of 0 for Amazon and 0.001 for
the MovieLens dataset. This shows that even for datasets with explicit feedback, ranking
based on predicting ratings is not really effective. Previous studies [6, 19] also showed
the ineffectiveness of pointwise methods for ranking.

COMPARISON WITH GPFM

In addition to the methods listed in Table 3.2, we also compare the performance of FM-
Pair with the pairwise method of GPFM [80] since it is very close to our work as it also
adapted a pairwise optimization technique for FMs. We tested the GPFM method on
Frappe and MovieLens datasets. For the Frappe dataset we achieved a Recall@10 of
0.1615 and for the MovieLens a Recall@10 of 0.1562 was achieved, both less than the
performance of FM-Pair (See Table 3.2). However, the remarkable advantage of FM-
Pair compared to GPFM is that the computational complexity of FM-Pair is significantly
lower than GPFM. Figure 3.3 compares the epoch time (the time of a full iteration on
dataset) of the three methods of BPR-MF, GPFM and FM-Pair on two datasets of Frappe
and MovieLens. The numbers are represented in the log scale due to the significant dif-
ference between the epoch time of GPFM with the other two methods. The epoch time
of FM-Pair is slightly higher than the epoch time of BPR-MF due to the presence of two
additional parameters (see Section 3.3.2). The GPFM method on the other hand, is sig-
nificantly slower that the other two methods due to the fact that GPFM need to calculate
the inverse of the covariance matrix of the preference kernels [80]. This introduces a
significant computational complexity in the training of GPFM.

Due to the high space complexity of GPFM, running the experiment on the larger
datasets of XING and Amazon was not even possible on our testing machine8. Since the
complexity of GPFM is significantly higher than the other methods, we did not further
investigate on testing GPFM on our larger datasets.

We used the Matlab implementation9 of GPFM that was released with that work to
train the model but the evaluation was done in the same way as other methods, as de-
scribed in Section 3.5.2, to have a fair comparison between the methods. The kernel of
the Gaussian process is chosen to be the RBF kernel, the recommended kernel of the
model.

8The experiments are run on a machine with 8 GB of memory and an Intel i5 processor with 4 CPU cores.
9http://trungngv.github.io/gpfm/

http://trungngv.github.io/gpfm/

3.5. DATASETS, EXPERIMENTS AND EVALUATION

3

61

Frappe MovieLens 100K
0

2

4

6

8

10

Lo
g
 E

p
o
ch

 T
im

e
 (

m
s)

BPR-MF

FM-Pair

GPFM

Figure 3.3: Comparison of the epoch time (the time of a full iteration on the dataset in milliseconds) of three
pairwise learning-to-rank methods on the log scale.

3.5.4. FM-PAIR WITH AUXILIARY DATA
In the second set of our experiments, we test the performance of FM-Pair with auxiliary
information. We use FM-Pair for the two scenarios that we described in Section 3.4:
context-aware recommendation and cross-domain collaborative filtering.

FM-PAIR WITH CONTEXT

Among the four datasets that we use in this chapter the two datasets of Frappe and
MovieLens have several context and attributes. The final context and attributes that are
used in the experiments are found with a naive greedy method, where the top perform-
ing features are combined. For the Frappe dataset the following contexts are used: day-
time (with seven possibilities of sunrise, morning, noon, afternoon, sunset, evening,
night), weekday (day of the week), isweekend (with two values of workday or weekend)
and homework (with three values of unknown, home, work). For the MovieLens dataset,
we used the genre of movies as auxiliary features in FM-Pair. Each movie in this dataset
has one or more genres from the 17 genres that exists in this dataset.

Table 3.3 compares the performance of FM-Pair with context or attributes as aux-
iliary features (FM-Pair-Context), with the original FM-Pair without any auxiliary fea-
tures. We reported Recall@10 and MRR@10 for the two setups in this experiment. The
results show that the FM-Pair can clearly exploit context or auxiliary attributes if they are
present in a dataset.

CROSS-DOMAIN RECOMMENDATION WITH FM-PAIR

To test the performance of FM-Pair for cross-domain collaborative filtering, we use the
dataset of Amazon where the items come from four different domains. We use the two
domain of books and music as target domains and use other domains as source do-
mains. The experiments are done with four-fold cross-validation and on each fold only
the interactions from the target domain are evaluated. The source domains are used to
generate auxiliary features, as described in Section 3.4.2. Figure 3.4 illustrates our four-
fold cross-validation splitting method on the Amazon dataset with one target domain

3

62 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

Table 3.3: Performance of FM-Pair with context compared to the standard FM-Pair without auxiliary features.

Recall@10 MRR@10
Method / dataset Frappe MovieLens Frappe MovieLens
FM-Pair 0.1816 0.2357 0.0745 0.1027
FM-Pair-Context 0.2064 0.2601 0.0890 0.1191

and three source domains. The design choices and hyper-parameters of the experiment
are the same as the ones described in Section 3.5.3 except that for the books domain, the
learning rate of the SGD algorithm is set to 0.001 due to its faster convergence.

The following three setups are used to demonstrate the performance of the FM-Pair
method for cross-domain recommendations. In all setups, the evaluation is done for the
target domain.

• FM-Pair: In this setup FM-Pair is only applied on the target domain and source
domains are not exploited.

• FM-Pair-All: In this setup the source domains are used as additional training sam-
ples. Thus, no auxiliary features are generated.

• FM-Pair-CD: In this setup source domains are exploited to generate auxiliary fea-
tures for the training feature vectors in the target domain. In fact, the number of
training samples in this setup is the same as the first setup but the feature vectors
are expanded with auxiliary features. The value of auxiliary features are defined
based on equation (3.18) and for each user we take at most five feedback from
each source domain to avoid large feature vectors.

Table 3.4 lists the performance of the above three setups on the Amazon dataset
where domains of books and music are used as target domains. First, as you can see
in this table, the FM-Pair-CD outperform the other two methods on the accuracy of
recommendations. The second interesting observation is that when recommendations
are generated for a target domain, using only interactions from that particular domain
(setup FM-Pair) is better than using the entire dataset for training (setup FM-Pair-All).
Similar effect has been shown in a previous study as well [73]: using a sensible subset
of data can perform better than using the entire dataset. In fact, exploiting the source
domains by means of auxiliary features in FM-Pair has a better effect than blindly com-
bining all samples from all domains in one big dataset.

Figure 3.4: Illustration of the cross-validation splitting method for the cross-domain recommendation experi-
ment with FM-Pair on the Amazon dataset.

3.5. DATASETS, EXPERIMENTS AND EVALUATION

3

63

Table 3.4: Performance of cross-domain recommendation with the FM-Pair-CD method compared to the
single-domain training scenarios.

Recall@10 MRR@10
Method / Target Domain Books Music Books Music
FM-Pair (Target-only) 0.1058 0.0966 0.0452 0.0356
FM-Pair-All 0.0831 0.0855 0.0357 0.0378
FM-Pair-CD 0.1238 0.1060 0.0490 0.0405

3.5.5. CONVERGENCE AND COMPLEXITY OF FM-PAIR

In this section we further analyze the convergence and complexity of FM-Pair by mon-
itoring the performance of FM-Pair with different number of iterations (of the training
algorithm) and different dimensions of factorization. Figure 3.5 compares the perfor-
mance of FM-Pair, FM-Pair-Context and BPR-MF on different number of epochs on the
two datasets of Frappe and MovieLens. In Figure 3.6, we illustrate the performance of
cross-domain recommendations with FM-Pair-CD compared to the two setups of FM-
Pair and FM-Pair-All on different number of epochs. The models are evaluated on every
10 epochs with Recall@10.

As you can see in Figure 3.5, on the Frappe and MovieLens dataset all models con-
verge rather fast due to the density of datasets. However, an interesting observation on
the Frappe dataset is that FM-Pair and FM-Pair-Context already achieve a high recall af-
ter the first few epochs whereas the BPR-MF algorithm converge later and yet cannot
achieve FM-Pair’s performance even with higher number of epochs. A closer examina-
tion of Section 3.3.2 and Table 3.2 can explain this result. The high recall of the pop-
ularity algorithm on the Frappe dataset exhibits a high tendency on popular items in
this dataset. On the other hand, the presence of bias parameters wi and w j in the FM-
Pair model can learn such biases, that turns to be very effective on training the model in
popularity-skewed datasets such as Frappe. The effectiveness of such bias parameters
on CF models have also been shown in previous studies (e.g. [55]).

On the two datasets of Amazon, as you can see in Figure 3.6, the FM-Pair-All con-
verge faster, most likely due to the larger number of training samples, but fails to reach
the performance of FM-Pair and FM-Pair-CD. The FM-Pair-CD performs better that the
other two methods even with smaller number of epochs and thus it is an effective model
to leverage cross-domain auxiliary feature.

In Section 3.3.1 we showed that the complexity of FM-Pair is linear in dimensionality
of factorization (parameter k) and the number of auxiliary features (|z|). Experimental
results also confirms the linearity of FM-Pair. Figure 3.7 illustrates the influence of the
two parameters k (left chart) and |z| (right chart) on the epoch time of different datasets
(the effect of parameter |z| is only illustrated on the Frappe datasets since this is the
only dataset with multiple context features). The reported epoch time is the average
epoch time on four-fold cross-validation experiments and the bars indicate the standard
deviation of the four folds. As you can see in the two charts for both parameters the
epoch time grows linearly (with small errors) and thus the linearity of FM-Pair can be
confirmed.

3

64 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

Figure 3.5: Empirical comparison of the convergence of FM-Pair (with or without context) with BPR-MF on the
two datastes with auxiliary features.

Figure 3.6: Empirical comparison of the convergence of cross-domain CF with FM-Pair compared to the single-
domain models on two domains of the Amazon dataset.

3.5.6. USING WRAPREC
The implementation of this chapter is published in the WrapRec toolkit. WrapRec is an
open source evaluation framework for recommender systems that can wrap algorithms
from different frameworks and evaluate them under same setup. WrapRec is written is
C# and can be used in multiple platforms. WrapRec can be used as a command-line tool.
To use WrapRec all setting need to be defined in one configuration file. The configuration
file specifies the model and its parameters, how the dataset should be read and split, and
how the evaluation should be done. The command-line tool can be downloaded from
the WrapRec website10 and can be simply used as:

• (Windows): WrapRec.exe [path-to-config-file]

• (Linux and Mac): mono WrapRec.exe [path-to-config-file]

Details about the format of the configuration file and usage of WrapRec can be found
in the WrapRec website. The experiments on this chapter can be reproduced by using
the configuration file that is defined for the experiments.

10http://babakx.github.io/WrapRec/

http://babakx.github.io/WrapRec/

3.6. CONCLUSION AND FUTURE WORK

3

65

Figure 3.7: Empirical comparison of the the training time of different datasets based on the dimensionality of
factorization (left chart) and number of auxiliary features (right chart).

3.6. CONCLUSION AND FUTURE WORK
In this chapter we introduce FM-Pair, an adaptation of Factorization Machines with a
pairwise learning-to-rank optimization technique. In contrast to the original model of
Factorization Machines, FM-Pair can be used effectively for datasets with implicit feed-
back, thus addressing a wider range of problems in recommender systems. In this chap-
ter we show that for ranking problems, FM-Pair is more effective than the standard FMs
even on datasets with explicit feedback. FM-Pair leverages a pairwise learning-to-rank
method inspired by the Bayesian Personalized Ranking (BPR) criterion, which optimizes
the model parameters for ranking. Similar to the standard Factorization Machines, FM-
Pair can exploit additional features such as context, user and item attributes, cross-
domain information and any discrete or real-valued auxiliary features. In this chapter
we also propose to apply FM-Pair for context-aware and cross-domain collaborative fil-
tering problems. Experimental results on four datasets with implicit or explicit feed-
back showed the effectiveness of FM-Pair for datasets with implicit or explicit feedback
with or without auxiliary features. We showed that when no auxiliary features are ex-
ploited FM-Pair is at least as accurate as state-of-the-art methods such as BPR-MF, if
not more. However, FM-Pair shines with its ability to easily exploit additional features
without any effort to adapt the underlying model. For the two task of context-aware
and cross-domain CF we show that FM-Pair is effective on exploiting such features. The
model can be trained without much of overhead on training time while considerable
improvement can be achieved by exploiting additional features. Comparison of FM-Pair
with GPFM, which is also capable of exploiting context features, exhibits superiority of
FM-Pair in terms of accuracy and complexity.

In this chapter we also observed that the trivial implicit-to-explicit mapping is not an
effective way of using FMs for learning-to-rank from datasets with implicit feedback. In
fact, the standard FMs are not optimized for ranking and even for datasets with explicit
feedback, standard FMs are not effective for ranking problems.

We also analyzed the convergence and complexity of FM-Pair in the tested datasets.
An interesting observation was the ability of FM-Pair to leverage item biases that turns
to be very effective for the Frappe dataset, which is a popularity-skewed dataset. We

3

66 3. FACTORIZATION MACHINES FOR DATA WITH IMPLICIT FEEDBACK

also empirically show that FM-Pair scales linearly on dimensionality of factorization and
number of features.

As a future work, the proposed methods for context-aware and cross-domain CF can
be further investigated by studying the effect of selected features on the performance of
the recommendations. For example, for the task of cross-domain CF, as we mentioned
earlier, the features from source domain can be transferred with several possibilities. In
this work the features correspond to items in the source domains. The number and char-
acteristics of the selected items in source domains is subject to further studies. Similarly,
for the task of context-aware recommendation, the contribution of different context fea-
tures can be adjusted by feature engineering.

In this chapter we adapted a pairwise optimization technique for Factorization Ma-
chines. Further studies can be done to apply other optimization techniques such as list-
wise learning-to-rank methods for Factorization Machines.

4
TOP-N RECOMMENDATION WITH

MULTI-CHANNEL POSITIVE

FEEDBACK

User interactions can be considered to constitute different feedback channels, e.g., view,
click, like or follow, that provide implicit information on users’ preferences. Each im-
plicit feedback channel typically carries a unary, positive-only signal that can be ex-
ploited by collaborative filtering models to generate lists of personalized recommenda-
tions. This chapter investigates how a learning-to-rank recommender system can best
take advantage of implicit feedback signals from multiple channels. We focus on Factor-
ization Machines (FM) with Bayesian Personalized Ranking (BPR), a pairwise learning-
to-rank method, that allows us to experiment with different forms of exploitation. We
perform extensive experiments on three datasets with multiple types of feedback to ar-
rive at a series of insights. We compare conventional, direct integration of feedback types
with our proposed method, which exploits multiple feedback channels during the sam-
pling process of training. We refer to our method as multi-channel sampling. Our re-
sults show that multi-channel sampling outperforms conventional integration, and that
sampling with the relative “level" of feedback, is always superior to a level-blind sam-
pling approach. We evaluate our method experimentally on three datasets in different
domains and observe that with our multi-channel sampler the accuracy of recommen-
dations can be improved considerably compared to the state-of-the-art models. Further
experiments reveal that the appropriate sampling method depends on particular prop-
erties of datasets such as popularity-skewness1.

1This work was first published as Loni, Babak, Roberto Pagano, Martha Larson, and Alan Hanjalic. "Bayesian
personalized ranking with multi-channel user feedback." In Proceedings of the 10th ACM Conference on Rec-
ommender Systems, pp. 361-364. ACM, 2016. This chapter is extension of the above work and is accepted to
be published as Loni, Babak, Roberto Pagano, Martha Larson, and Alan Hanjalic. "Top-N Recommendation
with Multi-Channel Positive Feedback using Factorization Machines" In ACM Transactions on Information
Systems (TOIS). 2018 [76].

67

4

68 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

4.1. INTRODUCTION
Recommender systems exploit user interactions in order to generate predictions of user
preference. Today’s recommenders are not dependent on users’ explicit ratings, but
rather are able to exploit implicit feedback. The number of types of implicit feedback,
here referred to as channels, that can be collected from users is large, and arguably grow-
ing. These feedback channels often provide positive-only feedback, meaning that they
capture preference, but not any dislike or negative feedback. They include views, clicks
or likes but also replies, bookmarks, follows, saves, shares, purchases, flags, and men-
tions. The potential posed by these channels raises the question of whether additional
forms of feedback add extra value, and, if so, how this value can best be exploited to
improve recommender systems.

In this chapter, we focus on Factorization Machines (FMs) [90], a state-of-the-art fac-
torization method. We choose FMs because they are well suited for the integration of
auxiliary data in terms of additional features [78, 99], and, for this reason, allow us to
compare different methods of integrating multi-channel feedback. We point out that
many context-aware recommendation approaches, since they provide a mechanism to
integrate auxiliary data, could possibly be used to exploit multi-channel feedback. How-
ever, FMs represent the state-of-the-art of context-aware recommendation [99] and have
been shown to outperform their closest competitor, which is Multiverse Recommenda-
tion [50]. The newer extended variations of FMs [48, 80, 126] have also been shown to
be effective for context-aware collaborative filtering. For these reasons, our experiments
focus exclusively on the FM framework.

Standard FMs are optimized for datasets with explicit feedback. In this work, we
use an adaptation of FMs [71] with Bayesian Personalized Ranking (BPR) [98], a pair-
wise optimization method that allows us to learn preferences from unary (positive-only)
feedback. Note that positive-only feedback is also referred as implicit feedback in some
related work as this kind of user feedback is typically provided implicitly (e.g. user click,
share, add-to-basket, etc.). We refer to our method as FM-Pair as it uses a pairwise
optimization model for FMs. FM-Pair can address scenarios where user feedback is
unary and positive-only, but it can also be applied on datasets with explicit feedback
since explicit feedback can be always converted to positive-only by thresholding the rel-
evance [51, 121]. Furthermore, FM-Pair can exploit rating information for more effective
optimization. In this work, we also perform experiments on a dataset with explicit feed-
back to show the effectiveness of our method in different scenarios.

In BPR, the learning is done by forming pairs of items consisting of an item with pos-
itive feedback and a negative item, which is typically sampled from the set of items that
user has not interacted with. BPR trains a model by optimizing a pairwise loss function
with Stochastic Gradient Descent (SGD). It has been shown that the performance and
convergence of the BPR optimization model is largely dependent on how well the pairs
of positive and negative items are sampled [96, 98]. Sampling the “right" items results in
faster convergence of the BPR model and makes a contribution to the performance [96].

Our work builds on an initial, short exploratory paper [74], in which we demonstrate
the usefulness of differentiating between channels in conventional BPR. We consider
channels to constitute different levels of feedback, with higher levels reflecting a higher
user commitment, and thereby carrying a stronger preference signal, than lower levels.

4.2. RELATED WORK

4

69

Briefly, the benefit of leveraging channels in BPR is the advantage offered by a better-
informed sampling of positive and negative items.

In this chapter, we move multi-channel feedback to a FM framework to make a com-
parison between exploiting multiple feedback channels directly (as auxiliary features in
the FM model) or via sampling. Building on the ability of FMs to exploit additional infor-
mation as auxiliary features, we first study how effective it would be if we encode channel
types as features in the FM model. Our second approach, which extends our preliminary
work [74], takes into account the feedback channels for more effective sampling. In this
chapter, we propose a wider range of samplers, introduce an alternative way to sample
positive items from a dataset, and use FMs as the scoring function to predict the utility of
user-item interactions. We compare the effectiveness of our first and second approach
with several baselines on three different datasets with implicit or explicit feedback. Note
that multiple types of positive feedback can also be exploited by other methods such as
ensemble methods and sequential training [120]. Our proposed method is one possi-
bility to exploit multiple types of feedback by the underlying learning algorithm. This
chapter addresses the following research questions (RQs):

• RQ0: As a sanity check, does a recommender that combines multiple channels of
feedback improve its performance over a recommender that uses a single channel
only?

• RQ1: Does channel-based, level-informed sampling allow for better exploitation
of multiple feedback channels than conventional integration of feedback?

• RQ2: How do different sampling strategies perform on different datasets?

• RQ3: What are the advantages of channel-based, level-informed sampling (i.e.,
performance, coverage, time)?

The main contributions of this chapter are a thorough understanding of the poten-
tial and limitations of multi-channel feedback exploitation, supported by extensive ex-
perimentation, reproducible because of our choice to include public datasets, and our
release of the code for this chapter.

The organization of the remainder of this chapter is as follows. In Section 4.2, we
review related work. Section 4.3, provides a background on FMs, Bayesian Personalized
Ranking and pairwise Factorization Machines (FM-Pair). In Section 4.4, we introduce
the two different approaches to exploit multiple channels with FM-Pair. Section 4.5 de-
scribes datasets, our evaluation framework and our experimental setup. In Section 4.6.1,
we present the results of the three sets of experiments that we performed in this study,
each of which is connected to one of our research questions. Finally, we draw a conclu-
sion and discuss future directions in Section 4.7.

4.2. RELATED WORK
In this section, we briefly review four groups of studies that are related to our work. We
first review the state-of-the-art methods based on FMs. We then discuss the studies that
propose to use FMs for learning-to-rank. Next, we report the third group of related work

4

70 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

that tries to exploit multiple types of user feedback and finally we review the studies that
have been done to improve the sampling method of BPR.

Factorization Machines [90] have been mainly used for collaborative filtering and in
particular for rating prediction. Some studies try to improve the underlying model of
FMs. Field-Aware Factorization Machines (FFM) [48] is an extension of FMs where sev-
eral representations for a feature are learned, depending on the fields (groups of features)
of the pairwise interactions in the model. For example, in a model with three groups of
features, which corresponds to users, items and context, two representations for a user
are learned, one for interacting with items and a second representation for interacting
with context. FFM is shown to improve the accuracy of predictions in Click-Through-
Rate (CTR) prediction tasks. FFM however, has higher time and space complexity com-
pared to the standard FM model and it is not optimized for ranking problems. In re-
cent work, Xiao et al. [126] propose Attentional Factorization Machines (AFM) where the
FM model is represented as a neural network model with additional parameters that are
learned using an attention network. The extra parameters learn additional weights for
pairwise interactions that can reflect the importance of interactions. This model is also
trained with a point-wise loss function, similar to FMs, and is optimized for prediction
tasks. Due to the larger number of parameters, this model also has a larger time and
space complexity.

