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Abstract
A key issue in Reinforcement Learning (RL) re-
search is the difficulty of defining rewards. In-
verse Reinforcement Learning (IRL) is a technique
that addresses this challenge by learning the re-
wards from expert demonstrations. In a realistic
setting, expert demonstrations are collected from
humans, and it is important to acknowledge that
these demonstrations can deviate from rationality
due to systematic biases known as cognitive bi-
ases. One group of cognitive biases, known as
risk-sensitive cognitive biases, pertains to individu-
als’ attitudes and behaviors towards risk and uncer-
tainty. This paper investigates the extent to which
IRL can learn from demonstrations that contain
risk-sensitive cognitive biases such as loss aversion
and risk aversion. Modelling biases using concepts
from Prospect Theory and System 1 and 2 model
and using Maximum Entropy IRL algorithm, this
paper concludes that IRL can recreate similar so-
lutions to experts but inferring the underlying mo-
tivations and the interactions between them is an
intricate problem that requires novel approaches.

1 Introduction
An important issue in Reinforcement Learning (RL) research
is that for many tasks it is hard to devise a concrete reward
function that accurately describes the goal of the agent. In-
verse Reinforcement Learning (IRL) is a method developed
to circumvent this issue. In IRL the agent is given a set of ex-
pert demonstrations from which it is expected to recover the
reward function and then find an optimal policy according to
the inferred reward function [1].

This way of formulating the problem can improve the per-
formance of machine learning algorithms on tasks that are
hard to model. One example is driving. Even though creating
demonstrations for driving is easy, describing the exact goals
and the trade offs between these goals would be challenging.
A multitude of examples can be found when thinking about
tasks that are conventionally easy and intuitive for humans.

The process of inferring a reward function from human
demonstrations presents many new and different challenges.
One such challenge is that human behaviour is not completely
rational and can contain noisy, even contradicting behaviours.
Even though every instance of human behaviour will deviate
in a unique way from what an algorithm might consider ”opti-
mal”, research shows that there are some patterns that humans
are susceptible towards [4] [13]. These patterns are called
cognitive biases. Even though cognitive biases help humans
by acting as ”shortcuts in thinking” and decrease the compu-
tational resources needed to make a decision, their presence
in expert demonstrations should be accounted for in order to
construct a realistic reward function.

This paper focuses on the cognitive bias called loss aver-
sion. Loss aversion reflects the skewed risk and uncertainty
perception of humans, specifically the tendency to overesti-
mate losses and avoid risk even if it is at the expense of the

reward. This paper aims to answer the following question:
”To what extent can IRL learn rewards from demonstrations
that contain loss aversion bias?”.

This study adds value to the field of IRL by studying an
essential component in human decision making: perception
of risk and uncertainty. By bridging concepts from Eco-
nomics, Psychology and Cognitive Science into the realm of
Computer Science, we integrate valuable research from other
fields. Through assessing the applicability of such models,
we contribute to building more explainable models.

Section 2 offers more insights to this research field while
section 3 explains how this paper simulates cognitive biases
by making use of Prospect Theory [5] [16] and System 1 and
2 Cognitive Model [4]. Section 4 conducts experiments using
biased expert agent demonstrations to infer rewards through
Maximum Entropy IRL (MEIRL) algorithm [17] and shares
the results. Finally the sections 5 and 7 conducts a more in
depth discussion about this experiment, drawing conclusions
and suggesting future directions.

2 Background
The field of IRL is a relatively novel technique popularized
in the year 2000 by paper [8]. This paper highlights the prob-
lem of reward definition in RL and proposes IRL as a solu-
tion, deriving the algorithm from the very basic representa-
tion of MDPs and Bellman Equations, which are the building
blocks of most RL algorithms. This work considered the ex-
pert demonstrations as optimal, which might not always be
the case. Research shows that demonstrated behaviour and
underlying intentions can often be very distinct [14] and this
has traditionally been left out of technical fields.

In engineering, human models have traditionally assumed
that humans are rational actors who act according to expected
utility. Previous research in combining cognitive models and
Inverse Reinforcement Learning (IRL) has often followed a
probability-based approach and considered incorporating a
component that represents the degree of rationality of the
agent [2]. However, interpreting observed behavior solely as
”deviating from rationality” fails to capture the full complex-
ity of the situation. While accounting for biases that may
hinder certain goals is important, it does not fully explain be-
havior observed in demonstrations.

