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Customized compute acceleration in the datacenter is key to the wider roll-out of applications based on deep
neural network (DNN) inference. In this article, we investigate how to maximize the performance and scala-
bility of field-programmable gate array (FPGA)-based pipeline dataflow DNN inference accelerators (DFAs)
automatically on computing infrastructures consisting of multi-die, network-connected FPGAs. We present
Elastic-DF, a novel resource partitioning tool and associated FPGA runtime infrastructure that integrates with
the DNN compiler FINN. Elastic-DF allocates FPGA resources to DNN layers and layers to individual FPGA
dies to maximize the total performance of the multi-FPGA system. In the resulting Elastic-DF mapping, the
accelerator may be instantiated multiple times, and each instance may be segmented across multiple FPGAs
transparently, whereby the segments communicate peer-to-peer through 100 Gbps Ethernet FPGA infrastruc-
ture, without host involvement. When applied to ResNet-50, Elastic-DF provides a 44% latency decrease on
Alveo U280. For MobileNetV1 on Alveo U200 and U280, Elastic-DF enables a 78% throughput increase, elimi-
nating the performance difference between these cards and the larger Alveo U250. Elastic-DF also increases
operating frequency in all our experiments, on average by over 20%. Elastic-DF therefore increases perfor-
mance portability between different sizes of FPGA and increases the critical throughput per cost metric of
datacenter inference.
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1 INTRODUCTION

Compute acceleration in the datacenter (DC) is seen as an enabler for a wide range of new ma-
chine learning-based applications, which rely on deep neural network (DNN) inference [15].
As DNN inference-based applications mature and enter production, an increasing focus is placed
on the efficiency of computation and flexibility of deployment of those applications. In the first
phase of deployment, the application operator must map their DNN model to the available DC
accelerator hardware, subject to certain application-specific latency constraints. Subsequently, the
inference application is deployed to (usually many) instances of the cloud accelerator, rented at
fixed cost per hour, and hence the application operator desires to maximize the number of DNN
queries per second (and therefore per unit of cost).

For the DC operator, whose incentive is to maximize profit, the essential metrics are the cost
of operating the accelerator, which depends on the power dissipation of the accelerator and sur-
rounding system (CPUs, memory, storage), and the achievable revenue stream per accelerator.
Power efficiency considerations have led to the development of a wide range of specialized deep
learning accelerators such as Google’s TPU [27], Amazon’s Inferentia chip, and Huawei’s Ascend
910 by the hyperscalers themselves, replacing GPUs. These specialized compute architectures re-
duce dissipated power for a given number of DNN queries per second. Revenue stream optimiza-
tion has led to an increasing trend toward accelerator multi-tenancy, which DC operators can
leverage to extract multiple revenue streams per accelerator chip, and dis-aggregation of accel-
eration in the datacenter, which enables flexible coupling of accelerators to CPUs, memory and
storage for specific user requirements, reducing waste from idle CPU/accelerator cycles or unused
memory.

Recently field-programmable gate arrays (FPGAs) have also gained a foothold in the dat-
acenter DNN inference acceleration market and appear well aligned with the above-mentioned
trends. Unlike other DC compute accelerators, FPGAs enable complete customization of accelera-
tor architecture, allowing computational logic to fit application precision, and memory hierarchies
to fit application memory access patterns, thus minimizing the quantity of accesses to external
memory and in theory achieving low-latency, power-efficient acceleration. Furthermore, FPGAs
can connect directly to the DC network through dedicated network stacks implemented in FPGA
fabric, minimizing communication latency between co-executing accelerators, reducing the total
system power required to implement distributed applications, through the removal of CPU inter-
mediation, and facilitating accelerator disaggregation. Finally, the multi-die structure of DC FPGAs
creates the potential for multi-tenancy by allocating individual dies or groups thereof to each cus-
tomer. However, making use of these features to maximize DC user and operator figures of metric
requires the right choice of DNN inference accelerator architecture and an appropriate set of tools
for its implementation.

We distinguish between two architectures for DNN inference acceleration on FPGA: matrix of
processing engines (MPE) and a feed forward dataflow (DF). MPE architectures, i.e., systolic-
array matrix multipliers, execute instructions on fixed precision (typically 4/8bit) weights and acti-
vations fetched from external memory through deep-learning optimized memory hierarchies. The
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generic structure of an MPE accelerator is reusable across different DNN layers or topologies, and
is therefore more amenable to expert-guided optimization, which results in high-frequency imple-
mentations. However, the requirement for generality limits the amount of customization that can
be applied to an MPE accelerator. Conversely, dataflow architectures leverage customization as a
primary source of performance. To construct a dataflow accelerator (DFA), we convert the DNN
computational graph into a pipeline of FPGA accelerated operations which store all parameters
they require to perform computation, e.g., weights and biases, in on-chip memory (OCM). In
this approach, the amount of data transferred across chip boundaries is minimized and therefore
latency and power are reduced, but the size of the implementable accelerator is limited by the
OCM of the target FPGA device. Second, custom FPGA circuitry must be generated for each DNN
topology, typically through compilation of high-level C++ descriptions, limiting the opportunities
for frequency optimization, especially on large multi-die FPGAs.

In this article, we focus on the implementation of design automation tools for DFAs in the DC
context. We present Elastic-DF, an open-source partitioner and resource allocator which works in
conjunction with the DFA compiler framework FINN [58], and peer-to-peer Ethernet infrastruc-
ture for direct communication between FPGAs. Elastic-DF enables the automatic model-parallel
(MP) distribution of a DFA across multiple FPGAs in a software-transparent way, removing the
OCM bottleneck of DF acceleration and paving the way for FPGA disaggregation. Furthermore,
by combining partitioning and resource allocation, Elastic-DF increases DFA density. The DC user
benefits from the increased density directly if they are able to fit more instances of the DFA into
the FPGA, increasing the per-FPGA throughput. If this is not possible, then in a multi-tenant en-
vironment the DC user may require fewer FPGA dies (and therefore pay less) to implement their
DFA, while the DC operator is free to leverage the remaining dies for other customers.

Our article makes the following specific contributions:

e We introduce an Integer Linear Program (ILP)-based partitioner and resource balancer,
which is able to split a DFA across multiple dies or FPGAs, under communication throughput
and FPGA congestion constraints, and VNX, a light-weight IP core that enables direct FPGA
to FPGA communication via the UDP/IP protocol and 100 Gbps Ethernet. We open-source
both of these tools [41, 45].

e We demonstrate that model-parallel multi-FPGA execution enables superlinear scaling of
DFA performance in multi-FPGA systems, for both MobileNetV1 and ResNet-50. We show
how constraints to Elastic-DF enable us to implement software-transparent model par-
allelism (TMP) and analyze how TMP compares with other forms of MP.

e We demonstrate the increase in DFA density via tight integration between partitioner and
resource balancer. On selected boards and DNNs, we observe 78% increase in total FPGA
inference throughput, compared to performing partitioning and balancing separately.

o We analyze the effect of partitioning on achievable DFA frequency. We argue that parti-
tioning facilitates timing closure, in general, enabling over 20% improvement in operating
frequency on average compared to non-partitioned designs built with Xilinx Vitis, helping
to close the frequency gap between MPEs and DFAs. We open-source code exemplifying the
application of Elastic-DF to FINN DNNs for frequency optimization [32].

2 BACKGROUND

In this section, we provide an overview of single-node and distributed DNN inference acceleration,
focusing in particular on customized dataflow accelerators. We discuss how they can scale to meet
throughput and latency or resource constraints and explain the associated toolflow, which includes
the partitioner that is the main focus of this article.
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(a) Matrix of Processing Elements (MPE). (b) Customized, Streaming Dataflow (DF).

Fig. 1. MPE and DF acceleration paradigms.

2.1 Hardware Architectures for DNN Inference Acceleration

DNNs contain a multitude of multiply-accumulate (MAC) operations interspersed with nonlin-
earities, organized into layers. We refer to the reader to the survey by Sze et al. [53] for an overview
of the computational aspects of DNNs and key techniques like sparsity and quantization to reduce
the cost of computation. The inference computation for a DNN can be parallelized in different
ways, which becomes evident if the inference computation is viewed as a dataflow graph. As long
as the data dependencies are respected, the inference computation can be performed by multiple
units operating along different axes of parallelism, including but not limited to: (1) different layers
in a pipeline, (2) inputs in a batch, (3) channels and pixel positions for convolutions, (4) neurons
and synapses for fully connected layers, and (5) bit positions within a single MAC for multi-bit
arithmetic. Many accelerator architectures have emerged [53] that try to address the problem of
parallelization in different ways, where the key challenge is: How do we loop transform and unfold
the algorithms to maximize data reuse and compute efficiency, minimize memory bottlenecks, limit
power consumption while meeting latency requirements? We focus on two prominent paradigms for
designing single-FPGA DNN inference accelerators:

Matrix of Processing Elements (MPE)-style accelerators. A popular alternative [15, 16, 30, 64] for
inference acceleration is to use a hardware architecture that offers a fixed degree of parallelism
along one or more axes listed above, with a homogeneous array of parallel MAC units intercon-
nected in a certain fashion and using a combination of on- and off-chip memory to store weights
and activations. The movement between the memories and compute units is typically orchestrated
by a sequence of instructions generated by a compiler: for each layer in the DNN, the input activa-
tions and weights for that layer are brought into on-chip memory, the computations are performed
to produce output activations, which may need to be spilled into off-chip memory if the on-chip
buffering is not sufficient. Afterwards, the output activations flow back into the accelerator for
the next layer. As the same homogeneous array of PEs is used for computing each layer, we re-
fer to this paradigm as Matrix of Processing Elements (MPE), and illustrate its general form in
Figure 1(a). This paradigm allows the hardware architecture to be generated and optimized only
once, and a wide variety of DNNs can be subsequently executed by compiling them onto this fixed
architecture. This “one-size-fits-all” approach also comes with several drawbacks:

e Fixed parallelism along pre-determined axes may be under-utilized depending on the partic-
ular DNN topology; for instance, datapaths optimized for parallelizing dense convolutions
will perform poorly for depthwise convolutions.

e The layer-by-layer data movement requires a high level of compiler and hardware optimiza-
tion effort to achieve concurrent computation and communication, imposing limits on la-
tency and efficiency due to overheads.
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Fig. 2. Two types of parallelism that enable scaling up an application to multiple accelerators.

e Supporting new layer types require changes to the fixed datapath, the hardware-software
interface, and the compiler.

Some of these concerns can be addressed via runtime reconfiguration of the FPGA, but this intro-
duces extra reconfiguration overhead in tens of milliseconds [6, 7] for large FPGAs, limiting its
applicability for stringent low latency applications or small batch size requirements.

Customized, Streaming Dataflow (DF)-style accelerators. In this paradigm, a customized hardware
architecture is specialized for a specific DNN topology, where each layer of the DNN is mapped to
its own set of dedicated compute and memory resources as illustrated in Figure 1(b). Each layer’s
compute array is allocated compute resources proportional to the number of MACs needed by that
layer, and communicates with neighboring compute arrays via on-chip FIFO channels. To minimize
latency, each layer’s compute array starts computing as soon as the previous one starts producing
output. Prior works exploring this paradigm such as fpgaConvNet [60], FINN [58], FINN-R [5]
and ReBNet [17] have demonstrated how creating a customized streaming dataflow architecture
tailored to the requirements of each layer can reap more of the benefits of reconfigurable devices.
The main drawback of this paradigm is resource limitations due to its spatial-processing nature: it
may require a large amount of resources that may not fit into a single FPGA, which is one of the
challenges addressed in this work.