Our work shares the goal of using FMs for learning-to-rank with a few recent studies.
Nguyen et al. [80] proposed Gaussian Process FMs (GPFM) where interactions between
feature vectors are modeled with Gaussian kernels. They also proposed a pairwise rank-
ing model where the GPFM model can be used for datasets with implicit feedback. An-
other study that uses FMs for ranking is RankFM, work by Qiang et al. [87], where the
model uses ordinal regression with an FM kernel for micro-blog ranking. This model is
particularly useful when we have explicit negative feedback. Guo et al. [35] proposed a
learning-to-rank model for FMs where the categories of items are used for sampling. The
effectiveness of their method however, has been proved only on the dataset of MovieLens
100K where the user feedback is explicit. All the above work assumes that user feedback
(explicit or implicit) is from a single channel. Our work differs from these contributions
in that our model distinguishes different feedback channels and exploits channel infor-
mation either as auxiliary features, or for more effective sampling.

The idea of using multiple types of feedback has been studied in some previous
work. Zanker et al. [128], proposed a neighborhood collaborative filtering method
where users’ feedback from different channels is combined to calculate similarity of
users and items more precisely. They define weights for different channels by mea-
suring each channels’ performance when each channel is used individually. This work
is based on neighborhood methods, whereas our work is based on low-rank factoriza-
tion, a model-based approach. While neighborhood methods are simple to implement,
they are computationally more expensive and generally less accurate than model-based
methods [60, 112]. In this work, we use FMs as a state-of-the-art collaborative filter-
ing method and we do not explore other collaborative filtering approaches. In a recent
study, Gai et al. [65] proposed an early fusion method where both implicit and explicit
feedback are converted to implicit feedback and the model is trained by an adaptation of
the SVD++ algorithm [53]. This method converts explicit ratings to binary relevance data

4.3. BACKGROUND AND FRAMEWORK

4

71

and does differentiate different levels of feedback. However, it has only been evaluated
on explicit feedback datasets. In other work, Pan et al. [83] used an extension of BPR,
namely BPR with confidence [124], for learning from heterogeneous implicit feedback.
Their method exploits heterogeneous feedback by modeling feedback confidence. This
model can distinguish only two types of feedback namely transaction (high confidence)
and examination (low confidence) feedback. This model was only evaluated on explicit
movie ratings where ratings of 5 are considered as transactions and the other rating are
considered as examination feedback. However, the effectiveness of this method on real
implicit feedback datasets where the confidence of the interactions is not known is not
clear.

Combining multiple types of feedback has also been studied using late fusion meth-
ods. Da Costa et al. [20] propose an ensemble method to combine models that are
learned from individual feedback channels. Tang et al. [120] performed an empirical
study on exploiting different feedback channels in LinkedIn to improve recommenda-
tions. They proposed to use three methods, late fusion, sequential training and joint
training, to exploit different feedback types. The underlying model that is used for train-
ing is logistic regression, which is optimized for CTR prediction. To compare our pro-
posed model with late fusion methods, we include an oracle experiment that represents
an upper bound on the performance that is achievable with late fusion.

Our proposal is related to other work that tries to improve BPR sampling methods.
Ganter et al. [28] proposed a non-uniform sampler for negative items where the proba-
bility of sampling negative items is given in advance. Rendle et al. [96] proposed a more
advanced sampling method where the probability of sampling negative items is adapted
dynamically (Dynamic Oversampling). Lerche et al. [61] proposed BPR with graded rele-
vance. In their method, sampling is partially done using graded feedback. That is, a given
ratio of item pairs are sampled from the observed interactions using a weighting func-
tion. However, calculating the grades of feedback requires additional information such
as user ratings or frequency of interactions, which might not be available in a dataset.
Furthermore, in our earlier work [75] we empirically showed that sampling a negative
item from observed feedback always results in degraded performance presumably be-
cause unobserved items are more likely to be negative (and thus better candidates for
sampling as negative) compared to observed items [117]. Our method differs from [61]
in the sense that it uses multiple channels simultaneously and does not rely on real-
valued grades for implicit feedback. Furthermore, we adopt FMs (which are capable of
exploiting context or other auxiliary features) as the utility (scoring) function, whereas
[61] relies on the standard BPR model with Matrix Factorization utility function.

4.3. BACKGROUND AND FRAMEWORK
In this section, we provide a brief overview of FMs and Bayesian Personalized Ranking
(BPR) to be able to explain FM-Pair, the model that we use in this work.

4.3.1. FACTORIZATION MACHINES (FMS)
Factorization Machines are general factorization models that are capable of modeling
different factorization approaches by way of feature engineering [92]. In addition to their

4

72 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

superiority with respect to performance and accuracy, FMs offer an advantage because
they allow easy integration of additional information in the form of auxiliary features.
FMs have been successfully applied in context-aware recommendation [99], cross-domain
collaborative filtering [78] and social recommendations [70].

The standard FMs are designed for data with explicit feedback. Each user-item in-
teraction is modeled by a feature vector x = (x1, . . . , xn) ∈Rn and the corresponding feed-
back (rating) is specified by y , a real-value number. The user-item interaction vector x
has two non-zero elements: one corresponding to the specific user and one to the spe-
cific item. That is, if user u rates item i , the feature vector x is specified as:

xu,i = (0, . . . ,0, xu ,0, . . . ,0︸ ︷︷ ︸
|U |

,0, . . . ,0, xi ,0, . . . ,0︸ ︷︷ ︸
|I |

) (4.1)

where U and I represent the set of users and items in the dataset and the cardinalities
of them are denoted by |U | and |I |. In the above equation, xu and xi are the values of
the features corresponding to user u and item i . The above feature vector x can also
be represented compactly as: x(u, i) = xu,i = {(u, xu), (i , xi)} where u and i are indices
and xu and xi are the values of the features. The feature values xu and xi are typically
considered to be 1 to indicate the involvement of a user and an item in one interaction.

One advantage of FMs, which we build on here, is their ability to exploit additional in-
formation (such as user attributes, item attributes and contexts of interactions) in terms
of auxiliary features. Assuming that a user-item interaction also includes auxiliary fea-
tures z, the expanded feature vectors x can be represented with the following compact
form:

x(u, i ,z) = xu,i ,z = {(u, xu), (i , xi), {(z, xz)|z ∈ z}} (4.2)

where z ∈ z is the index of an auxiliary feature and xz is the value of that feature. An
auxiliary feature z can be binary, categorical or numerical, depending on the type of
feature.

Given the feature vectors x with general representation of x = (x1, . . . , xn), the stan-
dard FMs model with two-way interactions is specified as:

f (x) = w0 +
n∑

j=1
w j x j +

n∑
j=1

n∑
j ′= j+1

x j x j ′
k∑

f =1
v j , f v j ′, f (4.3)

where n is the number of features, w j are first order interaction parameters, v∗, f are sec-
ond order factorized interaction parameters and k is the dimensionality of factorization.

The model parameters in FMs according to (4.3) areΘ= {w0, w1, . . . , wn , v1,1, . . . , vn,k }.
Model parameters are learned by optimizing a point-wise objective function, which is
defined over training data S. The objective function is typically a square loss over train-
ing samples plus a regularization term to prevent over-fitting.

In recommendation scenarios involving unary positive feedback (instead of e.g., rat-
ings), the target values y are not available in terms of real value numbers and a point-
wise loss function is not suitable. Pairwise models on the other hand, learn to correctly
rank any pair of items for each user. Previous work has reported that pairwise loss func-
tions are better choices for datasets with unary feedback [80, 98, 112]. In this work, we
use a pair-wise loss function for FMs based on the BPR model. Before describing such a
loss function, we give an overview of BPR in the next subsection.

4.3. BACKGROUND AND FRAMEWORK

4

73

4.3.2. BAYESIAN PERSONALIZED RANKING
Bayesian Personalized Ranking (BPR) [98] is a state-of-the-art learning-to-rank method
for learning from data with unary (positive-only) feedback. The basic idea of BPR is that
for any user u, the items with observed positive feedback from u are preferred over items
without any feedback from u. With that assumption, BPR creates training data by form-
ing tuples (u, i , j), where i is an item with positive feedback from u and j is a negative
item.

BPR learns the model parameters Θ by maximizing the likelihood function p(i Âu

j |Θ) for all training triples (i Âu j is read as i is preferred over j by user u). The likelihood
function p(i Âu j |Θ) is defined as:

p(i Âu j |Θ) =σ(ŷui j (Θ)) (4.4)

whereσ is the logistic sigmoid function and ŷui j is a real-valued utility function that cap-
tures the relationship between user u, item i and item j , given model parameters Θ. In
standard BPR, ŷui j is defined as the subtraction of individual user-item utility function:

ŷui j (Θ) = ŷui (Θ)− ŷu j (Θ) (4.5)

The utility of user-item pairs ŷui (Θ) can be defined by different models such as Ma-
trix Factorization or Nearest Neighbor models [98]. With a simple Matrix Factorization
model the utility of user-item pairs ŷui can be defined as:

ŷui (Θ) =
k∑

f =1
vu, f vi , f (4.6)

where vu, f and vi , f are the latent factors corresponding to user u and item i and k is
the dimensionality of factorization. Similarly, we can define ŷu j (Θ), the utility of the
negative item for the user. Thus, ŷui j (Θ) can be defined as:

ŷui j (Θ) =
k∑

f =1
vu, f (vi , f − v j , f) (4.7)

Note that with the above utility function, the model parameters Θ are the set of all
user and item latent factors. With the above definition, the likelihood function p(i Âu

j |Θ) can be represented in terms of parameters vu, f and vi , f . The parameters are learned
by maximizing p(i Âu j |Θ) for the set of tuples (u, i , j). Rendle et al. [98] showed that the
maximum likelihood problem in BPR can be reduced to an optimization problem with
the following objective function:

L(Θ,S) = ∑
(u, j , j)∈DS

lnσ(ŷui j)−λΘ||Θ2|| (4.8)

where λΘ are the regularization parameters and DS is the set of tuples (u, i , j). The BPR
optimization problem is solved by Stochastic Gradient Descent.

Due to the large number of possibilities to create the tuples (u, i , j), the tuples are
typically formed by sampling the dataset. The choice of sampling method in BPR is

4

74 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

crucial to convergence of SGD algorithm. In [98], it has been suggested that the user-
item pairs (u, i) are sampled from S uniformly (with replacement)2 and the negative
items j are uniformly drawn from I \I+u where I+u is the set of items that received pos-
itive feedback from u. However, in a later study, Rendle et al. [96] proposed a dynamic
non-uniform sampling method for negative items where the probability of sampling a
negative item is dependent on the current model parameters. They showed that for a
dataset with tailed item popularity, dynamic sampling has a significant influence on the
convergence of SGD.

4.3.3. PAIRWISE FACTORIZATION MACHINES
Using the BPR optimization criteria, which was described earlier, we can adapt FMs for
data with unary feedback. A straightforward approach would be to consider the FM
model in Eq. (4.3) as the utility (scoring function) of individual user-item pairs, i.e., ŷui .
However, FMs do not have any knowledge about the type of feature, i.e., for a given fea-
ture vector, FMs do not know which features correspond to user, item or auxiliary in-
formation. On the other hand, in the BPR algorithm, for a given user-item pair the user
should be known to the algorithm in order to sample an appropriate negative item (re-
call that negative items are sampled from I \I+u). We therefore introduce a finer-grained
representation of FMs where the algorithm is aware of the features (i.e., the input data
should specify which feature corresponds to a user3).

Let us assume that xu,i ,z is a feature-aware representation of an input feature vector
in FMs such that u corresponds to the user, i corresponds to the item and z is the set
of auxiliary features in x. By replacing the sparse representation xu,i ,z (Eq. (4.2)) in Eq.
(4.3), the utility of individual interactions xu,i ,z can be written as:

f (xu,i ,z) = w0 +wu +wi +
∑
z∈z

wz xz +
k∑

f =1
vu, f vi , f +

∑
z∈z

xz

k∑
f =1

vu, f vz, f

+∑
z∈z

xz

k∑
f =1

vi , f vz, f +
∑
z∈z

∑
z ′∈z

xz xz ′
k∑

f =1
vz, f vz ′s, f

(4.9)

Note that since the only non-zero features in xu,i ,z are u, i , and z, we were able to
expand (4.3) and represent the FM model with finer-grained components. Conceptu-
ally, the above equation can be interpreted as a set of bias terms (parameters w∗) and
interaction between latent factors of user and item, user and auxiliary features, item and
auxiliary features, and interaction between different auxiliary features.

In order to exploit the auxiliary feature z in our pairwise FM model, we adapt the def-
inition of likelihood and loss functions in BPR to take into account the auxiliary features.
Hence, we define a more general likelihood function for BPR as:

p(i Âu,z j |Θ) =σ(gz(u, i , j |Θ)) (4.10)

2Sampling with replacement means that the sampled training pair (u, i) is replaced after sampling and can be
sampled again.

3In the implementation of this work, we support a file format for FM-Pair where the type of feature can be
specified.

4.4. MULTIPLE CHANNELS IN FM-PAIR

4

75

where i Âu,z j indicates that item i is preferred over j by user u in the presence of aux-
iliary features z. Here gz(u, i , j |Θ) is the utility of pairs of feature vectors in FMs. Similar
to Eq. (4.5), gz can be defined by subtracting the utility function f (xu, j ,z) from f (xu,i ,z).
Thus, by using the definition (4.9), gz can be written as:

gz(u, i , j |Θ) = wi −w j +
k∑

f =1
vu, f (vi , f − v j , f)

+∑
z∈z

xz

k∑
f =1

vz, f (vi , f − v j , f)

(4.11)

Note that the above utility function is very similar to the Matrix Factorization (MF)
utility function (Eq. (4.7)). However, it has additional parameters that take into account
user and item biases and auxiliary features to score a user-item interaction. From Eq.
(4.11) and Eq. (4.9) one can see that the MF utility function ŷui is a special case of g
where the biases parameters are zero and the feature vector xu,i ,z does not have any
auxiliary features.

Finally, the objective function L(Θ,S) can be adapted by replacing ŷui j with gz in
equation (4.8). The optimal parameters are found by minimizing this function, i.e.,ΘOPT =
argminΘL(Θ,S). This optimization problem can be solved by Stochastic Gradient De-
scent. Note that the negative items j are sampled from the dataset similarly to how they
are sampled in the standard BPR model.

4.4. MULTIPLE CHANNELS IN FM-PAIR
In this section, we introduce two different models to exploit channel information us-
ing the FM-Pair model. We first introduce a naïve approach (Section 4.4.1), where the
channel information is embedded into the FM-Pair model as auxiliary features. We then
propose a more advanced model (Section 4.4.2) where the channel information is used
to perform a more effective sampling (multi-channel) for the FM-Pair optimization al-
gorithm.

4.4.1. MULTIPLE CHANNELS AS AUXILLIARY FEATURES
The most straightforward way to exploit multiple types of positive feedback in FM-Pair
is to use the types (channels) of the feedback as auxiliary features in the FM model. The
basic assumption here is that the type (channel) of feedback contains some informa-
tion that reflects the commitment level or preference of the user for the item. With the
FM-Pair model, the channel of feedback is considered as an additional discrete feature.
Figure 4.1 illustrates the design matrix of the FM-Pair model with three positives (white
background) and three negative (red background) samples. In this example, items are
playlists and the channel types of feedback are ‘click’, ‘share’ and ‘like’. The three types
of feedback are considered as discrete features. For each positive example, an artificial
negative example is created in such a way that the user and auxiliary features (in this
case ‘channel type’) are the same as the positive example and the negative item is a sam-
pled item from I \I+u (note that here x+1 is an example of xu,i ,z and x−1 is an example xu, j ,z

according to the FM-Pair model). Note here the difference between the design matrix of

4

76 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

Figure 4.1: Embedding feedback channels in Pairwise Factorization Machines (FM-Pair). This matrix shows
both positive and sampled negative points. The types of feedback are encoded as binary features.

the FM-Pair model with the design matrix of the standard FM [92]. In FM-Pair, there is no
column for labels since we do not have explicit graded feedback. Moreover, since the op-
timization model in FM-Pair uses positive and negative samples, we have two different
types of rows representing positive and negative examples.

The advantage of such representation is that channel types are encoded as additional
features in the input data and the FM-Pair model can be used seamlessly. The model
learns the underlying latent factors for each of the feedback channels, which is then used
for prediction. Note that since the type of feedback is only present on training time (not
on the prediction time), the feedback type is only exploited on the training time to bet-
ter learn user and item factors. The recommendations are generated on a user-basis,
that is, for each user a ranked list of items are generated where the candidate items are
ranked using Eq. (4.9). It is also worth noting that if other auxiliary or context features
are present in a dataset that are available in the prediction time, the ranked list should
be created for each combination of user and available context [91].

4.4.2. MULTI-CHANNEL SAMPLING
This section presents our approach, which improves FM-Pair by using level-based sam-
pling exploiting multiple feedback channels. In [74], we introduced the idea of multi-
channel sampling for BPR. Here, we provide a fully developed version of the initial idea
by integrating multi-channel sampling into FM, decoupling the sampling model for pos-
itive and negative items, and carrying out extensive testing.

Assume that p(u, i , j) is the probability distribution from which tuples (u, i , j) are
sampled. This distribution can be expanded as:

p(u, i , j) = p(u, i)︸ ︷︷ ︸
positive pair

sampler

. p(j |u, i)︸ ︷︷ ︸
negative item

sampler

(4.12)

4.4. MULTIPLE CHANNELS IN FM-PAIR

4

77

The two components in the above probability distribution correspond to the positive
pair sampler, by which user-item pair (u, i) is sampled, and the negative item sampler,
by which j is sampled.

In standard BPR, (u, i) is selected by uniform sampling from the training set4 S, and
j is sampled uniformly from I \I+u . Thus, the probability distribution of the two samplers
in the standard BPR can be denoted by 1

|S| for positive pairs and 1
|I \I+u | for negative items.

For multi-channel positive feedback, we introduce the notion of a feedback level that
reflects the importance of a feedback channel. The notion of level is also used to define
an ordinal scale for different feedback channels. The higher the level of a feedback is, the
higher is the user’s interest or commitment level to the item. For example, in a music rec-
ommendation framework, a user ‘like’ should have higher level than a ‘click’, assuming a
‘like’ is a stronger indication of interest than a ‘click’. The assumption of multi-channel
sampling is that, given a user, an item at a higher feedback level is preferred to an item
at a lower feedback level.

Multi-channel sampling differs from the standard BPR sampling method in two ways:
Firstly, the probability of sampling positive pairs and negative items depends on the
feedback level. Secondly, the multi-channel method samples additional tuples that would
not otherwise be sampled by standard BPR sampling. We point out that the positive and
negative items in tuples (u, i , j) can also be interpreted as a ‘preferred’ and a ‘less pre-
ferred’ item. In our preliminary work [74], we showed that sampling negative items only
from unobserved interactions is more effective than the negative items that are sampled
from observed interactions. Therefore, in this work we propose to sample negative items
only from unobserved interactions. Note that when we sample negative items from un-
observed interactions, the feedback level still influences sampling probability, since the
types of interactions of other users make a contribution, as explained below. In sum, Fig-
ure 4.2 illustrates standard versus multi-channel sampling for the FM-Pair model. The
arrows show the preferences. For user u the negative item is always drawn from the un-
observed items. It is sampled from the overall item pool in a way that is aware of the level
of the feedback of other users.

Our multi-channel sampler utilizes feedback channels to over- or under-sample cer-
tain items to better learn the user’s preference model. Thus, the probability of sampling
positive pairs and negative items also depends on the level where they appear.

We denote L= (L1, . . . ,Lp) as the ordered set of levels in a dataset such that Li Â Li+1,
that is, feedback in Li are stronger signals of interest compared to the feedback in Li+1.
For example, in Figure 4.2 there are four levels: three positive and one unobserved level.
Let L and N denote the level of the positive and the negative item in tuple (u, i , j). The
multi-feedback sampler samples tuples (u, i , j) from the following set:

DMF = {(u, i , j)|i ∈ IL,u ∧ j ∈ IN ,u ∧L Â N } (4.13)

such that IL,u represents the set of items in levels L that user u interacted with and IN ,u

represents the set of items that can be sampled in level N as negative item, which we
take to be the set of items with which the user has not interacted.

4Note that the user-item pairs can also be selected by iterating over training data, but it has been shown that
sampling with replacement (bootstrapping) is more effective than iteration [98].

4

78 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

Figure 4.2: Diagram for a single user profile illustrating the difference between standard sampling (A) and
multi-channel sampling that is used by the FM-Pair model (B). The arrows indicate the preference relation
between positive and negative items. The relative ordering between the different levels of feedback contributes
a weight used for sampling positive and negative items in multi-channel sampling.

As already stated, in the multi-channel feedback sampling method the probability of
sampling the tuples depends on the levels. We can assume that the tuples are sampled
from a joint probability distribution p(u, i , j ,L, N), which can be expanded as:

p(u, i , j ,L, N) = p(u, i ,L).p(j , N |u, i ,L) (4.14)

In the above equation, the positive pair sampler and the negative item sampler are
both joint probability distributions with positive or negative levels. We now define dif-
ferent distributions for positive and negative samplers.

