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Early Risk Quantification Strategy for Design Space
Reduction Decisions in Set-Based Design

J.B. Van Houten1,*, A.A. Kana2, D.J. Singer1 and M.D. Collette1

ABSTRACT

Perceptions of feasibility in design spaces are susceptible to change if new and conflicting information be-
comes available later. Design space reduction decisions made in set-based design can amplify vulnerability
to new information if remaining design spaces and present perceptions are unable to adapt. This paper con-
siders different ways new information can alter perceptions of feasibility for complex design problems and
introduces an early, probabilistic strategy for quantifying the risk of eliminating potential design solutions
based on the vulnerability of remaining design spaces to new information. Emergent designs of a set-based
design process gauging this risk are evaluated against one neglecting it for an analogous design problem.
Early results indicate that the probabilistic model is able to effectively delay design decisions and prevent
lock-in while design space understanding is still growing.
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INTRODUCTION

Design decisions made within the web of interdependencies and requirements ingrained in the marine design process pro-
duce complex knowledge structures. While different methods have been proposed to characterize the knowledge generation
accompanying these decisions (Braha and Reich, 2003; Hatchuel and Weil, 2009; Shields, 2017; Goodrum, 2020), each one
seeks to track and better understand the emergence of (or lack thereof) design solutions. Decisions made in set-based design
(SBD) build up these knowledge structures gradually, but they also leave design spaces vulnerable to emergent design fail-
ures if the information supporting them changes. Providing designers with a tool to understand the potential impacts of new
information on a reduced design space after eliminating potential design solutions from consideration would assist them in
making more informed space reduction decisions.

Using iteration to make decisions and generate knowledge is an understood reality of many complex design problems (Wynn
and Eckert, 2017). Different studies have investigated how enhancing the allocation of resources (Smith and Eppinger,
1997) or communicative pathways (Mihm and Loch, 2006; Parraguez et al., 2015) between iterative tasks can promote
more efficient information flow. As these strategies are improved upon to assist with iterative design decisions, they can
fixate a designer’s knowledge on one decision path, restricting the solutions that can be attained through others (Page, 2006).
Examples of this fixation are shown in Van Houten et al. (2022) where viable solutions within a discipline’s design space
are significantly limited by the path chosen. In some cases, designers can lose influence if a finite set of absorbing paths
constrain the knowledge structures generated from these temporal decision processes (Niese et al., 2015; Kana, 2017).
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A consequence of becoming overly fixated on a particular decision path is leaving a design susceptible to emergent design
failures. Dong (2017) discusses the prevalence of this problem in product development when companies introduce inno-
vative technologies into their product’s existing functional architecture. He argues that integration issues arise before the
establishment of their product’s physical architecture and should instead be attributed to the solution principles the design
team committed to during development. He and others (Shields and Singer, 2017; Goodrum, 2020) insist that understand-
ing emergent design failures requires a shift in viewing them from a product-centric to a knowledge-centric perspective. As
Goodrum (2020) explains, a design decision is a commitment to a knowledge structure, and how those decisions affect fu-
ture design activities will vary depending on how new knowledge integrates with existing knowledge.

Set-based design (SBD) protects against emergent design failures stemming from path fixation by having design decisions
focus on eliminating undesirable regions rather than making premature commitments to hard-set characteristics. By delay-
ing commitments and keeping variable sets open, SBD decisions create low-risk knowledge structures (Shields and Singer,
2017) and allow designers to maintain influence over the design problem while their understanding of it grows (Bernstein,
1998; Singer et al., 2009). Advantages of SBD include basing the earliest and most critical design decisions on acquired
data, promoting institutional learning within the design environment, encouraging concurrence in the design and manufac-
turing process, and supporting a search for more globally optimal designs (Ward et al., 1995). These advantages have fueled
US Navy interest in making ship design and analysis tools compatible with SBD methods (Doerry, 2012) and applying SBD
to various projects such as the Ship to Shore Connector (Mebane et al., 2011), Amphibious Combat Vehicle (Burrow et al.,
2014), and Small Surface Combatant (Garner et al., 2015). Despite the advantages, it is still either infrequently applied to
problems in industry or generally confined to introductory design stages (Toche et al., 2020). Singer et al. (2009) claim
SBD’s biggest obstacle in naval design coincides with current government acquisition policies conforming to point-based
methodologies. Other hurdles are summarized in McKenney and Singer (2014) and Gumina (2019) and involve having to
manage misconceptions about implementation and lacking a regimented process for implementation.