2.2 Data- and Model-parallelism for Distributed DNN Inference

For both MPE and DF-style architectures, a single accelerator is rarely sufficient to provide the in-
ference throughput required by datacenters at real-world scales. When this is the case, the solution
is to scale up the inference process to multiple accelerators. This involves distributing the infer-
ence computation to network-connected nodes along the different axes of parallelism described in
Section 2.1, in addition to the parallelism provided by the single accelerator. Readers can refer to
Reference [25] for an in-depth description of possible approaches to distributed inference. In this
work, we focus on data and model parallelism, illustrated in Figure 2.

In data-parallel execution (DP), the input is subdivided into batches that are each processed
by one of the available accelerators. Each accelerator executes the entire processing required to
produce results from its allocated inputs. One consequence of this is that each worker must also be
able to execute the entire DNN model. Furthermore, latency is directly proportional to the batch
size as more multiple images have to be buffered before they can be processed. The model-parallel
approach (MP) subdivides the DNN model into pieces allocated to each of the available accelera-
tors, which process all the inputs to produce intermediate results, which they communicate to the
next accelerator in the processing chain. Each accelerator stores only a fraction of the DNN model,
but the amount of intermediate results communicated may be large and varies from accelerator to
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Fig. 3. Example of performance-resources trade-offs in a streaming dataflow architecture.

accelerator. MP is inherently lower latency, however from a software interface point of view, DP
is more convenient as the interface to each accelerator is the same.

2.3 Dataflow Accelerator Performance Scaling via Folding

A key feature in the DF acceleration paradigm is the ability to generate architectures with different
performance and resource characteristics to fit particular system-level requirements or resource
budget constraints. In DF frameworks such as FINN [5, 58] this is achieved through time multi-
plexing, also called folding in FINN terminology. First, consider the case where every operation
for a DNN is allocated to a dedicated compute unit, and the whole system is clocked at some clock
frequency F.k. Such an accelerator would be able to process one entire input sample per clock
cycle (initiation interval II = 1) and yield a throughput of Fjx samples per second. Although this is
possible for smaller DNNs, the resource cost is prohibitively expensive for larger models, and it is
necessary to time-multiplex (or fold) the computation onto fewer resources by adding scheduling
logic. For instance, time-multiplexing two operations onto a single compute unit will require half
the hardware resources, but it will also yield half the throughput (II = 2). By controlling the degree
of folding, we can obtain a multitude of designs with different performance-resources trade-offs,
as illustrated in Figure 3. In practice, folding is achieved by controlling the degree of parallelism
instantiated on reconfigurable hardware along different axes of the inference computation. This is
illustrated in Figure 4 with a simplified view for DNNs with dense convolutions. Each layer has a
set of parameters M, P, S that control the degree of parallelism along a particular axis, which must
be chosen in a way such that: (1) a balanced streaming pipeline is obtained across layers, (2) the
desired throughput is achieved, and (3) the total resource footprint fits within the given budget.

2.4 Design Flow for DF Accelerators targeting the Datacenter

Larger FPGAs targeting the datacenter tend to have a different construction than smaller ones,
with implications on the performance of DFAs implemented on them, as we shall see in Section 3.
We highlight some structural and CAD-related features of these systems here.

Figure 5 exemplifies a Xilinx DC-class FPGA constructed using a stacked silicon interconnect
(SSI) [47] process whereby multiple FPGA dies, called Super Logic Regions (SLRs), are mounted
on a silicon interposer and connected through long wires across the interposer, denoted as Super
Long Lines (SLLs) in the figure. Some SLRs can access DDR/HBM memory by implementing a
controller in FPGA fabric.

Computational kernels are implemented for these FPGAs using computer-aided design software,
such as Xilinx Vitis [29], which takes an accelerator as input, usually in C++ code but possibly in
HDL (Verilog/VHDL) or in pre-synthesized form. We distinguish between two types of dataflow
in Vitis designs: embedded and explicit. In explicit dataflow designs, the processing pipeline is
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Fig. 4. Degrees of parallelism available for dense convolutions.
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Fig. 6. FINN compiler flow.

assembled from multiple Vitis kernels connected together through AXI Streams. In designs with
embedded dataflow, the logic itself is structured as a dataflow pipeline but the entire design is
packaged into a single Vitis kernel. Embedded dataflow is specified using the HLS DATAFLOW
pragma in C++ code.

To implement the accelerator in the dynamic region, Vitis makes any necessary connections
for kernels to each-other, to DDR memory and to the host through the PCle interface and DMAs
implemented in the static (pre-configured) region. Kernels are fully synchronous and communicate
through AXI interfaces. Vitis provides clocks and resets to kernels by implementing dedicated logic
in each SLRs dynamic region.

2.5 The FINN Compiler

Xilinx provides an experimental open source framework to generate DF accelerators on FPGAs,
which we refer to as the FINN compiler [33]. The FINN compiler has a highly modular structure as
shown in Figure 6, which allows the user to interactively generate a specialized DF architecture
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for a specific DNN. The framework provides a frontend, transformation and analysis passes, and
multiple backends to explore the design space in terms of resource and throughput constraints.
Brevitas [40], a PyTorch library for quantization-aware training, is the frontend used in this work.
It enables training DNNs with weights and activations quantized down to a few bits, then exports
the trained network into the intermediate representation (IR) used by the FINN compiler. The
transformation and analysis passes help to generate an efficient representation of the DNN. Finally,
the backend contains a code generator that creates synthesizable accelerator descriptions, which
can be implemented as either a standalone Vivado IPI component or integrated into various shells,
including Xilinx Alveo boards and PYNQ embedded platforms.

2.5.1 Frontend and Intermediate Representation. First the DNN model must be converted into
the IR of the FINN compiler. The frontend stage takes care of this by converting the PyTorch
description into the IR, called FINN-ONNX. This IR is based on ONNX [10], an open-source inter-
change format that uses a protobuf description to represent DNNs. It comes with several standard
operators and allows the user to easily create their own operators to customize the model. The
nodes represent layers and edges carry outputs from one layer to become inputs to another. The
feature to customize the ONNX representation is used in the framework to add application specific
nodes and attributes. Each node is tagged with the quantization of its inputs, parameters (weights
and activations) and outputs to enable quantization-aware optimizations and the mapping to back-
end primitives optimized for quantized computation. During the compiler flow the nodes will be
transformed into a backend-specific variants via a series of transformation passes.

2.5.2 Transformation and Analysis Passes. The main principle of the FINN compiler are graph
transformation and analysis passes, which change or analyze the IR of the model. A pass is a func-
tion that takes the IR graph as input and either (a) transforms the DNN by looking for a certain
pattern, changing the graph in a specific manner and outputs the modified graph, or (b) analyzes
the DNN to produce metadata about its properties. To bring the model into a representation from
which code can be produced and finally the hardware accelerator can be generated, various trans-
formations must be applied. The main transformations involved are summarized below.

Streamlining. Although the PyTorch description of the network is mostly quantized, it may still
contain some floating-point operations from, e.g., preprocessing, channelwise scaling, or batch-
norm layers. To generate a hardware accelerator from the model, these floating-point operations
must be absorbed into multi-level thresholds, so that a functionally identical network of integer
operations is created. The transformation to achieve this is called streamlining, as described by
Umuroglu and Jahre [59]. During streamlining, floating-point operations are moved next to each
other, collapsed into a single operation and absorbed into succeeding multi-thresholding nodes.

Lowering and conversion to HLS layers. Next, high-level operations in the graph are lowered to
simpler implementations that exist in the FINN hardware library. For instance, convolutions will
be lowered to a sliding window node followed by a matrix-vector node, while pooling operations
will be implemented by sliding window followed by an aggregation operator. The resulting graph
now consists of layers that can be converted to hardware building block equivalents. Each node
corresponds to a Vivado HLS C++ function call, from which an IP block per layer can be generated
using Vivado. The resources utilized by each hardware building blocks can be controlled through
specific attributes passed from FINN to Vivado. For example, multiplications can be performed
with LUTs or DSP blocks, and parameters can be stored in distributed, Block, or Ultra RAM.

Folding and resource Estimation. The folding process (Section 2.3) assigns compute resources
to each layer to obtain the desired throughput with a balanced pipeline. The underlying Vivado
HLS library that provides the hardware building blocks for FINN supports controlling the degree
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Table 1. Neural Networks Accelerated in This Work

Topology Precision® Model size (MB) Accuracy (% Top-1) GOps FINN nodes
MobileNetV1 (MN) W4A4 2.1 70.39 1.1 115
ResNet-50 (RN-50) W1A2 11.25 67.27 6.8 277

*WxAy indicates quantization: x-bit weights, y-bit activations.

of parallelism along the P and S dimensions from Figure 4(b), called PE and SIMD, respectively,
in FINN. To enable per-layer specialization without reconfiguration and minimize latency, FINN
creates dedicated per-layer hardware interconnected with FIFO channels, thus the outermost loop
across L layers is always fully pipelined.

Once the folding is specified, resource estimates can be produced for each node. There are sev-
eral ways to estimate the resources. Even before IP blocks are generated from the HLS layers, an
estimate of the resources per layer can be made by using analytical models based on the concepts
from the FINN-R paper [5]. Estimations can also be extracted from Vivado HLS after IP generation,
though these results are still estimations that may differ from the resource usage of the final im-
plementation due to synthesis optimizations. Finally, FINN allows high-quality resource estimates
to be obtained through out-of-context synthesis of nodes, at the expense of runtime. The most
suitable estimation method depends on the context (e.g., prototype versus production phases).

2.5.3 Backends. Backends are responsible for consuming the IR graph and backend-specific in-
formation to create a deployment package, also implemented using the transformation concept. To
get the inference accelerator, between the layers FIFOs are inserted, which can be sized automati-
cally by the FINN compiler. Afterwards the single IP blocks are stitched together and synthesized.
The stitched IP can be manually integrated into a system, or inserted into an appropriate shell for
the target platform. If the target platform is an Alveo card, then the design is exported as a Vivado
Design Checkpoint (DCP), followed by generation of Xilinx Vitis [29] object files and linking.

2.6 FINN-Accelerated ImageNet Classification

We utilize two deep neural networks for ImageNet classification as discussion vehicles to target
DC accelerator cards throughout the remainder of this work: MobileNetV1 (MN) and ResNet-50-
v1.5 (RN-50). The key properties of these image classification DNNs are summarized in Table 1.
We consider these DNNs relevant because of their widespread use in modern Al applications,
where they are utilized both as classifiers and as backbones for more complex tasks like object
detection. Both networks are part of the MLPerf DNN benchmark suite.

MN was first introduced by Howard et al. [22] in 2017 as a light weight DNN targeting the
ImageNet [12] dataset. It has a repeated structure of depthwise-separable (DWS) convolution
building blocks. Each DWS convolution block consists of a depthwise and a pointwise convolution
followed by a batchnorm and ReLU block. The model also has a convolutional layer at the input
and an average pooling followed by a fully connected layer at the output. In this work a reduced-
precision implementation of MN from Brevitas [40] is used where the weights and activations
are quantized to 4 bits, except for the first layer, which has a weight precision of 8 bits. The FINN-
accelerated MN achieves a top-1 accuracy of 70.39% and is available as open source from Reference
[32].

RN-50 [21] is a deep CNN designed for high accuracy on the ImageNet [12] benchmark. Unlike
MN, RN-50 has a non-linear topology. We utilize the same quantization scheme described in Refer-
ence [43], resulting in a dataflow accelerator consisting of 112 layers, and a top-1 accuracy of 67.27%
after FINN streamlining. Implementations of this network are available as open source [32, 42].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 15. Pub. date: December 2021.



