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QH-SINGULARITY OF PARTIALLY ORDERED SPACES

TOM VROEGRIJK

Dedicated to Cheyenne Sels

Abstract. Each partial order generates a transitive quasi-uniformity. In this
article we will study the properties of quasi-uniformities that are defined by a

partial order and are QH-singular.

1. Introduction

In exercise 17 on page 35 of Isbells book [1] on uniform spaces it is claimed
that if U and V are distinct uniformities on a set X, the topologies defined by
the Hausdorff uniformities on the hyperspace of X are also distinct. In [7] Smith
showed that this claim was false. From that point on uniformities on a set X that
do generate the same hyperspace topology were called H-equivalent. A uniformity
U for which there is no distinct uniformity V that is H-equivalent to U is called
H-singular.

After Smiths article [7] several papers on the properties of H-singular uniform
spaces appeared (see for example [9] and [10]). Some recent results on this topic
can be found in [2] and [6]. With the publications [3] and [5] Cao, Künzi and
Reilly started the study of H-singularity in the asymmetric case. With each quasi-
uniformity U on a set X we can associate a quasi-uniform structure on the hyper-
space of X called the Hausdorff quasi-uniformity. Here too we can ask ourselves if
there exist quasi-uniformities U for which there is no distinct quasi-uniformity V
such that U and V define Hausdorff quasi-uniformities that have the same under-
lying topology. Such quasi-uniformities will be called QH-singular.

In [8] the author obtained some general results on QH-singularity of quasi-
uniform spaces. The purpose of this article is to investigate the properties of
QH-singular quasi-uniformities that are defined by a partial order.

2. Preliminaries

Let X be a set and U, V ⊆ X ×X relations on X. For an x ∈ X we define U(x)
as {y ∈ X | (x, y) ∈ U}. The relation V ◦ U contains all (x, z) for which there is a
y ∈ X such that y ∈ U(x) and z ∈ V (y). We will denote U ◦ U as U2 and U ◦ Un
as Un+1 whenever n ≥ 2.

A filter U on X×X is called a quasi-uniformity iff it has the following properties:

(1) ∀x ∈ X ∀U ∈ U : (x, x) ∈ U ,
(2) ∀U ∈ U ∃V ∈ U : V 2 ⊆ U .

The elements of a quasi-uniformity U will be called entourages. The pair (X,U) is
a quasi-uniform space. A subset U ′ ⊆ U is a base for U iff each U ∈ U contains
a U ′ ∈ U ′. A transitive quasi-uniformity is a quasi-uniformity with a base that
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consists of transitive relations. For an extensive monograph on quasi-uniform spaces
we refer the reader to [4].

Each quasi-uniformity U has an underlying topology τ(U). In this topology the
neighbourhoodfilter of a point x is generated by the sets U(x) with U ∈ U .

The quasi-uniformity U−1 is called the conjugate of U and consists of all en-
tourages U−1, where U−1 = {(y, x) | (x, y) ∈ U}.

The set of all subsets of X will be denoted as P(X). For a subset A ∈ P(X)
and an entourage U ∈ U we define U(A) as the union of all U(x) with x ∈ A. For
any relation U on X we define

U+ = {(A,B) ∈ P(X)× P(X) |B ⊆ U(A)}

and

U− = {(A,B) ∈ P(X)× P(X) |A ⊆ U−1(B)}.
If (X,U) is a quasi-uniform space, then the filter generated by the sets U− is a quasi-
uniformity U−H on P(X) that we will call the lower Hausdorff quasi-uniformity.

Analogously, the sets U+ generate the upper Hausdorff quasi-uniformity U+
H on

P(X). We will denote the intersection U− ∩ U+ as UH . The Hausdorff quasi-
uniformity UH on the hyperspace P(X) is the filter that is generated by the sets
UH .

If U and V are two quasi-uniformities on a set X, then we say that V is QH-
finer than U (or that U is QH-coarser than V) iff τ(UH) ⊆ τ(VH). If the topologies
τ(UH) and τ(VH) are equal, then we say that U and V are QH-equivalent. The set
of all quasi-uniformities on X that are QH-equivalent with U is the QH-equivalence
class of U . A quasi-uniformity U is called QH-singular iff its QH-equivalence class
only contains U . We will say that U is transitively QH-singular iff there is no
transitive quasi-uniformity V that is distinct from U and QH-equivalent with U .