The paper [9] describes models that represent the interplay
between different goals in single choice and continuous con-
texts. This is an approach inspired by Cognitive Science, and
specifically the mechanism of System 1 and 2 described in
[4]. System 2 represents the rational choices while System 1
is more affected by the ”shortcuts in thinking”. The paper is
very through with the temporal interaction of these two sys-
tems as it acknowledges that a decision made at a certain time
affects the nature of the choices in later stages.

Modelling uncertainty, a prevalent model is Prospect The-
ory [5] [16], used in Cognitive Science and Economics to
model human behaviour in reaction to uncertainty and risk
taking. Prospect Theory presents mathematical models that
captures cognitive biases that describe an agent that treats
losses and gains asymmetrically, overestimates the probabil-
ity of low probability events and underestimates the proba-



bility of high probability events. The model also shows that
additional losses or additional gains after a point are less rel-
evant in how the agent perceives the reward. To illustrate one
can think of the example that the perceived value difference
between $10 and $20 is higher than for $100 and $110.

The IRL method that will be used on this paper is Maxi-
mum Entropy IRL (MEIRL). The main challenge in inferring
reward function is that for a set of given demonstration there
are infinitely many reward functions that can lead to similar
behaviour. The popular method of MEIRL chooses the solu-
tion according to the principle of maximum entropy, that the
solution that has the maximum entropy is the solution that fits
the observation with the least amount of introduced bias [18].
The reward prediction is made using a forward and a back-
ward pass in the algorithm observing the actions given state
and state features and a forward pass computing state visita-
tion frequencies. These passes are executed interchangeably
until convergence (or close to convergence).

3 Methodology
The process followed in experiments in this paper can be ex-
amined in three parts. First, the expert demonstrations are
generated that reflect the risk sensitive cognitive biases and
multiple reward functions acting jointly. Second, MEIRL al-
gorithm is used to infer expert goals and preferences. Third,
the policy generated by the learning agent is compared to the
expert policy in different environments and differences are
observed. This section explains the first two steps. After
presenting the final algorithm used to generate the model of
preferences of the expert, the MEIRL algorithm is explained.
The evaluation of the learning IRL agent is briefly discussed
in this section. However more detailed discussion about the
experiments and evaluation methods can be found in later sec-
tions 4 and 5.

3.1 Use of System 1 and 2 Cognitive Model
Modelling the expert agent, the System 1 and 2 model, de-
scribed in [4] [9] is used to capture different preferences
present within a person. The System 1 and 2 model is meant
to represent two forms of human thought processes making
that work jointly to determine the final decision. System 1 is
more intuitive, heuristic-based, and uses shortcuts; it makes
faster decisions with less consideration to long-term impacts.
This also makes System 1 more open to biases. Meanwhile,
System 2 is closer to the conventional rational-actor human
model, which is used to model humans in engineering as
long-term oriented decision makers. System 2 is therefore
more detail based than System 1, and makes decisions signif-
icantly slower. The decision made by a human actor is always
an interplay between irrational biases and intuition versus
long-term thinking and rationality. Therefore, the interplay
between System 1 and System 2 together form a more real-
istic representation of human decision making than a singe
reward would.

Before we introduce how the two systems work together,
we should look at how conventional value iteration works.
In normal value iteration, there is a value table that is iter-
ated through and updated by considering possible states and

actions, along with both immediate and long-term expected
rewards. This continues until the values in the table no longer
change significantly (this is referred to as ”convergence”).
The long term rewards and discounted by a discount factor,
while immediate rewards are interpreted at face value. This
means that future rewards are valued less than short-term re-
wards. At a given point, normal value iteration updates the
value table making use of the below rule where s represents
the current state iterated in the value iteration algorithm and
Q(s, a) is calculated for all possible actions a that can be
taken from state s.

V (s) = max
a

Q(s, a), where Q(s, a) = r(s, a)+γ·V (snext)

(1)
The term V (snext) is the expected cumulative reward start-

ing from the next state that the selected action leads to and is
discounted by the factor γ.