15:10 T. Alonso et al.

Baseline Fold 2x Fold 4x Baseline Fold 2x Fold 4x

= o

§ 0.6 § 0.6

< <

‘s 0.4 ‘s 0.4

$ §

T T

£ o2 £ o2

=1 =)

g g

£ o0 g o0

4 LUTs URAM DSP Blocks RAMB18 (4 LUTs URAM DSP Blocks RAMB18
(a) MN Folding (b) RN-50 Folding

Fig. 7. Effect of folding on resource utilization for each DNN. The LUT and DSP utilization drops proportion-
ally to the folding factor, while memory utilization is unchanged (MN) or slightly reduced (RN-50).

3 CHALLENGES IN SCALING UP DATAFLOW ARCHITECTURE PERFORMANCE

Ideally, a dataflow DNN inference accelerator should be able to utilize all the FPGA fabric available
on the target device and simultaneously achieve high operating frequency, therefore maximizing
performance per unit of cost. In this section, we highlight specific problems preventing DFA de-
signers from achieving these requirements.

3.1 Limitations of Folding

There are practical limitations to folding DF-style accelerators that arise from the resource mix and
granularity of a particular FPGA. Here, we use the FINN-accelerated MN and RN-50 (described in
Section 2.6) to give an example. Figure 7 presents the resource utilization of each of the two DNNs
in three different folding solutions: Baseline, Fold 2x (2 the II of Baseline), and Fold 4x (4X the
II of Baseline). For each folding solution and DNN, we implement 4 resource allocation configu-
rations (using DSPs or LUTs for multiplications, and using URAM or BRAM for sliding windows
and FIFOs). The charts present the average resource utilization of these four configurations, and il-
lustrates scalability limits in regards to resource usage and throughput. For MN, Baseline achieves
II = 112 keycles per frame, with the parallelism of the first layer limiting further performance in-
crease, i.e., the first layer is fully unfolded. For RN-50, Baseline has II = 56 kcycles approximately.
The limitation in this case is the number of DSP blocks required to implement the first convolu-
tional layer. At this I, more than half of one SLRs DSP blocks are allocated to this particular layer,
and increasing the performance further (by unfolding) eventually reaches the DSP resource avail-
ability on one SLR while other resource classes are underutilized. Splitting the layer across two
SLRs to access more DSPs would lead to drastically reduced performance through F,, degradation
(see Section 3.3). Because in a DFA all layers must fold to similar II, a limitation to the folding of one
layer applies to the DFA globally resulting in low resource utilization of the FPGA. This limitation
is an outcome of the resource mix and granularity of the FPGA, and applies to any DF inference
framework, although the throughput at which these limitations become apparent depends on the
granularity of folding. Coarser-grained folding (such as FINN) will experience the limitations at
lower throughputs compared to finer-grained folding (such as fpgaConvNet [60]).

If the target FPGA is large enough, then performance can scale up through data parallelism
by implementing multiple instances of the accelerator in a single FPGA. Otherwise, as is the case
in our examples, one potential solution to utilize left-over space is to implement an additional
folded-down accelerator instance, assuming that the resource utilization scales with performance
and the folded-down DFA meets latency constraints. For each DNN, we evaluate two folded
down variants that reduce performance by factors of 2 and 4, respectively. Figure 7(a) illustrates
that compute resource requirements (LUT/DSP) scale with the FPS as expected, while memory
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utilization (BRAM/URAM) remains relatively constant, as number and precision of stored param-
eters remains the same. this was expected as shown in Figure 3. Figure 7(b) presents a similar
result for RN-50 with the only difference that memory utilization slightly decreases when folding
as the weight buffers change shape and map better to the shape of BRAMs. Readers should refer
to Reference [31] for a discussion of the effect of folding on buffer shapes and memory utilization.

This inelastic memory utilization limits the scalability of DFAs to smaller FPGAs. In both folded
cases (Fold 2x and Fold 4x), the overall relative reduction in resource utilization is less than the
relative reduction in FPS, which indicates that for streaming dataflow the optimal folding is the
one with the highest FPS and lowest II, within topological and structural constraints. For this
reason, in the remainder of this article, we utilize the baseline folding solutions where possible,
and employ model parallelism to maximize resource utilization on any given FPGA target and
enable accelerator portability to smaller FPGAs, as detailed in the following section.

3.2 Resource Balancing in the DF Pipeline

Resource balancing (as opposed to allocation, i.e., folding) refers to the process of selecting for each
DF node a resource utilization profile, which can help optimize the cost of inference throughput in
two ways. The first is through the maximization of accelerator throughput by route of operating
frequency. Since the achievable frequency for any FPGA design is reduced by design congestion,
it is advantageous to balance resource utilization between layers such that no class of resource
is over-congested. Xilinx recommends a maximum utilization of 70, 50, and 80 percent of total
available resources for LUTs, Flip-Flops and columnar structures (DSPs, Block, and Ultra RAM),
respectively. In addition, the average of utilization of DSP, Block and Ultra RAM should not exceed
70%. In most cases, reducing utilization much below these limits does not have the opposite effect
of increasing DFA frequency.

The second cost-of-throughput optimization route is through minimization of accelerator area.
Careful selection of resource utilization per layer, coupled with placement constraints, enables a
designer to “compress” the DF accelerator to its minimum FPGA area. This is beneficial either by
creating sufficient space for multiple instances of an accelerator to co-locate the target FPGA, or,
in future multi-tenant FPGAs by directly reducing the cost of deploying a single accelerator.

Resource balancing and partitioning should be performed simultaneously when mapping DFAs
across multiple SLRs or FPGAs, since the partitioning decisions depend on the resource profiles of
the layers. Unfortunately in the FPGA DNN inference and training literature, the two processes
are typically decoupled, with balancing occurring as a fine-tuning phase. If the (achieved) objec-
tive of partitioning was to ensure congestion guidelines are respected, then subsequent resource
balancing achieves very little frequency increase, and since partitioning is already set, no useful
area decrease.

3.3 Timing Closure Challenges in SSI FPGA Design

The practical implementation of DFAs such as the FINN-style MobileNetV1 and ResNet-50 on DC-
class FPGAs raises specific problems not encountered in the domain of embedded FPGAs. These
problems arise due to a combination of HLS design entry, the large size of DC-class DFAs, and the
non-monolithic structure of the SSI FPGAs themselves. In this context, often the DFA does not fit
into a single SLR, and it is currently impossible for the high-level synthesis tool, e.g., Vivado HLS,
to properly estimate where the die crossings will occur. Crossing from one SLR to another over a
SLL incurs a relatively large propagation delay (compared to on-SLR routes), which can have an
impact on operating frequency unless carefully considered in the design entry.

Furthermore, utility logic external to the kernel may also limit performance. Illustrated in
Figure 8(a) is a situation where the reset signal limits the achievable frequency. Since the kernel
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Fig. 8. Potential pitfalls in the implementation of large dataflow accelerators on multi-SLR FPGAs.

is fully synchronous it must be reset from a single source. If a kernel spans multiple SLRs, then
so must the reset signal, whereby the magnitude of the problem increases with number of SLRs.
This problem applies to multi-SLR DFAs where the dataflow is embedded, i.e., described in HLS
C++ using the HLS DATAFLOW pragma, or as is the case with FINN, in a Vivado IP Integrator
pipeline that is exported to a single Vitis kernel. For these cases, reset pipelining inside the kernel
is a potential solution but it cannot currently be implemented automatically by the platform
linking tool (Vitis or equivalent), because it does not have access to the kernel internal logic.

4 ELASTIC DATAFLOW ACCELERATION

We propose that the common requirement to solving all of the problems identified in the previous
section is a transition in DFA design philosophy from monolithic kernels with embedded dataflow
to explicit and fine-grained dataflow, whereby a DFA consists of multiple kernels that communi-
cate through AXI Streams, such that no kernel spans more than one SLR. However, within the
context of fine-grained explicit dataflow, it becomes challenging even for expert FPGA designers
to find a good partitioning of DFA logic between the kernels, and the corresponding association of
kernels to SLRs (and FPGAs), while simultaneously tuning the resource utilization profile of each
kernel to minimize DFA area. We present Elastic-DF, a combination of automatic partitioning, au-
tomatic resource balancing, and a light-weight FPGA-to-FPGA communication fabric, which can
efficiently map a DFA to a target single- or multi-FPGA platform, optimizing inference throughput
per cost with minimal human intervention. Elastic-DF is designed to optimize the implementation
of an already folded DFA, therefore the user is responsible for performing folding to their desired
latency, and may provide multiple potential implementations for each node in the DNN graph,
e.g., implementations using LUTs or DSPs for multiplication, or Distributed versus Block RAM for
storage, which Elastic-DF can utilize in the process of resource balancing.

4.1 Partitioning Scenarios

We analyze partitioning scenarios to identify requirements for the Elastic-DF partitioner.

Single DFA on Single FPGA: Acceleration and Compression. When deploying a single DFA to a
multi-SLR FPGA, the role of the partitioner is to segment the DFA into kernels and assign these to
SLRs, which is non-trivial. Figure 8(b) illustrates a situation where, despite having overcome the
reset bottleneck in Figure 8(a) by splitting the DFA into two kernels, naive placement of the kernels
means the wires connecting them have to cross two SLLs and the width of an SLR, creating very
long route delays. Suboptimal partitioning means both kernels require access to DDR memory
so an additional controller must be instantiated at the cost of extra power dissipation and logic
utilization.
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Fig. 9. Benefits of automatic partitioning of DF accelerators for single-node implementation. Congestion is
always balanced between SLRs to maximize operating frequency. Space savings through accelerator com-
pression can result in cost savings in a multi-tenant environment.

A better partitioning is illustrated in Figure 9(a), from which we derive the following require-
ments for the Elastic-DF partitioner. The size of the kernels and their allocation to SLRs must be
chosen to equalize the congestion of the SLRs, and kernels must be placed such that no AXI Stream
crosses more than one SLL, maximizing operating frequency. It may be advantageous to avoid in-
stantiating a second DDR controller and the associated power and area penalty by co-locating all
DF kernels that require DDR access in the same SLR—the partitioner should provide an option to
do so. Also, since not all SLRs have access to external memory, the partitioner needs to allow for
absolute placement restrictions for specified kernels.

Figure 9(b) illustrates how resource balancing can create free space in the form of an empty SLR
after the DF kernels have been re-allocated to SLRs 1 and 2, maintaining a balanced congestion.
While multi-tenancy is not yet a feature of DC FPGAEs, it is reasonable to assume that the SLR is a
natural granularity for multi-tenancy to exploit, and therefore accelerator compression creates a
cost reduction opportunity by minimizing the number of SLRs needed for a given DFA. To support
compression, the Elastic-DF partitioner must allow multiple possible implementations for each
node in the DF graph, from which exactly one can be instantiated in the final design.

Multi-DFA on Single FPGA. The same optimization criteria apply when implementing multiple
DFAs in a single FPGA. This scenario requires partitioner support for disjoint subgraphs, whereby
each of the DFAs is a subgraph and the entire graph is partitioned together to ensure the best qual-
ity of results. As a side-effect, accelerators consisting of multiple dataflow sections communicating
through external memory could be partitioned as well.