3. QH-singularity of subspaces

Each partial order defines a unique transitive quasi-uniformity. In the prelimi-
naries we defined the QH-equivalence class of a quasi-uniformity. The purpose of
this article is to get some insight into the structure of the QH-equivalence class
of a quasi-uniformity defined by a partial order and to discover some properties of
quasi-uniformities within this equivalence class.

Definition 1. For a partial order ≤ on a set X we define U≤ as

{(x, y) ∈ X ×X | x ≤ y}.

The filter that consists of all subsets of X × X that contain U≤ is a transitive
quasi-uniformity that we will denote as U≤.

Proposition 1. If ≤ is a partial order on X, then U≤ is a the finest element in
its QH-equivalence class.

Proof. Suppose that V is a quasi-uniformity that is QH-equivalent to U . Take a
V ∈ V and an x ∈ X. By assumption we have that there is a U ∈ U such that
UH({x}) ⊆ VH({x}) and thus (U≤)H({x}) ⊆ VH({x}). This implies U≤(x) ⊆ V (x)
and because x was chosen arbitrarily we get U≤ ⊆ V . Hence we obtain that
V ⊆ U≤. �
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Proposition 2. If V is a quasi-uniformity that is coarser than U≤, then V is QH-
equivalent with U≤ iff for each A ⊆ X there is a V ∈ V such that V (A) ⊆ U≤(A)
and for each x ∈ A there is a y ∈ A with the property V (y) ⊆ U≤(x).

Proof. Since V is a quasi-uniformity that is coarser than U≤ we automatically obtain
that V is QH-coarser than U≤. This means that both quasi-uniformities are QH-
equivalent iff V is QH-finer than U≤. That this is true iff for each A ⊆ X there is
a V ∈ V such that V (A) ⊆ U≤(A) and for each x ∈ A there is a y ∈ A with the
property V (y) ⊆ U≤(x) is a direct consequence of the first corollary of [8]. �

The following results describe how QH-singularity transfers to certain types of
subspaces of partially ordered sets. We will use these results in the final section to
prove the main theorems of this article.

A subset Y of a partially ordered space (X,≤) is a downset (upset) iff x ∈ Y
whenever there is a y ∈ Y such that x ≤ y (x ≥ y).

Proposition 3. Let Y be a downset in a partially ordered space (X,≤). If (X,≤)
is transitively QH-singular, then the partially ordered subspace (Y,≤) is transitively
QH-singular.

Proof. Suppose that (Y,≤) is not transitively QH-singular and that V is a transitive
quasi-uniformity on Y that is QH-equivalent with U≤Y

, where ≤Y is the restriction
of the partial order ≤ to Y . Take a transitive V ∈ V. Define V † such that V †(x)
is equal to U≤(x) whenever x 6∈ Y and equal to V (x) ∪ U≤(x) for x ∈ Y . It is

easy to verify that V † is a transitive relation if Y is a downset. Because V †1 ∩ V
†
2

equals (V1 ∩ V2)† whenever V1, V2 are transitive elements of V, the collection of all
relations V † forms a base for a quasi-uniformity. Let V† be this quasi-uniformity.

It is clear that V† is coarser than U≤. Take a subset A of X. Because V is
QH-equivalent with (U≤Y

) we can use proposition 2 to find a transitive V ∈ V that
satisfies V (A ∩ Y ) ⊆ U≤(A ∩ Y ) and for each x ∈ A ∩ Y there is a y ∈ A ∩ Y with
the property V (y) ⊆ U≤Y

(x)
To prove that V †(A) ⊆ U≤(A) take an x ∈ A. If x is not an element of A ∩ Y ,

then V †(x) is simply U≤(x), so V †(x) ⊆ U≤(A). In case x ∈ A ∩ Y and y ∈ V †(x)
we know that y is either contained in V (x) or in U≤(x). If y ∈ V (x), then y ∈ Y
and therefore y ∈ V (A∩ Y ) ⊆ U≤(A∩ Y ) ⊆ U≤(A). On the other hand, if y is not
contained in V (x), then y ∈ U≤(x) ⊆ U≤(A).

Take an x ∈ A. We only need to prove that there is a y ∈ A such that V †(y) ⊆
U≤(x). If x is not contained in A∩Y , then this is trivially true since V †(x) = U≤(x).
Suppose that x ∈ A ∩ Y . We know that there must be a y ∈ A ∩ Y such that
V (y) ⊆ U≤(x). This yields that x ≤ y and thus we obtain V †(y) = V (y)∪U≤(y) ⊆
U≤(x). �

In the following three results (X,≤) will be a partially ordered space, Y will be a
subset of X and V will be a quasi-uniformity on Y . Throughout these propositions
we will define Ṽ as the filter on X ×X generated by all relations Ṽ where Ṽ (x) is
equal to U≤(x) if x 6∈ Y and equal to V (x) when x ∈ Y .