POSITIVE PAIR SAMPLER

In multi-channel sampling, the positive feedback sampler can be further expanded as:

p(u, i ,L) = p(u, i |L)p(L) (4.15)

where p(L) is the probability of sampling a positive level. We define p(L) as follows:

p(L) = wL |SL |∑
Q∈L+ wQ |SQ | (4.16)

where |SL | is the number of occurrences of feedback in level L and wL is a weight associ-
ated with a level that should reflect the importance of the level. The weight parameters
wL can be either static values that are dependent to the channel types or can be dy-
namic values that are changed during training (similar to the dynamic sampling method
proposed in [96]). In our preliminary experiments, we found that dynamic weights for
sampling levels typically results in sub-optimal models. We found that the reciprocal
rank of the levels are good candidates as the weights of the levels. Given a level, the posi-
tive user-item pair is then sampled uniformly from that level. To summarize, the positive
pair sampler first samples a level according to (4.16) and then uniformly samples a user-
item pair from that level. With the above sampling method, the positive feedback from
higher levels has a higher chance to be sampled. This chance is determined by the size
and also the weight of the levels.

4.4. MULTIPLE CHANNELS IN FM-PAIR

4

79

NEGATIVE ITEM SAMPLER

The second factor in Eq. (4.14) is the negative item sampler that, similarly to Eq. (4.15),
can be expanded to finer-grain distributions:

p(j , N |u, i ,L) = p(j , N |u,L) = p(j |u, N)p(N |u,L) (4.17)

where the first probability distribution is used to sample a negative item given a negative
level, and the second distribution is used to sample a negative level given the user and
the positive level. Note that sampling an item only depends on the user and the level
that the item belongs to. Therefore, we can write p(j , N |u, i ,L) = p(j , N |u,L). Similarly,
we can set p(j |u,L, N) = p(j |u, N), since given a negative level N , the negative item j is
sampled from level N and does not depend on L anymore.

In our preliminary work [74], we showed that using only the unobserved level as neg-
ative level typically results to a better model. We therefore assume that N is always the
unobserved level and thus we can simplify the negative sampler as p(j |u). Note that
the standard sampling method of BPR also samples the negative item from unobserved
items but it does not consider the level of feedback during sampling.

To have a complete picture on possible sampling methods, we define three differ-
ent distributions for the negative item sampler where the first one is based on the BPR
sampling method [98], the second sampler over-samples popular items, and the third
sampler is our proposed multi-channel sampler. In the following, we describe each in
turn and describe the underlying intuition.

Uniform Item: Here the negative item is sampled uniformly from the negative level.
By considering the unobserved level as the negative level, p(j |u) can be defined in a
similar way as it is defined when sampling a negative item in standard BPR:

p(j |u) =
{

1
|I \I+u | j ∈ I \I+u
0 otherwise

(4.18)

Uniform Feedback: With this sampling method, first a feedback pair (u′, j) is sam-
pled from the set of all positive feedback pairs of other users, and then u′ is discarded
and j is considered as the negative item. This is comparable to popularity over-sampling
since the popular items have higher chance to be sampled. Here p(j |u) can be defined
as:

p(j |u) = |(u′, j ′) ∈ S : u′ 6= u ∧ j ′ = j |
|S| (4.19)

where |S| is the size of the training data. The idea behind this sampler is to take into
account the popularity of items for sampling negative items. This sampling method can
be effective if the training dataset has a tailed item distribution. That is, when some
items are more popular than the majority of items. During training, when the SGD al-
gorithm iterates over the training data, popular items that a user interacts with are more
likely to be sampled as positive and thus the model learns to rank them higher in the list.
However, if popular items that the user does not interact with also become more likely
to be sampled as negative, such bias for popular items can be reduced, and the overall
accuracy of the model can be increased.

4

80 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

Multi-channel: With this method, both the popularity of an item and the level of
feedback are taken into account when sampling the negative items. In this approach,
first a (u′, j) pair is sampled from the joint distribution p(u′, j ,L′), similarly to Eq. (4.15).
u′ and L′ are discarded after the triple (u′, j ,L′) is sampled. The probability distribution
of this sampler can be defined as:

p(j |u) =
{

p(u′, j ,L′) j ∈ I \I+u ∧u′ 6= u

0 otherwise
(4.20)

The intuition behind this sampler is that popular and more important items, if not
rated by the target user, are better candidates than negative items. Rendle et al. [96]
showed that SGD typically converges faster if the model is less certain about the correct
order of the sampled items. By considering the more important (higher level and more
popular) items as negative, the uncertainty of BPR for finding the true rank between the
pairs can increase and thus the model can converge faster.

All the above probability distributions can be pre-computed in advance and thus the
sampling can be done in O (1). Therefore, the computational complexity of the multi-
channel method is the same as the standard BPR model. Figure 2 summarizes the FM-
Pair learning algorithm with adapted positive pair and negative item samplers. ppos

refers to the positive pair sampler, which can be according to Eq. (4.15) or can be a uni-
form distribution. pneg is negative item sampler and can be either (4.18), (4.19), (4.20)
or other possible sampling methods.

Algorithm 2: Learning FM-Pair with Stochastic Gradient Descent and adapted
samplers.

Input: S, ppos , pneg

Output: Model parametersΘ
1 initializeΘ
2 do
3 sample xu,i ,z from S according to ppos

4 sample j according to pneg and create xu, j ,z

5 let gz(u, i , j |Θ) = f (xu,i ,z|Θ)− f (xu, j ,z|Θ)
6 updateΘ according to BPR update rule [98]
7 while convergence
8 returnΘ

4.5. DATA AND EXPERIMENTAL SETUP
In this section, we provide a description of our choice of datasets and the design of our
experimental setup.

4.5.1. DATASETS
We used three different datasets from different domains to evaluate our proposed meth-
ods: Kollekt (music recommendation), XING (job recommendation) and MovieLens (movie

4.5. DATA AND EXPERIMENTAL SETUP

4

81

Table 4.1: The statistics of the datasets used in this work.

Dataset #users #items #feedback %sparsity

Kollekt 15,972 34,910 168k 99.96
ML1M 6,040 3,706 1000k 95.53
Xing 9,751 9,821 223k 99.76

recommendation). The first two datasets contain unary feedback with different chan-
nels whereas the MovieLens dataset contains explicit user ratings. The three datasets are
described below and their statistics can be found in Table 4.1.

• XING (RecSys challenge 2016): XING is a professional social network and a job dis-
covery platform. The XING dataset has been used for the RecSys challenge 20165.
Items are job postings and user feedback is collected through three different chan-
nels: click, bookmark and apply. In order to reduce data sparsity and the size
of dataset, we filtered out all the users and jobs that overall have less than 20 oc-
currences of feedback in all channels. We choose this dataset because it contains
multiple feedback channels, and it also has been made available to the research
community.

• Kollekt: Kollekt6 is an online music discovery platform. Users can discover new
playlists in the discovery page7 and can follow them. Following a playlist is con-
sidered as a positive feedback on the playlist. Users can also listen to playlist or
certain tracks in a playlist without necessarily following it. The ratio of the listen-
ing time of a playlist to the total listening time of the user is also considered as user
feedback. The listening ratios that are higher than a certain threshold are consid-
ered as a positive feedback. We experimentally found that with a threshold of 0.1,
the listening time can be considered as positive feedback since it can train accu-
rate models. The dataset consists of user interactions from July 2013 to October
2015. This dataset is not publicly available, but it is useful for our experiments as
it involves multiple feedback channels, and has interesting distributional patterns
(discussed further below).

• MovieLens-1M This is a popular movie recommendation dataset8 with explicit
user feedback containing movie ratings on a 1-5 scale. To apply the multi-channel
sampling method to this dataset, we considered each discrete rating as a different
level of feedback. For each user, we took the ratings above the user’s average rating
as positive feedback, both for training and evaluation. We choose this dataset due
to its availability and widespread use in the community.

5http://2016.recsyschallenge.com
6http://kollekt.fm/
7https://kollekt.fm/discover/playlists
8http://grouplens.org/datasets/movielens/

http://2016.recsyschallenge.com
http://kollekt.fm/
https://kollekt.fm/discover/playlists
http://grouplens.org/datasets/movielens/

4

82 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

4.5.2. EVALUATION METHOD
The performance of recommendation in all datasets is measured with three ranking met-
rics of Recall, MRR (Mean Reciprocal Rank) and NDCG (Normalized Discounted Cumu-
lative Gain). Recall@K calculates the ratio of relevant top items (in top K items) to all
relevant items, MRR@K measures the average reciprocal rank of the first relevant item
if it appears in top K positions (otherwise MRR@K is zero), and NDCG@K takes into ac-
count the position of all relevant items on top K items of the list [45]. The above three
metrics are measured with two cutoffs (K) of 10 and 20. The metrics are calculated per
user in the test set and the reported numbers are averages over all users.

All the experiments have been done with four-fold cross-validation. Details about
the implementation and the hyper-parameters are described in the next sub-section.
The ground truth varies in different datasets depending on the goal and business value
of recommendations. In the Kollekt dataset, a playlist is considered relevant for a user
only if the user has followed it. On the other hand, for the XING dataset any feedback on
a job posting makes it a relevant item according to XING business requirements. For the
MovieLens dataset, a movie is considered a relevant recommendation if user has rated it
above his average ratings.

4.5.3. EXPERIMENTAL REPRODUCIBILITY

The experiments are evaluated using WrapRec9, an open source evaluation framework
for recommender systems. The algorithms in this work are implemented by extend-
ing the BPR implementation of MyMediaLite10, a toolkit for recommender system al-
gorithms. The number of latent factors (parameter k) is set to 10 as our preliminary
experiments show that for the scale of the datasets that are used in this work, higher val-
ues of k do not necessarily improve the accuracy of recommendations. The number of
SGD epochs is set to 300. Laster in this section, we study convergence of the FM-Pair
algorithm based on the number of SGD epochs.

In our experiments on BPR and FM-Pair, we choose the default values from the My-
MediaLite implementation for the hyper-parameters. The latent factors are initialized by
a normal distribution with a mean of 0 and standard deviation of 0.1. The SGD algorithm
is used with the following hyper-parameters: Learning-rate: 0.05, regularization param-
eter: 0.002. To check the appropriateness of these parameters for our experiments, we
performed four-fold cross-validation on our data for a range of parameters surrounding
the default parameters. We observed that the variation in the results for each algorithm
was insubstantial, and for this reason we maintain the default parameters for the results
reported in the experimental section.

The hyper-parameters of the other baseline algorithms that we used are tuned with
the same four-fold cross-validation setup to make sure we are comparing with the best
performance that we could achieve for each algorithm. The hyper-parameters for the
baseline algorithms are listed as below:

• AFM: Batch size of 5000 for all datasets. Learning rate of 0.1 for the MovieLens
and 0.05 for the XING and the Kollekt datasets. The dropout ratio is 0.2 for the

9http://babakx.github.io/WrapRec/
10http://www.mymedialite.net/

http://babakx.github.io/WrapRec/
http://www.mymedialite.net/

4.6. EXPERIMENTS

4

83

MovieLens and 0.3 for the Kollekt and the XING datasets. We set the attention
factor to 1 as the effect of this hyper-parameter is insignificant according to the
original paper [126].

• FFM: Learning rate of 0.001 for the MovieLens and 0.005 for the Kollekt and the
XING datasets. Regularization parameter is 0.00002 for all datasets.

• WRMF: Regularization parameter of 0.01 for all datasets.

Furthermore, since some of the baseline algorithms (AFM, FFM and GPFM) were im-
plemented with a different evaluation mechanism, we only used the underlying imple-
mentations to generate recommendations and later we performed the evaluation with
WrapRec to make sure all experiments are evaluated with the same evaluation method.
The two datasets of XING11 (RecSys Challenge 2016) and MovieLens 1M are publicly
available, making it possible to replicate the experiments.

4.6. EXPERIMENTS
In this work we perform three sets of experiments to answer our research questions.
We first compare the two approaches to exploit channel information (i.e., integrating
it as auxiliary features or exploiting it for sampling) to answer the first research ques-
tion (RQ1). As a sanity check, we also compare the performance of our baseline model
when each feedback channel is used individually. This will answer research question
zero (RQ0). In the second set of experiments, we compare five different sampling strate-
gies on all three datasets to understand the effect of different samplers on accuracy and
convergence of the model. This will answer our second research question (RQ2). To
answer our third research question (RQ3), we evaluate all possible combinations of pos-
itive and negative samplers in terms of accuracy, time complexity and coverage of items.
This experiment will give us a more detailed insight about different samplers based on
different criteria.

4.6.1. MULTI-CHANNEL SAMPLING VERSUS CONVENTIONAL INTEGRATION

OF FEEDBACK
The purpose of the first set of experiments is three-fold. First, we want to compare the
performance of our proposed FM-Pair model when individual feedback types are used
as auxiliary features with its performance when all feedback types are used for multi-
channel sampling. Secondly, we compare the performance of our proposed method
with some baseline and state-of-the-art collaborative filtering models. Finally, as a san-
ity check we compare the performance of our models with cases that only one type of
feedback is used. We also perform an oracle experiment in which recommendations
from best channel, on a user-basis, are recommended to users. This experiment can be
considered an upper bound for a late fusion approach that dynamically choses the best
channel from which recommendations are generated. Table 4.2 compares the perfor-
mance of different algorithms based on six evaluation metrics on the three datasets that
we used in this work. Below, we describe the algorithms that are compared in Table 4.2.

11https://github.com/recsyschallenge/2016

https://github.com/recsyschallenge/2016

4

84 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

• MostPop: This method represents a baseline method where items are ranked based
on their popularity and all users are recommended the top most-popular items.

• KNN: This algorithm is user-based K-Nearest Neighbor implementation in My-
MediaLite. For this algorithm all types of feedback are exploited, and they are all
considered equally relevant. The number of nearest neighbors (parameter K) is set
to 10, the default value of the implementation in MyMediaLite.

• AFM: Attentional Factorization Machines 12 (AFM) [126] is a recent extension to
FMs where additional weight parameters are learned for pairwise interactions. For
this model, we used three groups of features, which represent users, items and type
of feedback (See Figure 4.1). For the MovieLens dataset, we generate ranked lists
based on the predicted ratings and for XING and Kollekt we assigned a label of 1
to observed interactions and sampled random unobserved pairs and assigned a
label of -1 to them, similar to [126]. The ranked lists are generated based on the
predicted scores. For this algorithm all feedback types are exploited, and the type
of feedback is considered as an auxiliary feature.

• FFM: Field-Aware Factorization Machines13 (FFM) [48] is another extension of
FMs where several representations of features are learned depending on the fields
of the pairwise interactions. For this algorithm, we created three fields corre-
sponding to users, items and feedback type. The ranked lists are created similarly
to the previous algorithm.

• BPR: This case refers to our experiments with Bayesian Personalized Ranking (BPR)
[98] with standard sampling and matrix factorization scoring function. This method
does not exploit channel information. All feedback is exploited, and all occur-
rences of feedback are considered to be equally relevant.

• WRMF: This algorithm implements Weighted Regularized Matrix Factorization (WRMF)
[39], a factorization-based method for datasets with implicit feedback.

• FM-Pair (Single): In this experiment we use our proposed FM-Pair model where
only the feedback from one channel is used. Sampling is done similarly to the
standard BPR sampling method. This experiment is done for the XING and the
Kollekt datasets as they have different feedback channels.

• FM-Pair (Prior combine): This method implements the idea of prior combine [120]
where models are trained sequentially. In this experiment, we first train a model
using a single feedback channel with FM-Pair (with the hyper-parameters that we
listed in Section 5.5.5), and use the trained model as a source of priors for the
subsequent model, which is trained with the next feedback type. The subsequent
models are initialized with the parameters learned from the preceding models and
are trained with the new data points.

12We used the implementation in: https://github.com/hexiangnan/attentional_factorization_
machine

13We used the implementation in: https://github.com/guestwalk/libffm

https://github.com/hexiangnan/attentional_factorization_machine
https://github.com/hexiangnan/attentional_factorization_machine
https://github.com/guestwalk/libffm

4.6. EXPERIMENTS

4

85

• FM-Pair (Oracle experiment): In this method we first train different models for
each feedback channel separately. Assuming that a hypothetical late-fusion method
is able to pick the best recommendations from each trained model, for each user
the recommendations from the model with the best performance is taken. The
performance of the final model is then calculated by averaging the best result for
each user. The results of this method can be considered an upper-bound for a late
fusion approach that can dynamically pick the best channel to generate recom-
mendations.

• FM-Pair (Std. Sampling): In this case we use feedback from all channels using FM-
Pair model. Here the channel type is used as an auxiliary feature in the FM-Pair
model (see Figure 4.1). The sampling is done similarly to the standard sampling
method of BPR.

• FM-Pair (Multi-Channel): In this case we use our proposed FM-Pair model where
type of feedback is used to adapt the sampling method. The results in Table 4.2
report the best sampling method for each dataset. In the next two subsections we
do finer-grained experiments on different sampling methods.

The results in Table 4.2 leads us to several interesting insights. Firstly, as it can be
seen in this table, with the right sampling method FM-Pair (Multi-channel) is perform-
ing the best compared to other methods. This suggests that the sampling method has
a significant role in the quality of recommendations. Secondly, we see that both WRMF
and BPR are performing better than the two recent methods of AFM and FFM. We at-
tribute this observation to the fact that these approaches both do not equate the lack of
an interaction with a definitive negative feedback. Instead, BPR, with the pairwise op-
timization, and WRMF, with the use of confidence scores, are incorporating a less naive
assumption about the state of the unobserved interactions. We note that FM-Pair also
enjoys an advantage in this regard due to its use of pairwise sampling.

To have an insight about the relative accuracy of multi-channel sampling with ense-
meble methods, we perfomed two experiments namely FM-Pair (Prior combine) and
FM-Pair (Oracle experiment). The first method exploits differnet channels to sequan-
tially train the model whereas FM-Pair (Oracle experiment) represents an upper bound
for a late fusion approach that attempts to select the best recommendation channel
for each user. The results show that the oracle improves over all the individual chan-
nels, indicating that additional channels have the potential to improve model accuracy
(RQ0). Sequential training however, does not outperform the performance of the models
trained on individual channels. This result is aligned with the findings in [120], where
it has been shown that prior distributions learned by one channel does not necessarily
hold for other channels.

The most straightforward way of exploiting feedback type is to add it as an auxil-
iary feature in the FM-Pair model (see Section 4.4.1 and Figure 4.1). This approach is
labeled FM-Pair (Std. Sampling) in Table 4.2. This method however, does not always
perform better that BPR and it performs worse than the oracle experiment, meaning that
it would be possible to train a late fusion approach that could outperform it in a given
application scenario. Nevertheless, our proposed multi-channel sampling method, FM-
Pair (Multi-channel), beats both the Oracle (representing the best possible late fusion

4

86 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

Table 4.2: Performance of the single-channel and the multi-channel training methods compared to several
baselines.

Recall MRR NDCG
Method / K 10 20 10 20 10 20

K
o

ll
ek

t

MostPop 0.1259 0.1743 0.0919 0.0966 0.0792 0.0937
KNN 0.0910 0.1077 0.1095 0.1115 0.0754 0.0802
AFM 0.0856 0.1383 0.0689 0.0751 0.0559 0.0723
FFM 0.1178 0.1559 0.1114 0.1154 0.0880 0.0998
WRMF 0.1600 0.2169 0.1550 0.1610 0.1189 0.1371
BPR 0.1287 0.1807 0.1002 0.1060 0.0828 0.0989
FM-Pair (Single: Listening) 0.1141 0.1549 0.0782 0.0823 0.0748 0.0900
FM-Pair (Single: Following) 0.1316 0.1872 0.0975 0.1111 0.0810 0.0991
FM-Pair (Prior combine) 0.1035 0.1406 0.0819 0.0858 0.0661 0.0775
FM-Pair (Oracle experiment) 0.1494 0.2120 0.1289 0.1405 0.0937 0.1125
FM-Pair (Std. Sampling) 0.1368 0.1955 0.1126 0.1195 0.0907 0.1090
FM-Pair (Multi-Channel) 0.1919 0.2747 0.1568 0.1653 0.1337 0.1598

X
IN

G

MostPop 0.0294 0.0484 0.0648 0.0696 0.0290 0.0362
KNN 0.1721 0.2408 0.2805 0.2863 0.1750 0.1979
AFM 0.1403 0.2029 0.2468 0.2541 0.1415 0.1639
FFM 0.0909 0.1391 0.2003 0.2075 0.1010 0.1173
WRMF 0.0989 0.1577 0.1771 0.1846 0.1021 0.1229
BPR 0.1451 0.2342 0.2397 0.2487 0.1428 0.1765
FM-Pair (Single: Reply) 0.0162 0.0225 0.0334 0.0359 0.0387 0.0339
FM-Pair (Single: Bookmark) 0.0159 0.0287 0.0223 0.0277 0.0119 0.0132
FM-Pair (Single: Click) 0.1609 0.2554 0.2686 0.2775 0.1591 0.1928
FM-Pair (Prior combine) 0.1565 0.2474 0.2472 0.2568 0.1490 0.1850
FM-Pair (Oracle experiment) 0.1691 0.2620 0.2836 0.2922 0.1603 0.1931
FM-Pair (Std. Sampling) 0.1429 0.2330 0.2403 0.2494 0.1413 0.1757
FM-Pair (Multi-Channel) 0.2010 0.3188 0.3034 0.3119 0.1920 0.2365

M
ov

ie
L

en
s

1M

MostPop 0.1259 0.1743 0.0919 0.0966 0.0792 0.0937
KNN 0.1697 0.2560 0.4823 0.4874 0.2801 0.2870
AFM 0.0460 0.0943 0.1640 0.1794 0.0964 0.1173
FFM 0.0466 0.0884 0.3210 0.3324 0.1491 0.1542
WRMF 0.1735 0.2716 0.5742 0.5784 0.3587 0.3455
BPR 0.1744 0.2740 0.5409 0.5468 0.3370 0.3357
FM-Pair (Std. Sampling) 0.1570 0.2517 0.4924 0.4981 0.3070 0.3067
FM-Pair (Multi-Channel) 0.1770 0.2770 0.5831 0.5879 0.3685 0.3505

approach) and BPR (representing the best possible approach that uses all channels but
does not differentiate them). Furthermore, FM-Pair (Multi-channel) performs better
than FM-Pair (Std. Sampling) meaning that the multi-channel approach can better ex-
ploit the underlying channel information. We further performed a t-test significance
analysis on the results of the experiments and found that the improvement of the FM-
Pair (Multi-channel) method compared to the oracle experiment is statistically signifi-
cant (p < 0.05). This experiment allows us to answer RQ1 positively: channel-informed
sampling does indeed allow for a better exploitation of multiple feedback channels.