The SBD implementation process is multifaceted and has disciplines individually explore areas of their design spaces to
accumulate information, form perceptions of preferred and nonpreferred areas from this information, and propose space
reductions from these perceptions (Bernstein, 1998). A representation of an example design space is depicted in Figure 8
of Andrews (2018) where space reductions refer to reducing the range of potential design solutions being left open. A De-
sign Integration Manager (DIM) will then consider the space reductions proposed and the information supporting them to
finalize a conceptually robust set of space reductions across all disciplines (Singer et al., 2009). Each of these later steps are
directly tied to the information gathered at the beginning, so effective decision-making in SBD necessitates robust informa-
tion. Gembarski et al. (2021) evaluates the robustness of information in decision-making by using Bayesian probabilities to
model uncertainties that originate from a scarcity of information. Sypniewski (2019) takes a different approach and assesses
how the inherent biases of information that has already been gathered can lead to inadequate characterization of a design
space and misinformed decisions. As the robustness of information pertains to decisions made during SBD specifically, re-
search is limited. Doerry (2015) presents a method for measuring the diversity of information in a design space to increase
the likelihood of viable solutions being found later; however, this method intends to insure reduction decisions against un-
certain information rather than understand the uncertainty permissible for those decisions to remain advisable.

The purpose of this paper is to present a new approach for quantifying the risk of design space reduction decisions in SBD
by considering the potential for new information to alter perceptions of feasibility and incite emergent design failures. Al-
though in a much broader sense, the aim of this research is to assess how future information can undo the foundation of
knowledge already established through previous design decisions. In the following sections, a brief background on SBD
and a design space’s fragility (or its vulnerability to new and conflicting information) will first be provided. Next, details of
a SBD simulation will be presented for proposing reasonable space reductions. After explaining how the simulation works,
an early framework built for assessing the fragility of design spaces and quantifying the risk of space reduction decisions
will be explained. The developed fragility framework plugs in at the very end of the space reduction process. Finally, emer-
gent design spaces for simulations performed on a problem analogous to complex design with and without the framework
will be observed and discussed.



SET-BASED DESIGN

SBD is a convergent design approach that seeks a final solution through the gradual elimination of design spaces rather
than cycles of rework and refinement synonymous with most iterative approaches. Bernstein (1998) describes the ideal way
SBD should be performed with illustrative help from Figure 1 developed by Dr. William Finch. In the early stages of SBD,
disciplines individually explore areas of their design spaces and expand their ranges of potential design solutions. From a
marine design perspective, these disciplines may consist of (but not be limited to) a weights division negotiating lightship
and deadweight tonnage allotments along with center of gravity positioning, a stability division considering allowable beam
and vertical center of gravity pairings, and a structural division contemplating various plate thickness and stiffener sizing
schemes. As potential solution spaces are identified by each discipline, they work together to identify areas of overlap be-
tween their interdependent design spaces that satisfy all requirements of the design problem. For example, the weights divi-
sion may have its own displacement and trim requirements to satisfy, but the vertical center of gravity of a load case cannot
prevent the stability division from satisfying intact or damage stability requirements, and the lightship allotment must be
sufficient for the structural division to satisfy material yielding requirements within a specific safety factor. As a solid un-
derstanding of potential design solutions and trade-offs is formed, nonpreferred areas of each discipline’s design space are
eliminated until a final solution remains.

Figure 1: Ideal convergence of the SBD process through gradual elimination of nonpreferred areas (Bernstein, 1998)

Through this process, a major principle of SBD is delaying decisions until the consequences of those decisions are under-
stood (Ward et al., 1995; Singer et al., 2009). During discussions with managers utilizing “set-based concurrent engineer-
ing” at Toyota, Ward et al. (1995) learned that a critical aspect of their job is to discourage engineers from making important
design decisions too soon. They believe it is necessary to delay decisions to ensure all the requirements of the customer
are met while also ensuring that the design is manufacturable. Bernstein (1998) and Singer et al. (2009) discuss the bene-
fits of delaying design decisions from the perspectives of accrued knowledge, committed costs, and stakeholder influence.
They explain that knowledge of a design is gathered with time as designers run analyses to build their understanding of the
characteristics and requirements driving the process. By delaying decisions through a set-based approach, designers can
increase the influence maintained and decrease the costs incurred until the information and existing knowledge supporting
these decisions is more robust.