Lemma 1. Let Y be an upset in a partially ordered space (X,≤) and let V be a
transitive quasi-uniformity on Y that is coarser than U≤Y

and that satisfies z ≥ x

whenever z ∈ V (y) and y ≥ x whenever V ∈ V, x 6∈ Y and y ∈ Y . Ṽ is a transitive
quasi-uniformity on X.
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Proof. Take a transitive V ∈ V and x, y, z ∈ X such that z ∈ Ṽ (y) and y ∈ Ṽ (x).

If x and y are not in Y , then we have z ≥ y ≥ x and therefore z ∈ Ṽ (x). In the case

that x ∈ Y we automatically obtain y ∈ Y and thus z ∈ V 2(x) ⊆ Ṽ (x). Finally,
if x 6∈ Y and y ∈ Y , then we have z ∈ V (y) and y ≥ x. By assumption this yields

z ≥ x and thus z ∈ Ṽ (x). �

Proposition 4. Let Y be an upset in a partially ordered space (X,≤) and let V be
a transitive quasi-uniformity on Y that is QH-equivalent to U≤Y

and that satisfies
z ≥ x whenever z ∈ V (y) and y ≥ x for some V ∈ V, x 6∈ Y and y ∈ Y . The

quasi-uniformity Ṽ is QH-equivalent with U≤.

Proof. By definition we have that Ṽ is coarser than U≤. Let A be a subset of X.
Proposition 2 tells us that we can find a V ∈ V such that V (A∩ Y ) ⊆ U≤Y

(A∩ Y )
and for each x ∈ A ∩ Y there is a y ∈ A ∩ Y with the property V (y) ⊆ U≤Y

(x).

Take an x ∈ A and a z ∈ Ṽ (x). If x ∈ Y , then we have

z ∈ Ṽ (x) = V (x) ⊆ V (A ∩ Y ) ⊆ U≤Y
(A ∩ Y ) ⊆ U≤(A).

For x 6∈ Y we have that Ṽ (x) = U≤(x) and thus z ∈ U≤(A). This proves that

Ṽ (A) ⊆ U≤(A).

Finally, we want to show that there is a y ∈ A such that Ṽ (y) ⊆ U≤(x). In case

x 6∈ Y we can simply choose y to be equal to x, since Ṽ (y) = Ṽ (x) = U≤(x). If
x is an element of Y , then we know that there is a y ∈ A ∩ Y with the property
V (y) ⊆ U≤Y

(x). This implies Ṽ (y) = V (y) ⊆ U≤(x). �

Proposition 5. Let Y be a subset of a partially ordered space (X,≤) such that
x ≤ y for each y ∈ Y whenever x 6∈ Y . If (X,≤) is transitively QH-singular, then
(Y,≤) is transitively QH-singular.

Proof. Suppose that there exists a transitive quasi-uniformity V on Y that is QH-
equivalent with U≤. Because x ≤ y for each y ∈ Y whenever x 6∈ Y we have that Y
is an upset. On the other hand, this also implies that z ≥ x whenever V ∈ V, x 6∈ Y ,
y ∈ Y and z ∈ X such that z ∈ V (y) and y ≥ x. The previous proposition now

yields that Ṽ is a transitive quasi-uniformity that is QH-equivalent with U≤. �

4. The ordered space ω

That the ordered space ω is not QH-singular was already established in [3].
In this section we will characterise all quasi-uniformities that are in the QH-
equivalence class of the quasi-uniformity Uω determined by the order on ω. We
will denote U≤ as Uω if ≤ is the order relation on ω.

Proposition 6. A quasi-uniformity V on ω is QH-coarser than Uω iff τ(V) is
coarser than τ(Uω).

Proof. It follows from the definition that the underlying topology of V is coarser
than τ(U) whenever τ(VH) ⊆ τ((Uω)H). On the other hand, if τ(V) ⊆ τ(Uω), then
we have for each n ∈ ω and V ∈ V that Uω(n) ⊆ V (n). This implies Uω ⊆ V and
thus V ⊆ Uω. The latter yields that V is QH-coarsers than Uω. �

A subset Y of a quasi-uniform space (X,U) will be called relatively U-precompact
iff for each U ∈ U there is a finite set K ⊆ X such that Y ⊆ U(K).