4.6. EXPERIMENTS

4

87

Finally, we compare our adapted method of FM-Pair with Gaussian Process Factor-
ization Machines (GPFM) [80], a recent work that also adapted a pairwise optimization
method for FMs using Gaussian kernels. For this setup we used the Matlab implemen-
tation14 of GPFM that was released with that work. The kernel of the Gaussian pro-
cess is chosen to be the RBF kernel, the recommended kernel from the authors. The
GPFM model has much higher time and space complexity, compared to FM-Pair as it
requires to calculate the inverse of preference kernels, which is a time-intensive task.
With this method we achieved a Recall@10 of 0.1146 for the Kollekt dataset, thus not
necessarily better than our adapted FM-Pair method. We only tested this method on the
Kollekt dataset and due to the high complexity of this method, we did not further test
this method on our larger datasets of XING and MovieLens.

4.6.2. COMPARISON OF SAMPLING STRATEGIES

Next, we turn to methods that exploit channels using channel-based level-informed sam-
pling, described in Section 4.4, and compare them with few baselines. The following
sampling strategies were chosen as most interesting and informative methods:

Multi-Channel-Full: In this case the positive user-item pairs and negative items are
both sampled informed by levels. The positive pair and the negative item is sampled
according to Eq. (4.15) and Eq. (4.20) respectively.

Multi-Channel-Uni: With this sampling method the positive user-item pairs are sam-
pled with the multi-channel method, i.e., Eq. (4.15), but the negative items are sampled
uniformly according to the sampling distribution (4.18). With this method the channel
information is only exploited for sampling the positive pairs.

Standard BPR: This is the standard BPR sampling method. The positive pairs are
sampled uniformly from the dataset and the negative items are sampled uniformly from
the set of items with which the sampled user has not yet interacted.

Popularity Oversampling: With this method the popular items are oversampled as
negative according to Eq. (4.19). The positive pair sampler is the same as the standard
BPR.

Dynamic Oversampling: This is the sampling method that has been introduced in
[96]. The chance of an item to be sampled as negative is dynamically updated during the
training phase according to the current model parameters. Positive user-item pairs are
sampled uniformly the same way as the standard BPR.

The FM-Pair model is trained using the SGD optimization method with 300 iterations
and after every 10 iterations the model is evaluated. Figure 4.3 shows the performance
of the five sampling methods after an increasing number of iterations. Each point in the
curve is the average MRR@10 of the four-fold cross validation experiment. The error bars
are the standard deviations of the four folds. The five sampling methods are also com-
pared with the popularity baseline, where the most popular items are recommended.

Consideration of the graphs in Figure 4.3 leads us to several interesting insights. The
first insight is that there is always a channel-based (i.e. multi-channel) approach that
outperforms standard BPR. This observation confirms again our answer to RQ1 given
in Section 4.6.1. Exploiting levels during sampling improves over conventional forms of

14http://trungngv.github.io/gpfm/

http://trungngv.github.io/gpfm/

4

88 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
R

R
@

1
0

XING

0 50 100 150 200 250 300
0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

M
R

R
@

1
0

Kollekt.fm

0 50 100 150 200 250 300
Number of iterations

0.1

0.2

0.3

0.4

0.5

0.6

M
R

R
@

1
0

MoviLens-1M

Multi-Channel-Full
Multi-Channel-Uni
Standard BPR

Popularity Oversampling
Dynamic Oversampling
Popularity Baseline

Figure 4.3: Comparison of different sampling method for the FM-Pair model based on the number of iterations
in the SGD algorithm.

integration of feedback. Specifically, the improvement over BPR is an improvement over
a sampling method that does not exploit channels.

The second insight is that different sampling methods allow maximum performance
to be achieved on different datasets. The two multi-channel sampling methods perform
the best in the XING dataset. On the MovieLens dataset, Multi-Channel-Uni performs
the best, whereas on the Kollekt dataset Popularity-Oversampling achieves the best re-
sults.

4.6. EXPERIMENTS

4

89

By increasing the number of iterations, the accuracy of most sampling methods im-
proves except for the Popularity-Oversampling and Multi-Channel-Full methods for the
MovieLens dataset. Different aspects of these data contribute to explaining this varia-
tion. Looking at the number of items in each dataset reveals that the MovieLens datasets
has rather small number of items compared to the other two datasets, and the amount
of feedback per item is much larger. With a uniform negative item sampler, in each itera-
tion of the algorithm each item is expected to be sampled approximately 202 time in the
MovieLens, 17 times in the Kollekt and 3 times in the XING dataset15. Therefore, with a
uniform item sampler each item is sampled more frequently compared to the other two
datasets. The two sampling methods that perform the worse in the MovieLens datasets
(i.e. Popularity-Oversampling and Multi-Channel-Full) are different from the rest in the
sense that they oversample popular items as negative, resulting to even more updates for
popular items. Note that the Multi-Channel-Uni sampling method still performs better
than the standard BPR. This means that oversampling the positive user-item pairs from
higher levels (i.e. higher ratings in this dataset) achieves better results, whereas over-
sampling popular items as negative worsen the results in this dataset.

In the other two datasets, multi-channel sampling methods as well as popularity
oversampling result in better-performing models. In these two datasets, due to larger
number of items, choosing the ‘right’ item becomes more crucial and thus a non-uniform
item sampler can outperform a uniform item sampler. In the Kollekt dataset, a less ex-
pected result is that the popularity oversampling performs even better than the Multi-
Channel samplers. We further examined our datasets [74] and found out that the Kollekt
dataset is significantly more popularity-skewed compared to the other two datasets and
sampling of non-popular items is less informative, and it might explain that oversam-
pling popular items results in the best model in this dataset. In this dataset 1% of items
have 40% of the interactions. This can also explain the rather-high accuracy of the pop-
ularity baseline in this dataset.

The Multi-Channel samplers also perform better than the Dynamic-oversampling
method [96]. In the Kollekt dataset, Dynamic-oversampling performs even worse when
the number of iterations increases. The performance drop of Dynamic-oversampling
in this dataset can also be due to popularity-skewness of the data. The effectiveness of
Dynamic-oversampling in different datasets requires more in-dept analysis of this sam-
pling method and it falls outside of the scope of this work.

4.6.3. ACCURACY, COMPLEXITY AND COVERAGE OF DIFFERENT COMBI-
NATIONS OF SAMPLERS

We turn to detailed experiments on channel-based, level-informed sampling methods
for all three datasets. In this subsection, we study different combinations of positive and
negative samplers and compare their performance in terms of accuracy, time-complexity
and item coverage.

There are two approaches to choose positive samples: uniform and multi-channel
(Eq. (4.16)), and four approaches to choose negative samples: uniform-item (Eq. (4.18)),

15In each iteration of SGD on the entire dataset, the number of samplings would be equal to the number of
training data points. With a uniform negative item sampler, the above numbers can be calculated by dividing
the training data to the total number of items.

4

90 4. TOP-N RECOMMENDATION WITH MULTI-CHANNEL POSITIVE FEEDBACK

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
M

R
R

@
1
0

XING

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Kollekt.fm

0.0

0.1

0.2

0.3

0.4

0.5

0.6
MoviLens-1M

0

500

1000

1500

2000

2500

3000

3500

E
p
o
ch

 T
im

e
 (

m
s)

Positive Samplers

Uniform-Feedback

Multi-Channel

0

200

400

600

800

1000

1200

1400

0

2000

4000

6000

8000

10000

12000

Unifo
rm

-It
em

Unifo
rm

-F
ee

dbac
k

Multi
-C

han
nel

Dyn
am

ic

Negative item sampler

0
2
4
6
8

10
12
14
16
18

%
 o

f
It

e
m

 C
o
v
e
ra

g
e

Unifo
rm

-It
em

Unifo
rm

-F
ee

dbac
k

Multi
-C

han
nel

Dyn
am

ic

Negative item sampler

0

2

4

6

8

10

12

14

16

Unifo
rm

-It
em

Unifo
rm

-F
ee

dbac
k

Multi
-C

han
nel

Dyn
am

ic

Negative item sampler

0
5

10
15
20
25
30
35
40
45

Figure 4.4: Comparison of different sampling methods for the FM-Pair model based on accuracy of recom-
mendations using MRR@10, Epoch time (time of one iteration on the entire dataset) and percentage of covered
items in recommendations. The horizontal axis represents different negative item sampling methods and the
legends specify the positive sampling methods.

uniform-feedback (Eq. (4.19)), multi-channel sampling (Eq. (4.20)) and dynamic over-
sampling ([96]). These sampling options create eight different combinations of sam-
pling. In Figure 4.4 we illustrate the performance of these eight combinations in terms
of accuracy, time-complexity and item coverage. In this chart, the four types of negative
item samplers are represented in the horizontal axis each of which is evaluated with the
two types of positive samplers that we described in this work. The MRR@10 achieved by
these approaches is illustrated in the top row of Fig. 4.4. We see that there is no univer-
sal combination of positive and negative sampling that will lead to the best MRR (check
Section 4.6.2 for a more detailed comparison of the five interesting sampling strategies).

Training time is shown in the second row of Fig. 4.4. It is reported in terms of epoch
time, which is the time of one iteration on the training data. The time complexity of the
multi-channel samplers is in the same range as uniform samplers. The higher time com-
plexity of the Dynamic-oversampling methods can be attributed to the fact that each
update has an additional complexity of O (k).

Coverage is shown in the third row of Fig. 4.4. It reports the total percentage of train-
ing items that is recommended. Here the approaches involving Dynamic-oversampling
and uniform-item sampling fall short.

In sum, we have found that channel-based, level-informed sampling is able to pro-
vide advantages in time complexity and in coverage. It can also improve prediction per-
formance, which is described in more details in Section 4.6.2.

4.7. CONCLUSION AND FUTURE WORK

4

91

4.7. CONCLUSION AND FUTURE WORK
This chapter uses BPR as a learning-to-rank approach within a FMs framework to fully
explore the contribution that multiple channels of user feedback can make to recom-
mendations. We show that multiple feedback channels are useful, that channel-informed,
level-based sampling outperforms the more straightforward, but relatively naïve, ap-
proaches of late fusion or of integrating channel information as auxiliary features. Multi-
channel samplers are shown to outperform standard BPR sampling. Our experiments
reveal that the choice of multi-channel sampler depends on the dataset, meaning that
the “right" sampling method should be established experimentally for a specific dataset.
In this work, we have assumed that the order of the levels is known in advance. Fur-
ther work can be done on also ‘learning’ the right order of the levels. Our future work
will also explore further models such as list-wise learning-to-rank methods for use with
multi-channel positive feedback.

IV
ADVANCED LEARNING MODELS

93

5
WEIGHTED FACTORIZATION

MACHINES

Factorization Machines (FMs) are general factorization models for collaborative filtering
that are capable of encoding additional information in terms of feature vectors. They
have been shown to be effective models for exploiting auxiliary features. FMs are able
to learn factorized parameters for all non-zero features in a vector, however, they can-
not learn the importance of these features. The features’ contribution to prediction is
influenced by the values that are given to them, which are typically fixed a priori de-
pending on the problem. In this chapter, we first show that the way that samples are
encoded as feature vectors has important influence on the accuracy of the model. We
then propose adapted optimization models that can learn weights for each group of fea-
tures. Our proposed method that we refer to as Weighted Factorization Machines (WFM)
can be applied effectively to both explicit and implicit feedback data. Experimental re-
sults on benchmark datasets show that the proposed models can improve the accuracy
of recommendations, while maintaining the same computational complexity. 1.

1This chapter is currently in preparation to be submitted as Loni, Babak, Mirko Polato, Jaehun Kim, Keki Bur-
jorjee, Martha Larson, and Alan Hanjalic. "Weighted Factorization Machines" In Proceedings of 27th ACM
Conference on User Modeling, Adaptation and Personalization. 2019.

95

5

96 5. WEIGHTED FACTORIZATION MACHINES

5.1. INTRODUCTION
Factorization is a tried and true approach to collaborative filtering (CF) for recommender
systems. Factorization models learn a low-dimensional representation of users and items
by mapping them into a space of latent factors [55]. Factorization Machines (FMs) [88]
are a general factorization framework for collaborative filtering that can learn latent fac-
tors not only for users and items, but also for any auxiliary features of users, items or
their interactions. In that sense, Factorization Machines can mimic other factorization
models, such as Matrix Factorization [55], Tensor Factorization [49], Attribute-Aware fac-
torization [30] and SVD++ [54], by making use of feature engineering. FMs have recently
gained momentum in the field of Recommender Systems, due to their superior perfor-
mance, scalability and simplicity.

In conventional factorization models, the training data is typically represented as a
user-item matrix. In Factorization Machines however, the input data is represented as
a set of feature vectors each corresponding to a single training sample. A single feature
vector indicates which user has interacted with which item. If additional information
about user-item interactions is available, it is represented in the form of auxiliary fea-
tures that extend this vector. This representation gives FMs great flexibility, since addi-
tional data can be simply encoded into the model in the form of auxiliary features. The
underlying model of FMs learns factorized parameters for any feature that is present in
the feature vectors and uses those factorized parameters to predict the score of a given
interaction.

Despite the great advantages of FMs for learning the latent factors of auxiliary fea-
tures, they suffer a disadvantage: They cannot effectively learn the optimal relative con-
tribution of different features in the feature vector for the purpose of calculating the pre-
diction score. This can be more problematic if auxiliary features such as context are
present in the feature vectors. In such cases, the model cannot effectively learn how
much it should rely on the context and how much on the actual user-item interactions.
One way to control the effect of different features in FMs is the way that the features are
vectorized, that is, how we encode users, items, and any possible auxiliary information
in the form of discrete or real-valued features. The feature vectors in FMs are typically
built by concatenating one-hot vectors of users and items resulting in a binary vector.
Auxiliary features however, can be encoded by binary or real-valued features depending
on the domain and the type of feature [92]. The encoding method can notably influence
the accuracy of the model. Previous studies have not addressed how to learn such en-
codings and they typically require the encodings to be given a priori or they just rely on
the naïve binary encoding for each feature.

To demonstrate the importance of feature encoding on the accuracy of recommen-
dations, we performed a simple experiment to observe the performance of FMs when we
change the encodings of features by applying a set of weight parameters to the features
based on their group2. Figure 5.1 illustrate the accuracy of recommendations in terms of
two ranking metrics of Precision and MRR on the benchmark dataset of MovieLens 1M.
The solid blue bar reflects the accuracy of recommendations when no auxiliary features
are used whereas the other three bars show the performance of the model when auxiliary

2The group of features can be understood to reflect the feature type. For example user, movie and genre of a
movie each represents one group of features. It has also been referred as field of a feature in a related work [48].

5.1. INTRODUCTION

5

97

MRR@10 Precision@10
0.0

0.1

0.2

0.3

0.4

0.5
No-Context (No-weight)
Contex (No-weight)
Context (Weighted)
Context (Random Weights)

Figure 5.1: The effect of using weights for features in Factorization Machines on the accuracy of recommenda-
tions in the dataset of MovieLens1M. With a handcrafted set of weights for each group of features (using prior
knowledge) the accuracy of the model can be improved substantially.

features are added with different weighting methods. The red hashed bar show the per-
formance of the model when the auxiliary features are encoded without any weight (i.e.
with the standard binary encoding), whereas the green hashed bar applies handcrafted
weight parameters for the three groups of features, user, item and genre, such that the
weight for genre features are significantly lower than the weights for users and items. The
experiment reveals the potential of weighted features for improving the performance of
the FMs model. To make sure that such improvement is not random, we also compared
the three methods with a scenario where the weight parameters are assigned randomly3

(the right-most bar).
In this chapter, we build on the initial insight that the performance of FMs could be

improved if instead of being handcrafted, optimal weights could be learned. Motivated
by the above demonstration, we propose an adaptation of FMs where the importance
of each group of features is learned during the optimization process. We refer to our
method as Weighted Factorization Machines (WFM) since it learns weight parameters
for group of features. Specifically, WFM assigns a weight parameter to each group of
features that makes it possible to capture the importance of the group. Optimal weight
parameters are learned during the optimization process. This process effectively makes
the prediction performance of the FM independent of the initial feature encoding. It
is worth mentioning that the weights that we are referring in this work should not be
confused with the conventional parameters of the FMs model that are also referred as
weights in some related work. Our proposed method can be applied to datasets with
both explicit or implicit feedback. For datasets with explicit feedback we adapt a point-
wise loss function (that is optimized for MSE and can be effective for rating prediction),
based on [90], and learns the optimal parameters using gradient descent method. For
datasets with implicit feedback we adapt a pair-wise loss function (optimized for AUC
and effective for ranking) based on [35, 97] and learn the model parameters with gra-

3Random weights are generated from a standard normal distribution and the resulting metrics are the average
metrics over five times repetition of the experiment.

5

98 5. WEIGHTED FACTORIZATION MACHINES

dient descent. We refer to our models based on point-wise and pair-wise optimization
methods as WFM-Point and WFM-Pair, respectively.

Our proposed method has been tested on four datasets two with explicit and two
with implicit feedback. The auxiliary features that are used in the experiments are user
and item attributes, context features and features from other domains. Experimental re-
sults on different recommendation scenarios show that our proposed method can sub-
stantially improve the accuracy of recommendations, while the complexity of the model
remains the same.

We implemented two variations of WFM, an implementation with calculated deriva-
tives, and a second implementation with auto differentiation using Tensorflow to exploit
the potential of GPU computing for large datasets. The contributions of this chapter can
be summarized as follows:

• We propose Weighted FM (WFM), an adaptation of FMs where the importance of fea-
tures are reflected by weight parameters that are defined for groups of features.

• We adapt the underlying optimization process of FMs, such that WFM can seamlessly
utilize both explicit and implicit feedback, and to effectively learn weight parameters.

• We release two implementations of WFM with command-line interfaces, that can be
used out-of-the-box.

The remainder of this chapter is organized as follows: In the next section, we give an
overview of related work in this area. In Section 5.3, we describe our proposed method
in detail. Section 5.4 proposes two applications of WFMs for context-aware and cross-
domain collaborative filtering. In Section 5.5, we describe the experiments that we con-
ducted in this chapter. We finally draw a conclusion in Section 5.6 and discuss possible
future work.

5.2. RELATED WORK
Despite the existence of an interesting body of research on Factorization Machines, less
attention have been given to how features can be encoded in FMs. The standard encod-
ing that is proposed by Rendle in the original paper of FMs [90] suggests the following
encoding method: divide the features into different groups (based on the type of fea-
ture) and normalize the features in such a way that for each group the features sum up
to 1. For groups that have only one feature per group (such as user, item, gender and
etc.), this method is essentially a binary representation of feature vectors consisting of
concatenation of one-hot encodings. Some studies suggest modified encodings that are
applicable in particular situations. For example, [78] propose to normalize auxiliary fea-
tures based on the number of user ratings (for cross-domain recommendation scenario)
and this representation tends to be more effective than the standard encoding method.
Recent work [5] considers static handcrafted weights for auxiliary features in FMs and
shows that a static value in the range of 0.05 to 0.1 for auxiliary features tend to improve
the performance of FMs compared to the standard encoding method. Our preliminary
motivating experiment in Section 1 also confirms this observation.

5.3. FRAMEWORK

5

99

The idea of using weights for features to indicate their importance has been proposed
in some earlier work [116, 118, 127] and it has been shown to be effective for classifica-
tion tasks with Support Vector Machines (SVMs). The above studies are based on the
idea of assigning weights to features based on some information-theoretic measures or
based on applying a feature selection algorithm to assess the quality of features. A similar
idea is applied in kernel methods [33] where weight parameters are assigned for different
kernels to learn the importance of kernels.

Along the line of research of optimizing features for Factorization Machines, Cheng
et al. [17] proposed Gradient Boosting Factorization Machines (GBFMs) where a greedy
feature selection technique is applied to select “good” features and then encode the se-
lected features with the standard FM encoding method. Recently an extension to FMs,
namely Attentional Factorization Machines (AFMs) [126] has been proposed with the
purpose of discriminating the importance of different feature interactions. AFMs resem-
bles FMs with a neural network with additional pooling layer where weight parameters
for pairwise interactions between features are learned. In contrast to our work, where
weight parameters are learned for groups of features (thus few additional parameters are
added to the model), the AFMs model needs to learn a larger number of parameters due
to the presence of additional pooling layer. Both AFMs and GBFMs are only optimized
for point-wise prediction of interaction scores.

Little related work have been done that notably exploit the potential of feature groups
in FMs. An exception is the study of Juan et al. [48], which proposes Field-aware Factor-
ization Machines (FFMs). This model is an extension of FMs where multiple represen-
tations of features are learned, depending on the field (group) of features. For exam-
ple in a dataset with three groups of features, two different representations for a user
are learned: one for interaction with an item and the other for interaction with context
(third group). FFMs have larger time-complexity compared to FMs since multiple repre-
sentations need to be learned for each feature. Furthermore, the model is optimized for
classification and might not be very effective for rating prediction or ranking. Our work
share the idea of distinguishing different groups of features with FFMs. However, our
model still learns a general representation for each feature but controls the contribution
of different features with group-based weight parameters.

5.3. FRAMEWORK
In this section we introduce an adaptation of Factorization Machines that tries to learn
the relative importance of different groups of features [92]. Each group of features de-
scribes a particular aspect of the model, e.g., users, items, context and so on. As shown
in Section 5.1, different approaches to feature encoding can have a substantial impact
on the effectiveness of the model. For this reason, we propose, for both explicit and im-
plicit feedback, optimization methods that are able to learn a weight for each group of
features.