Multi-FPGA. When a (group of) DFAs exceed the resources of a single FPGA, automatic
partitioning should enable their separation into parts executing on different FPGAs. In this case,
the partitioning algorithm must also take into account the maximum communication throughput
between the FPGAs, in addition to the congestion minimization criteria. Figure 10 exemplifies
three possible methods of implementing model parallelism for one DFA deployed to two FPGAs:
Software Model-Parallel (SWMP), Hardware Model-Parallel (HWMP), and Transparent
Model Parallel (TMP). In Figure 10(a) the DFA is partitioned between two FPGAs without
direct communication. Inputs are ingested on one node, intermediate results are produced and
transported over the host network to the second node, where they are loaded to the FPGA and
results are produced. In Figure 10(b), we implement direct FPGA to FPGA Ethernet connectivity,
removing the host involvement for intermediate result transport. Finally, Figure 10(c) illustrates
transparent model parallelism, whereby the DFA is partitioned into three consecutive segments:
the first and last execute on one FPGAs, while the second segment executes on the other FPGA.
Intermediate results between segments are transported using the FPGA-to-FPGA Ethernet. In this
way, results are delivered to the same host that provides the inputs, and the software interface to
the accelerator is identical to a single-FPGA accelerator.
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Fig. 10. Model parallel variations implementable with dataflow inference accelerators between two FPGA-
equipped computing nodes. Software Model-Parallel (SWMP) utilizes the host NIC for activation transport,
while Hardware Model-Parallel (HWMP) and Transparent Model Parallel (TMP) utilize the FPGA for trans-
port, which adds logic overhead. Note that TMP does not require host involvement on one of the nodes and
has the same software interface as a single-node accelerator.

Each of the three approaches has advantages and disadvantages. SwWMP has less FPGA design
complexity (no Ethernet) but moves more data to and from the host. In TMP, the host on the second
node has no involvement in computation, and only needs to perform configuration of the FPGA
logic and network parameters, after which it can be switched to a low-power state or allocated
to other DC users that do not require FPGA access. This facilitates resource disaggregation in the
datacenter. However, the less constrained nature of HwMP may create an operating frequency
advantage. Lacking a theoretical framework to differentiate between these three approaches to
model parallelism, the Elastic-DF partitioner must support all three approaches, and we will derive
guidelines from empirical evaluation in subsequent sections. TMP can be enforced through co-
location constraints as described in previous scenarios.

4.2 Elastic DF Partitioner

Graph partitioning algorithms have been studied extensively in the context of many application
domains. Due to its NP-hard nature, the problem size (number of nodes in graph, number of
partitions) is a key factor in determining the range of applicable algorithms for partitioning. Rela-
tively small problems may be solved by exact methods like enumeration, whereas larger problems
require heuristic methods, such as iterative greedy refinement and simulated annealing. When
problem scale permits, exact methods are preferable to heuristics, because they can determine the
optimality of a solution or the (in)feasibility of the problem.

The usual approach among DNN frameworks targeting multi-FPGA execution [34, 35, 54, 62] is
to utilize greedy, dynamic programming or otherwise heuristic solvers (see Table 8 in Section 7),
which enables them to map a single DNN through model parallelism to an arbitrarily large number
of FPGAs, extracting the maximum throughput and minimum latency from the single DNN.

Since our graph partitioning problem does not (generally) exhibit optimal substructure [11],
such heuristic solvers are unlikely to identify an optimal solution especially if the graph is coarse,
i.e., consists of DNN layers instead of individual multiply-accumulates. Conversely, we observe
that our partitioning problem, including all the requirements previously identified, can be ex-
pressed as an ILP and solved exactly, which is desirable, at the expense of potentially very long
solver runtime when a large number of DFAs need to be mapped to a large number of FPGAs. To
constrain the size of the problem as seen by the ILP solver, we divide the problem into two steps.
We first map a relatively small number of DFAs to a relatively small number of FPGAs to create
a highly efficient inference “tile”” This tile can then be replicated through data parallelism up to
arbitrary scales. The problem then becomes to discover the parameters of the tile: its size (number
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of DFAs, number of FPGAs), the partitioning of each DFA, and the placement of the kernels result-
ing from partitioning onto the tile FPGAs and SLRs therein. The next sections describe how we
partition for a tile of known size, and how we discover tile size.

4.2.1  Partitioning DFAs to a Tile. We define the partitioning problem through linear constraints
and an objective function for the optimization. Given a graph where nodes are DNN tasks (e.g., lay-
ers), the mapping of graph nodes to SLRs can be expressed as binary decisions indicating whether
a particular version of a task node is present or not in a particular compute node. The fact that each
task node must be instantiated once and only once is easily stated as a linear equality. Resource con-
straints are expressed as inequalities forcing maximum SLR utilization below Xilinx-recommended
limits (but we do allow user overrides). Similarly, we express communication resource limits as
linear inequations, where the constraints are expressed in Gbps when the path is off-chip, or in
number of SLLs when the path is on-chip. Also, by using linear constraints on specific nodes, we
are able to express both absolute placement and relative (co-location) anchors.

The optimization objective of our ILP formulation aims to minimize the sum of the costs of
graph cuts, which can be set differently depending on whether the communication is on- or off-
chip. These costs reflect the preference of using one or another physical connection and enable the
implementation of high-level partitioning strategies. For example, within each FPGA chip, a high
cost could be assigned to SLR crossings and, as a consequence, the number of tasks edges mapped
to these crossings would be minimized. In multi-FPGA systems, we may also seek to minimize the
number of FPGAs required for the accelerator, which can be achieved by setting connection costs
between cards greater than the total cost of placing all the tasks in one device.

By design, solving the ILP as formulated here does not minimize but only restricts the required
communication between nodes to the physically available values (e.g., number of SLLs or Ethernet
bandwidth). Similarly, the ILP solver does not directly minimize the number of SLRs in use, but this
can be achieved by co-locating the start and end nodes of the graph, which makes communication
cost minimization equivalent to minimizing the number of SLRs.

The complete mathematical ILP formulation can be found in Appendix A.

4.2.2 Optimizing Tile Size. The core partitioner as presented so far utilizes a fixed description
of the (multi-)FPGA tile as an input. However, as discussed in Section 3.1, mismatches between the
tile available resources and DFA required resources may mean the platform is being under-utilized.
We therefore embed the ILP partitioning in a tile-size optimization algorithm, which maximizes
the utilization of FPGA fabric in the tile, and therefore the performance per cost metric important
in datacenters. The tile hardware is defined by: the type of FPGA, the connectivity pattern between
FPGAs, e.g., daisy-chain, and the maximum scale (number of FPGAs). Algorithm 1 describes an it-
erative approach to searching for the optimum scale, where the number of DFA instances and scale
are increased until the efficiency passes some user-set threshold or the maximum scale is reached.
We take advantage of the fact that exact ILP solvers can rapidly identify unfeasible combinations
of platform and DFA(s) and terminate partitioning early.

4.2.3  Partitioner Implementation. The developed ILP formulation is generic, i.e., can partition
any DFA for any platform as long as these are specified appropriately. For this work, the partitioner
was implemented in Python using the ILP solver provided by the mip [57] module. The resulting
partitioner is relatively fast. For a graph consisting of 100 nodes targeting a platform of 10 SLRs
with resource utilization approaching the target resource limits, the runtime is only a few seconds.
The partitioner can be easily integrated into any DNN compiler framework that provides per-layer
resource estimation and infrastructure to pass placement constraints into the design at build time.
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ALGORITHM 1: Tile Sizing

Result: tile size: number Nrppga of FPGAs; number Npga of DFA instances

define the platform P with maximum scale N }”P“g 4 and DFA model M;

define minimum acceptable utilization Up,jn;

Npra =1, NrpGga = 1; Upesy = 0;

do
s = Partition(M, P, NrpGa, NpDFA) ; // partition Npp4 instances on Nppga FPGAs
if s exists then
U = GetUtilization(s); // calculate how much of the FPGAs are utilized
Npra +=1; // increase the number of instances (speculatively)
else
‘ Nrpga +=1; // if partitioning failed, increase the number of FPGAs
end
while U < Umin andNFpGA <= NFPGA’

4.2.4  FINN Integration. Figure 11 illustrates how our partitioner integrates with the DNN com-
piler FINN. We implemented a custom FINN analysis pass that instantiates the ILP partitioner
and translates between the FINN ONNX DFA representation and the partitioner DFA representa-
tion. The partitioner task graph is produced by post-processing the JSON generated by the FINN
resource estimation from the input ONNX, while the task connectivity information is extracted
from ONNX directly. The compute graph is generated by custom code that describes multi-node
Alveo systems, and anchors are optionally provided by the user as arguments to our analysis
pass. The partitioner associates each FINN layer with a specific FPGA and SLR on the platform,
and this information is encoded in a FINN-specific JSON and applied as custom attributes to the
ONNX model using the existing FINN Floorplan transform. Later in the DFA build process, these
attributes instruct FINN to separate the ONNX model into partitions, i.e., contiguous sections con-
sisting of layers that reside on the same SLR. Subsequently each partition is converted into a Vitis
kernel and linked by the FINN backend to produce a bitstream.

4.3 VNx: A FPGA-to-FPGA Communication Infrastructure

To enable TMP and HwMP in our designs, a direct communication between the nodes is desir-
able. Xilinx FPGA Alveo are equipped with two QSFP28 interfaces directly connected to the FPGA
and enable Ethernet peer-to-peer communication with other devices. In this section, we describe
the Vitis network layer [45], which implements transport of intermediate results for our MP de-
signs over the UDP/IP protocol. We chose UDP because of its relatively reduced complexity, which
enables a compact implementation in an FPGA. We provide VNx to the FPGA community as open-
source code that other researchers can utilize to implement UDP network connectivity between
dynamic regions of Alveo platforms. Figure 12 depicts the structure of VNx:

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 15. Pub. date: December 2021.



Elastic-DF 15:17

s Dynamic Region N N
i)
ARP -« >

@ User [ Packet Qe > QSFP28
Qo Kernel | 9 || UDP | Network Layer Handler |L.? |2
B - ICMP —— O [« jl ref clk
7] / %

To/from application 512-bit AXI4-Stream

512-bit AX14-Stream + Tdest

Fig. 12. Vitis user Kernel Network block diagram.

Gigabit Transceivers. VNx requires access to Gigabit Transceiver (GT) pins from the dynamic
region. Currently the Alveo U50, U250, and U280 shells support this functionality.

Media Access Control (CMAC) Kernel. This kernel provides link bring up logic, 100 Gb/s Ethernet
MAC, and translates the physical signals from a GT pins to a 512-bit AXI4-Stream and vice versa.
Configuration and statistics registers are accessible via an AXI4-Lite interface.

The Network Layer Kernel. This kernel (middle of Figure 12) interfaces directly with the CMAC
and is composed of several submodules. The Packet Handler parses, forwards, or drops incoming
packets as appropriate. For outgoing IP packets, the MAC address is resolved from the IP address
by querying the Address Resolution Protocol (ARP) submodule, which contains a 256-entry
table that is accessible from the host through AXI4-Lite. If a valid MAC address is found, then the
Ethernet header is populated and the packet is forwarded to the CMAC, otherwise is discarded,
and an ARP request packet is generated. Finally, the UDP module associates UDP IDs to user
kernels using a user pre-populated 16-entry connection table that associates an ID with a triplet
(destination IP, source port, destination port). Incoming packets from the network are parsed and
the connection table is queried to obtain the associated ID. If the ID is found, then the payload is
forwarded to the application and the sideband channel dest in the AXI4-Stream indicates the ID
of the connection, for correct switching of the payload to the appropriate compute unit. In the
transmitting direction, the opposite happens. When the payload is received by the UDP module,
the table is queried using the dest field. If the entry is valid, then a UDP packet is generated with
the information stored in the table. Otherwise the payload is dropped.