Proposition 7. Let V be a quasi-uniformity on ω. The following are equivalent:
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(1) for each A ⊆ ω there is a V ∈ V such that for each x ∈ A there is a y ∈ A
with the property V (y) ⊆ Uω(x),

(2) each relatively V−1-precompact subset of ω is finite.

Proof. Suppose that there is an infinite relatively V−1-precompact subset A of ω.
Take an arbitrary V ∈ V. By assumption there is an n ∈ ω such that A ⊆
V −1([0, n]). Choose x ∈ A such that n < x. Because A is infinite such an x must
exist. Since A ⊆ V −1([0, n]) we now have that for each y ∈ A the set V (y) intersects
with [0, n]. This means that there is no y ∈ A such that V (y) ⊆ Uω(x).

To prove the converse we assume that there is an A ⊆ ω such that for each
V ∈ V there is an x ∈ A with the property that V (y) 6⊆ Uω(x) for any y ∈ A. Take
V ∈ V and choose an x ∈ A with this property. Whenever V is an element of V we
know that V (y) is not contained in Uω(x). Clearly, x cannot be equal to 0, since
this would imply that Uω(x) equals ω. For any y ∈ A the set V (y) intersects with
[0, x− 1] and thus A ⊆ V −1([0, x− 1]). Because V was arbitrary we have that A is
relatively V−1-precompact. �

Proposition 8. A quasi-uniformity V on ω is QH-equivalent to Uω iff the following
conditions hold:

(1) τ(V) ⊆ τ(Uω),
(2) for each n ∈ ω there is a V ∈ V such that V −1([0, n]) = [0, n],
(3) each relatively V−1-precompact subset of ω is finite.

Proof. First we will prove the necessity of these conditions. That QH-equivalence
of V and Uω implies conditions (1) and (3) follows from the previous propositions
and proposition 2. To prove that the second condition holds let us assume that there
is an n ∈ ω such that for each V ∈ V the set V −1([0, n]) is not equal to [0, n]. If we
define A as [n + 1,+∞[, then V (A) intersects with [0, n] for each V ∈ V. Clearly
the set Uω(A) is equal to A and thus there is no V ∈ V for which V (A) ⊆ Uω(A).
This contradicts with the assumption that V on ω is QH-equivalent to Uω.

Now suppose that the three stated conditions are true. The first condition yields
that VH is coarser than (Uω). By proposition 2 this means that in order to prove
that V is QH-equivalent to Uω we still need to show that for each A ⊆ ω there is
a V ∈ V such that V (A) ⊆ Uω(A). Assume that this is not the case. This means
that we can find an A ⊆ ω such that for each V ∈ V we have V (A) 6⊆ Uω(A). The
set A does not contain 0, because in this case Uω(A) would be equal to ω. Define
n as min(A)− 1. Since V (A) hits [0, n] for each V ∈ V we obtain that there is no
entourage V ∈ V for which V −1([0, n]) ⊆ [0, n] �

Proposition 9. A quasi-uniformity V on ω is QH-equivalent to Uω iff the following
conditions hold:

(1) τ(V) ⊆ τ(Uω),
(2) τ(U−1

ω ) ⊆ τ(V−1),
(3) each relatively V−1-precompact subset of ω is finite.

Proof. Let V be a quasi-uniformity that is QH-equivalent to Uω. It was established
in [5] that the conjugates of QH-equivalent quasi-uniformities generate the same
topology. It follows from the previous result that V satisfies conditions (1) and (3).

To prove the converse assume that the quasi-uniformity V satisfies the three given
conditions. Because of the previous result we only need to prove that for each n ∈ ω
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there is a V ∈ V such that V −1([0, n]) = [0, n] to show that VH and (Uω)H generate
the same topology. From the second condition we obtain that for each k ∈ ω there
is a Vk ∈ V such that V −1

k (k) ⊆ U−1
ω (k) = [0, k]. Take n ∈ ω and define V as

V0∩ . . .∩Vn. This entourage is clearly an element of V and V −1([0, n]) ⊆ [0, n]. �

Example 1. Define the entourage Wk on ω such that Wk(n) is equal to Uω(n− 1)
whenever n is odd and n ≥ k and equal to Uω(n) in all other cases. It is an easy
exercise to check that these relations are transitive. Because Wk′ ⊆ Wk whenever
k ≤ k′ we obtain that these entourages also form a base for a transitive quasi-
uniformity W.

The quasi-uniformityW in fact satisfies all the conditions in the previous propo-
sition. First of all it follows directly from the definition that Uω(n) ⊆Wk(n) for all
k, n ∈ ω, so this means τ(V) ⊆ τ(Uω).