The paper [9] adapts this algorithm to model decision mak-
ing when the agent is under the influence of two reward func-
tions, with each having a their own discount factor. The mod-
els simulates the interplay between the systems by updating
the individual value tables interchangeably. This means Sys-
tem 1 is updated based on the latest version of System 2 value
table, and vice versa. The idea behind this is to have both Sys-
tems acknowledge each others preferences, and thereby make
a decision that is ultimately a result of the codependency be-
tween these systems. Furthermore, this combined value iter-
ation introduces cognitive control cost, which represents the
cost of deviating from what would be the optimal course of
action according to System 1. For a single decision the result-
ing reward can be computed as:

r = r2(a) + Ψ(r1(a
∗)− r1(a)) (2)

where r1(a) and r2(a) are the rewards obtained from System
1 and 2 with the chosen action and r1(a∗) is the maximum ob-
tainable reward from System 1, a∗ representing the optimal
action solely by System 1’s perspective. The difference be-
tween the System 1 rewards from optimal and chosen actions
is put through Ψ function and represents the cognitive con-
trol cost. It can be any function in theory, this paper assumes
a linear term, referring to the resulting term as a cognitive
control constant.

When the two systems are aware of each other and the ac-
tions are considered with their impacts on future rewards, the
update rule becomes:

Vcombined(s, π) = V2(s, π)− ψ(V1(s, π∗
1)− V1(s, π)) (3)

where π represents the combined policy and π∗
1 represents

System 1’s optimal policy.
In the model implemented in this paper, only System 1

evaluation is filtered through Prospect Theory (explained in
the following section). This is, in truth, not a realistic as-
sumption; however, for the purposes of this paper, the biased
attitudes towards risk and uncertainty presented by real hu-
mans is more closely represented by System 1. The com-
bination of two systems with Prospect Theory is elaborated
in section 3.3, offering the final algorithm used for expert’s
value table.



3.2 Introducing Uncertainty: Use of Prospect
Theory

Part of the model used in this paper is inspired by the ideas
and equations on Prospect Theory [5] [16] and used in the
simplest form that still captures observations on human be-
haviour and biases like risk and loss aversion.

Subjective Assessment of Rewards
Reward can be either positive (gain) or negative (loss). Re-
search shows that people perceive rewards relative to a refer-
ence value and react more strongly to losses than gains [15].
This gives rise to an S shaped piece-wise function that clas-
sify a reward as gain or loss relative to a reference/baseline
point indicated by b in the equation.

rsubj(x) =

{
(x− b)α if x > b,

−κ(b− x)β if x < b.
(4)

The variable x is the outcome for which the subjective re-
ward is calculated. Simply one can call this objective reward
in the context of this paper. The baseline value b benefits from
further explanation. For example in a finance investment set-
ting, b can be the initial amount of money one started with.
In another context, if the agent is on a health journey b can
represent their current weight, or their targets or aspirations
like the goal weight or a certain calorie intake they planned
for that day. In a lot of cases, the reference value can just be
0 and the gains and losses can be perceived in their absolute
reward magnitude. Variables α and β determine the curvature
of the function for gains and losses respectively. This repre-
sents the diminishing effect of further gains and losses. For
example if the agent collected 10 units of rewards, collect-
ing a 1 unit rewards is less attractive compared to an agent
who did not collect any reward at that point. Finally κ is a
positive constant that represents the degree of risk sensitivity
to losses. This variable demonstrates the loss aversion bias
where a certain amount of loss is perceived more strongly
than an equivalent amount of gain. For example 1 unit of
punishment (negative reward) is perceived more serious than
1 unit of gain. This can lead to the agent missing out on future
rewards because of the initial negative reward.

Subjective Assessment of Uncertainty
According to Prospect Theory, human behaviour does not
only exhibit loss aversion but also risk aversion and ambi-
guity aversion [16]. This means that the probabilities are not
taken as is but filtered through a subjective lens of risk assess-
ment. The subjective probability of events can be modeled as
a weighting applied on the true probabilities. The weighting
function is chosen to be:

w(p) =
pη

pη + (1− p)η
(5)

where p, the true probability of an event occurring is
mapped to a subjective assessment of probability called ”de-
cision weight” psubj [5]. This value is not a probability as it
does not satisfy the axioms. For example the decision weights
for the outcomes of a particular event does not necessarily
sum to 1. However they are normalized before usage due to
the nature of the used algorithms.