Let us assume that the input data is represented by the set D ≡ {(x1, y1), . . . , (xl , yl)}
where for all i ∈ [1, l], xi ∈Rn is an n-dimensional real-valued feature vector and yi is its
corresponding target value. Let us also assume that G is the set of groups in which fea-
tures of xi are grouped and let the vectors xi be group normalized, i.e., ∀g ∈G ,

∑
j∈g xi j =

1, as suggested in [90]. Then, given the function π : [1,n] 7→ [1, |G |] which maps a feature

5

100 5. WEIGHTED FACTORIZATION MACHINES

index to its corresponding group index, we can define the WFM model as

ŷ(x) = w0 +
n∑

j=1
απ(j)w j x j +

n∑
j=1

n∑
j ′= j+1

απ(j)x jαπ(j ′)x j ′〈v j ,v j ′〉, (5.1)

whereα ∈R|G |
+ obeys the constraint ‖α‖1 = |G |. It is easy to see that this new formulation

is a generalization of the standard FM. In fact, by fixingαi = 1 for all 1 ≤ i ≤ |G |, Equation
(5.1) is exactly the 2-way FM model. Similar to the standard FM [92], we can reformulate
(5.1) in such a way that it can be computed with a number of operations in the order of
O (kNz (x)):

ŷ(x) = w0 +
n∑

j=1
απ(j)w j x j

+ 1

2

k∑
f =1

[(
n∑

j=1
απ(j)x j v j , f

)2

−
n∑

j=1
α2
π(j)x2

j v2
j , f

]
,

(5.2)

where Nz (x) is the number of nonzero elements in the vector x.
With the introduction of the group weights we ended up with a model in which the

set of parameters that need to be learned isΘ≡ {w0, wq , . . . , wn , v1,1, . . . , vn,k ,α1, . . . ,α|G |}.
In order to learn the optimal set of parametersΘ, we use the common regularized objec-
tive function, which tries to minimize the sum of the losses over the training data while
trying to avoid overfitting:

OPTΘ(D) = argmin
Θ

∑
(x,y)∈D

L(ŷ(x|Θ), y)+R(Θ), (5.3)

where L(ŷ(x|Θ), y) is the loss function and R(Θ) the regularization function. The opti-
mization of (5.3) is done via the Stochastic Gradient Descent (SGD) algorithm using the
following generic update rule:

θ← θ−η∂[L(ŷ(x|Θ), y)+R(Θ)]

∂θ
, (5.4)

where η is the learning rate.
The standard model of FMs propose to optimize the above loss function with a point-

wise manner, that is, the prediction error for each training sample (point) is taken into
account to calculate the loss. This method however, is only effective for rating predic-
tion problems and might not be necessarily an optimal model for learning from implicit
feedback. Most of the methods that extend FMs such as FFM [48] and AFM [126] are also
only optimized for rating prediction.

In the following subsections we propose two different loss functions that are op-
timized for rating prediction and ranking. For ranking problems we propose a pair-
wise loss function based on the idea of Bayesian Personalized Ranking [97]. We use the
same regularization function for both optimization methods, similar to both FMs and
BPR methods, which is defined as R(Θ) = ∑

θ∈Θ
λθθ

2, where λθ are regularization hyper-

parameters that need to be validated at training time. In both the point-wise and the

5.3. FRAMEWORK

5

101

pair-wise optimization, at each iteration of SGD, after the update of all the model pa-
rametersαg with g ∈ [1, |G |] we add a constraint on parametersαg to control the relative
difference of the weight parameters. To do so, we apply a normalization step, inspired
by [58], to ensure that

∑|G |
i=1αi = |G |, and this can be done with the following normaliza-

tion step:

αg ←αg
|G |∑|G |
i=1αi

, (5.5)

which is applied to all αg . In what follows, we will refer to this operation with norm(α).
The above normalization can be seen as a further regularization mechanism. Similar
normalization has been done in [58] and it turned out to be an effective approach.

Typically, parameters wi are initialized with 0 while factorization parameters v∗, f

should be initialized by a zero-mean normal distribution with standard deviation σ. Fi-
nally, for αg both random and the uniform initializations are possible, but in any case
they must be normalized to sum up to |G |.

5.3.1. OPTIMIZATION FOR RATING PREDICTION
For the task of rating prediction with WFM, we define the loss function as a point-wise
squared loss [92] over data points x with target y as:

L(ŷ(x|Θ), y) = (ŷ(x|Θ)− y)2. (5.6)

We now define the derivatives of this loss function with respect to the parameters
θ ∈Θ. By substituting (5.6) into (5.4) we get:

θ← θ−η
(
2(ŷ(x|Θ)− y)

∂ŷ(x|Θ)

∂θ
+2λθθ

)
, (5.7)

in which only the gradient of the WFM model w.r.t. to the parameters needs to be cal-
culated. Based on (5.1), the gradient of ŷ(x|Θ) with respect to w j for j ∈ [0,n] is equal
to:

∂ŷ(x|Θ)

∂w j
=

{
1 if j = 0

απ(j)x j if 1 ≤ j ≤ n
, (5.8)

which can be computed in O (1). The gradient w.r.t. the factorization parameters v j , f for
i ∈ [1,n] and f ∈ [1,k] is defined as:

∂ŷ(x|Θ)

∂v j , f
=απ(j)x j

∑
j ′ 6= j

απ(j ′)x j ′v j ′, f , (5.9)

which can also be computed in O (1), if we assume to pre-calculate the sum
∑
j
απ(j ′)x j ′v j ′, f

during the computation of ŷ(x|Θ). Finally the gradient w.r.t. αg for g ∈ [1, |G |] is equal to

∂ŷ(x|Θ)

∂αg
=

k∑
f =1

(∑
j |π(j)=g

x j v j , f

)(
n∑

j=1
απ(j)x j v j , f

)

+ ∑
j |π(j)=g

w j x j −
k∑

f =1
αg

∑
j |π(j)=g

x2
j v j , f

(5.10)

5

102 5. WEIGHTED FACTORIZATION MACHINES

The computational complexity of this gradient is O (kNz (x)). Algorithm 3 describes the
SGD algorithm for the WFM-Point optimization. The complexity of each iteration over
a training point (x, y) is bounded by the cost of updating α, which is O (|G |kNz (x)), and
since in general |G |¿ k and |G |¿ Nz (x) we can approximate it with O (kNz (x)).

Algorithm 3: LEARNING WFM-POINT

Input: Training data D; Regularization parameters λθ; Learning rate η; Std.
initialization parameter σ; Set of features groups G ; Groups index mapper
π

Output: Model parametersΘ
1 initialize w∗, v∗ and α∗ parameters
2 α← norm(α)
3 do
4 for (x, y) ∈D do
5 update w0 according to (5.8)
6 for j ∈ {1, . . . ,n}∧x j 6= 0 do
7 update wi according to (5.8)
8 for f ∈ {1, . . . ,k} do
9 update v j , f according to (5.9)

10 for g ∈ {1, . . . , |G |} do
11 update αg according to (5.10)

12 α← norm(α)

13 while convergence
14 Θ← (w0, . . . , wn ,α, v1,1, . . . , vn,k)
15 returnΘ

5.3.2. OPTIMIZATION FOR RANKING

For datasets with implicit feedback the recommendation task is typically considered as a
ranking problem where the items are ranked according to their relevance to a given user
and the top items are recommended to the user.

In this section we propose WFM-Pair, a learning algorithm for WFM that is optimized
for ranking. The optimization method in WFM-Pair is inspired by [35, 81, 97] where
model parameters are learned by pair-wise comparison of items. The common assump-
tion in these studies is that any observed positive feedback is preferred over missing
feedback. Given this assumption and the fact that we rely on a pair-wise approach, the
training data S is defined as a set of tuples (u, i , j) such that i is a positive item for the
user u, and j is a missing item for u that is sampled uniformly from the unobserved in-
teractions. More specifically, S ≡ {(u, i , j) | i ∈I+

u ∧ j ∈I \I+
u } where I is the set of all

the items and I+
u is the set of positive items for user u.

WFM-Pair adapts the BPR optimization model by taking into account the auxiliary
features that are present for a given user-item interaction. The model parameters in

5.3. FRAMEWORK

5

103

WFM-Pair are learned by maximizing the following likelihood function:∏
(u,i , j)∈S

p(i Âu,z j |Θ), (5.11)

where the notation (i Âu,z j) indicates that user u prefers item i over item j under ob-
served auxiliary features z. Similar to BRP, the probability p(i Âu,z j |Θ) can be modeled
by the sigmoid function σ(y) = 1

1+e−y where y is a scoring function that calculates the
utility of training tuples. The utility function ŷ is defined as:

ŷ(u, i , j ,z|Θ) = ŷ(xu,i ,z|Θ)− ŷ(xu, j ,z|Θ), (5.12)

where xu,i ,z are training feature vectors. We represent the feature vectors x with the
sparse form of xu,i ,z = {(u, xu), (i , xi), {(z, xz) | z ∈ z}}, where xi = xu = 1 are used to en-
code the user and the item, while xz are values of auxiliary features. By replacing xu,i ,z in
Equation (5.1) and then by applying it in (5.12) we have

ŷ(u, i , j ,z|Θ) = wi −w j +
(
αUαI

k∑
f =1

vu, f (vi , f − v j , f)

)

+αI

(∑
z∈z

απ(z)xz

k∑
f =1

vz, f (vi , f − v j , f)

)
,

(5.13)

whereαU andαI are the weights for the user features group and the item features group,
respectively.

We now define the objective function OPTΘ(DS) of WFM-Pair over the set DS ≡
{(u, i , j ,z) | ∀ (u, i , j) ∈ S ,z = z(u, i)}, as in (5.3) with the loss function defined as the
opposite of the logarithm of the likelihood function (5.11):

L(ŷ(u, i , j ,z|Θ)) =− ln(σ(ŷ(u, i , j ,z|Θ))), (5.14)

Since minimizing (5.3) is equivalent to maximizing its opposite, in order to facilitate the
further derivations we consider the maximization version. Similarly to the point-wise
method, the optimization is done via SGD. Using the update rule 5.4 and by applying the
sigmoid function, we obtain the following update rule for WFM-Pair:

θ← θ+η
(

ŷ

1+e ŷ

∂ŷ

∂θ
+2λθθ

)
, (5.15)

We now define derivatives of ŷ with respect to the parameters θ ∈Θ. Based on (5.13), the
gradient of ŷ with respect to wq for q ∈ [0,n] is equal to:

∂ŷ

∂wq
=

1 if q = i

−1 if q = j

0 otherwise

, (5.16)

5

104 5. WEIGHTED FACTORIZATION MACHINES

which can be clearly computed in O (1). The gradient of ŷ w.r.t. the factorization param-
eters vq, f , with q ∈ [1,n] and f ∈ [1,k], are the followings

∂ŷ

∂vq, f
=

αUαI (vi , f − v j , f) if q = u

αI

(
αU vu, f +

∑
z∈z

απ(z)xz vz, f

)
if q = i

−αI

(
αU vu, f +

∑
z∈z

απ(z)xz vz, f

)
if q = j

αIαπ(z)xz (vi , f − v j , f) if q = z ∈ z

0 otherwise

(5.17)

According to the above equation the gradients for vu, f and vz, f can be computed in
O (1) whereas the gradients of vi , f and v j , f can be calculated in O (Nz (x)). However, those
gradients are actually opposite to each other so they can be computed only once at each
iteration. Finally, the gradient w.r.t to the weightsα are defined as:

∂ŷ

∂αU
=αI

k∑
f =1

vu, f (vi , f − v j , f), (5.18)

∂ŷ

∂αI
=αU

k∑
f =1

vu, f (vi , f − v j , f)+∑
z∈z

απ(z)xz

k∑
f =1

vz, f (vi , f − v j , f), (5.19)

and for every g ∈ [3, . . . , |G |], assuming U = 1 and I = 2, the gradient of ŷ w.r.t. αg is:

∂ŷ

∂αg
=αI

(∑
z∈z|π(z)=g

xz

n∑
f =1

vz, f (vi , f − v j , f)

)
. (5.20)

The time complexity of (5.18) is linear to the number of factors, so it is O (k), and both
(5.19) and (5.20) can be computed in O (kNz (x)).

Algorithm 4 summarizes the WFM-Pair optimization method. The complexity of
each iteration over a training point is bounded by the cost of the loop over the auxil-
iary features, which is O (kNz (z)), plus the cost of updating α, that is O (kNz (x)) (for the
same consideration as in Section 5.3.1). Since Nz (x) ≈ Nz (z), we can conclude that the
overall complexity of each iteration is O (kNz (x)).

5.4. APPLICATIONS OF WFM
An important advantage of Factorization Machines is that, by design, they are able to ex-
ploit additional information to improve recommendations. In particular, they are suit-
able for both context-aware [99] and cross-domain recommendation tasks [78]. In this
section we propose two applications of WFM on context-aware and cross-domain col-
laborative filtering.

5.4.1. CONTEXT-AWARE RECOMMENDATION
Context-aware recommendation aims to take advantage on context information to bet-
ter model the interactions between users and items. In WFM-Pair, context can be treated

5.4. APPLICATIONS OF WFM

5

105

Algorithm 4: LEARN WFM-PAIR

Input: Training data D; The item set I ; Regularization parameters λθ; Learning
rate η; Std. initialization parameter σ; Set of features groups G ; Groups
index mapping function π

Output: Model parametersΘ
1 initialize w∗, v∗ and α∗ parameters
2 α← norm(α)
3 do
4 xu,i ,z ← sample(D)
5 j ← sample(I \I+

u)
6 xu, j ,z ← {(u,1), (j ,1), {(z,xu,i ,z) | z ∈ z}}
7 update wi and w j according to (5.16)
8 for z ∈ z do
9 wz ← wz +2ηλθθ

10 for f ∈ {1, . . . ,k} do
11 update vz, f according to (5.17)

12 for f ∈ {1, . . . ,k} do
13 update vu, f , vi , f and v j , f according to (5.17)

14 update αU and αI according to (5.18) and (5.19)
15 for g ∈G do
16 update αg according to (5.20)

17 α← norm(α)
18 while convergence
19 Θ← (w0, . . . , wn ,α, v1,1, . . . , vn,k)
20 returnΘ

5

106 5. WEIGHTED FACTORIZATION MACHINES

as an auxiliary features (i.e, z) for user-item interactions. These auxiliary features can be
encoded inside the feature vectors as previously described in (5.1). For example, let the
context of an interaction (u, i) be the user mood (e.g., “angry") and the movie genre (e.g.,
“sci-fy"), then we can represent such context with z(u, i) = {(angry,1), (sci-fy,1)}. Conse-
quently, we can represent the expanded form of the feature vector xu,i ,z as:

xu,i ,z = (0, . . . ,0, xu ,0, . . . ,0︸ ︷︷ ︸
|U |

,0, . . . ,0, xi ,0, . . . ,0︸ ︷︷ ︸
|I |

, xz1 , . . . , xz|Z |︸ ︷︷ ︸
|Z |

), (5.21)

where Z is the set of contextual features. In contrast to the features xi and xu that are
usually 1, since they represent a one-hot encoding of the user/item identifier, the contex-
tual features (and the auxiliary in general) xz can assume any real-value. As mentioned
previously, according to [90] it is preferable to normalize (i.e., sum up to 1) the auxiliary
features, which is a common practice to reduce biases due to different scales. One of the
advantages of our proposal is that WFMs can also reduce biases between groups since
the algorithm itself manages to find the best weight for each group of features.

5.4.2. CROSS-DOMAIN RECOMMENDATION
Cross-Domain Collaborative Filtering (CDCF) methods exploit additional information
from the so-called source (a.k.a. auxiliary) domains to improve recommendations in a
target domain. The core idea of CDCF is that a user’s preferences in one domain (e.g.,
music) can be exploited to better learn the user’s taste on another domain (e.g., movies).
In the literature, several methods concerning the CDCF problem have been proposed.
Cantador et al. [16] provided a good overview of the CDCF methods. In this section we
propose how to perform cross-domain collaborative filtering with WFM based on the
idea of [78]. The effectiveness of this approach is also tested with the Amazon dataset,
which contains user interactions in multiple domains.

Thanks to the flexibility of FMs in exploiting additional features, the information
concerning the source domains can be transferred to the target domain by means of
auxiliary features. The resulting feature vectors can be used with WFMs to train a model.
In order to understand how auxiliary features are represented, let us suppose that p is
the number of source domains and I j (u) is the set of items in domain j that user u in-
teracted with. Then, for every item that the user interacted with in the source domain
an auxiliary feature is created. Consequently, the feature vectors x in the target domain
can be represented with the following sparse form consisting of both target and source
domain features:

x(u, i) = { (u,1), (i ,1)︸ ︷︷ ︸
target domain features

,∪p
j=1{(z, xz (u, j))|z ∈ I j (u)}︸ ︷︷ ︸

source domains’ features

} (5.22)

where xz (u, j) is the value of feature z, i.e., the score that should be considered for the
interaction between user u and item z in the domain j . Different approaches can be
used to define the feature values xz (u, j). Here we propose to use normalized values for
source domain features. That is, the values of source domain features are normalized
by the number of interactions that the user made in the source domain. Similar to the
context-aware scenario, WFMs learn weights for groups of features. In our implementa-
tion, for each source domain we consider a different feature group. For example if the

5.5. DATASETS AND EXPERIMENTS

5

107

target domain is ‘movies’ and we have user interactions in source domains of ‘books’ and
‘music’, in total we would have four feature groups corresponding to users, items, source
domain features from the ‘books’ domain and from the ‘music’ domain.

5.5. DATASETS AND EXPERIMENTS
In this section we describe the datasets, evaluation method and experiments that we
performed in this chapter.

5.5.1. DATASETS
We choose four datasets for our experiments in this chapter. The Amazon dataset (con-
taining explicit user ratings in four domains) has been used in rating prediction experi-
ments to evaluate WFM-Point and also the application of that for cross-domain recom-
mendations. The two datasets of MSD and Frappe (containing implicit user feedback)
have been chosen to evaluate WFM-Pair. The benchmark dataset of MovieLens (con-
taining explicit user ratings) has been used for both rating prediction and ranking exper-
iments. Below the four datasets are described. The statistics of the datasets are listed in
Table 5.1.

• Million Song Dataset (MSD): Million Song Dataset [11] is a collection of audio features
and metadata for one million songs, but also contains user-item interactions. In this
chapter, we use a dense subset of the dataset to be used by the collaborative filtering
algorithms. All users and items in this subset have at least 50 interactions. Along with
the main dataset, there is a set of annotations contatining 13 different genres for music
tracks [106], which have been used as auxiliary features. The dataset also contains the
play counts of songs for user-song interactions. The play counts have been used as a
confidence score for WMF, one of the baseline algorithms that we tested in this dataset.

• Frappe: Frappe is a context-aware mobile app discovery tool. It logs the number of
times users run an application on their mobile phone. It also logs several contexts such
as time, date, location and weather. The Frappe dataset [7] consists of approximately
100K instances of implicit feedback. An observation is considered as positive feedback
if the user runs an application at least one time. We choose this dataset due to the
presence of several contextual features.

• MovieLens 1M: The MovieLens 1M dataset4 is a benchmark dataset for recommender
systems containing 1M movie ratings. We used the movie genres as auxiliary features
in FMs, FFMs, and WFMs algorithms. We choose this dataset due to the presence of
auxiliary features and widespread use in the community.

• Amazon: Amazon [62] is also a dataset with explicit user ratings. The items in this
datasets are the products in the Amazon website and they belong to one of the fol-
lowing four domains: books, music CDs, DVDs and video tapes. We use this dataset
since it has been used for cross-domain recommendations. We use a densified version
of the datasets that have been used in previous work on cross-domain collaborative
filtering [38, 78].

4https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/

5

108 5. WEIGHTED FACTORIZATION MACHINES

Table 5.1: Statistics of the dataset used in this chapter

Dataset #Users #Items #Feedback Scale
MSD 93,295 29,449 8.3M Implicit
Frappe 957 4,082 96K Implicit
ML1M 6,040 3,670 1M 1-5
Amazon 15,994 84,508 270K 1-5

5.5.2. EVALUATION PROTOCOL
The experiments are evaluated with four fold cross-validation. To evaluate the accuracy
of recommendations, for WFM-Point we use Root Mean Squared Error (RMSE) [101] to
measure the accuracy of predicted ratings. WFM-Pair and other ranking methods are
evaluated using Precision@K , Recall@K and Mean Reciprocal Rank (MRR@K) evalua-
tion metrics.

To calculate the above metrics, for each user we first create a set of candidate items
containing the user’s relevant items and 1000 randomly chosen items [19]. We then cre-
ate a ranked list by scoring the candidate items. Note that for datasets that have context
associated with interactions (specifically for the Frappe dataset), the ranked list is gen-
erated for each user-context combination in the test set to make sure all candidate items
are evaluated under the same conditions. The final metrics are calculated by averaging
the metrics for all user.

5.5.3. WEIGHTED FMS FOR RATING PREDICTION
Rating prediction experiments are done on the MovieLens and Amazon datasets as they
contain explicit feedback. On the Amazon dataset, we perform experiments for both sin-
gle domain and cross-domain scenario. We perform two sets of experiments where the
two domains of books and music are considered as target domains and other domains
are considered as source domains. For our rating prediction experiment, the following
algorithms are compared:

• Factorization Machines (FM): This model is the standard FMs [90] model for rating
prediction. For this setup no auxiliary features are used.

• FM-Auxiliary: In this setup, we use the same model as previous setup, but we also
take into account the auxiliary features that are available in the datasets. For the two
datasets of books and music from Amazon we use cross-domain ratings as auxiliary
features based on the method that we described in Section 5.4.2 and for the dataset of
MovieLens we use genres of the movies as auxiliary features.

• WFM-Point: This is the proposed method in this chapter where the point-wise loss
function is used. Here, no auxiliary features are used and the features are divided into
two groups corresponding to users and items.