Now take an n ∈ ω and define k as n+ 2. If m ≤ n, then Wk(m) equals Uω(m)
and thus n ∈ Wk(m). In case m > n we have that Wk(m) ⊆ Uω(n + 1) and
therefore n 6∈ Wk(m). Hence we obtain that W−1

k (n) = [0, n] = U−1
ω (n). This

yields τ(U−1
ω ) ⊆ τ(V−1).

Finally, let Y be a relatively W−1-precompact subset of ω. By definition we
have that W−1

0 (n) ⊆ [0, n+ 1] for all n ∈ ω. Now let K be a finite subset of ω such
that Y ⊆ W−1

0 (K). If k0 is the maximum of K, then W−1
0 (K) ⊆ [0, k0 + 1] and

this means that Y must be finite.

This example suggests that the existence of a totally ordered subspace implies
QH-singularity. In the following section we will see that this is not the case, but
that there is some sort of upper bound for the size of totally ordered subspaces in
QH-singular partially ordered spaces. In fact we will construct quasi-uniformities
similar to the one in the previous example to prove the main results of this article.

5. Chains and antichains

A subset of a partially ordered space that is totally ordered is called a chain. An
antichain is a subset of which all distinct elements are incomparable. In this section
we investigate the behaviour of chains and antichains in QH-singular partially
ordered spaces.

Proposition 10. A partially ordered set (X,≤) that is equal to a finite union of
antichains is QH-singular.

Proof. Suppose that X can be written as A0∪. . .∪An where each Ak is an antichain.
Let V be a quasi-uniformity that is QH-equivalent to U≤. We already saw that V
must be coarser than U≤. From theorem 2.4 of [3] we obtain that for each 0 ≤ k ≤ n
we can find a Vk ∈ V such that Vk(x) ⊆ U≤(x) whenever x ∈ Ak. If we define V as
the intersection of all Vk we obtain an element of V with the property that V ⊆ U≤.
Hence V and U≤ must be equal. �

Definition 2. We will define the depth of an element x ∈ X as the supremum of
all n ∈ ω with the property that there exists a chain of length n of which x is the
smallest element.

Proposition 11. Let (X,≤) be a partially ordered set. If there is an n ∈ ω such
that |C| ≤ n for each chain C in X, then (X,≤) is QH-singular.
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Proof. Let Ak be the collection of all x ∈ X with depth equal to k. It is clear that
X is equal to A1 ∪ . . .∪An. We will now show that each Ak is in fact an antichain.
Take x, y ∈ Ak with x < y. By definition we can find a chain y1 < . . . < yk such
that y equals y1. We now have that the chain x < y1 < . . . < yk consists of k + 1
elements and x is the smallest element in the chain, but this is impossible since the
depth of x is equal to k. By using the previous proposition we obtain that (X,≤)
is QH-singular. �

Definition 3. The supremum of all cardinalities of antichains in X will be called
the width of X.

Example 2. The space ω×ω with the pointwise ordering (i.e. (n1,m1) ≤ (n2,m2)
iff n1 ≤ n2 and m1 ≤ m2) only has finite antichains, but it has countable width.

Suppose the elements (nk,mk)k∈ω form an antichain. Define N as {k ∈ ω | nk ≤
n0} and M as {k ∈ ω | mk ≤ m0}. Since all elements (nk,mk) are incomparable
the set N ∪M must be equal to ω. This means that either N or M must be infinite.
Let us assume that N is an infinite set. This yields that there is an n ≤ n0 such
that there is an infinite number of elements (nk,mk) that satisfy nk = n. This
would of course imply that the elements (nk,mk)k∈ω do not form an antichain.
Hence we can conclude that each antichain must be finite.

On the other hand, the subset Ak = {(n,m) ∈ ω × ω | n+m = k} is clearly an
antichain with k + 1 elements, so ω × ω has countable width.

Definition 4. Let β be an ordinal. For a map Λ : β → X we define λΛ(x) as
min{γ ∈ β | x 6≤ Λ(γ)} and λ∗Λ(x) as min{γ ∈ β | x ≤ Λ(γ)}.

Definition 5. Let Λ be a map from an ordinal β to X. Define the relation V αΛ ,
with α ∈ β, such that V αΛ (x) is equal to the union of U≤(x) and the set of all y ∈ X
for which there is an even α′ that is greater than or equal to α and satisfies the
properties x ≤ Λ(α′) and Λ(α′ + 1) ≤ y.