Figure 1: Perception of utility by the agent

One should keep in mind that this is a simple formulation
of decision weights and subjective assessment of rewards as
one key factor is left out of this paper’s scope. This is the sub-
jective belief of the agent about the likelihood of a particular
event at any time and the personal values they associate with
an event representing their personal reward preference. We
propose this as a future improvement in section 7.

3.3 Integration of System 1 and 2 Model and
Prospect Theory

Incorporating the cognitive model theories described above
to make a single decision making algorithm, we apply the
subjective assessment of rewards and uncertainty to System
1 reward values and probabilities. These are represented by
rsubj(x) and w(p) and described in equations 4 and 5 respec-
tively. This subjective assessment by System 1 is integrated
with the modified value iteration described in equation 3. The
final algorithm is below.

Algorithm 1 Final Algorithm Used by the Expert

Update r1 rewards using rsubj
Update System 1 probabilities to decision weights using
w(p)
Compute V ∗

1 solely adhering to System 1 preferences
Initialize V1 and V2 arbitrarily
Flip← True
while V1 not converged∥V2 not converged do

for s ∈ S do
for a ∈ A do
Q1(s, a)← w(p) ∗ r1(s) + γ1V1(τ(s, a))
Q2(s, a)← r2(s) + γ2V2(τ(s, a))

end for
Let amax = argmaxa[ψQ1(s, a) +Q2(s, a)]
if Flip then

Set V1(s)← Q1(s, amax)
else

Set V2(s)← Q2(s, amax)
end if
Flip← not Flip

end for
end while
Vfinal ← V2 − ψ(V ∗

1 − V1)
return Vfinal

3.4 Learning Policy from Expert Demonstrations
using Maximum Entropy IRL Algorithm

IRL aims to find the reward function that maximizes the like-
lihood of the observed expert behaviour. As described in 2



this is an ill-posed problem and solved by the use of Princi-
ple of Maximum Entropy. For more information, reader can
consult the papers [18], [17]. In this paper there is a relevant
part in section 2 and a visual representation in section 4.

The baseline implementation of the MEIRL algorithm is
taken from the Github Repository [6]. To fit the purpose of
this paper, the MEIRL algorithm has been extended by adding
an environment that supports several reward functions rather
than one (System 1 and 2), and the agent having its subjec-
tive perception of the environment (Prospect Theory). Several
parts of the code are modified to work with the extra func-
tionality introduced. One example to this is the new value
iteration algorithm 1.

Expert and Learning Agent Comparison Methods
In order to evaluate how well the agent learns from demon-
strated behaviour, this paper makes use of qualitative and
quantitative assessment methods. The methods are described
briefly in below list. More information is provided in later
sections 4 and 5.

• Qualitative assessment of trajectory preferences
made by expert and learning agent: Different scenar-
ios are experimented with and commented on to high-
light the preferences of agents in presence and absence
of cognitive model and various critical decision points.
In the context of this paper, this evaluation is needed
since the topic of cognitive biases is inherently com-
plex and contains elements of subjectivity that can best
be described by human commentary. Solely comparing
trajectories by similarity in the states they go through
would result in inadequate analysis.

• Comparison of rewards achieved by the expert and
the comparison: One of the quantitative metrics used is
comparing the absolute magnitude of rewards collected
through chosen trajectories. Rewards from System 1, 2
as well as the combination is compared using the objec-
tive and subjective utility of the rewards.

• Expert and Learning agent policy comparison: The
policy matrices created by the expert and agent are com-
pared using average cosine similarity between matrices.

4 Experiments and Results
The implementation for experimental setups in this paper can
be found in GitHub [3].

4.1 Grid World Environment Description
We conducted experiments on cognitive model and IRL al-
gorithm through the use of grid worlds where the possible
actions are right, left, up and down and states are the posi-
tion of the agent. In this grid world the actions always lead
to their intended next states. This means if the agent’s state
is (1, 2) in coordinates the action is chosen as up, the agent’s
next state will be (1, 3). However the agent might not be able
to reach every state and not all actions might always be avail-
able. This is represented by roads in the grid world (optional)
that the agent can move in. There are two different rewards
defined, for system 1 and system (referred to as R1 and R2
respectively). Although the end reward is simply the sum

of these rewards, the expert chooses rewards using the algo-
rithm described in section 3, where both systems are present
at each decision making point with their separate goals. The
rewards of System 1 are probabilistic, meaning the reward is
received with a probability while R2 rewards are determin-
istic (received with a probability of 1.0). The assumption
here is that the agent has perfect information of the world
and without the input of System 1, would behave perfectly
rationally. This is not realistic and merely a design choice in-
tended to simplify experimental setup and observe the effect
of System 1 in isolation.