UDP was chosen because of its small footprint due to its stateless and light-weight nature. Ta-
ble 2 provides a breakdown of the VNx resource consumption, which is a small fraction of the
resources available on a SLR of any Xilinx accelerator cards. The same table lists for comparison
a full-fledged TCP/IP stack [18], which provides reliable packet transport however in exchange
for higher latency, significantly higher resource consumption (4x), plus external memory inter-
face, which creates additional placement constraints and with that timing closure challenges as
previously discussed.

With regard to throughput, our benchmarking experiments indicate that the throughput at appli-
cation level reaches 90% of the Ethernet theoretical maximum of 100 Gb/s (and 100% of application-
level maximum) with payload size bigger than 448 bytes and reaches 97 Gb/s for packets larger
than 1 Kbyte. With regards to latency, from the application point of view, a point to point connec-
tion is 0.526 ps. However, when going through a 100 Gb/s switch the latency is as high as 1.376
us. For DC dataflow inference acceleration, where typical latency is in the millisecond range, the
additional latency caused by VNx transport is negligible. The power dissipation of VNx at full
throughput is 6 W.

Finally, the IEEE Std 802.3BJ-2014 [51] establishes a peak bit error ratio (BER) of 10712 for 100
Gbps Ethernet, which corresponds—given a simple yet realistic error model (link speed x BER)—
to one packet lost every 10 s on average. We carried out a continuous transmission for over 15 h
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Table 2. Breakdown and Comparison of Resource Utilization between VNx (UDP)
and ETH TCP Stack

VNx UDP Stack (ours) TCP Stack [18]
Kernel

LUT FF  BRAM LUT FF BRAM URAM
CMAC Kernel 12,038 37,449 68 13,538 53,891 34 9

Network Kernel 23,181 48,820 115 110,934 176,191 813 1
Packet Handler 4,273 13,649 68 19,741 45,106 200 0
ARP 1,923 4,257 7 614 1,239 3 0
ICMP 2,646 5,617 0 1,496 1,350 8 0
Transport Layer 7,981 12,729 40 47,334 70,879 480 0

Total Utilization 35,219 86,269 183 124,472 230,082 847 10

between FPGAs with no packet lost from almost 700B packets, which indicates real-world BER is
much lower than the worst-case estimate.

5 EXPERIMENTAL SETUP AND EVALUATION METHODOLOGY

The performance of distributed inference depends on multiple layers of the software-hardware
stack and is therefore difficult to accurately simulate or model. We therefore focus on practical
implementation of distributed DNN inference accelerators and their evaluation.

5.1 ETH Zurich XACC

We utilize the Xilinx Adaptive Compute Clusters (XACC) [44] as a platform for evaluating
our single- and multi-node accelerators. XACC is a research initiative that provide critical in-
frastructure and funding to support novel research in adaptive compute acceleration for High-
performance Computing (HPC) at four prestigious universities worldwide. The XACCs are
composed of high-end servers, Xilinx Alveo accelerator cards and high-speed networking, the
configuration of each of them is tailored to enable research around a particular area.

In this work, we utilize the ETH Zurich XACC, which is composed of four FPGA-equipped
servers, each of which has a mix of Alveo U250 and Alveo U280 cards, ten in total—see Table 3
for details. Each Alveo card features two 100 Gb/s Ethernet interfaces: one is connected to a Cisco
Nexus 9336C-FX2 switch and the another is connected to its Alveo neighbor. Every server also
has a 100 Gb/s Network Interface Card (NIC) connected to the switch. This configuration al-
lows users to explore arbitrary network topologies for distributed computing. Our work makes
extensive use of the FPGA-to-FPGA connectivity provided by XACC, and we utilize both U250
and U280 Alveo cards to demonstrate the capabilities of the Elastic-DF flow. The software environ-
ment is based around Ubuntu 18.04 and includes many software frameworks for FPGA accelerator
deployment: XRT, PYNQ for Alveo, Jupyter Lab. Dask, and InAccel Coral [28] provide scale-out
capabilities.

5.2 FPGA Execution Orchestration with InAccel Coral

Coral is a fast and general-purpose accelerator orchestrator. It provides high-level APIs in C/C++,
Java and Python, which enable a user (the client) to make acceleration queries to a unified
execution engine (the server) that supports every heterogeneous multi-accelerator platform.
InAccel also provides a runtime specification that vendors can use to advertise system hardware
resources to Coral. It aims to specify the configuration, and execution interface for the efficient
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Table 3. ETH Zurich XACC Infrastructure

Node name(s) CPU Frequency Cores RAM Alveo cards
alveo0 2x Intel Xeon Gold 6248  2.50 GHz 40 376 GiB N/A
alveol, alveo2 2x Intel Xeon Gold 6234  3.30 GHz 16 376 GiB 2 x U250

alveo3, alveo4 4x Intel Xeon Gold 6234  3.30 GHz 32 376 GiB 1 x U250 + 2 x U280

management of any accelerator-based hardware resource (e.g., FPGAs), without customizing
the code for Coral itself. In Coral, client applications call an accelerator on a local FPGA as if it
were a software function, making it easier for the user to accelerate distributed applications and
services. Coral users define a platform, i.e., the accelerators that can be called remotely with their
arguments and configuration parameters. Coral clients and servers can run and communicate
with each other in a variety of environments—from bare-metal Linux servers to containers inside
a Kubernetes cluster—and applications can be written in any of Coral API's supported languages.

The key concepts of the InAccel runtime specification are the following: resource, memory, buffer
and compute unit. InAccel offers a default OpenCL-based Xilinx FPGA runtime implementation,
where each resource object represents a single FPGA device with a list of memories and compute
units, respectively, entities that is dynamically updated upon reconfiguration of the FPGA. Last,
buffer objects belong to a specific memory inside the resource context, which corresponds to a
physical memory region on the FPGA board’s DDR memories.

Dual-FPGA abstraction for Coral. To support multi-FPGA accelerators, we developed a custom
InAccel runtime, enabling initialization-time configuration of the VNx and run-time synchroniza-
tion between accelerator segments where applicable (HwMP, SwWMP). In this new abstraction, the
resource object hosts the context of two devices (e.g., 2 Alveo U280), instead of one, but also a uni-
fied memory topology is announced to Coral. Each bitstream artifact is now a tarball that includes
two named binaries, while the kernel metadata contain directives that indicate in which binary
they reside. By abstracting away all the lower level details, our Dual-FPGA Coral runtime is able
to transform any dual-FPGA cluster to a single pool of accelerators. This enables us to run existing
InAccel MLPerf test harnesses against our dual-FPGA accelerators with no changes to application
code. This runtime can be extended in principle to any number of FPGAs.

5.3 Methodology

We evaluate several neural network accelerator implementations of the FINN-generated DF accel-
erators for the quantized MN and RN-50 classifiers.

We first evaluate single-accelerator multi-FPGA inference. The research objectives are: to vali-
date the floorplanner’s ability to model inter-FPGA connectivity when partitioning an accelerator
between FPGAs, to compare direct FPGA-to-FPGA communication with through-host communi-
cation, and finally to compare the best-case throughput and latency of multi-FPGA model-parallel
inference with data-parallel inference.

Next, we evaluate accelerator compression through resource balancing in the partitioner, target-
ing single-FPGA inference. We equate size reduction with a potential reduction in application cost.
Whenever possible, we utilize the freed-up space to increase the number of accelerator instances
implemented on the target system and report the overall increase in performance.

Finally, we evaluate the achievable operating frequency increases from removing the reset bot-
tleneck through accelerator partitioning. We target single-FPGA inference on SSIT FPGAs and
partition the accelerator across the available SLRs within congestion limits.
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Table 4. Implemented ResNet-50 and MobileNetV1 Inference on Two Alveo U280s at XACC

Peak Kernel End-to-End Average Est. CPU

Accelerator Parallelism CUs  Fax FPS Latency Latency Power Power
(ms) (ms) W) (W)
RN-50 DP (Fold 2x) 2 215 3513 2.72 5.32 134
TMP 1 205/220 3374 1.52 3.75 120 20.0
HW-MP 1 220/235 3618 1.55 3.59 124 22.2
SW-MP 1 215/230 3559 2.01 5.70 115 26.5
MN DP 2 240 4195 2.11 4.42 100
TMP 3 225/230 5923 2.19 4.60 128 31.8
HW-MP 3 220/220 5755 2.43 4.54 127 32.2
SW-MP 3 230/225 5913 2.83 6.95 120 32.3

We model multi-FPGA platforms for partitioning as follows: each FPGA F; in a system has at
most two Ethernet connections to F;;; and F;_;, creating an Ethernet daisy-chain. The Ethernet
interface is placed in the SLR where the GTH Transceivers reside, i.e., SLR2 of U280, or SLR1 of U50.
Resource availability for each Alveo platform is derived from inspecting Vivado-generated design
checkpoints. We find that true available resource counts are slightly higher than those reported in
Xilinx documentation (UG1120). We apply absolute constraints to ensure no DMAs are placed in
SLRs that do not have access to either HBM or DDR. Whenever both HBM and DDR are available,
we assume use of HBM.

Resource estimates for DFA layers, required for partitioning, were gathered using the out-of-
context synthesis estimation flow in FINN. We also experimented with HLS and analytic estimates
and found that, in general, HLS-based estimates are better for RAM utilization, while the FINN
model is more accurate for LUTs. Both are less accurate than out-of-context synthesis, as expected.

FPGA builds are performed utilizing a very high optimization effort level in Vitis 2020.1. In
addition to setting Vitis to its highest optimization level (—O3), we further increase implemen-
tation effort with specialized settings: we activate the PHYS_OPT_DESIGN phase, activate Ex-
ploreWithRemap directive for OPT_DESIGN phase, activate Explore directive for PLACE_DESIGN,
ROUTE_DESIGN, and PHYS_OPT_DESIGN, activate post-route TNS cleanup. Kernels are ex-
plicitly assigned to SLRs according to the partitioning solution using a TCL recipe. Each build
is run multiple times with target frequencies ranging from 180 to 250 MHz in increments of
10 MHz, and we keep only the build with highest achieved F,,,x. We perform this target fre-
quency sweep to eliminate the typically high variability in the resulting F,,, when changing
the Vitis target frequency. For U250 and U280 builds, we utilize the U250_XDMA_201830_2 and
U280_XDMA_201920_3 platforms, respectively.

6 EVALUATION RESULTS
6.1 Model Parallel Acceleration

We apply our partitioning flow to ResNet-50 and MobileNetV1 targeting two Alveo U280 FPGAs
with peer-to-peer 100 Gbps Ethernet connectivity. The resulting multi-FPGA inference designs
were implemented and their performance is illustrated in Table 4. In the DP evaluation, the default
Inaccel Coral runtime is utilized to distribute the data to the FPGAs and gather results. TMP and
HwMP utilize VNx for direct FPGA-to-FPGA communication. The Inaccel Coral multi-FPGA run-
time handles data movement via PCle and host memory for SwWMP. We note that TMP requires
two-way communication, while SwWMP and HwMP send traffic in a single direction.
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The baseline data-parallel ResNet-50 implementation for the U280 system utilizes a folding to
II = 112 keycles per frame (denoted Fold 2X in Section 3.1), which allows the accelerator to fit in
a U280. With data-parallel execution, the aggregate throughput of the two U280 FPGAs is slightly
above 3.5 kFPS. We observe linear increase of performance between one- and two-FPGA systems.