The difficulty of eventually making these reduction decisions is that design spaces cannot be understood absolutely. Differ-
ent disciplines often manage large design spaces that cannot be explored completely while tolerating analyses with varying
degrees of uncertainty. Moreover, it is common for changes in design requirements as well as the fidelity or underlying as-
sumptions of analyses to be introduced throughout the design process that shift preferred and nonpreferred areas. Shields
and Singer (2017) assert that space reduction decisions create low-risk knowledge structures while also acknowledging that
SBD relies on considerable knowledge generation and decision-making to work effectively. In their words, “Only mak-
ing decisions when the supporting knowledge is well-understood and is unlikely to change leaves stable knowledge to be



further developed” (Shields and Singer, 2017). Each space reduction decision in SBD is supported by information that is
incomplete, uncertain, and susceptible to change. If designers do not account for this uncertainty of information, their re-
duction decisions may lead to exceedingly fragile design spaces, or design spaces whose perceived feasibility is vulnerable
to new and conflicting information. In instances when new information exposes fragile design spaces, designers using a
SBD approach cannot simply rely on backtracking and reopening design spaces either, because their design timelines are
limited by the considerable time already spent exploring those design spaces in the first place.

Design Space Fragility and Reduction Decisions

To help visualize a design space’s fragility, Figure 2 has been created to mirror the third layer in Bernstein’s explanation of
SBD. In Figure 2, the perceived feasible regions of each discipline are located within the red, blue, and black circles. The
green regions signify perceived feasible areas of the design space for one discipline, the yellow regions signify the same
perceived feasibility for two regions, and the orange region signifies the same perceived feasibility for all three regions.
Suppose the fragility is being assessed from the red discipline’s perspective. One source of fragility is attributed to learning
new information that alters the perceived feasible space of the red discipline itself, as depicted by the dashed red circle in
Figure 3. As it pertains to the red discipline, the pink region captures newly perceived feasible space, and the grey region
captures newly perceived infeasible space. If new information shifts the perceived feasible space of the red discipline such
that the grey region outweighs the pink region, then that originally perceived design space would have been very vulner-
able to the new information. Another source of fragility is attributed to learning new information that alters the perceived
feasible space of an interdependent discipline, as depicted by the dashed blue circle in Figure 4. As it pertains to the blue
discipline, the pink region captures newly perceived, shared feasible space, and the grey region captures newly perceived,
shared infeasible space. If new information shifts the shared feasible space such that the grey region outweighs the pink
region, then that originally perceived design space would have also been very vulnerable to the new information. In both
scenarios, new information’s effect on perceived feasibility is determinant of a design space’s fragility.

Figure 2: Overlapping regions of
perceived feasible spaces for three
disciplines of a design problem

Figure 3: Fragility attributed to
design change of main discipline

Figure 4: Fragility attributed to
design change of interdependent

discipline

While a design space’s fragility directly corresponds to its vulnerability to new information, that vulnerability can be ampli-
fied by the particular space reductions that have previously been made. In both Figure 3 and Figure 4, the DIM may have
already decided to eliminate portions of the pink region. If that is the case, disciplines would be left without newly per-
ceived feasible space, meaning that the grey region would further outweigh the pink region. Designers want to avoid space
reduction decisions that lead to exceedingly fragile design spaces, yet they must make reductions to keep the design process
moving. At each space reduction cycle, every design space is susceptible to increases in design space fragility that can be
further exacerbated by previous reductions. And even though the figures have portrayed instances of increasing fragility in
the context of new information and previous space reductions, the size of a feasible design space alone does not dictate its
fragility. For example, if a multidimensional design space is very large, but one of its input variables only has two feasi-
ble values, then that design space is vulnerable to new information from its own discipline and/or other disciplines finding



those two values to be infeasible. By effect, there are varying levels of risk for space reduction decisions due to the varying
levels of fragility that result from prior reductions and new information.

Originating Sources of New Information

In the development of solutions to complex design problems, designers are compelled to explore and gain an understanding
of their own discipline’s design space, integrate the understanding and preferences of designers from interdependent disci-
plines with their own, and endure changing design requirements and maturing analyses throughout the entire process. Bear-
ing each of these challenges in mind, three different sources of new information are worth considering when characterizing
the fragility of a design space: (1) newly explored design points of a directly affected discipline, (2) newly explored design
points of an interdependent discipline, and (3) new or updated design requirements or analyses. In this work, only the first
originator for new information will be considered, but it is important to keep the other two in mind for future improvements
to the fragility assessment process.