4.2 Experiment 0: Proof of Concept Small Grid
World

First, as a proof of concept, we demonstrate the steps dis-
cussed in the section 3 on a simple problem. The setup for
this problem is shown on figure 2. The figure flow shows the
experimental process, starting from the input rewards (indi-
cated in green) and ends with the reward recovered by using
MEIRL.

The small grid world consists of 25 states and roads do not
exist, meaning the agent can reach every state. System 1 has
a big reward for the top and a small reward for bottom right
corner, while System 2 has a big reward on bottom and a very
small reward on top right corner. Additionally System 1 has
a set of negative rewards blocking the way to the right bottom
corner, that is received with a probability. The agent starts
from the middle of the left side and can terminate episode
in top or bottom right corner. This design choice simplifies
the analysis as we can directly see which system had a larger
impact on the final course. The negative values in R1 are
included to demonstrate expert’s behaviour in situations that
involve risk. While the larger rewards are solely intended to
reflect the preferences of the system, the smaller rewards have
a practical purpose too. They encourage the separate reward
systems to have some motivation to travel.

In the experiment described in detail in figure 2, the main
objective is to show the effect of cognitive control cost in de-
cision making. Considering the agent starts from the mid-
dle of the left side, we can see that he opts for either of two
terminal states (T1 for what is favorable for System 2 and
T2 for otherwise) in about half of the trials, with T1 having
a slightly higher chance. Even though the System 2 agent
wants to go there but is hesitant because of System 1, when
the agent ends up in T2, he arrives there very suboptimally.
Often he passes through 3 punishment states when it is pos-
sible to pass through just 1. This is because of the cognitive
control constant, causing the agent to make compromises be-
tween two systems that in the end can result in suboptimal
results for both.

This setup of a cognitive control constant results in a dis-
torted view of the future states that the agent will find itself
in, which becomes very costly when both systems have highly
differing decision points, thereby pushing the agent to hesi-
tate.

An interesting observation is that the agent displays some
known cognitive biases that we did not explicitly model for.
These cognitive biases include anchoring (i.e. relying too



Figure 2: Proof of Concept Experiment: Starting From System Rewards to Generating Expert Demonstrations and Performing MEIRL
(The colors are scaled for ease of reference and trajectories are visualized with their stochastic policies)

much on initial information). This is not a coincidence, but
rather a result of the value iteration algorithm itself.

4.3 Experiment 1: Simple Square Grid with Bank
In this experiment the grid world pictures a small square part
of the city consisting of 100 states in total, shown in figure 3
with associated R1 and R2 matrices. A total of 41 cells are
road cells (possible states) and 9 of them possibly have traf-
fic. The agent starts on the bottom left corner and has some
paperwork that she needs to do in the bank (approximately
middle) but she can possibly choose to skip this errand for to-
day, go home (top right corner) and postpone visit to the bank
to another day.

At the start of the episode, the agent is faced with a choice
of going up or right. In contrast to Experiment 0, this road is
not binding as the agent can still change course. This design
mitigates the excessive effect of the first action on the rest of
the episode.

The agent starts in a neutral state, with no rewards and
roads are also reward neutral with the exception of the ones
with traffic, indicated by red in figure 3, which incur a nega-
tive reward (punishment) to System 1 reward function with a
probability. The bank has a large reward for System 1 and a
small reward for System 2.Finally agent’s home has a small
reward for System 2 and a large reward for System 1. Apply-
ing the concepts discussed in previous sections, section 3.2,
the agent evaluates the rewards of System 1 through a filter of
Prospect Theory, calculating perceived (subjective) rewards
and perceived probabilities called decision weights, and uses
this information along with System 2 to make decisions.