• WFM-Point-Auxiliary: In this setup, we use our proposed WFM-Point method and
we also use the auxiliary features. For the MovieLens dataset the features are divided
into three groups (users, items and genres) and for Amazon they are divided into five

5.5. DATASETS AND EXPERIMENTS

5

109

Table 5.2: Comparison of WFM-Point with several methods for rating prediction on MovieLens (ML1M) and
the two domains of Music and Books from Amazon datset. The experiments are evaluated using RMSE (lower
is better). The auxiliary features are movie genre for the ML1M dataset, and ratings from other domains for the
Amazon Book and the Amazon Music datasets.

Method / Dataset Music Books ML1M
Random 2.0343 1.9997 1.7081
User Average 1.0273 0.9516 1.0357
Item Average 1.0646 1.0145 0.9795
BMF 1.0293 0.9088 0.9053
FM 1.0675 0.7956 0.8829
FM-Auxiliary 1.0577 0.7937 0.8727
AFM 0.9769 0.7751 0.8609
WFM-Point 0.9696 0.7907 0.8849
WFM-Point-Auxiliary 0.9602 0.7841 0.8679

groups (users, items and three groups each corresponding to one of the auxiliary do-
mains).

• AFM: This is the Tensorflow implementation of Attentional Factorization Machines
(AFM) [126], a recent extension to FMs. For this algorithm we used the same auxiliary
features as previous setup and we searched several combination of hyper-parameters
and reported the best performing results in Table 5.2.

The number of factors for the above methods are set to 10. The above methods are all
optimized based on the SGD optimization algorithm and the number of epochs on the
training data is set to 100. More details about experimental reproducibility are described
in Section 5.5.5.

Table 5.2 compares the performance of the above five methods on the datasets of
Amazon and MovieLens. We also listed the accuracy of four baselines namely, Random
prediction, User Average, Item Average and Biased Matrix Factorization (BMF) [55].

As can be seen in this table, the WFM-Point method can effectively exploit auxiliary
features as it (WFM-Point-Auxiliary) performs better than the case that auxiliary features
are not exploited. WFM also results to the lowest RMSE for the Amazon Books dataset
and for the other two datasets it performs better than all other methods except AFM. The
improved performance of AFM compared to WFM can be attributed the larger number
of parameters in AFM and a more effective regularization mechanism (dropout vs. L2
regularization). This improvement however, comes with the cost of significant increase
in training and prediction time5 and a larger number of hyper-parameters that need to
be tuned. And as you will see in the next section AFM fall behinds WFM for ranking
problems as it is only optimized for rating prediction.

5The average epoch time of WFM and AFM on the MovieLens dataset is 0.7 and 3.7 respectively. Both methods
are tested on a same machine running on CPU.

5

110 5. WEIGHTED FACTORIZATION MACHINES

Table 5.3: Comparison of WFM-Pair with several methods on datasets with implicit feedback. The methods
are compared using Precision, Recall and MRR evaluation metrics with two different cutoffs.

Precision Recall MRR
Dataset Method \Cutoff 5 10 5 10 5 10

MSD

MP 0.0297 0.0287 0.0076 0.0146 0.0691 0.0813
WMF 0.0512 0.0493 0.0111 0.0214 0.1036 0.1207
BPR-MF 0.1713 0.1730 0.0417 0.0838 0.2739 0.2989
FFM 0.0585 0.0544 0.0142 0.0260 0.1503 0.1676
AFM 0.0040 0.0037 0.0063 0.0117 0.0094 0.0113
FM-Pair 0.1787 0.1789 0.0438 0.0869 0.2806 0.3049
FM-Pair-Context 0.0505 0.0621 0.0124 0.0304 0.0855 0.1123
WFM-Pair 0.2423 0.2221 0.0615 0.1108 0.3352 0.3552

Frappe

MP 0.0229 0.0191 0.1143 0.1910 0.0465 0.0586
WMF 0.0258 0.0184 0.1292 0.1842 0.0776 0.0848
BPR-MF 0.0373 0.0237 0.1864 0.2367 0.1220 0.1286
FFM 0.0405 0.0271 0.2023 0.2711 0.1229 0.1320
AFM 0.0292 0.0234 0.1459 0.2338 0.0753 0.0869
FM-Pair 0.0334 0.0226 0.1669 0.2256 0.1064 0.1143
FM-Pair-Context 0.0267 0.0236 0.1337 0.2360 0.0645 0.0782
WFM-Pair 0.0440 0.0280 0.2199 0.2802 0.1362 0.1442

ML1M

MP 0.1009 0.0977 0.0220 0.0407 0.2271 0.2555
WMF 0.1189 0.1287 0.0211 0.0431 0.2590 0.2881
BPR-MF 0.2172 0.2000 0.0464 0.0808 0.3473 0.3663
FFM 0.1387 0.1378 0.0224 0.0466 0.2960 0.3210
AFM 0.0329 0.0331 0.0041 0.0086 0.0741 0.0874
FM-Pair 0.1826 0.2007 0.0382 0.0842 0.4021 0.4361
FM-Pair-Context 0.2427 0.2298 0.0471 0.0811 0.4729 0.4860
WFM-Pair 0.2828 0.2414 0.0524 0.0818 0.4815 0.4943

5.5.4. WEIGHTED FMS FOR RANKING
We use the three datasets of MSD, Frappe and MovieLens 1M for testing the performance
of the WFM-Pair method. We use the available context and attributes of the three dataset
as auxiliary features for our WFM model.

For the Frappe dataset we use two context groups: weekday (day of the week) and
homework (with three values of unknown, home, work) creating four feature groups
together with user and item groups. For the datasets of MSD and MovieLens the genre of
songs and movies are considered as feature groups and thus the total number of feature
groups are three.

The following setups are implemented in order to compare the performance of our
proposed WFM-Pair method with some baseline and state-of-the-art algorithms:

• FM-Pair: In this method, we use Factorization Machines with a pairwise loss function
based on the BPR criterion. In this setup we do not use any auxiliary features.

• FM-Pair-Context: This is similar to the previous setup but we also use the available

5.5. DATASETS AND EXPERIMENTS

5

111

auxiliary features in the dataset.

• FFM: FFM [48] is an extension of FMs where different representations for each feature
are learned based on the group (field) of features. This method also exploits available
auxiliary features in the dataset.

• WFM-Pair: This is our proposed weighted FM method with pairwise loss function.
The auxiliary features are the same as the previous setup.

• Other Methods: In addition to the above methods, we also used the baseline method
of Weighted Matrix Factorization (WMF) [41], BPR with Matrix Factorization (BPR-
MF) [97] and Most Popular (MP) method.

Table 5.3 compares the performance of the above methods in terms of different rank-
ing metrics on the three datasets of MSD, Frappe and ML1M. The metrics are calculated
with two different cutoffs6. The three methods of WMF, FFM and AFM perform worse
compared to the other models (except MP) most likely due to the fact that they are
not optimized for ranking (FFMs is slighty better than FM-Pair in the Frappe dataset).
Among the methods that are optimized for ranking, FM-Pair and BPR-MF have rather
close performance. Interestingly, when the context features are added to the FM-Pair
model (i.e., FM-Pair-Context) with standard normalized encoding the accuracy of the
recommendations does not necessarily improve (in two datasets, MSD and Frappe, it de-
clines whereas in the ML1M dataset it improves). Nevertheless, the proposed WFM-Pair
method performs better than both FM-Pair and FM-Pair-Context and thus the learned
weights can positively influence on calculating the scores of interactions.

5.5.5. EXPERIMENTAL REPRODUCIBILITY
The two implementation of WFM (with regular SGD and with Tensorflow) contains doc-
umentation to run WFM and reproduce experiments7. The two implementations are
slightly different, as the first one use SGD for optimization (i.e., updates are done per
sample in the training data), whereas the Tensorflow-based implementation uses Mini-
Batch Gradient Descent (MBGD) [102] where the updates are done per mini-batches.
Despite this difference, we did not find a noticeable difference between the two imple-
mentations in terms of recommendations accuracy.

The hyper-parameters of the algorithms are found via a grid-search over a range of
candidate values and vary per dataset. For rating prediction experiments we used SGD
implementation. We found regularization coefficients of 0.00025 and 0.0005 for Ama-
zon and MovieLens respectively, and the same learning rate of 0.005 for both datasets.
For the ranking problem, we used MBGD implementation with batch sizes of 10K, 100K
and 5K for the three datasets of MovieLens, MSD and Frappe, respectively. The learning
rate for these datasets was found to be 0.005, 0.01 and 0.001, respectively, and the best
regularization coefficient for all three datasets was determined to be 0.05.

6Due to the space limitation results with cutoff of 20 is removed. In the paper corresponding to this chapter
the results with cutoff of 20 is included.

7The first implementation is part of WrapRec and the second implementation can be found in: https://
github.com/babakx/wfm

https://github.com/babakx/wfm
https://github.com/babakx/wfm

5

112 5. WEIGHTED FACTORIZATION MACHINES

5.6. CONCLUSION AND FUTURE WORK
In this chapter we introduced WFMs, an extension to FMs that learns a better repre-
sentation for features by learning weight parameters for feature groups. We experimen-
tally demonstrated the effectiveness of this approach for two tasks, rating prediction
and ranking. WFMs can improve the accuracy of recommendations compared to FMs
without introducing additional computational complexity. This improvement can be at-
tributed to the ability of WFMs to model features as groups. The ability of WFMs to learn
weights can avoid a time-consuming search to find optimal weights for feature groups.

Our experiments reveal that the standard normalized encoding might not effectively
exploit the potential of auxiliary features in FMs. With the weight parameters, the con-
tribution of auxiliary features to prediction can be controlled and thus more accurate
models can be learned.

The idea of WFMs can also be applied for classification tasks and further experiments
can be done for classification or click-through rate prediction. Another future direction
to this chapter is to extend the underlying model of WFM to support wider range of regu-
larization techniques such as dropout. The ability of WFMs to distinguish feature groups
can also be applied to neural network models in order to exploit structure of data and
learn better models.

V
IMPLEMENTATION FRAMEWORK

113

6
WRAPREC, AN EVALUATION

FRAMEWORK FOR RECOMMENDER

SYSTEMS

WrapRec is an easy-to-use Recommender Systems toolkit which allows users to eas-
ily implement or wrap recommendation algorithms from other frameworks. The main
goals of WrapRec are to provide a flexible I/O, evaluation mechanism and code reusabil-
ity. WrapRec provides a rich data model which makes it easy to implement algorithms
for different recommender system problems, such as context-aware and cross-domain
recommendation. The toolkit is written in C# and the source code is publicly available
on GitHub under the GPL license1.

1This chapter is published as Loni, Babak, and Alan Said. "WrapRec: an easy extension of recommender system
libraries." In Proceedings of the 8th ACM Conference on Recommender systems, pp. 377-378. ACM, 2014.

115

6

116 6. WRAPREC, AN EVALUATION FRAMEWORK FOR RECOMMENDER SYSTEMS

6.1. INTRODUCTION
Personalized recommender systems are becoming very popular in online marketing, so-
cial networks and mobile applications. RecSys and machine learning communities have
developed several successful libraries for recommender systems such as MyMediaLite2,
Apache Mahout3 and LensKit4.

Most of existing libraries require specific data formats, usually as text files, and are
not flexible enough to support new data formats. Data processing is an important step
in recommender systems which are usually neglected in current RecSys libraries. The
existing frameworks usually require the users to provide the data in a specific format,
and similarly they output results in a specific format. As an example consider that a
user has a data source with a particular format which is not supported by the existing
toolkits. A common practice to use this data is to convert to a format which is supported
by the toolkit and then run the experiment on the converted data. Now, if the user wants
to repeat the experiment for many different scenarios, usually the data preprocessing is
done by an external application in a semi-manual way which makes the usage of toolkits
difficult and error prone.

WrapRec is a toolkit, with defined routines. It allows users to incorporate any data
processing steps easily into the experiment, without requiring to change the underly-
ing algorithms. The toolkit is a wrapper around existing libraries, which allows them to
be plugged into the system. The main goal of the toolkit is to provide high-level inter-
faces for low-level services to make it easier to run RecSys algorithms. WrapRec’s so-
lution to this goal is to provide a rich data object model to make data access flexible
and safe. This feature makes it easier to implement algorithms which rely on multi-
ple data sources such as context-aware and cross-domain recommendation scenarios.
Furthermore, WrapRec provides high level interfaces to potential algorithms that can be
wrapped into the toolkit. Similarly an abstraction layer for evaluation of algorithms is
defined in the toolkit to implement custom evaluators and re-use evaluation logics for
different RecSys algorithms.

6.2. OVERVIEW OF THE TOOLKIT
The WrapRec toolkit consists of three main components: Data Layer, Recommendation
Engine and Evaluation Pipeline. The components are made independent of each other,
meaning they can be modified and extended without requiring to change other com-
ponents. Figure 1 illustrates the high level architecture of the toolkit. Below, we briefly
describe each component:

• Data Layer: This component provides a common data interface, regardless of the
underlying format of the data source. If users want to read a custom data for-
mat, they need to implement an interface which reads the data and converts it
into the common data objects. This feature makes it possible to run different ex-
periments without requiring to change the underlying algorithms or evaluation
mechanism. Furthermore, the toolkit is able to represent the data objects within a

2http://mymedialite.net
3http://mahout.apache.org
4http://lenskit.grouplens.org

http://mymedialite.net
http://mahout.apache.org
http://lenskit.grouplens.org

6.2. OVERVIEW OF THE TOOLKIT

6

117

Figure 6.1: The overall architecture of WrapRec.

context which enables the consumer of data to take advantage of the C# language
and issue LINQ (Language Integrated Queries) on data. This feature enables users
to write an integrated query, select a custom subset of data and pass it to the other
components of the system.

• Recommendation Engine: This component is the core of the toolkit. It provides
common interfaces to RecSys algorithms. The focus of this component is not to
implement the RecSys algorithms, but to provide a common interface to different
algorithms that are implemented in various libraries. If users want to use an algo-
rithm from existing libraries, they need to wrap the functionality of the third party
libraries into the toolkit. Currently, the toolkit provides wrapper classes for My-
MediaLite [31] (written in C#) and LibFM [92] (written in C++). This component
also provides interfaces to implement Cross-Domain and Context-Aware recom-
mendation algorithms.

• Evaluation Pipeline: WrapRec provides evaluation services based on the pipeline
design pattern5. This enables the evaluator objects to share their results on a con-
text object and thus improve the performance and re-usability of code. Pipeline-
based evaluation allows users to re-use the evaluation logic for different RecSys
algorithms since the evaluators only talk with high level data objects which are
independent of the algorithms.

5msdn.microsoft.com/en-us/library/ff963548.aspx

http://msdn.microsoft.com/en-us/library/ff963548.aspx

6

118 6. WRAPREC, AN EVALUATION FRAMEWORK FOR RECOMMENDER SYSTEMS

6.3. HOW TO USE THE TOOLKIT
The current version of WrapRec is implemented as a .Net library which can be added to
a .Net project and be called through its public APIs. The WrapRec toolkit can be easily
installed in a .Net project by installing its package through the Nuget6 package manage-
ment system, or by adding the library file directly to the references of the project. The
source code of the toolkit is publicly available under GPL license on GitHub7.

A major goal of WrapRec is to be easy to use. Based on the architecture of the system,
to run a RecSys experiment users need to define three main objects: a data interface, an
algorithm interface and an evaluation pipeline. More advance scenarios can be defined
by extending each of the mentioned three objects. Listing 1 lists a simple RecSys exper-
iment which trains a model on the Movielens 1M dataset8 using MyMediaLite’s rating
prediction algorithms. The model is then tested using two evaluation metrics on 30% of
the data.

Listing 6.1: Sample three step code to run a recommender system experiment

// step 1: dataset
var data = new Dataset < ItemRating >(new MovieLensReader ("data.dat"), 0.7);

// step 2: recommender
var recommender = new MediaLiteRatingPredictor (new MatrixFactorization ());

// step3 : evaluation
var ep = new EvaluationPipeline (new EvalutationContext (recommender , data));

ep. Evaluators .Add(new RMSE ());
ep. Evaluators .Add(new MAE ());

// run the experiments
ep.Run ();

Each of the three steps in the above example can be extended without modifying
other steps. For example, to read a dataset with a different format, a different dataset
reader needs to be defined in step 1. More advanced scenarios and samples can be found
in the online documentation of the toolkit.

6.4. UPDATES IN WRAPREC 2.0
In the new version of WrapRec9 the specifications of an experiment can be defined in an
xml configuration file so that all settings can be defined in one place. The configuration
file defines the model and its parameters, specifies how the dataset should be split, and
describes how the evaluation should be done10.

6http://www.nuget.org/
7https://github.com/babakx/WrapRec
8http://grouplens.org/datasets/movielens/
9https://github.com/babakx/WrapRec/releases
10The schema of the configuration file is described in: http://babakx.github.io/WrapRec/GetStarted.

html

http://www.nuget.org/
https://github.com/babakx/WrapRec
http://grouplens.org/datasets/movielens/
http://babakx.github.io/WrapRec/GetStarted.html
http://babakx.github.io/WrapRec/GetStarted.html

6.5. OUTLOOK

6

119

6.5. OUTLOOK
In this chapter, we briefly introduced an open source RecSys toolkit that can be used
for training and evaluation of recommender system algorithms. The toolkit is currently
available on GitHub. The current version of the toolkit is available as a command-line
interface as well as a Nuget library. In the current version of the toolkit, the specifications
of an experiment can be defined in a configuration file, making it easier to reproduce the
experiments that are implemented with this toolkit. In the future, we plan to further
integrate this project with existing libraries and frameworks.

VI
OUTLOOK

121

7
CONCLUSION AND FUTURE WORK

In this thesis, we presented several factorization models for collaborative filtering and
proposed how to apply them in different recommender system tasks. We presented our
insights and their outcomes in the preceding technical chapters of thesis, supported by
several experimental studies. In this chapter, we reflect on the objectives and research
questions of this thesis, discuss the concluding points of this thesis, and provide practical
points that could be further investigated in future studies.

123

124 7. CONCLUSION AND FUTURE WORK

7.1. DISCUSSION
The objectives of this thesis were to leverage advanced factorization models to effec-
tively exploit the information that is present beyond a user-item matrix, to apply such
models in a wider range of problems in recommender systems, and to improve their un-
derlying performance with enhanced algorithms. The majority of the techniques that
are presented in this thesis are based on Factorization Machines (FMs) [89], Bayesian
Personalized Ranking (BPR) [98] and Matrix Factorization [55].

To address the first aspect of our objective, i.e., exploiting information that are present
beyond the user-item matrix, in Chapter 2, we propose a method using Factorization
Machines, to exploit auxiliary ratings that are present beyond the target recommenda-
tion domain. The proposed technique embeds external domain interactions as auxiliary
features in FMs. Experimental results showed the effectiveness of this method for rat-
ing prediction problems. Later, in chapters 3 and 5 we adapt the proposed approach for
top-N recommendation tasks. The success of this approach depends on how well the
cross-domain interactions are translated to auxiliary features. Thanks to the expressive-
ness of FMs, the underlying model of FMs can learn latent factors for auxiliary features
and seamlessly exploit them to better predict the scores of interactions.

In Chapter 2, we further study the expressiveness of FMs by proposing two applica-
tions that can leverage information inherent in the user-item matrix. The first applica-
tion makes use of cluster membership of users and items to build auxiliary features that
can be embedded to the training data. The second application, which we refer to as the
‘slice and train’ approach, propose to slice the training set based on properties of the
data, train individual models on each slice, and indirectly use the rest of slices by trans-
lating them to auxiliary features. Based on the experiments that were carried out for this
method, the ‘slice and train’ method can outperform the conventional training on the
entire dataset.

The main insight that we obtained in Chapter 2 is that FMs provide an opportunity
to exploit information that is ubiquitously present, but commonly under-appreciated by
collaborative filtering algorithms. Moreover, FMs can seamlessly exploit such informa-
tion without necessarily requiring the underlying model to be adapted. Furthermore,
based on the experimental results, we can conclude that FMs can exploit cross-domain
information effectively, they can leverage information that is extracted from the user-
item matrix, and can be used to train more efficient models by training on the ‘right’
slice of data.

The models that are presented in Chapter 2 however, are limited to rating predic-
tion problems since the standard model of FMs are optimized for prediction and not for
ranking. To benefit from the advantages of FMs also for top-N recommendation tasks,
in Chapter 3 we introduced FM-Pair, an FMs model with pairwise loss function, opti-
mized for ranking. FM-Pair can not only learn a model from explicit ratings, but also
from implicit unary feedback. In this chapter we show that FM-Pair is significantly more
effective than a naïve implicit-to-explicit-feedback mapping since such mapping creates
strong biases about user preferences and the underlying model that is used for training
is not optimized for ranking. We also show that FM-Pair can be applied in the scenarios
where auxiliary information (such as context or cross-domain interactions) are present,
just like the standard FMs models.

7.1. DISCUSSION 125

The broader message of Chapter 3 is that the standard FM model is not suitable for
ranking problems and implicit feedback. However, we can effectively optimize FMs for
ranking and learning from implicit feedback with a pairwise optimization technique,
while we can benefit from the advantages of FMs such as generalization and expressive-
ness.

The model that is introduced in Chapter 3, is further adapted for datasets with feed-
back from multiple channels. This model, which is introduced in Chapter 4, proposes
several sampling methods to sample proper training data by exploiting different types of
feedback. In this chapter we demonstrate that sampling methods have significant influ-
ence on accuracy of recommendations and convergence of the underlying optimization
methods. We also show that conventional integration of side information with auxiliary
features (in an FM model) is not always the best method to exploit such information.
We found that if feedback type is exploited for an adapted sampling (instead of integrat-
ing as a feature), the accuracy of the trained FM model can be improved. Moreover, we
show that collaborative filtering models that are trained using feedback from multiple
channels are generally more accurate than a model that is trained on a single channel
only. However, a naïve data aggregation is not an effective method to learn from multi-
ple feedback channels.