To observe how new information originating from newly explored design points of a directly affected discipline can impact
perceptions of design space behavior, consider Figures 5 to 6. In these figures, green points represent tested designs that
are feasible, red points represent tested designs that are infeasible, green regions represent perceived feasible spaces, red re-
gions represent perceived infeasible spaces, and yellow regions represent spaces of mixed feasibility. With the information
from design points presently available in Figure 5, clear regions of feasibility have been formed for the discipline; designers
of this discipline are perceiving smaller values of Variable 1 to be feasible and larger values of Variable 1 to be infeasible.
However, those perceptions shift in Figure 6 when new information originating from newly tested design points becomes
available. Larger values of Variable 1 are still perceived as infeasible, but designers have also learned they may have less
area to work with for smaller values of Variable 1 than they previously thought. Before learning this new information, sup-
pose the decision is made to eliminate some of the smallest values of Variable 1 because, in contrast to this discipline, other
disciplines prefer large values of Variable 1 to small values. Designers of this discipline may be inclined to approve the
space reduction thinking they still have plenty of feasible space with which to work. Later, they would regret to learn that
the space reduction decision has limited far more feasible solutions remaining for them than they originally anticipated.

Figure 5: Perceptions of feasibility before sampling
new points within primary design space

Figure 6: Perceptions of feasibility after sampling
new points within primary design space

The intent of a fragility framework will be to protect design spaces against scenarios like the one described. DIMs may be
capable of taking proposed space reductions from disciplines and carefully assessing the impact those reductions would
have on other disciplines with the information at hand, but they lack a tool for understanding the consequences of those
reductions if the perceptions formed from that information changes. Before introducing an early strategy for quantifying
this space reduction risk, a SBD simulation to which a fragility framework can tie in must to be developed.



CREATING A SBD SIMULATION

Before discussing the logic behind a framework intended to evaluate the fragility of design spaces, a SBD simulation that
proposes reasonable space reductions is needed. With the simulation, experiments can be run that compare emergent de-
sign spaces when there are fragility checks in place compared to when there are not. The decision was made to automate
the simulation for a couple of reasons. For one, automating the simulation removes the impact that human inconsisten-
cies would have on the emergent design spaces by ensuring the same criteria are used to explore design spaces and pro-
pose space reductions every time. Additionally, automating the simulation speeds up the process and cuts back on the time
it would take for a DIM to evaluate the present state of the data and formulate their next exploration or reduction decision.
The simulation is not meant to be a perfect replication of how SBD activities are performed and reductions are made be-
cause SBD is fundamentally a human-centric process that is driven by knowledgeable designers. A simplified depiction
of how the SBD simulation works is shown in Figure 7, while a more detailed depiction of the simulation and the actual
Python code can be viewed via the link in the Data Access Statement at the end of this paper. Different parts of the simula-
tion fall under the groupings of problem setup, exploration, or space reduction.

Figure 7: Simplified flowchart of the automated SBD simulation with a fragility framework plug-in

Problem Setup

The problem setup portion initializes the design problem and prepares various aspects of the code for the time-based sim-
ulation. The user has the option to set certain user inputs that dictate characteristics of the design problem, exploration
tendencies of the algorithm, and space reduction tendencies of the algorithm. The code is intended to work for any design
problem as long as the user defines the input variables, output variables, initial input rules, initial output rules, and analy-
ses of each discipline. To ensure exploration does not continue indefinitely, a bounded timeline is established, and the user
must define how long the analyses of each discipline take to run during exploration. This portion of the code also sets an
exponential-based function that encourages a minimum amount of each discipline’s design space to be reduced relative to
the time elapsed. An exponential function was chosen to promote exploration without required space reductions early on
while saving more of the required space reductions for later once more information has been gathered. In an actual SBD
process, there usually is not any sort of timeline established to keep space reductions on pace. However, for an automated
SBD process without human involvement, it is important to ensure all of the space reductions are not delayed until the end.

Exploration

The exploration portion is where each discipline is free to sample designs within their remaining design space. Exploration
occurs whenever there is time remaining, there are no space reductions being proposed by any discipline, and there are no
space reductions being forced because of the time that has elapsed compared to the size of each discipline’s remaining de-
sign space. Based on guidelines set by the user in advance of the simulation, a specific amount of time will be dedicated to



sampling new points at each exploration cycle. The location of new points chosen for sampling are randomized throughout
each discipline’s remaining design space. Each discipline will then calculate the output values of the new points according
to their specific analyses and check whether the calculated output values satisfy the current set of output requirements. De-
sign time is only reduced during exploration as it is assumed that the time to run analyses is significantly greater than the
time to propose space reductions or evaluate fragility.