Lemma 2. If β is an ordinal and Λ : β → X is strictly decreasing, then V αΛ is a
transitive relation.

Proof. Suppose (x, y) and (y, z) are both elements of the relation V αΛ . If either
x ≤ y or y ≤ z, then it is easy to see that z ∈ V αΛ (x).

Now let us take a look at the situation where x 6≤ y and y 6≤ z. This means that
we can find an even ordinal α′ ≥ α such that x ≤ Λ(α′) and Λ(α′ + 1) ≤ y and an
even ordinal α′′ ≥ α such that y ≤ Λ(α′′) and Λ(α′′+1) ≤ z. First of all this implies
that x ≤ Λ(α′) and y ≤ Λ(α′′). Moreover, we have that Λ(α′ + 1) ≤ y ≤ Λ(α′′).
Since both α′ and α′′ are both even and Λ is strictly decreasing we obtain that
Λ(α′+1) ≤ Λ(α′′+1). This yields Λ(α′+1) ≤ Λ(α′′+1) ≤ z and thus z ∈ V αΛ (x). �

It follows from the definition that V αΛ ⊇ V α
′

Λ whenever α ≤ α′. This implies that
the sets V αΛ form a filter basis on X ×X that consists of transitive relations. The
filter generated by these sets is therefore a transitive quasi-uniformity.

Definition 6. Define VΛ as the transitive quasi-uniformity on X generated by the
entourages V αΛ with α ∈ β.

The construction of this quasi-uniformity is based on the quasi-uniformity on ω
in example 1. It was in fact this example that led to the ideas behind the main
results of this article.
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Lemma 3. Let Λ be a strictly decreasing map from an ordinal β to X and A a
subset of X. If A does not contain an antichain A′ for which sup{λΛ(x) | x ∈ A′}
is equal to β, then we can find an α ∈ β such that for each x ∈ A with α < λΛ(x)
there exists a y ∈ A with λ(y) < λ(x) that satisfies x ≤ y.

Proof. Suppose that for each α ∈ β there is an x ∈ A with α < λΛ(x) such that
for each y ∈ A with λΛ(y) < λΛ(x) it holds that x 6≤ y. Choose an x0 ∈ A such
that 0 < λΛ(x0) and therefore x0 ≤ Λ(0). Assume that for some γ ∈ β we have
found a family (xα)α∈γ of elements in A such that xα′ 6≤ xα and λΛ(xα) < λΛ(xα′)
whenever α < α′.

Suppose that sup{λΛ(xα) | α ∈ γ} is not equal to β. Because of our initial
assumption we can find an xγ ∈ A with sup{λΛ(xα) | α ∈ γ} < λΛ(xγ) and such
that for each y ∈ A with λΛ(y) < λΛ(xγ) it holds that xγ 6≤ y. This means that
xγ 6≤ xα and λΛ(xα) < λΛ(xγ) whenever α < γ.

Using transfinite induction we obtain an indexed family (xα)α∈γ0 in A such that
the supremum of all λΛ(xα) with α ∈ γ0 is equal to β. By construction we have
that xα′ 6≤ xα whenever α < α′.

Now suppose that xα ≤ xα′ . This means that for each γ ∈ β we have xα′ 6≤ Λ(γ)
if xα 6≤ Λ(γ) and therefore λΛ(xα′) ≤ λΛ(xα). This contradicts the fact that
λΛ(xα) < λΛ(xα′) whenever α < α′. Hence we obtain that distinct elements in
the family (xα)α∈γ0 are incomparable and that the subset of all elements xα is an
antichain. �

Proposition 12. Let β be an ordinal and Λ : β → X a strictly decreasing function.
If X does not contain an antichain Y such that sup{λΛ(y) | y ∈ Y } equals β, then
VΛ is QH-equivalent with U≤.

Proof. It is clear that VΛ is coarser than U≤. Now take a subset A of X. In case
sup{λΛ(x) | x ∈ A} is strictly smaller than β we have that V αΛ (x) = U≤(x), with
α equal to sup{λΛ(x) | x ∈ A}, for all x ∈ A. This implies that V αΛ satisfies the
conditions of proposition 2.

Now suppose that sup{λΛ(x) | x ∈ A} is equal to β. By assumption A cannot
contain an antichain A′ such that sup{λΛ(x) | x ∈ A′} equals β. Using the previous
proposition we obtain that there is an α ∈ β such that for each x ∈ A with
α < λΛ(x) there exists a y ∈ A with λΛ(y) < λΛ(x) that satisfies x ≤ y. We will
show that V αΛ satisfies the conditions of proposition 2.