The main insight that we gained from Chapter 4, is that, despite the advantages of
FMs that we discussed in earlier chapters, a conventional integration of side informa-
tion with auxiliary features is not always an effective approach to benefit from additional
data. Depending on the problem and the recommendation task, integration of side in-
formation in the underlying algorithms can be more effective than a general feature en-
coding method. With this insight, we moved forward toward studying the underlying
model of FMs to understand if we can make them smarter in such a way that they can
learn the extent to which auxiliary features can be relied on.

In Chapter 5, we propose Weighted Factorization Machines (WFMs), an extension to
the FMs model that learn additional weight parameters for each group of features. Such
weights can control the contribution of different features and predict the score of inter-
actions more precisely. WFMs are implemented with learning algorithms that are op-
timized for prediction and ranking. Experimental results show that WFMs outperform
FMs in both rating prediction and ranking tasks. This improvement can be attributed
to the fact that WFMs are aware of the groups of features and the adapted optimization
methods exploit this information to learn the contribution of different groups. The effec-
tiveness of WFMs is also studied in context-aware and cross-domain recommendation
tasks.

In Chapter 6, we present WrapRec, a recommender systems library that contains
implementation of the algorithms that are introduced in this thesis. WrapRec is also a
general evaluation framework for recommender systems that can Wrap algorithms from
other implementations and evaluate them under same settings.

In summary, FMs are great models to implement advanced factorization models.
Their ease-of-use, expressiveness and generalization make them a desirable model for
several recommendation tasks. At the same time, their ability to generalize the factor-
ization process can also be a disadvantage as the underlying model is not aware of the
nature of the features that are encoded in the training data. Depending on the prob-

126 7. CONCLUSION AND FUTURE WORK

lem and the task that is being approached, the proper factorization model needs to be
adapted to achieve the best outcome.

7.2. FUTURE WORK
Based on the insights and achievements of this thesis, in this section we propose practi-
cal recommendations that can be a basis for future research on recommender systems.

7.2.1. CUSTOM OPTIMIZATION METHODS
The factorization models that are proposed in this thesis learn latent factors based on
point-wise (using squared error loss) or pair-wise (using AUC loss) optimization tech-
niques. These two methods learn the model parameters by minimizing or maximizing
a loss function that is defined over the training data. The choice of loss function has a
crucial role on the performance of the recommendation task. It is important that the loss
function is optimized for the task that we want to approach. For example, a loss function
that is optimized for prediction is not a proper choice for ranking. Likewise, a loss func-
tion that is optimized for ranking, might not be effective if we care about click-through-
rate. Sometimes, based on the business requirements, none of the above targets might
be interesting for a recommender system. For example, a metric that Spotify uses when
it generates recommendations for a playlist, is the number of pages that a user needs to
visit until he finds a song to play1. With such requirement, relevance of one single song is
much more important than a list that is carefully optimized to sort songs based on their
inferred relevance. In this case, a list-wise optimization method such as CLiMF [109],
which optimizes Mean Reciprocal Rank (MRR), might be more effective than BPR.

An interesting direction of future work on Factorization Machines is to adapt other
optimization techniques and study their effect on the metrics that are potentially inter-
esting for a recommendation task. From the implementation point of view, it would be
interesting if modeling and optimization tasks of the learning algorithms could be de-
coupled so that the optimization task could be developed independently. Another pos-
sible extension in this respect would be to implement multi-criteria optimization meth-
ods for FMs so that their learning algorithm can simultaneously optimize more than one
metric.

7.2.2. FACTORIZATION AND CONTENT-BASED FEATURES
Factorization models are fast and effective techniques for collaborative filtering. Fac-
torization Machines exploit any auxiliary features that are present in their training data.
However, the choice of features in FMs has a significant influence on accuracy and com-
plexity of models. Content features such as audio signals are not a proper choice of aux-
iliary features in FMs. Such features are typically dense and significantly increase the
training and prediction time of an FM model. The underlying model of FMs attempts to
learn latent factors for any feature that is presented in the training data and use the inter-
actions of the trained factors to predict the utility of an item for a user. The interactions
between the latent factors of several features of a single item is independent from the
target user and is repetitive for all users. The standard model of FMs is not computation-

1According to RecSys 2018 Challenge: http://www.recsyschallenge.com/2018/

http://www.recsyschallenge.com/2018/

7.2. FUTURE WORK 127

ally optimized to exploit dense content features and the effectiveness of such features on
factorization models is not clear.

Future research can be done to optimize the computations of FMs for exploiting
dense features. A successful model that exploit content features for factorization is the
work of Oord et al. [123] where they propose a deep learning method that learns a rep-
resentation of items in the same space as the factorized collaborative filtering space.
Such techniques can be combined with Factorization Machines to simultaneously ex-
ploit content and other auxiliary features for training a hybrid model.

7.2.3. ELICITATION OF THE ‘RIGHT ’ DATA
In two different parts of this thesis (Chapters 2 and 4) we observed that by using the
‘right’ data (with the ‘slice and train’ algorithm or with the adapted sampling methods),
the performance of the factorization models can be improved while the accuracy of rec-
ommendations improves or remains the same. Another interesting future research is to
study how factorization models can be adapted to use minimum necessary data to learn
model parameters. In that direction, we already studied [57] the trade-off between train-
ing data volume and accuracy of recommendations using a set of classic recommender
system models. Further studies can be done to elicit the ‘right’ data to train factorization
models without reducing the accuracy of recommendations.

7.2.4. FACTORIZATION MACHINES FOR OTHER PROBLEMS
Factorization Machines have been mainly used in recommender systems. Due to their
ability to seamlessly exploit auxiliary features, they could be a proper model to learn
latent factors in a shared space for entities that are related to each other. An interesting
practical study for future work would be to use FMs in areas such as text classification,
latent semantic analysis, and named entity classification. Recent work already applied
FMs in sentiment classification [125] and decision prediction in Twitter [37]. Further
studies can be done to exploit context or auxiliary information to study the potential of
FMs on exploiting such information in other domains.

7.2.5. UNIFIED EVALUATION FRAMEWORK
The vast majority of studies in recommender systems are evaluated using a set of eval-
uation metrics that are calculated on offline datasets. The technical details of evalua-
tion mechanism such as data split, candidate items, new user/item strategy, and imple-
mentation details of metrics are typically disregarded in research papers. Said and Bel-
login [103] showed that the implementation details and evaluation model of algorithms
have significant role on the resulting metrics and thus, evaluation under different condi-
tions become meaningless. In this thesis, we implemented WrapRec [77], an evaluation
framework for recommender systems, to be able to compare different algorithms with
the same evaluation framework and details. Further effort in future studies need to be
done to adapt new evaluation conditions and metrics to WrapRec or other open source
implementations.

BIBLIOGRAPHY

[1] In Multiple Classifier Systems, Lecture Notes in Computer Science. 2013.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE Trans. on Knowl. and Data Eng., 17(6):734–749, June 2005.

[3] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender
systems. In Recommender systems handbook, pages 217–253. Springer, 2011.

[4] Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M Pujol. Data Min-
ing Methods for Recommender Systems. In Francesco Ricci, Lior Rokach, Bracha
Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook, chapter 2,
pages 39–71. Springer US, 2011.

[5] Bjarni Arnason. Influence of auxiliary features in factorization-based collaborative
filtering. 2016.

[6] Suhrid Balakrishnan and Sumit Chopra. Collaborative ranking. In Proceedings of
the Fifth ACM International Conference on Web Search and Data Mining, WSDM
’12, pages 143–152, New York, NY, USA, 2012. ACM.

[7] Linas Baltrunas, Karen Church, Alexandros Karatzoglou, and Nuria Oliver. Frappe:
Understanding the usage and perception of mobile app recommendations in-the-
wild. CoRR, abs/1505.03014, 2015.

[8] Robert M Bell, Yehuda Koren, and Chris Volinsky. The bellkor 2008 solution to the
netflix prize. Statistics Research Department at AT&T Research, 1, 2008.

[9] Alejandro Bellogin, Pablo Castells, and Ivan Cantador. Precision-oriented evalu-
ation of recommender systems: An algorithmic comparison. In RecSys ’11, pages
333–336, 2011.

[10] James Bennett, Stan Lanning, and Netflix Netflix. The netflix prize. In In KDD Cup
and Workshop in conjunction with KDD, 2007.

[11] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The
million song dataset. In Proceedings of the 12th International Conference on Music
Information Retrieval (ISMIR 2011), 2011.

[12] Daniel Billsus and Michael J. Pazzani. Learning collaborative information fil-
ters. In Proceedings of the Fifteenth International Conference on Machine Learning,
ICML ’98, pages 46–54, San Francisco, CA, USA, 1998. Morgan Kaufmann Publish-
ers Inc.

129

130 BIBLIOGRAPHY

[13] Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. Higher-
order factorization machines. In Advances in Neural Information Processing Sys-
tems, pages 3351–3359, 2016.

[14] Robin Burke. Hybrid recommender systems: Survey and experiments. User Mod-
eling and User-Adapted Interaction, 12(4):331–370, Nov 2002.

[15] Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, and Paolo Cre-
monesi. Cross-Domain Recommender Systems, pages 919–959. Springer US,
Boston, MA, 2015.

[16] Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, and Paolo Cre-
monesi. Cross-Domain Recommender Systems, pages 919–959. Springer US,
Boston, MA, 2015.

[17] Chen Cheng, Fen Xia, Tong Zhang, Irwin King, and Michael R. Lyu. Gradient boost-
ing factorization machines. In Proceedings of the 8th ACM Conference on Recom-
mender Systems, RecSys ’14, pages 265–272, New York, NY, USA, 2014. ACM.

[18] Mark Connor and Jon Herlocker. Clustering items for collaborative filtering, 2001.

[19] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recom-
mender algorithms on top-n recommendation tasks. In ACM RecSys ’10, pages
39–46, 2010.

[20] Arthur F. da Costa and Marcelo G. Manzato. Exploiting multimodal interactions in
recommender systems with ensemble algorithms. Inf. Syst., 56(C):120–132, March
2016.

[21] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. The youtube video recommendation system. In Proceedings of the
Fourth ACM Conference on Recommender Systems, RecSys ’10, pages 293–296, New
York, NY, USA, 2010. ACM.

[22] Luis M De Campos, Juan M Fernández-Luna, Juan F Huete, and Miguel A Rueda-
Morales. Combining content-based and collaborative recommendations: A hy-
brid approach based on bayesian networks. International Journal of Approximate
Reasoning, 51(7):785–799, 2010.

[23] Dennis DeCoste. Collaborative prediction using ensembles of maximum margin
matrix factorizations. In Proceedings of the 23rd International Conference on Ma-
chine Learning, ICML ’06, 2006.

[24] Mukund Deshpande and George Karypis. Item-based top-n recommendation al-
gorithms. ACM Trans. Inf. Syst., 22(1):143–177, January 2004.

[25] Mehdi Elahi, Francesco Ricci, and Neil Rubens. A survey of active learning in col-
laborative filtering recommender systems. Comput. Sci. Rev., 20(C):29–50, May
2016.

BIBLIOGRAPHY 131

[26] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme.
Learning attribute-to-feature mappings for cold-start recommendations. In 2010
IEEE International Conference on Data Mining, pages 176–185, Dec 2010.

[27] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme.
Learning attribute-to-feature mappings for cold-start recommendations. In Data
Mining (ICDM), 2010 IEEE 10th International Conference on, pages 176–185, Dec
2010.

[28] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-
Thieme. Bayesian personalized ranking for non-uniformly sampled items. JMLR
W&CP, Jan, 2012.

[29] Zeno Gantner, Lucas Drumond, Lars Schmidt-thieme, and Christoph Freuden-
thaler. Bayesian personalized ranking for non-uniformly sampled items, 2012.

[30] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. Mymedialite: a free recommender system library. RecSys ’11. ACM, 2011.

[31] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. MyMediaLite: A free recommender system library. In Proceedings of the
5th ACM Conference on Recommender Systems (RecSys 2011), 2011.

[32] Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system: Algo-
rithms, business value, and innovation. ACM Trans. Manage. Inf. Syst., 6(4):13:1–
13:19, December 2015.

[33] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. Journal
of Machine Learning Research, 12(Jul):2211–2268, 2011.

[34] Weiyu Guo, Shu Wu, Liang Wang, and Tieniu Tan. Personalized ranking with pair-
wise factorization machines. Neurocomputing, 214:191 – 200, 2016.

[35] Weiyu Guo, Shu Wu, Liang Wang, and Tieniu Tan. Personalized ranking with pair-
wise factorization machines. Neurocomput., 214(C):191–200, November 2016.

[36] Ruining He and Julian McAuley. Vbpr: Visual bayesian personalized ranking from
implicit feedback. In Proceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, AAAI’16, pages 144–150. AAAI Press, 2016.

[37] Liangjie Hong, Aziz S. Doumith, and Brian D. Davison. Co-factorization machines:
Modeling user interests and predicting individual decisions in twitter. In Proceed-
ings of the Sixth ACM International Conference on Web Search and Data Mining,
WSDM ’13, pages 557–566, New York, NY, USA, 2013. ACM.

[38] Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, and Can Zhu. Per-
sonalized recommendation via cross-domain triadic factorization. WWW ’13,
2013.

132 BIBLIOGRAPHY

[39] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining,
pages 263–272. Ieee, 2008.

[40] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 2008 Eighth IEEE International Confer-
ence on Data Mining, ICDM ’08, pages 263–272, Washington, DC, USA, 2008. IEEE
Computer Society.

[41] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 2008 Eighth IEEE International Confer-
ence on Data Mining, ICDM ’08, pages 263–272, Washington, DC, USA, 2008. IEEE
Computer Society.

[42] Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon.
Music personalization at spotify. In Proceedings of the 10th ACM Conference on
Recommender Systems, RecSys ’16, pages 373–373, New York, NY, USA, 2016. ACM.

[43] Michael Jahrer, Andreas Töscher, and Robert Legenstein. Combining predictions
for accurate recommender systems. In Proceedings of the 16th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’10, 2010.

[44] Mohsen Jamali and Martin Ester. Trustwalker: A random walk model for combin-
ing trust-based and item-based recommendation. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’09, pages 397–406, New York, NY, USA, 2009. ACM.

[45] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich.
Recommender systems: an introduction. Cambridge University Press, 2010.

[46] Gawesh Jawaheer, Martin Szomszor, and Patty Kostkova. Comparison of implicit
and explicit feedback from an online music recommendation service. In Proceed-
ings of the 1st International Workshop on Information Heterogeneity and Fusion in
Recommender Systems, HetRec ’10, pages 47–51, New York, NY, USA, 2010. ACM.

[47] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factor-
ization machines for ctr prediction. In Proceedings of the 10th ACM Conference on
Recommender Systems, RecSys ’16, pages 43–50, New York, NY, USA, 2016. ACM.

[48] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factor-
ization machines for ctr prediction. In Proceedings of the 10th ACM Conference on
Recommender Systems, RecSys ’16, pages 43–50, New York, NY, USA, 2016. ACM.

[49] Alexandros Karatzoglou. Collaborative temporal order modeling. In Proceedings
of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pages 313–316,
New York, NY, USA, 2011. ACM.

[50] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Mul-
tiverse recommendation: N-dimensional tensor factorization for context-aware

BIBLIOGRAPHY 133

collaborative filtering. In Proceedings of the Fourth ACM Conference on Recom-
mender Systems, RecSys ’10, pages 79–86, New York, NY, USA, 2010. ACM.

[51] Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi. Learning to rank for rec-
ommender systems. In Proceedings of the 7th ACM Conference on Recommender
Systems, RecSys ’13, pages 493–494, New York, NY, USA, 2013. ACM.

[52] Jon Kleinberg and Mark Sandler. Using mixture models for collaborative filtering.
In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Comput-
ing, STOC ’04, pages 569–578, New York, NY, USA, 2004. ACM.

[53] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collabora-
tive filtering model. In Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’08, pages 426–434, New
York, NY, USA, 2008. ACM.

[54] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collabora-
tive filtering model. In Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’08, pages 426–434, New
York, NY, USA, 2008. ACM.

[55] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, August 2009.

[56] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. Latent dirichlet allocation
for tag recommendation. In Proceedings of the Third ACM Conference on Recom-
mender Systems, RecSys ’09, pages 61–68, New York, NY, USA, 2009. ACM.

[57] Martha Larson, Alessandro Zito, Babak Loni, and Paolo Cremonesi. Towards min-
imal necessary data: The case for analyzing training data requirements of recom-
mender algorithms. 2017.

[58] Ivano Lauriola, Mirko Polato, and Fabio Aiolli. Radius-margin ratio optimization
for dot-product boolean kernel learning. In Alessandra Lintas, Stefano Rovetta,
Paul F.M.J. Verschure, and Alessandro E.P. Villa, editors, Artificial Neural Networks
and Machine Learning – ICANN 2017, pages 183–191, Cham, 2017. Springer Inter-
national Publishing.

[59] Joonseok Lee, Mingxuan Sun, and Guy Lebanon. A comparative study of collabo-
rative filtering algorithms. arXiv preprint arXiv:1205.3193, 2012.

[60] Joonseok Lee, Mingxuan Sun, and Guy Lebanon. A comparative study of collabo-
rative filtering algorithms. CoRR, abs/1205.3193, 2012.

[61] Lukas Lerche and Dietmar Jannach. Using graded implicit feedback for bayesian
personalized ranking. In ACM RecSys ’14, pages 353–356, 2014.

[62] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral
marketing. ACM Trans. Web, 1(1), 2007.

134 BIBLIOGRAPHY

[63] Bin Li. Cross-domain collaborative filtering: A brief survey. In Tools with Artificial
Intelligence (ICTAI), 2011 23rd IEEE International Conference on, pages 1085–1086,
2011.

[64] Bin Li, Qiang Yang, and Xiangyang Xue. Can movies and books collaborate?: cross-
domain collaborative filtering for sparsity reduction. IJCAI’09, 2009.

[65] Gai Li and Qiang Chen. Exploiting explicit and implicit feedback for personalized
ranking. 2016:1–11, 01 2016.

[66] Qing Li and Byeong Man Kim. Clustering approach for hybrid recommender sys-
tem. In Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International Con-
ference on, pages 33–38, Oct 2003.

[67] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item
collaborative filtering. Internet Computing, IEEE, Jan 2003.

[68] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, January
2003.

[69] Nathan N. Liu and Qiang Yang. Eigenrank: A ranking-oriented approach to collab-
orative filtering. In Proceedings of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’08, pages
83–90, New York, NY, USA, 2008. ACM.

[70] Xin Liu. Towards context-aware social recommendation via trust networks. In
International Conference on Web Information Systems Engineering, pages 121–134.
Springer, 2013.

[71] Babak Loni, Martha Larson, and Alan Hanjalic. Collaborative filtering with fac-
torization machines on implicit feedback data. ACM Trans. Intell. Syst. Technol.
(Under review), 3(10), September 2017.

[72] Babak Loni, Martha Larson, and Alan Hanjalic. Factorization machines for data
with implicit feedback. Submitted in ACM Trans. Inf. Syst., 2018.

[73] Babak Loni, Martha Larson, Alexandros Karatzoglou, and Alan Hanjalic. Recom-
mendation with the right slice: Speeding up collaborative filtering with factoriza-
tion machines. In RecSys Posters, 2015.

[74] Babak Loni, Roberto Pagano, Martha Larson, and Alan Hanjalic. Bayesian person-
alized ranking with multi-channel user feedback. In Proceedings of the 10th ACM
Conference on Recommender Systems, RecSys ’16, pages 361–364, New York, NY,
USA, 2016. ACM.

[75] Babak Loni, Roberto Pagano, Martha Larson, and Alan Hanjalic. Bayesian person-
alized ranking with multi-channel user feedback. In Proceedings of the 10th ACM
Conference on Recommender Systems (To appear), RecSys ’16, 2016.

BIBLIOGRAPHY 135

[76] Babak Loni, Roberto Pagano, Martha Larson, and Alan Hanjalic. Top-n recom-
mendation with multi-channel positive feedback using factorization machines.
ACM Transactions on Information Systems (TOIS), 2018.

[77] Babak Loni and Alan Said. Wraprec: An easy extension of recommender system
libraries. In Proceedings of 8th ACM International Conference of Recommender Sys-
tems, RecSys ’14, 2014.

[78] Babak Loni, Yue Shi, Martha Larson, and Alan Hanjalic. Cross-domain collabo-
rative filtering with factorization machines. In Proceedings of the 36th European
Conference on Information Retrieval, ECIR ’14, 2014.

[79] Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. An efficient non-negative
matrix-factorization-based approach to collaborative filtering for recommender
systems. IEEE Transactions on Industrial Informatics, 10(2):1273–1284, 2014.

[80] Trung V. Nguyen, Alexandros Karatzoglou, and Linas Baltrunas. Gaussian process
factorization machines for context-aware recommendations. In Proceedings of the
37th International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval, SIGIR ’14, pages 63–72, New York, NY, USA, 2014. ACM.

[81] Trung V. Nguyen, Alexandros Karatzoglou, and Linas Baltrunas. Gaussian process
factorization machines for context-aware recommendations. In Proceedings of the
37th International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval, SIGIR ’14, pages 63–72, New York, NY, USA, 2014. ACM.

[82] Weike Pan, Evan Xiang, Nathan Liu, and Qiang Yang. Transfer learning in collabo-
rative filtering for sparsity reduction, 2010.

[83] Weike Pan, Hao Zhong, Congfu Xu, and Zhong Ming. Adaptive bayesian person-
alized ranking for heterogeneous implicit feedbacks. Knowledge-Based Systems,
73:173 – 180, 2015.

[84] Umberto Panniello, Michele Gorgoglione, and Cosimo Palmisano. Comparing
pre-filtering and post-filtering approach in a collaborative contextual recom-
mender system: An application to e-commerce. In Proceedings of the 10th Inter-
national Conference on E-Commerce and Web Technologies, EC-Web 2009, pages
348–359, Berlin, Heidelberg, 2009. Springer-Verlag.