The ResNet-50 model-parallel accelerators (TMP, HwMP, SwMP) are folded to II = 56 kcycles,
and do not fit a single U280 FPGA, and are therefore automatically partitioned across two devices.
Approximately 40 Gbps are required for the communication between the FPGAs in our partitioning
solution. We observe that the best throughput achieved through model parallelism (using HwMP in
this case) is slightly higher than DP achieves, while kernel latency is approximately halved. This is
in line with the expectations—the mechanism by which performance is improved in this case is by
enabling the implementation of a smaller number of accelerator instances (1 instead of 2) but with
higher-performance folding, which optimizes latency but not throughput. The slight increase in
FPS is due to higher operating frequency caused by reduced OCM congestion in the model-parallel
cases, which implement a single CU therefore only store the DNN weights once, whereas each of
the 2 CUs of the data-parallel implementation stores its own copy of the DNN weights.

The baseline data-parallel MobileNetV1 implementation for the U280 system utilizes a folding
to IT = 112 kcycles per frame - the lowest achievable II given the available parallelism mechanisms
in FINN. At this folding, the accelerator comfortably fits the U280, utilizing approximately 60%
of fabric resources. The aggregate throughput of the two U280 FPGAs is slightly below 4.2 kFPS.
For MobileNetV1, because the accelerator cannot be further unfolded, we perform automatic par-
titioning to maximize density (and therefore throughput) at the current folding, and find that we
can fit three instances of the accelerator in two U280s, one of which is split across the two FP-
GAs. We measure a 41% increase in throughput (with TMP) compared to data-parallel execution,
while latency is only slightly decreased, proportionally with the difference in operating frequency
between the DP and MP systems.

6.2 Comparing TMP, HwMP, and SWMP

We compare the three model-parallel approaches to derive guidelines for their utilization in prac-
tice. We first observe that the practical operating frequency for the TMP and HwMP dual-FPGA
systems is the minimum of the two FPGAs Fy,y. Because UDP does not provide flow control, we
find that using unbalanced frequencies on the two sides of VNx links leads to either packet loss
in the Ethernet link or buffer overflows in the FPGA dataflow. However, when both sides oper-
ate at the same frequency we find the system is robust. SWMP can operate its FPGAs at different
frequencies without issue.

Despite the slightly higher operating frequencies used, Table 4 indicates that SwWMP dissipates
less board power than either HwMP or TMP. The difference accounts for the two VNx kernels on
either side of the peer-to-peer link, which dissipate approximately 12 W together. The observed
difference is smaller than this value, because there is more power dissipated in data movement
activity between FPGA and host in SWMP compared to TMP/HwMP. While the XACC does not
provide CPU power measurement infrastructure, we measured CPU utilization for TMP, HwMP,
and SwMP at batch 400, which we applied as a scaling factor to the 260-W TDP of the XACC server
processors (2x Intel Xeon Gold 6234) to derive the CPU power estimates in the table. We observe
that TMP dissipates the least, and SWMP the most CPU power. The effect is less pronounced for
the MobileNetV1 system, where two of the three accelerators are not split across FPGAs, therefore
their control workload does not change between HwMP/TMP and SwMP.

Figure 13 presents a more detailed analysis of throughput and latency. Figure 13(a) illustrates
throughput of HwMP and SwMP normalized to TMP for both MobileNetV1 and ResNet-50. For
both accelerators, but more pronounced for ResNet-50, we observe SWMP outperforms for small
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Fig. 13. Comparison of SWMP, HwMP, and TMP for RN-50 and MP on two Alveo U280s at XACC, using
Inaccel Coral. Latency and throughput are measured using MLPerf Single Stream and Offline benchmarks,
respectively.

batch sizes. At larger batch sizes the differences between the MP variants stabilize to approxi-
mately the difference in their operating frequencies. With regard to latency, Figure 13(b) suggests
that SwWMP has much higher latency at the application level than TMP and HwMP, which perform
equally well. The difference is due to the extra latency of data movement through the host. We
also observe higher variability of latency, with the difference between 50th percentile and 99th
percentile latency being approximately double for SwWMP compared to the other MP variants. As a
direct consequence of this, additional evaluation with the MLPerf Multi-Stream benchmark, which
focuses on latency-constrained throughput, indicates that the ResNet-50 SwWMP achieves approxi-
mately 40% fewer FPS when the 99th percentile latency is constrained to 50 ms, and approximately
four times fewer FPS when constrained to 7 ms.

6.3 Effect of Partitioning on Logic Density

ILP versus Greedy. We evaluate how the Elastic-DF partitioner compares against a simple greedy
partitioner as utilized in the distributed inference framework AlGean [36, 55] with regard to achiev-
able logic density, without communication constraints. This set-up is indicative, given the focus on
placement only, of monotone partitioning strategies, i.e., if layer i and k are placed onto a specific
SLR, then any layer j is placed on the same SLR, where i < j < k.

The greedy partitioner packs each SLR with consecutive DFA layers until the Xilinx-
recommended congestion limits are reached, then moves onto the next SLR. We perform this
experiment using MN for all Alveo cards. For U50, the greedy partitioner was not able to map
the DFA to the device, running out of Block RAM after placing 29 of the 31 layers in the MN DFA.
For all remaining cards (U200, U280, U250) the greedy partitioner was able to fit the DFA into three
SLRs. In contrast, our ILP partitioner was able to fit the DSA into all of the cards using 2 SLRs in
each case, benefiting from the ability to generate a non-monotone partition, i.e., move the pipeline
back and forth between the SLRs to optimize utilization.

Additional Compression via Resource Balancing. For this experiment, we enable the resource bal-
ancing feature of our ILP partitioner and evaluate its effect on the total size of FPGA required
for implementing a DFA. We compare against our ILP partitioner with resource balancing turned
off. Figure 14 presents a mix of estimated and measured performance for classification with MN
with each of the four Alveo accelerator boards as target. For each board, we present the achiev-
able FPS with and without resource balancing. For U50 and U200, the top of each bar indicates the
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Fig. 14. Effect of resource balancing on throughput (FPS) of MN inference on Alveo boards. Numbers at top
of each bar indicate the maximum number of MN accelerator instances feasible to implement on a single
board of the specified type. (“FPS estimated from per-SLR congestion of partitioned design.)

maximum number of accelerator instances our partitioner believes are feasible to implement, while
for U280 and U250, it indicates actual implemented number of instances.

For U50, which is a relatively small card (two SLRs), both strategies yield the same estimated
throughput and one accelerator instance utilizes most of the available resources. For U250, the
largest card (four SLRs), the throughput of the two strategies is once again close, and each of them
is able to produce a feasible implementation of two MN instances, which is expected given that
the U250 is approximately twice the size of U50. The advantage of compression becomes apparent
on the two intermediate-size boards, U200 and U280. On both, with the default FINN resource al-
location, we are able to fit only one accelerator in the three available SLRs. In this experiment, our
resource balancing flow is able to effectively choose between LUT/DSP and BRAM/URAM pairs
for each layer, making the implementation of two MN instances on these cards feasible. However,
the dual-MN designs are more congested than the default single-MN design and therefore their
operating frequency is lower. We measure 78% FPS improvement on U280, and given the conges-
tion of the design, a similar result is likely for U200. If we consider the number of SLRs utilized
as a measure of cost, then resource balancing enables an increase in throughput per unit cost by
moving from the larger U250 card to the smaller U200 or U280 with no loss in throughput.

6.4 Effect of Partitioning on Achievable Operating Frequency

While many variables affect the achievable Fy,x for a given DFA, including target frequency, DFA
structure, and congestion, we nevertheless attempt to quantify the contribution of our floorplan-
ning flow to the achievable frequency. We compare builds of partitioned and non-partitioned but
otherwise identical ResNet-50 and MobileNetV1 DFAs, on the same target FPGA. We execute each
non-partitioned build twice—once with resets in SLRO (the Vitis default), and once with resets con-
trollers placed in a more central location (SLR1)—for each of five target frequencies. We report
Vitis-reported post-routing frequencies.

Table 5 presents the results of our evaluation, which indicate significant speed-up can be
achieved with partitioning over the Vitis default build strategy with monolithic kernels, and mod-
erate speed-up from the hand-optimized Vitis reset strategy. There are no large differences in
behavior between the two types of accelerator with regards to speed-up, but there is a relatively
large difference between performance on U250 and U280, with the former benefitting more from
partitioning relative to the reset-optimized Vitis strategy. We speculate this is due to the struc-
ture of the FPGA devices—the reset controller in SLR1 is more central on the 3-SLR U280 than on
the 4-SLR U250. Congestion is not affected significantly: maximum per-SLR resource utilization is
reduced on average by 4% for LUTs and 6% for BRAM.

These results indicate that the principal contributor to the speedup achieved through automatic
partitioning on a single device is the optimization of reset infrastructure through the separation of
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Table 5. Fpax of Baseline and Partitioned DNN Accelerators

Fmax F
Accelerator ~ FPGA  #CUs Monolithic Partimtiezne d Speedup
RSTC in SLRO / SLR1
RN-50 U250 1 109/154 190 1.74/1.23
RN-50 (Fold 2x) U280 1 123/208 217 1.76/1.04
MN U250 2 110/142 210 1.90/1.48
MN U280 1 152/215 241 1.58/1.12
SLRO SLR1 SLR2

SLRO SLR1 SLR2 SLR2 SLR1 SLRO
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Fig. 15. Example partitioning results.

the DF pipeline into multiple kernels, which Vitis is better able to service. It is also worth noting
that we observed an increased routing success rate when the design was partitioned. For example,
in the case of the RN-50 implementation, three of five builds (with different target frequencies)
failed when the default configuration was used, two of five failed in the reset-optimized case, but
all builds succeeded when the DFA was partitioned. We also observe a reduction in total build
runtime by approximately 10% when using partitioning.

Given the combination of multi-SLR target FPGAs, the high-congestion nature of these designs
(high LUT and BRAM utilization) and the HLS design entry (FINN-generated C++ compiled with
Vivado HLS), we consider the achieved frequencies of the monolithic (non-partitioned) designs
adequate. With partitioning, these designs approach the performance of hand-crafted MPE accel-
erators. For reference, Xilinx Vitis AI MPE-based inference designs operate at 300 MHz on the
same Alveo boards [63].

6.5 Discussion

Our evaluation indicates clear advantages from partitioning over the default Vitis build flow for
FINN-generated DFAs, but does not paint a picture of the difficulty of partitioning these systems.
Figure 15 illustrates the two most interesting designs in our evaluation—hybrid DP+TMP paral-
lelism for three MobileNetV1 DFA instances in two Alveo U280s, and the compressed U280 design
with two DFA instances. It is immediately obvious that manual partitioning of these systems is
not feasible. Especially in high congestion areas, best illustrated by Instance 1 in Figure 15(b), the
design must combine resource balancing and non-monotone partitions to meet congestion targets.
No tiling placement patterns emerge in these designs, indicating that a global view of the entire
multi-DFA system is better that a tiled design of individually partitioned DFAs.