For infeasible points, the algorithm is programmed to determine the extent to which each point fails. This failure calcula-
tion finds the difference between the calculated amount and the nearest threshold amount of each failing requirement (nor-
malizing the difference to ensure no one requirement bears more influence on the failure amount than the others), and then
calculates the root-mean-square deviation of the normalized differences. After going through this process, each infeasible
point will have a failure amount assigned to it where values closer to zero indicate that the point is right on the threshold
of passing, while larger values indicate that the point is very far off from passing. These calculated failure amounts come
in handy when the SBD simulation goes through its space reduction and fragility assessment processes. Equation 1 shows
an example calculation of the failure amount (FA) involving three different requirements (y1 > 0.2, 0.3 < y2 < 0.6,
y1 + y2 < 0.8), three different calculated amounts (y1 = 0.1, y2 = 0.25, y1 + y2 = 0.35), and three different ranges of
output values (y1 ∈ [0.05, 1.2], y2 ∈ [0, 0.9], y1 + y2 ∈ [0.05, 2.1]).

FA =

√√√√(
0.1−0.2
1.2−0.05

)2

+
(

0.25−0.3
0.9−0

)2

+
(

0
2.1−0.05

)2

3
= 0.103 (1)

For feasible points, the algorithm is programmed to determine the extent to which each point passes. This passing cal-
culation is done in a similar process to that of the failure calculation with a couple of slight modifications. First off, the
difference is now taken between the calculated output amount and the nearest threshold amount of each passing require-
ment. Secondly, rather than taking the root mean square of each requirement’s normalized difference between the calcu-
lated value and threshold, the passing calculation simply takes the minimum normalized difference to gauge how close an
output value is to failing the nearest requirement. By effect, passing amount values closer to zero indicate that the point
is right on the threshold of failing, while larger values indicate that the point is very far off from failing. These calculated
passing amounts also come in handy when the SBD simulation goes through its space reduction and fragility assessment
processes. Equation 2 shows an example calculation of the passing amount (PA) involving the same three requirements
(y1 > 0.2, 0.3 < y2 < 0.6, y1 + y2 < 0.8), three new calculated amounts (y1 = 0.4, y2 = 0.35, y1 + y2 = 0.75), and the
same ranges of output values (y1 ∈ [0.05, 1.2], y2 ∈ [0, 0.9], y1 + y2 ∈ [0.05, 2.1]).

PA = min
(
|0.4− 0.2|
1.2− 0.05

,
|0.35− 0.3|
0.9− 0

,
|0.75− 0.8|
2.1− 0.05

)
= 0.024 (2)

Space Reduction

The space reduction portion is where each discipline can propose new input rule(s) that reduce design spaces if adopted by
the DIM. The process each discipline goes through to propose these rule(s) involves a series of steps. It starts out by sorting
all the failure amounts of previously explored points remaining in a discipline’s available design space by magnitude. The
algorithm then labels a percentage of the points with the highest failure amounts as “bad” while all of the remaining points
are labeled as “good”. Next, a decision tree classifier (DTC) is built in the design space based on these “good” and “bad”
points. The goal of the DTC is to create boundaries within the design space such that all the “good” and “bad” points are
grouped together as succinctly as possible. After the decision tree is formed, the boundaries of the decision tree grouping
the highest fraction of “bad” points together are extracted to act as the threshold of a newly proposed input rule. A benefit
of the decision tree is that each one of its boundaries are defined by a first-order equation only involving one input variable.
This benefit reflects what is often seen in actual SBD as human designers tend to define simple rules for elimination rather
than complicated equations cutting through the design space. The new input rule is finally checked against a set of user-



defined criteria to ensure it is supported by adequate information before a discipline can formally propose it.

If no rules are proposed by any discipline, then the simulation will ask whether a reduction should be forced for any disci-
pline. If the answer to that question is yes (due to substantial space remaining relative to time remaining), then one of the
user-defined criterion will be relaxed, and the disciplines will reassess if they have any reductions to propose. If the answer
to that question is no, then the algorithm will continue to the exploration part of the simulation.

If one or more disciplines do have a new rule to propose, then the DIM becomes responsible for thoughtfully merging these
requests based on available information and the impact each rule would have on other disciplines. This is a difficult part
of the SBD process to reproduce because a preferred reduction for one discipline may not be preferred by another; human
DIMs must often think critically when finalizing requests based on infeasibility and dominance. In the simulation, this
merging process is handled by having each discipline directly affected by the input rule form an opinion on it that is rep-
resented by a value between 0 and 1 (where a value of 0 indicates the discipline is completely opposed to the rule, while a
value of 1 indicates the discipline is completely in favor of the rule.) The opinions are quantified through each discipline’s
answers to two different questions:

1. Is the proposed space reduction removing clearly infeasible designs in your discipline’s design space?

2. If the proposed space reduction is enacted, how less likely is it that feasible designs exist in your discipline’s remain-
ing design space?