Take a y ∈ V αΛ (A). We want to show that y is an element of U≤(A). Choose a
z ∈ A such that y ∈ V αΛ (z). If z ≤ y, then there is nothing left to prove, so we will
assume that this is not the case. This means that we can find an even α′ ∈ β such
that Λ(α′ + 1) ≤ y and α ≤ α′ < λΛ(z). Because sup{λΛ(x) | x ∈ A} = β we know
that there is an x ∈ A with the property λΛ(x) > α′ + 1 and thus x ≤ Λ(α′ + 1).
This implies that x ≤ y and that y ∈ U≤(A).

Let z be an element of A. To complete this proof we need to show that there is
a y ∈ A such that V αΛ (y) ⊆ U≤(z). If λΛ(z) ≤ α, then V αΛ (z) = U≤(z) so we can
simply choose y to be equal to z. In case λΛ(z) > α there must be a y ∈ A such
that λΛ(y) < λΛ(z) and z ≤ y. Take an element y′ ∈ V αΛ (y). If y ≤ y′, then we
have z ≤ y ≤ y′ and thus y′ ∈ U≤(z). If y 6≤ y′, then Λ(α′ + 1) ≤ y′ for some even
α′ with the property α ≤ α′ < λΛ(y). Because α′ < λΛ(y) < λΛ(z) we know that
z ≤ Λ(α′ + 1) and thus z ≤ y′. �
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Theorem 1. Let (X,≤) be a QH-singular partially ordered space. If C ⊆ X is a
chain, then there is an antichain Y such that |Y | is at least the coinitiality of C.

Proof. Denote the coinitiality of C as β. If β is finite, then it must be equal to 1
because C is a chain. In this case the proposition is obviously true. If β is infinite,
then it is an infinite cardinal and thus a limit ordinal. The quasi-uniformity VΛ is
distinct from U≤. For each α ∈ β we can take an even α′ ∈ β that is greater than
or equal to α. We now have that Λ(α′ + 1) ∈ V αΛ (Λ(α)), but because Λ is strictly
decreasing we know that Λ(α′ + 1) 6∈ U≤(Λ(α)).

Choose a coinitial well-ordered subset C ′ of C such that |C ′| is equal to β. Define
Λ : β → X as the unique decreasing function that maps β bijectively onto C ′. Since
(X,≤) is QH-singular the previous proposition implies that there is an antichain
A such that sup{λΛ(y) | y ∈ C ′} is equal to β.

Choose a family (ai)i∈I in A with the property that λΛ(ai) 6= λΛ(aj) whenever
i 6= j and such that sup{λΛ(ai) | i ∈ I} = β. The set {λΛ(ai) | i ∈ I} is by
definition cofinal in β. Because β is the coinitiality of C it is a regular cardinal.
This means that the cardinal number of {λΛ(ai) | i ∈ I} is β and thus β ≤ |A|. �

Using the same techniques as in the previous results we can now prove a similar
theorem about the cofinallity of chains in QH-singular partially ordered spaces.

Definition 7. Let Λ be a map from an ordinal β to X. Define the relation Wα
Λ ,

with α ∈ β, such that Wα
Λ (x) is equal to the union of U≤(x) and the set of all

y ∈ X for which there is an even α′ that is greater than or equal to α and satisfies
the properties x ≤ Λ(α′ + 1) and Λ(α) ≤ y.

Lemma 4. If β is an ordinal and Λ : β → X a strictly increasing, then Wα
Λ is a

transitive relation.

Proof. The proof of this result is analogous to that of lemma 2. �

Definition 8. DefineWΛ as the transitive quasi-uniformity on X generated by the
entourages Wα

Λ with α ∈ β.

Lemma 5. Let β be an ordinal and Λ : β → X a strictly increasing function. If
A ⊆ X does not contain an antichain A′ such that

sup{λ∗Λ(x) | x ∈ A′} = β,

then we can find an α ∈ β such that for each x ∈ A with α < λ∗Λ(x) there exists a
y ∈ A with λ∗Λ(x) < λ∗Λ(y) that satisfies x ≤ y.

Proof. The proof of this result is analogous to that of lemma 3. �

Proposition 13. Let β be an ordinal and Λ : β → X a strictly increasing function.
If X does not contain an antichain Y such that sup{λ∗Λ(y) | y ∈ Y } is equal to β,
then WΛ is QH-equivalent with U≤.