[85] Ladislav Peska and Peter Vojtas. Negative implicit feedback in e-commerce rec-
ommender systems. In Proceedings of the 3rd International Conference on Web
Intelligence, Mining and Semantics, page 45. ACM, 2013.

[86] Ian Porteous, Arthur Asuncion, and Max Welling. Bayesian matrix factorization
with side information and dirichlet process mixtures. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI’10, pages 563–568. AAAI
Press, 2010.

136 BIBLIOGRAPHY

[87] Runwei Qiang, Feng Liang, and Jianwu Yang. Exploiting ranking factorization
machines for microblog retrieval. In Proceedings of the 22nd ACM international
conference on Conference on information and knowledge management, CIKM ’13,
pages 1783–1788, New York, NY, USA, 2013. ACM.

[88] S. Rendle. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th Inter-
national Conference on, 2010.

[89] Steffen Rendle. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th
International Conference on, pages 995–1000. IEEE, 2010.

[90] Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on
Data Mining, pages 995–1000. IEEE, 2010.

[91] Steffen Rendle. Context-aware ranking with factorization models. Springer, 2011.

[92] Steffen Rendle. Factorization machines with libfm. ACM Trans. Intell. Syst. Tech-
nol., 3(3), May 2012.

[93] Steffen Rendle. Scaling factorization machines to relational data. In Proceedings
of the 39th international conference on Very Large Data Bases, PVLDB’13, pages
337–348. VLDB Endowment, 2013.

[94] Steffen Rendle. Scaling factorization machines to relational data. In Proceedings
of the VLDB Endowment, volume 6, pages 337–348. VLDB Endowment, 2013.

[95] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for item
recommendation from implicit feedback. In ACM WSDM ’14, WSDM ’14, pages
273–282. ACM, 2014.

[96] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for item
recommendation from implicit feedback. In WSDM ’14, pages 273–282, 2014.

[97] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceed-
ings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI
’09, pages 452–461, Arlington, Virginia, United States, 2009. AUAI Press.

[98] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. BPR: Bayesian personalized ranking from implicit feedback. In UAI ’09,
pages 452–461, 2009.

[99] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-
Thieme. Fast context-aware recommendations with factorization machines. SI-
GIR ’11. ACM, 2011.

[100] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: An open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative
Work, CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

BIBLIOGRAPHY 137

[101] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender
Systems Handbook. Springer-Verlag New York, Inc., New York, NY, USA, 1st edition,
2010.

[102] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[103] Alan Said and Alejandro Bellogín. Comparative recommender system evaluation:
Benchmarking recommendation frameworks. In Proceedings of the 8th ACM Con-
ference on Recommender Systems, RecSys ’14, pages 129–136, New York, NY, USA,
2014. ACM.

[104] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Ad-
vances in Neural Information Processing Systems, volume 20, 2008.

[105] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.
Methods and metrics for cold-start recommendations. In Proceedings of the 25th
Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’02, pages 253–260, New York, NY, USA, 2002. ACM.

[106] Hendrik Schreiber. Improving genre annotations for the million song dataset. In
ISMIR, pages 241–247, 2015.

[107] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, and Alan Han-
jalic. xCLiMF: optimizing expected reciprocal rank for data with multiple levels of
relevance. In ACM RecSys ’13, pages 431–434, 2013.

[108] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan Hanjalic,
and Nuria Oliver. Tfmap: Optimizing map for top-n context-aware recommenda-
tion. In Proceedings of the 35th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’12, pages 155–164, New York,
NY, USA, 2012. ACM.

[109] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver,
and Alan Hanjalic. Climf: Learning to maximize reciprocal rank with collaborative
less-is-more filtering. In Proceedings of the Sixth ACM Conference on Recommender
Systems, RecSys ’12, pages 139–146, New York, NY, USA, 2012. ACM.

[110] Yue Shi, Martha Larson, and Alan Hanjalic. Tags as bridges between domains: im-
proving recommendation with tag-induced cross-domain collaborative filtering.
UMAP’11, 2011.

[111] Yue Shi, Martha Larson, and Alan Hanjalic. Unifying rating-oriented and ranking-
oriented collaborative filtering for improved recommendation. Inf. Sci., 229:29–39,
April 2013.

[112] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges. ACM Comput.
Surv., 47(1):3:1–3:45, May 2014.

138 BIBLIOGRAPHY

[113] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges. ACM Comput.
Surv., 47(1):3:1–3:45, May 2014.

[114] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges. ACM Computing
Surveys, To appear.

[115] Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix fac-
torization. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’08, pages 650–658, New York, NY,
USA, 2008. ACM.

[116] M. H. Soudkhah and R. Janicki. Weighted features classification with pairwise
comparisons, support vector machines and feature domain overlapping. In 2013
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises,
pages 172–177, June 2013.

[117] Harald Steck. Training and testing of recommender systems on data missing not
at random. In KDD ’10, pages 713–722, 2010.

[118] Yijun Sun. Iterative relief for feature weighting: Algorithms, theories, and applica-
tions. IEEE Trans. Pattern Anal. Mach. Intell., 29(6):1035–1051, June 2007.

[119] T.F. Tan and S. Neetessine. Is Tom Cruise threatend? using Netflix Prize data to ex-
amine the long tail of electronic commerce. Technical report, University of Penn-
sylvania, Wharton Business School, 2009.

[120] Liang Tang, Bo Long, Bee-Chung Chen, and Deepak Agarwal. An empirical study
on recommendation with multiple types of feedback. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 283–292, New York, NY, USA, 2016. ACM.

[121] Mikhail Trofimov, Sumit Sidana, Oleh Horodnitskii, Charlotte Laclau, Yury Maxi-
mov, and Massih-Reza Amini. Representation learning and pairwise ranking for
implicit and explicit feedback in recommendation systems. 04 2017.

[122] Karen H. L. Tso-Sutter, Leandro Balby Marinho, and Lars Schmidt-Thieme. Tag-
aware recommender systems by fusion of collaborative filtering algorithms. In
Proceedings of the 2008 ACM Symposium on Applied Computing, SAC ’08, pages
1995–1999, New York, NY, USA, 2008. ACM.

[123] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-
based music recommendation. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 2643–2651. Curran Associates, Inc., 2013.

[124] Sheng Wang, Xiaobo Zhou, Ziqi Wang, and Ming Zhang. Please spread: Recom-
mending tweets for retweeting with implicit feedback. In Proceedings of the 2012

BIBLIOGRAPHY 139

Workshop on Data-driven User Behavioral Modelling and Mining from Social Me-
dia, DUBMMSM ’12, pages 19–22, New York, NY, USA, 2012. ACM.

[125] Shuai Wang, Mianwei Zhou, Geli Fei, Yi Chang, and Bing Liu. Contextual
and position-aware factorization machines for sentiment classification. CoRR,
abs/1801.06172, 2018.

[126] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. At-
tentional factorization machines: Learning the weight of feature interactions via
attention networks. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence, IJCAI’17, pages 3119–3125. AAAI Press, 2017.

[127] Hong-jie Xing, Ming-hu Ha, Bao-gang Hu, and Da-zeng Tian. Linear feature-
weighted support vector machine. Fuzzy Information and Engineering, 1(3):289–
305, Sep 2009.

[128] M. Zanker and M. Jessenitschnig. Collaborative feature-combination recom-
mender exploiting explicit and implicit user feedback. In 2009 IEEE Conference
on Commerce and Enterprise Computing, pages 49–56, July 2009.

[129] Yu Zhang, Xiaomin Zhu, and Qiwei Shen. A recommendation model based on col-
laborative filtering and factorization machines for social networks. In Proceedings
of 5th IEEE International Conference on, Nov 2013.

[130] Yu Zhang, Xiaomin Zhu, and Qiwei Shen. A recommendation model based on col-
laborative filtering and factorization machines for social networks. In Broadband
Network Multimedia Technology (IC-BNMT), 2013 5th IEEE International Confer-
ence on, pages 110–114, Nov 2013.

[131] Yi Zhen, Wu-Jun Li, and Dit-Yan Yeung. Tagicofi: Tag informed collaborative filter-
ing. In Proceedings of the Third ACM Conference on Recommender Systems, RecSys
’09, pages 69–76, New York, NY, USA, 2009. ACM.

[132] C Lawrence Zitnick and Takeo Kanade. Maximum entropy for collaborative filter-
ing. In Proceedings of the 20th conference on Uncertainty in artificial intelligence,
pages 636–643. AUAI Press, 2004.

LIST OF FIGURES

1.1 Representation of a general matrix factorization model 6
1.2 Representation of the user-item interactions in Factorization Machines . . 7

2B.1 Encoding of user and item clusters as auxiliary features in Factorization
Machines . 26

2B.2 The effect of the ‘free-lunch’ enhacements on the Amazon Books dataset. 29
2B.3 The effect of the ‘free-lunch’ enhacements on the Amazon Music dataset. 30

2C.1 Complexity of training a model when only only a sensible subset of data is
used . 35

2C.2 Feature construction of the ‘Slice and Train’ method 36

3.1 An overview of data representation in Factorization Machines. 49
3.2 Representation of feature vectors in FM-Pair-CD. 56
3.3 Comarison of the epoch time of FM-Pair with other learning-to-rank meth-

ods. 61
3.4 Splitting method for the cross-domain recommendation experiment with

FM-Pair. 62
3.5 Convergence of FM-Pair with and without context features. 64
3.6 Convergence of FM-Pair with and without cross-domain features. 64
3.7 Training time of FM-Pair based on the dimentionality of factorization. . . 65

4.1 Embedding feedback channels in Pairwise Factorization Machines (FM-
Pair). 76

4.2 Standard versus multi-channel sampling in FM-Pair. 78
4.3 Comparison of different sampling method for the FM-Pair model. 88
4.4 Accuracy, Epoch time, and Item Coverage of different sampling methods

with FM-Pair. 90

5.1 The effect of using weights for features in Factorization Machines 97

6.1 The overall architecture of WrapRec. 117

141

LIST OF TABLES

2A.1 Performance comparison of different single- and cross-domain factoriza-
tion models on the Amazon dataset . 22

2B.1 Comparison of our cluster-enhanced approach with the no-cluster baseline 30

2C.1 The statistics of the datasets used for the ‘slice and train’ method 38
2C.2 The hyper-parameters used for the ‘slice and train’ experiments. 39
2C.3 Performance of the ‘slice and train’ method compared to other methods. . 40

3.1 Statistics of the datasets that are used to evalute FM-Pair. 57
3.2 Comparison of FM-Pair with other learning-to-rank methods. 60
3.3 Performance of FM-Pair with and without context. 62
3.4 Performance of FM-Pair with and without cross-domain features. 63

4.1 Statistics of the datasets that are used to evaluate the multi-channel sam-
plers. 81

4.2 Performance of the single-channel versus the multi-channel training meth-
ods. 86

5.1 Statistics of the dataset used to evaluate WFM. 108
5.2 WFM-Point compared to several methods for rating prediction. 109
5.3 WFM-Pair compared to several methods on datasets with implicit feedback.110

143

LIST OF ALGORITHMS

1 Learning FM-Pair with Stochastic Gradient Descent. 53

2 Learning FM-Pair with Stochastic Gradient Descent and adapted samplers. 80

3 Learning Point-wise Weighted Factorization Machines (WFM-Point) 102
4 Learning Pair-wise Weighted Factorization Machines (WFM-Point) 105

145

ACKNOWLEDGEMENTS

The last four years and few months that I spent to pursue my PhD was a wonderful
journey and an exciting chapter in my life that gave me the opportunity to broaden my
knowledge, deepen my understanding of science and technology, develop many soft and
hard skills, experience working around the world, and make new friends and colleagues.
Looking back to the path that led to this PhD thesis, I am truly indebted to many individ-
uals who accompanied me on this journey, without whom this project would have not
been possible.

First and foremost, I would like to express my sincere gratitude to my doctoral advi-
sors Prof. Martha Larson and Prof. Alan Hanjalic who offered me the golden opportunity
to work in TU Delft’s MMC lab, and who tutored me not only on professional and scien-
tific research but also on personal development. Thanks Martha for your continuous
guidance, for your extraordinary support, for always being available to help me and for
the challenging and constructive discussions that we had. Thanks Alan for your sup-
port, for your positivity and openness, and for your constructive feedback. It was a great
pleasure for me to work with the two of you.

I would like to thank CrowdRec, the European FP7 project that financially supported
my PhD, and to all project members for the admirable collaboration. I also owe a spe-
cial thanks to the Dutch national E-Infrastructure and SURFsara for use of their high-
performance computing service, so I could perform the many experiments needed for
this PhD project.

Thank you to many researchers and professors who helped me with their advices
during my PhD. To my external committee members Prof. Gert-Jan Houben, Prof. Mar-
cel Reinders, Prof. Arjen de Vries, Prof. Jun Wang, and Prof. Joemon Jose who took ti me
to review my dissertation and for their feedback on this manuscript.

To Saskia Peters and Robbert Eggermont for continuous administrative and technical
support.

To Dr. Keki Burjorjee, Dr. Siddharth Patil, Dr. Tao Ye and Dr. Steve Essinger who
gave me the great opportunity to work as scientific intern in Pandora Media in summer
2017. To my awesome colleagues and friends in Pandora specially Himan Abdollahpour,
Jordi Pons and Jong Wook Kim with whom I really enjoyed the summer internship there.
It was a great pleasure and a fabulous learning chance for me to be in such a vibrant
environment full of brilliant people.

To Dr. Alexandros Karatzoglou for his advice and support during my visit at Telefon-
ica Research.

To Kollekt.fm, the start-up company in Amsterdam, and to its founders, for the great
collaboration and for sharing their data for my research.

To my wonderful colleagues and friends in the MMC lab for the great moments and
memories. To Dr. Yue Shi who inspired me with his outstanding research on Recom-
mender Systems. To Dr. Raynor Vliegendhart for his passionate explanations of con-

147

148 ACKNOWLEDGEMENTS

cepts in computer science, for helping me learning Dutch and for his feedback on the
Dutch summary of this dissertation. To Dr. Roberto Pagano for the great collaboration,
for the lovely time in Boston and Palermo. To Dr. Alessio Bazzica for initiating the “deep
(learning) guys” sessions, and for our memorable trip to Russia. To soon-to-be-doctor
Karthik Yadati for the great and memorable discussions. To Soude for her friendly advice
and for enthusiastically leading the organization of the RecSysNL (Recommender Sys-
tems community of the Netherlands) meetups. To Dr. Alan Said, whom I always call “the
Wikipedia of the RecSys community”, as I was always amazed by his detailed and up-to-
the-point recall of everything that is related to RecSys, who inspired me with his passion
about research on recommender systems, and whom I learned a lot from while he was
in Delft. To Jay for the nice and inspiring discussions on deep learning and optimization
problems. To Ernestasia, Xiuxiu, Manel, Zhe, Xinchao, Yi, Christina, Christoph, Cynthia,
Huijuan and Julian for the useful discussions and nice moments.

To my friendly colleagues at De Persgroep with whom I shared the final stage of my
PhD and from whom I am still learning. To Anne, Lucas, Jeroen, Vasco and Alen.

To Mahboobeh Goudarzi for making the cover of this book by elegantly visualizing
my abstract idea.

I owe a true dept of gratitude to TU Delft. I enjoyed every moment that I spent in
this great university. From the first day that I started my master study till today that I
am leaving this university, I enjoyed this fantastic environment full of friendly people
and was impressed by the excellent support on everything. I deeply appreciate the won-
derful organization of this university, graduate school for offering constructive courses,
international office for supporting international students, Promood and YoungDelft for
extracurricular programs, sport and cultural center for offering various programs and
hosting unique events, and many associations, specially DSZ-Wave for organization of
the swimming activities where I could refuel my energy and relief my mind. Thanks to
all people who made this university such a great place.

To my wonderful friends who helped me to keep the balance between work and life.
To Hossein, Farhad, Siamak, Hasti, Alireza, Armaghan, Parsa, Masoud, Abdi, Poolad,
Shekofeh, Bahar, Bahram, Ahura, Sara, Elahe, Darya, Fahad Irannejad, Aida, Farzaneh,
Javad, Shaghayegh, Reyhan, Roberto, Mirko, Mattia, Nienke, Steven, Sasha, Gamze, Lino,
Dorien, Amirali, Negin and Vahid.

To my dear uncle Ehsan for being the continuous source of inspiration and positivity
during our little project Tezol.

To my sister Mina, who inspires me with her perseverance and for always being there
for me. To my brother-in-law Amir, who makes me proud with his accomplishments.
And to my cute nephews Bardia and Barad.

To my brother Afshin: you always make me very happy when you are around, and
fascinate me with your endless knowledge about movies, books and technology. I wish I
would had read a fraction of books that you have. You are an inspiration for me.

To my love, Mahshid, for her kindness, care and love. Thanks Mahshid, for the blissful
moments that you share with me, for supporting me and keeping me calm in stressful
moments. For making me a better person. For the happiness that you gave to me. And
for many other reasons that are beyond the power of words to be expressed. I am very
lucky that I have you.

ACKNOWLEDGEMENTS 149

And finally, thanks to my parents, Sodabeh and Mostafa, for their endless dedication
and love. They are responsible for this book more than they can imagine. This book is
dedicated to them.

Babak Loni
November 2018
Delft, The Netherlands

CURRICULUM VITÆ

Babak Loni was born on September 18th 1986, Tehran,
Iran. From 2004 to 2009 he pursued a Bachelor of Sci-
ence in Computer Science in Amirkabir University of Tech-
nology, Tehran, Iran. He continued his education by ob-
taining a MSc. in Computer Science from Delft Univer-
sity of Technology, Delft, the Netherlands in 2011. After
a year of working as a Software Engineer in SDL, Amster-
dam, he worked a Scientific Programmer at the Multime-
dia Information Retrieval (MIR) lab from Oct 2012 to Oct
2013. His research was mainly on the topic of “multimedia
and crowdsourcing”, and carried out in the context of the

European FP7 project CubRIK.
In October 2013, he started a PhD in Computer Science in the Multimedia Com-

puting Group (former MIR lab) at Delft University of Technology. His PhD topic was
“Recommender Systems”, and involved in the FP7 project CrowdRec, which was about
crowd-powered recommendation for continuous digital media access. During his PhD,
he spent three months as a Data Science intern in Pandora Media, Oakland, USA, and
worked on music recommendation. He also visited Telefonica Research lab in Barcelona,
Spain, where he worked on factorization models.

Babak has been working as a Machine Learning Engineer in De Persgroep, Amster-
dam, Netherlands, since July 2018.

151

	Summary
	Samenvatting
	I Prelude
	Introduction
	Recommender Systems
	Collaborative Filtering
	Memory-based Collaborative Filtering
	Model-based Collaborative Filtering

	Advanced Factorization Models
	Factorization Machines
	Beyond the User-Item Matrix
	Beyond Rating Prediction
	Advanced Learning Models

	Contributions of this Thesis
	Outline

	How to Read this Thesis
	List of Publications

	II Beyond the User-Item Matrix
	Cross-Domain Collaborative Filtering with Factorization Machines
	Introduction
	Related Work
	Cross-Domain CF with Factorization Machines
	Experiments
	Discussion and Future Directions

	`Free-Lunch' Enhancement with Factorization Machines
	Introduction
	Background and Motivation
	Enhancement Approach for FMs
	Factorization Machines
	Cluster Encoding
	Cluster Construction

	Experiments
	Datasets and Framework
	Results

	Conclusion and Outlook

	Speeding Up Collaborative Filtering with Factorization Machines
	Introduction
	Related Work
	The Slice and Train Method
	Dataset and Experiments
	Conclusion

	III Beyond Rating Prediction
	Factorization Machines for Data with Implicit Feedback
	Introduction
	Background and Related Work
	Learning from Implicit Feedback
	Computational Complexity
	Analogy Between FM-Pair and BPR-MF

	Improved Recommendations with Auxiliary Data
	Context-Aware Recommendation with FM-Pair
	Cross-Domain Recommendations

	Datasets, Experiments and Evaluation
	Datasets
	Experiments Setup and Evaluation
	Comparison of FM-Pair with Other Methods
	FM-Pair with Auxiliary Data
	Convergence and Complexity of FM-Pair
	Using WrapRec

	Conclusion and Future Work

	Top-N Recommendation with Multi-Channel Positive Feedback
	Introduction
	Related Work
	Background and Framework
	Factorization Machines (FMs)
	Bayesian Personalized Ranking
	Pairwise Factorization Machines

	Multiple Channels in FM-Pair
	Multiple Channels as Auxilliary Features
	Multi-Channel Sampling

	Data and Experimental setup
	Datasets
	Evaluation Method
	Experimental Reproducibility

	Experiments
	Multi-Channel Sampling versus Conventional Integration of Feedback
	Comparison of Sampling Strategies
	Accuracy, Complexity and Coverage of Different Combinations of Samplers

	Conclusion And Future Work

	IV Advanced Learning Models
	Weighted Factorization Machines
	Introduction
	Related Work
	Framework
	Optimization for Rating Prediction
	Optimization for Ranking

	Applications of WFM
	Context-aware Recommendation
	Cross-Domain Recommendation

	Datasets and Experiments
	Datasets
	Evaluation Protocol
	Weighted FMs for Rating Prediction
	Weighted FMs for Ranking
	Experimental Reproducibility

	Conclusion and Future Work

	V Implementation Framework
	WrapRec, An Evaluation Framework for Recommender Systems
	Introduction
	Overview of the Toolkit
	How to Use the Toolkit
	Updates in WrapRec 2.0
	Outlook

	VI Outlook
	Conclusion and Future Work
	Discussion
	Future Work
	Custom Optimization Methods
	Factorization and Content-based Features
	Elicitation of the `Right' Data
	Factorization Machines for Other Problems
	Unified Evaluation Framework

	Bibliography
	List of Figures
	List of Tables
	Acknowledgements
	Curriculum Vitæ