To answer the first question, the area of the remaining design space that the space reduction would remove (the eliminated
design space) is assessed. This area of the design space is discretized, and then a Gaussian process regressor (GPR) is trained
with the available data from all of the explored points. The x-training data of the GPR are the input locations of the ex-
plored points, while the y-training data are the difference between each point’s passing and failing amount. The trained
GPR is then used to predict the difference between the passing and failing amounts at each discretized (unexplored) point
in the eliminated design space. A negative value indicates the discretized point is predicted to be infeasible, while a positive
value indicates the discretized point is predicted to be feasible. As the question is concerned with discerning clearly infea-
sible areas of the eliminated design space, the predicted difference between the passing and failing amounts is permitted to
fluctuate between three standard deviations. The fraction of this range staying below zero for each discretized point is cal-
culated, and the average value of those fractions acts as the metric answering the first question. Large values of this metric
reflect assuredness that the eliminated design space is clearly infeasible.

The answer to this first question may be sufficient for validating proposed spaces reductions early in the SBD process when
designers are purposefully delaying commitments to hard-set specifications and working with large infeasible spaces. If
the answer to this question is a resounding yes for all disciplines involved, then the DIM can move forward with the space
reduction for the universally infeasible design space. However, later on in the SBD process when these infeasible spaces
have diminished, dominance-based decisions may be required that consequentially cut away at some of the feasible spaces
of various disciplines. In these cases, the second question becomes more important to ask to ensure that a dominance-based
reduction decision does not end up severely limiting any one discipline from producing a feasible design.

To answer the second question, the area of the design space that would remain after the space reduction (the reduced design
space) is assessed in relation to the original design space before the space reduction (the non-reduced design space). The
same trained GPR is now used to predict the difference between the passing and failing amounts at each discretized (unex-
plored) point in the reduced and non-reduced design spaces. However, now the question is concerned with discerning likely
feasible spaces to ensure the space reduction does not significantly reduce the potential of finding a feasible design. In this
case, the normal distribution about each discretized point’s predicted value is determined, and the average fraction of those
distributions falling above zero is calculated for both the reduced and non-reduced design spaces. The ratio of the reduced
average to the non-reduced average acts as the metric answering the second question, where large values reflect little reduc-
tion in the likeliness of finding feasible designs in the reduced design space.

With metrics produced that quantify a discipline’s answers to both questions, the influence that each metric should have
on a discipline’s overall opinion of a space reduction can be determined. Equation 3 is used to quantify this opinion (OP )



wherem1 andm2 are the metrics for the first and second question, and w1 and w2 are the weights assigned to each met-
ric. Because the second question only comes into play if the answer to the first question is not a resounding yes, the weight
of the second metric is dictated by the value of the first metric. Ifm1 is high because clearly infeasible spaces would be
eliminated, then w2 should be low because those spaces are not needed regardless. On the other hand, ifm1 is low because
clearly infeasible spaces are not being eliminated, then w2 should be high to account for how much the space reduction
would actually hinder the remaining space in the opinion formulation. To reflect this behavior while not limiting the rela-
tionship between w2 andm1 to a linearly inverse correlation, a user-specified quadratic Bezier curve between the two vari-
ables is adopted. Once w2 is determined, w1 is calculated through the equation w1 = 1 − w2 to ensure the overall value on
the opinion stays between 0 and 1.

OP = w1 ∗m1 + w2 ∗m2 (3)

Once the opinions are formed, the DIM can finally decide how much influence each opinion should have when finalizing
the universal set of input rule(s) for the newest space reduction. In the simulation, this decision is made by establishing a
threshold which permits a discipline to veto an input rule based on the value of their opinion in relation to the opinion of
the discipline proposing the new input rule(s). Early on in the SBD process when space reductions do not necessarily need
to be forced by the DIM, this threshold is low to allow for more vetoing of rules and less dominance-based reduction deci-
sions. Later on in the SBD process when space reductions are becoming more forced by the DIM, this threshold is high to
prevent more vetoing of rules and allow for more dominance-based reduction decisions.

At the end of this space reduction process, the DIM will have decided on a universal set of space reductions by which all
disciplines must abide. Again, it is not meant to be a perfect representation of how space reduction decisions are made in
SBD. Rather, it is meant to consistently produce reasonable space reductions for both infeasibility and dominance-based
decisions so that the fragility of those decisions can be studied.

FRAGILITY FRAMEWORK

Traditionally in SBD, the space reduction decision process ends with the universal set of reductions instituted by the DIM.
At this point, designers have explored their own design spaces to form perceptions and propose space reductions, and the
DIM has merged them together with the information available through infeasibility or dominance. As discussed though, this
process, which only considers present information, leaves reduced design spaces vulnerable to new information.