Although a number of single- and multi-node DNN inference implementations exist, direct
performance comparisons between these works is challenging due to differences in chosen topol-
ogy, model quantization and sparsity, hardware optimization objectives, RTL versus HLS design,
evaluation methodology and which performance metrics are reported. Table 6 compares our work
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Table 6. Comparison to Single- and Multi-node FPGA Inference Accelerators

Work  Paradigm FPGA Topology Design FPS Latency (ms)  Quantization
Ours DF Alveo U280 MobileNetV1 HLS 3741 2.3 w4dad
€  Ourss DF Alveo U250 ResNet-50 HLS 3127 17 wla2
= [37] DF vu9opP ShuffleNet-v2 HLS 3321 n/a wla8
%)o [20] DF Stratix 10 MobileNetV1 RTL 5157 0.65 wl6al6
£ [64] MPE KU115 HCNet RTL 1465 2.7 wl6al6
[30] MPE Arria 10 MobileNetV2 RTL 1050 6.2 wl6al6
[15] MPE Arria 10 ResNet-50 RTL 559 1.8 msfp-1s5e5m
Ours DF 2 X Alveo U280 MobileNetV1 HLS 5923 2.2 w4a4
Ours DF 2 X Alveo U280 ResNet-50 HLS 3617 1.55 wla2
[3] DF 3 X Stratix V AlexNet HLS 1,666.67 0.6 wla2
5 [66] DF 4 X ADM-PCIE-8V3 ResNet-152 N/A n/a 16.1 wl6al6
2 [54] DF 3 x ZU19EG Autoencoder  HLS n/a 0.08 n/a
% [65] MPE 4 X Virtex 7 690T AlexNet N/A 589.71* 104 wl6alé
= [65] MPE 4 X Virtex 7 690T AlexNet N/A 92.00 30.6 wl6al6
[26] MPE 16 x ZCU102 AlexNet HLS 3,225.81% 0.31 wl6al6
[48] MPE 5 X AWS-F1 SqueezeNet HLS 2,222.22 0.45 wl6al6
[48] MPE 5 X AWS-F1 ResNet-18 HLS 476.00 2.1 wl6al6

“Estimated from provided performance metrics.

with results from prior work on FPGA inference accelerators for ImageNet classification, with
single-node results on the top part and multi-node ones at the bottom. Note that the table contains
estimations for certain not-reported metrics, whereas other metrics cannot be estimated (e.g.,
latency for DF architectures cannot be derived from FPS) and are marked as not available (n/a).
Among the single-node results, Hall et al. [20] report the highest throughput (close to 5.2 kFPS with
0.65 ms latency for MobileNetV1) by combining a DF-style architecture built of carefully optimized
RTL components, yielding a high Fjx = 430 MHz. This is followed by our single-node results
using HLS, achieving 3.7 kFPS with 2.3 ms for MobileNetV1, which outperforms the ShuffleNet-v2
implementation with JPEG compression by Nakahara et al. [37], as well as the MPE implementa-
tions with optimized RTL. We expect that combining our partitioning techniques with optimized
RTL components would yield a further increase in performance for both single- and multi-node
implementations, although this is left for future work. Among the multi-node FPGA implementa-
tions we surveyed, our two-node results provide the best-in-class measured performance, both in
terms of highest FPS (5.9k FPS with MobileNetV1) and minimum latency (1.7 ms for ResNet-50).

Due to large variations in FPGA device sizes, number of nodes, and degree of quantization in
Table 6, we provide additional comparisons on performance scalability of multi-FPGA inference in
Table 7. With regard to throughput, which is the main focus of our optimization, only [26] is able
to achieve super-linear scaling (Speed-up greater than 2) like our own results. When considering
only the application of Elastic-DF model parallelism, our speed-up of 2.82 is lower than 3.43 for [26]
(AlexNet). We note however that the mechanism by which speed-up is obtained in Reference [26]
is through the circumvention of a DDR throughput bottleneck, whereas our own baselines have
no such bottleneck, and we achieve speed-up through increased utilization of fabric resources, for
which model parallelism is only a coarse-grained solution. Indeed, when considering compression
as well, our speed-up from the baseline is 3.73, higher than that of Reference [26]. Unfortunately,
we have to exclude Brainwave from our multi-node comparison, as detailed performance metrics
are reported only for single-node instances.

Our analysis of the effect of partitioning on timing closure validates our initial assumption that
fine-grained explicit dataflow is preferable to embedding the dataflow into a single Vitis kernel,
and suggests that the typical approach of dataflow kernel design for Vitis, whereby dataflow is
expressed internally to the kernel through the HLS DATAFLOW pragma, is counterproductive. We
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Table 7. Comparison with State of the Art in Respect to
Throughput and Latency Scaling for One or Two Nodes

Two-node improvement
Work Paradigm Topology Throughput Latency

Ours DF ResNet-50 2.06 1.78

DF MobileNetVl 2.82(3.73)  1.00

[65] MPE AlexNet 1.5 1.00

MPE VGG 2.00 1.00

[26] MPE AlexNet  3.43" 3.43

MPE SqueezeNet  2.01% 2.01

[48] MPE AlexNet 1.75 1.75
[55] DF Autoencoder n/a 2.16™*

*Speed-up extrapolated from latency for MPE architectures.
**Extrapolated two-node from three-node performance.

believe based on our results that Vitis would be able to achieve higher quality of results by breaking
up HLS dataflow regions into an explicit pipeline of kernels, which are assigned to SLRs by a
partitioner such as ours. Alternatively, Vitis should place the reset controller as close as possible
to the center of the FPGA to minimize the timing impact of reset signals.

6.5.1 Limitations. Our analysis has several limitations. Because we use an exact ILP solver for
partitioning and resource selection, our approach may not be fast when applied to either very deep
networks or very fine-grained designs where, e.g., every layer is exposed at the dataflow layer as
many individual processing elements. The second limitation stems from our approach of favoring
working prototypes and standard benchmarks over simulators or modelling—we are limited in
our choice of DNNs, specifically to MLPerf DNNs that can be deployed to FPGA using a dataflow
DNN compiler. At the time of writing, the quantized MobileNetV1 and ResNet-50 compiled with
FINN were the only DNNs meeting our criteria. Additionally, our use of FINN carries over certain
limitations in folding, which prevent us from scaling up these designs to more than two FPGAs. The
third limitation relates to the optimality and repeatability of Fyax on the platforms under analysis.
While our configuration of Vitis is aimed at achieving maximum-effort timing closure, there is no
guarantee that no higher-frequency implementations exist of any of the systems presented in this
work. Due to the long duration of the implementation flow, we could not perform a comprehensive
sweep of random seeds and other parameters affecting quality-of-results.

Finally, we do not provide mitigation for the potential impact of using UDP (unreliable) instead
of TCP (reliable) as transport layer. We can however estimate the impact of UDP loss on the ac-
curacy of the deployed models. If we consider one UDP error every 10 s (see our analysis in Sec-
tion 4.3) and assume that a bit error produces a misclassification, then the drop in accuracy for, e.g.,
ResNet-50 TMP (3374 FPS), is 1/33,740 ~ 3 X 10™° on average. Even though multiple hops would
increase the accuracy penalty linearly, the overall effect is negligible at any reasonable number of
hops in a datacenter.

7 RELATED WORK

To address the computational demands of DNN inference, numerous customized FPGA accelerator
architectures (Section 2) with both single- and multi-node implementations have been proposed.
In this context, a number of algorithms and tools also explore the problems of partitioning,
floorplanning and mapping of the workload to accelerators, similar to our Elastic-DF partitioner.
In the following subsections, we present a selection of related work and carry out a qualitative
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Table 8. Qualitative Comparison of Multi-node FPGA Inference Acceleration Schemes

Work FPGA Interconnect Protocol ~Communication®  Paradigm  Objective” Partioning™*
Ours U250/U280  Ethernet @ 100 Gbps uDP P2P or host DF TR inter-layer, ILP
[3] Stratix V MaxLink N/A p2p DF N/A inter-layer, U
[66] VU095 Ethernet @ 10 Gbps TCP/IP host DF T inter-layer, DP
[55] ZU19EG Ethernet @ 100 Gbps UDP P2P DF T,L inter-layer, G
[65] XC7VX690T Aurora @ 750 MB/s N/A p2p MPE T,L inter-layer, DP
[26] ZU9EG Aurora @ 2.23 GB/s N/A pP2pP MPE L intra-layer, ILP
[48] AWS F1 PCle PCle host MPE T inter-layer, GP
[9] Stratix 10 Ethernet @ 40Gbps custom P2P MPE L intra-layer, U

“P2P = peer-to-peer, T = throughput, L = latency, TR = throughput per resource.
**U = unspecified, ILP = integer linear programming, G = greedy, DP = dynamic programming, GP = geometric
programming.

comparison to our own work for both single-node (multi-SLR) and multi-node (multi-FPGA)
inference scenarios. Finally, since multi-node implementations, which are an important aspect of
our efforts, are intricately dependent on the networking infrastructure, we include an overview
of related work on FPGA cloud infrastructure and network stacks.

7.1 Partitioning Designs for Single-node, Multi-SLR FPGAs

Previous work on design partitioning for multi-SLR FPGAs is mostly focused on timing closure
optimization. References [19, 38] make changes to the VPR place and route tool to minimize the
number of wires crossing between SLRs in an effort to minimize timing impact. References [34, 35]
further separate the placement flow into a coarse partitioning stage, which minimizes SLR cross-
ings and a detail placement stage for each partition independently. All of these research efforts are
general-purpose CAD tools and do not modify the underlying design. In Reference [61], a greedy
partitioner is utilized to optimize the mapping of design buffers to physical OCM on multi-SLR
devices. The partitioner utilizes size thresholds to decide whether to implement memories in dis-
tributed, Block or Ultra RAM on Xilinx VU9P devices. Our Elastic-DF ILP partitioner takes these
concepts further and adds a multi-FPGA dimension—we provide simultaneously SLR crossing min-
imization, heterogeneous inter-SLR (including inter-FPGA) communication bandwidth limitation,
and congestion management through Block/Ultra RAM and LUT/DSP utilization trade-off. Also,
to our knowledge, no other partitioning tool provides the anchoring capability that enables us to
implement transparent model-parallelism. While we focus on DNN dataflow accelerators in this
work, our partitioner is sufficiently generic to be utilized with any FPGA design.

7.2 Multi-node FPGA DNN Inference

A number of prior works describe multi-node DNN inference implementations for FPGAs. De-
spite the shared multi-node aspect, these works differ substantially in terms of optimization ob-
jectives, acceleration paradigm, model quantization, accuracy on dataset, evaluation methodology,
and reported metrics, which makes direct performance comparisons difficult. To supplement the
quantitative comparison in Section 6.5 with a qualitative one, we now offer a summary of key
aspects related to multi-node implementations in Table 8. We structure our discussion around the
partitioning and network connectivity aspects, and how Elastic-DF differs in these regards.

7.2.1 Partitioning. The method for deciding the allocation of DNN computations to multiple
FPGAs is dependent on the particular acceleration paradigm (Section 2.1), with various parti-
tioning granularities, methods, and optimization objectives possible. The three final columns of
Table 8 summarize these properties for the related work. Taking these properties into account,
one can construct a performance model for predicting the desired performance metric based
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on allocation decisions, then apply mathematical optimization methods to search for a good
partitioning. MPE-based approaches typically instantiate identical, maximum-sized hardware on
each available FPGA, then partition the DNN inference graph to these accelerators with latency
and/or throughput as optimization objectives. For MPE designs where weights and activations
are stored in off-chip memory, the available memory bandwidth often becomes the bottleneck
and is the key consideration for partitioning. Super-LIP [26] distributes (parts of) layers to MPEs
on different nodes to achieve super-linear latency reduction by moving traffic from the memory
bus to inter-FPGA links leveraging an ILP solver. Zhang et al. [65] describe a similar approach,
but provide options to run their partitioner to target either latency or throughput as the objective.
For this they use a dynamic programming approach. Brainwave [9] mentions partitioning the
DNN inference graph over a number of mega-SIMD MPEs (called NPUs) replicated over all nodes
and fixed in size, but provide no further details on how the partitioning works or how the latency
reduction scales with the number of nodes. Shan et al. [48] partition a DNN workload to FPGAs
communicating over PCle links in an AWS-F1 instance. Their partitioner constrains the resource
utilization of each FPGA and allows non-monotonic partitions.