This first experiment alters R1 and R2 associated with
home and bank, and the magnitude and probability of neg-
ative R1 associated with busy roads, called traffic roads. The

Figure 3: Visualization of Experiment 1: Square City
The values are given as an example

traffic roads are the only states that have a probability asso-
ciated with them. This probability table is called P1. Value
iteration is performed on the environment for the following
cases, in the order of increasing model complexity:

• Objective evaluation: Take R1 ∗ P1 + R2, the ob-
jective reward, as the reward function and apply conven-
tional value iteration. This is the value iteration that the
optimal agent uses to create optimal policy.

• Two system subjective evaluation: Apply the Prospect
Theory filter to System 1 featuresR1 and P1, and obtain
RP1subj. Perform value iteration of System 1 and 2 sep-
arately using R1 ∗ P1 and R2 and combine them using
algorithm 1 that makes compromises between systems.
This is the evaluation that expert uses to create demon-
strations.



• Rirl evaluation: Use the expert demonstrations to in-
fer the reward using MEIRL. Using this reward, make a
conventional value iteration.

Optimal agent, Expert agent and IRL agent use the value
iterations described above to make a stochastic policy and
generate a set of trajectories. The average of the collected
rewards, categorized by R1 and R2 are shown below in fig-
ure 4 for different values of traffic probability associated with
traffic road marked red in figure 3. If both rewards are posi-
tive, they are stacked on top of each other and otherwise they
both start from 0. The sums are shown in black lines. The
environment and cognitive hyperparameters used in this eval-
uation are as follows. The home has a reward of 5 for bothR1
and R2. Additionally R2 = 30 for the bank and R1 = −5
for the traffic roads. The cognitive control cost is a linear term
equal to 2, representing how difficult it is to deviate from op-
timal actions for System 1, κ = 2.0 representing degree of
loss aversion, and η = 0.8 describing the overweighting of
small and underweighting of large probabilities. The terms α
and β are irrelevant since the baseline (starting) reward is 0.

Figure 4: Rewards reached by the expert, IRL agent and completely
rational optimal agent on Experiment 1

There are several factors that can cause such a significant
gap between the expert demonstrations and the objective op-
timal. These factors include cognitive biases (loss aversion,
risk aversion etc.) caused by κ and η affecting the subjec-
tive reward and decision weights respectively. As a result, the
expert agent is not willing to make compromises even if this
comes at the expense of further rewards (i.e. the agent is more
risk averse). This can be concluded by observing the differ-
ence between sum of total rewards for the expert and optimal
agent. For a small probability of a negative reward, there is a
much larger reward that the expert misses.

The sum of rewards collected by the IRL agent follow the
expert agent closely, especially as the probability increases.
However the composition of rewards is quite different. While
the expert agent keeps a balanced reward profile, the IRL

agent does not differentiate, especially when the punishment
is more likely. This is expected as the IRL agent does not
know there are two different reward functions and can only
see the end behaviour.

5 Analysis and Discussion
Using the MEIRL algorithm the IRL agent was able to in-
fer similar paths but often failed to preserve the same balance
between rewards like the expert agent does, suggesting that
it was merely emulating the behaviour without inferring the
motivations. Similarly, the IRL agent interprets possible out-
lier trajectories in the expert agent demonstrations very differ-
ently. These are expected since MEIRL is intended to derive
static reward functions and not dynamically changing deci-
sion making strategies that System 1 and 2 model introduces.
[10] formulates the problem as a search problem, considering
multiple reward functions for different parts of the environ-
ment, where each state can be assigned a reward function and
there is a probability of transition from one function to an-
other. This can help infer that different reward functions are
dominant at different parts of the environment but still does
not explain the interactions of reward functions with one an-
other.

Other papers [7] [11], also using Prospect Theory and IRL,
apply mathematical techniques such as Lipschitz uniformity
and continuity to derive a differentiable formula satisfying
certain properties. A similar modification might make the
results in this paper more consistent as well.

Qualitative analysis was critical to the experiment in this
paper. The IRL algorithm used was not detailed enough
to capture the nuances of the expert agent model. The ex-
pert agent model used a dynamic decision-making strategy,
switching between two different reward functions; possibly
with different characteristics; while the MEIRL algorithm es-
timates a static and singular reward function. In addition, it
does not include the divergence between perceived and ob-
jective rewards. One of the solutions that we applied was
limiting the number of possible states (i.e. limiting the num-
ber of roads available to the agent). After this change, the
behaviour of the agent was more observable, as it was less
prone to becoming stuck at non-terminal states.