The intent of a fragility framework is to gauge the vulnerabilities of each discipline’s design space to new information be-
fore committing to any space reductions. To accomplish this goal, a developed framework will require components that ad-
dress various complexities inherent to the space reduction process. Table 1 summarizes those space reduction complexities
and corresponding fragility framework requirements. In this work, a Probabilistic Fragility Model (PFM) is introduced for
fragility assessment. The PFM is still a work in progress and does not address every framework requirement outlined in the
table. Still, it addresses many complexities inherent to SBD’s space reduction process and has the potential to be expanded
further in future work. After discussing the underlying logic behind the PFM, it is incorporated as the final step in the SBD
simulation’s space reduction process.

Probabilistic Fragility Model

The main idea behind the PFM is to characterize a discipline’s present understanding of a design space with straightforward
probabilities of feasibility and infeasibility and then to quantify its vulnerability based on how likely that understanding is
to change. There are three main parts to the PFM which include forming perceptions of feasibility in the design spaces, de-
termining potentials for regret and windfall from those perceptions, and using metrics to compare those potentials between
the reduced and non-reduced design spaces.



In the first step, designers need to form perceptions of feasibility throughout their design space by leveraging data from
their explored points thus far. To meet this requirement, the same GPR from the space reduction process is used to predict
the difference between the passing and failing amounts (pass-fail) for all unexplored areas of the design space. With these
predictions, designers can form perceptions for feasible and infeasible areas depending on if the pass-fail value is positive
or negative. Designers will also have an idea of how much different areas are passing or failing depending on its magnitude.
Figure 8 depicts this process for the remaining areas of a design space involving two input variables (x1 and x2). On the
left-hand side of the figure, pass-fail amounts are formed for three explored points. Data from those explored points train a
GPR, and then the trained GPR forms predictions for the discretized areas of the design space.

Table 1: Complexities that exist when making space reduction decisions with uncertain information and the
corresponding fragility framework requirements addressing these complexities

Space Reduction Complexity Framework Requirement
Space reductions are focused on eliminating undesirable
solutions from a ranging design space. The desirability of
solutions are rooted in perceptions of feasibility formed by
running discrete design points through the analyses
established by each discipline.

The framework needs to form initial perceptions of
feasibility with presently available information. A
technique for converting information from explored points
and their output values into perceptions of feasibility
throughout each discipline’s design space is required.

Perceptions of feasibility are uncertain because they are
formed with incomplete information within a discipline’s
design space. Information from newly analyzed design
points within a design space could alter perceptions.

Formed perceptions of feasibility for unexplored areas of
the design space are not definitive. The framework should
account for the possibility of new design points being
tested with feasibility that is contradictory to expectations.

Perceptions of feasibility are uncertain because of the
interdependencies that exist through shared variables
between disciplines. Vulnerabilities of one design space to
new information could directly or indirectly amplify the
vulnerabilities of other design spaces.

The framework must include a cross-discipline component
that ties the individualistic fragilities of each discipline
together such that the vulnerabilities tracked across
interconnected design spaces are representative of their
dependencies on each other.

Perceptions of feasibility are uncertain because they are
formed with output information that is susceptible to
change. New information originating from changes to
design requirements or analyses could alter perceptions.

The location of calculated output values within the
objective space must not be treated as definitive. Instead,
the framework should account for the possibility of output
values and requirements shifting in relation to each other.

A design space may be fragile when considering all input
variables together (i.e. x1, x2, x3) and when considering
various combinations of input variables (i.e. x1, x2).

The framework cannot only measure the fragility of a
design space as a whole. It must be flexible enough to also
identify component-based fragilities.

The number of ways new information can alter perceptions
of feasibility within a design space is unbounded and
unknown until the information is made available. The risk
of a space reduction in context of itself is unlimited.

Comparing the fragility of a reduced design space to a
non-reduced design space and determining what new
information a discipline can handle rather than it would
have to handle will narrow the DIM’s scope and allow
space reduction risk to be quantified.