For DF-based multi-node acceleration, there is greater focus on inter-layer partitioning to mini-
mize bisection bandwidth and staying within each FPGA’s resource constraints while specializing
each layer’s compute engine. Baskin et al. [3] and Tarafdar et al.[55], the latter using a greedy
algorithm, consider splitting DF architectures across multiple FPGAs to be able to accommodate
larger models such as ResNets, but do not describe any toolflow support for further un-folding for
scaling up the performance. Zhang et al. [66] describe a dynamic programming approach to parti-
tioning that maximizes throughput, setting the unrolling factors for each layer while respecting the
resource budget, but provide no details on the implementation, unrolling granularities or through-
put balancing aspects. We also note FPDeep by Geng et al. [62], which proposes a multi-FPGA DNN
training framework. Although DNN training involves quite different data dependencies compared
to inference, FPDeep provides automatic partitioning of the training task graph to MPEs through a
multi-step approximation algorithm whereby the optimization goal is throughput, leveraging both
model- and data-parallelism, but which does not take inter-FPGA communication throughput re-
quirements into account. FPDeep also provides resource balancing as a fine-tuning step, after the
partitioning is completed, but only allows trade-off between two classes of resources.

Elastic-DF differs from these works in two key aspects. The first is a fundamental difference in
approach: in contrast to existing solutions that optimize FPS or latency through partitioning and
resource allocation, Elastic-DF starts from an existing folding solution that dictates latency, allow-
ing multiple DFA instances segmented across multiple FPGAs and optimizing for the performance
per unit area metric. To maximize this metric, we combine partitioning and resource balancing
into a single step, support non-monotone partitions, and allow the user full control of the resource
balancing options for each DNN node.

The second distinction is that none of these prior works consider the combination of multi-SLR
and multi-FPGA partitioning, which our analysis indicates to be key to achieving good perfor-
mance results for large DC-class FPGAs. We also note that Elastic-DF can in principle perform
intra-layer partitioning if the underlying DFA compiler would expose a finer grained layer struc-
ture, e.g., individual PEs, although this may increase the partitioner runtime significantly, since
we utilize an exact ILP solver.

7.2.2  Network Connectivity. We consider three aspects of network connectivity in Table 8: the
physical interconnect, protocol and communication style used for distributed inference, all of
which impact performance, scalability and portability of the solution. We differentiate between
DF and MPE implementations, and regarding the partitioning, what the optimization objectives
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are, at what boundaries the partitioner operates, and the type of algorithm used. Shan et al. [48]
only consider communication over PCle for an AWS-F1 instance with multiple FPGAs. Several
works [3, 26, 65] use direct P2P serial links for communication, which is low overhead and re-
quires no protocol, but limits scalability in datacenter scenarios. Others, including Brainwave [9],
Algean [55], Zhang et al. [66] and our own work make use of Ethernet, which offers greater scala-
bility and compatibility. Among these works, [66] uses host-initiated communications, in contrast
to the others where accelerators initiate direct P2P communications to avoid being bottlenecked
by the host CPU. Brainwave [9] leverages a custom protocol, whereas our work uses standard UD-
P/IP. While customized protocols lead may lead to more efficient implementations, standardized
protocols enables easier interoperability.

7.3 FPGA Cloud Infrastructure and Network Stacks

Several data center operators provide FPGAs as a service, including AWS [2], Huawei [23], Nim-
bix [39], and Microsoft Azure [8]. AWS and Nimbix do not currently provide node-to-node con-
nectivity between FPGAs. Azure offers 40 Gbps Ethernet connectivity per node, where the com-
munication is handled over a customized UDP protocol. Huawei has dedicated 300 Gbps optical
links between nodes with a mesh interconnect; however, we did not have access to detail on how
network abstractions are provided to the user and what form of communication primitives have
been made available. In the FPGA research community, we are aware of two efforts for distributed
FPGA infrastructure. IBM’s CloudFPGA [1] is a highly customized platform that integrates 32
FPGA cards per chassis, with full cross connectivity provided amongst the nodes through a cross-
bar switch. FPGAs communicate directly with each other using MPI primitives over 10 Gbps Eth-
ernet connections. Galapagos [56] supports 10, 40, and 100 Gbps Ethernet with either generic UDP
or TCP/IP transport protocols, plus MPI abstraction for communication. In principle, any of these
cloud infrastructure options would be suitable for running our distributed CNN inference designs,
but XACC is currently the only publicly accessible infrastructure that we are aware of that offers
explicit support for peer-to-peer FPGA communication.

With regard to the implementation of peer-to-peer links, several papers have proposed FPGA
network stacks [4, 13, 14, 24]. Work at ETH Zurich [49, 50] led to a 10 Gbps TCP stack written
in C/C++ harnessing Vivado HLS and later to Limago [46], the first complete description of an
open-source implementation of a TCP/IP stack operating at 100 Gb/s. Intel Inter-Kernel Links
(IKL) [52] provides light-weight direct Ethernet connectivity between FPGAs at 40 Gbps. Our VNx
focuses on efficiency and is able to achieve equivalent resource utilization with IKL at higher speed
by implementing a UDP stack based on Limago.

8 CONCLUSION AND FUTURE WORK

We proposed Elastic-DF as a methodology and set of tools that efficiently map DFAs to FPGAs.
We demonstrate the applied partitioner enables super-linear scaling of throughput for both Mo-
bileNetV1 and ResNet-50-v1.5, by leveraging model parallelism and direct FPGA communication
over 100 Gbps Ethernet networked nodes. Further throughput increases are possible when per-
forming tightly-coupled partitioning and resource allocation. We also observe that automatic par-
titioning is effective for working around platform-specific timing closure challenges for large multi-
SLR accelerators. In most cases, the automatic partitioning flow enables the identification of the
maximum number of accelerator instances and allocation of layers to SLRs and devices on a given
platform in minutes, which is negligible compared to the typical duration of an FPGA implementa-
tion flow. Compared to other similar approaches, such as Microsoft’s Brainwave, we differentiate
most importantly through more flexible scaling, resulting from the fine-grained dataflow gener-
ated by Elastic-DF and FINN instead of using a fixed NPU architecture.
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This work is just the start of a larger effort. We intend to explore the scalability to much deeper
CNNs, investigate effects of different network protocols, e.g., TCP and connectivity topologies on
the scalability and DFA density. Given the generality of the approach, future work could focus on
the partitioning of more generic compute graphs, outside the scope of dataflow inference. Finally, a
tighter integration with high-level synthesis tools could allow partitioning to be performed during
accelerator compilation, providing additional mechanisms for performance improvement.

APPENDIX

A ILP FORMULATION OF THE ELASTIC-DF PARTITIONER

A.1 Input Definition

We first mathematically define the dataflow compute graph and the target FPGA platform.

Dataflow Graph. The task graph T = (T",T¢) carries the information regarding the compu-
tations to be implemented, where T" represents the set of DF nodes, e.g., DNN layers, and T*
represents the set of connections between nodes.

Eachnodep € T" is defined for the purposes of partitioning by its potential implementations and
their respective resource utilization profiles. We denote the set of node resource types as U" and
d = |U"| is the total number of node resource types. For FPGA implementations, typical resource
types are LUTs, FFs, DSPs, BRAMs and URAMs so d = 5. Each possible node implementation
v € p is therefore a vector in Q¢ or N(‘f specifying the utilization of each resource type for that
implementation. For example, we can have a version using DSPs for a certain computation and an
alternative version using LUTs. We denote the requirement of resource type u" € U" of
version v € p of task p € T™.

Each task edge is an ordered pair k = {p,q} € T¢, which establishes a connection from task
node p to task node g, i.e., the output of task node p is the input of task node g. We denote the set
of connection resource types as U¢. For multi-FPGA accelerators, connections between task nodes
can be established through dedicated wires if task nodes reside on the same FPGA or through
shared chip-to-chip connectivity if nodes reside on different FPGAs. The number of wires and
off-chip throughput define the set of resource types in this example. We denote L the edge

n
tp, o, u"

requirement of resource type u¢ € U® associated with task edge k € T*°.

Compute Platform. The graph C = (C", C¢) describes the target platform. Each node in C” rep-
resents a compute unit we can assign tasks to, for example, for Multi SLR FPGA devices it can be
a SLR, or otherwise a pBlock or even a whole FPGA device. Each compute node i € C,, provides a
certain amount ¢}’ , of each resource type u" € U". Each edge in C® establishes a connection be-
tween compute nodes i and j and provides up to cf’j’ue of each connection resources type u® € U°.
For example, a connection between SLRs residing on the same FPGA may provide a large number
of wires (SLL) but no off-chip throughput, whereas a connection between SLRs on different FPGAs

will provide no wires and some off-chip throughput.

A.2 Constraining the Partition

To be able to set ratios of utilization for the compute resources a limit [,» € [0, 1] is provided for
each resource type u” € U". Average utilization constraints of the form: Avg(u, uf', uy,..) <l are
defined by a list A of tuples {I, M}, where [ € [0, 1] is the average utilization limit and M € U" is
the subset of resource types included in the average.

Anchoring constraints are specified through two lists of tuples: A* and A" corresponding to
absolute and relative anchors, respectively. Each tuple {p, N} € A® restrict a task p € T" to be
placed in a subset of compute nodes N € C". Each tuple {p, q} € A" forces task p € T" to be in the
same compute node as task g € T".
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A.3 Optimizing the Partition

The partitioning algorithm described herein maps the task graph to the compute graph, within the
constraints specified. In addition, we want to optimize placement and/or connections of the task
nodes. For this, we use an additional matrix, the connection cost matrix C¢. The element cf’j e C¢
is the cost associated to the connection between compute node i and j.

The partitioning is expressed as an Integer Linear Program (ILP). For the formulation of the
problem, we use two sets of binary variables, the edge map M and the node map M". The edge
map variables m{ ., € M* state whether the task dependency k connects a task node mapped to
compute node i w1th a task node mapped to compute node j. The other set of auxiliary variables
are the node map variables m} po €M, that state whether the version v of task node p is assigned
to the compute node i.

Finally, the ILP formulation is

s e . ¢
minimize Z Z Z m; ik * Cij (1)

ieCn jeCn keTe

VPGTn5ZZmZp,v:1’ (2)

subject to:

ieC" vep
k=lp.gheToVieC": > me = > ml,,, (3)
jecn vEP
k=lpq)eT,VjeC: Y ms  =>ml, ., ()
ieCn veq
VieCh VUt e U 3T N ml st Sl L, (5)
peT™ vep
V{ij) € COVUS €U s DT mE L wtf e Sl e (6)
keTe

Here, Equation (2) forces each task node to be placed once and only once. Constraint Equations
(3) and (4) create the link between M€ and M", that is, these variables are not independent. For
each task edge k = {p,q} € T¢, there are compute nodes i and j such that mi e =L Then, by
definition there must be vy € p and v; € g such that m? = 1 and m} oo = b respectively.
Resource limitations are set by Equations (5) and (6) for node resources and connection resources,
respectively.

Applying anchors. The formulation for these constraints is

V{p,N} € A : szgp,v =1, 7)
ieNvep
Yi{p,q) € A VieC": Zm;{p,v =Zm;{q,v. (8)
vEP veEq

Applying average utilization constraints. Defining C} as the subset of nodes in C" for which
u™ > 0 for u™ € M, the formulation for these constraints is

V{z,M}eA”,vl'ec;%,- Z D st <L 9)

urem Ci, u" peTn vep
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