Proof. The quasi-uniformity WΛ is clearly coarser than U≤. Once more we will use
proposition 2 to prove that these quasi-uniformities are actually QH-equivalent.
Let A be a subset of X. Suppose that the supremum of {λ∗Λ(x) | x ∈ A} is not
equal to β. Choose an α ∈ β such that λ∗Λ(x) < α for each x ∈ A. Whenever
α ≤ α′ + 1 we have λ∗Λ(x) ≤ α′ for each x ∈ A and thus U≤(Λ(α′)) ⊆ U≤(x). This
implies that for each element x ∈ A the set Wα

Λ (x) is equal to U≤(x).
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Let us now assume that the supremum {λ∗Λ(x) | x ∈ A} is indeed equal to β.
Choose an arbitrary α1 ∈ β for which there is an x1 ∈ A such that x1 ≤ Λ(α1)
and use the previous proposition to obtain an α2 ∈ β with the property that for
each x ∈ A with α2 < λ∗Λ(x) there exists a y ∈ A with λ∗Λ(x) < λ∗Λ(y) that satisfies
x ≤ y. Define α0 as the maximum of α1 and α2.

To prove that Wα0

Λ (A) ⊆ U≤(A) take a y ∈ A and a z ∈Wα0

Λ (y). If y ≤ z there
is nothing left to prove, so let us assume that this is not the case. This means that
there is an even α′ ∈ β such that α0 ≤ α′, λ∗Λ(y) ≤ α′ + 1 and Λ(α′) ≤ z. Because
α1 ≤ α′ we have x1 ≤ Λ(α1) ≤ Λ(α′) ≤ z and therefore we obtain that z ∈ U≤(A).

Finally we need to show that for each z ∈ A there is a y ∈ A that satisfies
Wα0

Λ (y) ⊆ U≤(z). Take z ∈ A. If λ∗Λ(z) ≤ α0, then z ≤ Λ(α′) for each even α′ that
is greater than α0 and thus Wα0

Λ (z) = U≤(z). This means that we can choose y to
be equal to z. If α0 < λ∗Λ(z) then we know that there is a y ∈ A with λ∗Λ(z) < λ∗Λ(y)
and z ≤ y. If y 6≤ x and x ∈ Wα0

Λ (y), then there is an even α′ that is greater than
or equal to α0 such that λ∗Λ(y) ≤ α′ + 1 and Λ(α′) ≤ x. Since λ∗Λ(z) < λ∗Λ(y)
we know that λ∗Λ(z) ≤ α′ and thus z ≤ Λ(α′) ≤ x. Hence we can conclude that
Wα0

Λ (y) ⊆ U≤(z). �

Theorem 2. Let (X,≤) be a QH-singular partially ordered space. If C ⊆ X is a
chain, then there is an antichain Y such that |Y | is at least the cofinality of C.

Proof. The proof of this result is analogous to the proof of theorem 1. �

Example 3. It follows from the previous theorem that the space ω×ω from example
2 is not QH-singular. It is clear that the set (n, 0)n∈ω is a countable chain, but we
already saw that ω × ω only has finite antichains.

Theorem 3. If (X,≤) is a QH-singular partially ordered set, then both the coini-
tiality and cofinality of each chain in X are less than or equal to the width of X.

Proof. This follows from theorems 1 and 2. �

Example 4. We will define the partial order relation � on ω × ω such that
(n1,m1) � (n2,m2) iff n1 = n2 and m1 ≤ m2. The space ω × ω endowed with
this particular partial order is not QH-singular. If it were QH-singular, then
it would also be transitively QH-singular. This would imply that the subspace
{(0,m) | m ∈ ω}, which is a downset, would also be transitively QH-singular ac-
cording to proposition 3. The subspace {(0,m) | m ∈ ω}, however, is clearly order
isomorphic to the ordinal ω and we already saw in the previous section that the
latter is in fact not transitively QH-singular.

The partially ordered space (ω × ω,�) does in fact satisfy the conditions stated
in the previous theorem. The subspace {(n, 0) | n ∈ ω} is an antichain, so the
width of this space is at least countable. Moreover, it is clear that each chain is
contained in a subset {(n0,m) | m ∈ ω} for some n0. This means that both the
coinitiality and cofinality of each chain are less than or equal to the width of X

Proposition 14. If (X,≤) is QH-singular and totally ordered, then (X,≤) is
finite.

Proof. Since (X,≤) is totally ordered its width is equal to 1. From the previous
proposition we obtain that the coinitiality and cofinality of each chain in X are
at most 1. Therefore (X,≤) cannot contain any infinite increasing or decreasing
sequences and must be finite. �
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