5.1 Limitations
The cognitive control cost parameter was the biggest factor in
the expert agent’s decision making and composition of value
iteration. Without further assumptions the IRL agent cannot
infer the decision making process. When the cognitive con-
trol constant is 1.0 the IRL agent and expert demonstrate sig-
nificantly more similar behaviour. However since cognitive
control is a dynamic part of decision making in the model
described in this paper, it seems unfeasible to expect a static
reward guessing IRL to catch the details and intricacies in-
volved. As a result the IRL agent is not very certain with its
inferences.

Another limitation is that without actual human samples,
we are only able to model known heuristics and test whether
they hold ground. [13] discusses a similar problem cri-
tiquing that we model human behaviour using heuristics plac-
ing many assumptions into the problem. They consider the



question of whether it is possible to infer biases from data
without further assumptions. They conclude by acknowledg-
ing that with the current resources a mix between them seem
the most reasonable.

6 Responsible Research
This research examines the ability of IRL to infer rewards
from expert demonstrations with cognitive biases. Since a
central idea in the field of IRL is human behaviour, many eth-
ical considerations arise. In a more extensive study, the ex-
pert demonstrations would be collected from actual humans,
which creates questions about how the data was collected,
stored and used. Even though the ethical implications of gath-
ering data are not directly linked to the purposes of this paper,
the implications of the research are.

Research in IRL has widespread ethical implications. By
combining fields that are not conventionally within the scope
of computer science, such as economics, psychology, and
cognitive science, more inferences can be made about human
intentions and decision-making.

The misuse of psychological analysis has been exempli-
fied in cases like Cambridge Analytica, where personal data
was used without consent to manipulate public opinion dur-
ing major political events [12]. This incident raised concerns
about data privacy, consent, and the potential for psycholog-
ical insight from machine-learning to be used in unethical
ways, such as swaying public sentiment.

Furthermore, IRL research has the capacity to simulate
user’s preferences based on collected user data. One of the
use cases for understanding user’s preferences is in social me-
dia recommendation algorithms and advertisement. While
understanding the user better can lead to a more satisfac-
tory user experience, such information also poses risks for
exploitation. With a more widespread use of automated in-
telligent personal assistants, we want the algorithm to make
decisions that align with the user’s and society’s long term
well-being.

In an effort to promote transparency in research and de-
ployment of IRL systems, the complete experimental setup
of this paper has been made available for reproducibility and
analysis in a way that is easy to design and test existing and
new experiments. This approach aims to ensure account-
ability in IRL research. This paper uses research from non-
engineering fields, such as psychology and economics, and
therefore an effort is made to make the contents and results
of the paper less esoteric and more accessible to researchers
of other fields aside from computer science. This is a further
effort to promote transparency in IRL research.

7 Conclusions and Future Work
In conclusion, while use of MEIRL has shown promise in in-
ferring reward functions from biased expert demonstrations
that demonstrate risk and loss averse behaviour, it remained
an inadequate solution. Even though more sophisticated IRL
methods and more complex human behaviour models that
combine heuristics and data solutions might create more re-
alistic results, this comes with the added complexity to an al-
ready computationally expensive problem. In this case, more

advanced search techniques that can search a large space ef-
ficiently such as Evolutionary Algorithms would be a fruitful
further area of research.

An extension of this work could be to consider individual
preferences by asking personalized questions at the beginning
of the learning process, in order to make better informed as-
sumptions about the expert. This would also enhance explain-
ability and performance in complex environments.

The experiments in this paper considered static environ-
ments with finite and known state action space. Adapting the
risk sensitive cognitive biases to a continuous environment
could create more realistic settings. However, again, dealing
with dynamic reward systems and complex environments re-
mains a challenge due to the rapidly increasing computational
demands, as discussed previously.

Exploring alternative IRL algorithms, environments, cog-
nitive models and large feature space search techniques could
provide valuable insights into what extent can cognitive bi-
ases related to risk can be inferred using IRL. This would be
beneficial due to the central role that risk plays in human de-
cision making.
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