Figure 8: Forming perceptions of feasibility for unexplored areas of the design space

In the next step, designers need to consider the consequences of their formed perceptions of feasibility being incorrect. This
requirement leads to the introduction of regret and windfall in a design space. Suppose the sampled design space in Fig-
ure 9 is considering the space reduction depicted by the black box. The space reduction would eliminate portions of the
design space perceived as feasible (top-left) as well as portions of the design space perceived as infeasible (top-right). Now
suppose new information comes along that throws off those perceptions of feasibility as depicted by the left-hand design
space in Figure 10. This new information would cause designers to regret the space reduction if they are left with infeasible
space that was expected to be feasible or left without feasible space that was expected to be infeasible (instances of regret).
In contrast, the new information would benefit designers if they are left with feasible space that was expected to be infea-
sible or left without infeasible space that was expected to be feasible (instances of windfall). Before committing to a space
reduction, the PFM considers these potentials for windfall and regret for the reduced design space in context of the non-
reduced design space (right-hand side of Figure 10). This logic allows designers to consider the consequences of moving
forward with a space reduction compared to forgoing the space reduction.

Figure 9: Design space considering a proposed space reduction (signified by the grey box)

Considering the consequences of a space reduction alone is not enough as there are different likelihoods of these conse-
quences actually coming to fruition. Fortunately, probabilities of feasibility can be calculated from the predicted pass-fail
values of the GPR to account for the regret and windfall likelihoods. Figure 11 depicts this process for the PFM. Once all



Figure 10: Instances of regret and windfall for the reduced design space (left) and non-reduced design space (right)

discretized areas of the design spaces are labeled as feasible or infeasible based on their predicted pass-fail value, the value
itself and the accompanying standard deviation are used to create a normalized probability distribution on each prediction.
The probability of feasibility or infeasibility is determined based on the portion of a point’s probability distribution main-
taining the predicted positive or negative pass-fail value. Finally, the potentials for regret or windfall are taken from the
complementary probabilities of feasibility for each discretized point. Whether the complementary probability results in a
potential for regret or windfall will depend on where the discretized point falls in the non-reduced or reduced design space.

Figure 11: Converting perceptions of feasibility into potentials for regret and windfall for a non-reduced and
reduced design space



The last step in the PFM involves gauging regret and windfall potential for the entirety of the reduced design space from
each discretized point. A straightforward method to do so is summing up each discretized point’s regret and windfall po-
tentials. However, to actually understand the risk of a space reduction from these potentials, further context is needed. This
context is provided by calculating the same summation for the non-reduced design space as is done for the reduced design
space and then calculating the added potentials for regret and windfall (shown in equations 4 and 5). Working with these
added potentials for regret and windfall allow a DIM to understand the risk of moving forward with a space reduction in
context of leaving the design space untouched. High risk space reductions correspond to large positive values of added po-
tential for regret and large negative values of added potential for windfall, which would reflect a reduced design space tak-
ing on more potential for regret and giving up potential for windfall. In equations 4 and 5, ∆reg and ∆wind are the added
potentials for regret and windfall, preg,red and pwind,red are a discretized point’s probability of regret and windfall in the
reduced design space, and preg,nonred and pwind,nonred are the same probabilities for the non-reduced design space.

∆reg =

∑n
i=1 preg,red(x)∑n

i=1 preg,nonred(x)
− 1 (4)

∆wind =

∑n
i=1 pwind,red(x)∑n

i=1 pwind,nonred(x)
− 1 (5)

Incorporating Fragility in SBD Simulation

In the SBD simulation, fragility checks occur immediately after the DIM has merged proposed space reductions into a uni-
versal set, as depicted by the red box in Figure 7. Up to this point in the simulation, all space-reduction-related decisions
are solely supported by present information that is assumed not to change. The fragility framework intends to protect design
spaces against this assumption and consider the effect that the space reductions would have on the remaining design spaces
if new information were to alter the perceptions formed.

After calculating the added potential for regret and added potential for windfall, the amount of risk a DIM is willing to take
on must be determined. In this work, a maximum risk threshold that increases exponentially with project time is estab-
lished. The idea behind choosing an exponential threshold is to undertake little risk in space reduction decisions early on
when conflicting information can be more common and influential on design space perceptions, and to increase the amount
of risk endured later when conflicting information is less common and design spaces are more locked in.

With the exponential risk threshold set, the actual risk experienced from a space reduction in the simulation is set as the
added potential for regret subtracted by the added potential for windfall. This risk setup allows the DIM to weigh each dis-
cipline’s shift in potential to be hurt and helped by new information following a space reduction. In any given space reduc-
tion cycle, disciplines are permitted to keep proposing space reductions that can be added by the DIM as long as the risk
does not exceed the threshold for any one discipline. If the threshold is exceeded, the input rule that put the risk over the
limit is temporarily banned from being proposed again until design spaces have been explored further.

With that, the SBD simulation is established with the option to include a probabilistic fragility check before fully commit-
ting to each space reduction decision. After first validating the pre-fragility portion of the simulation with a simple SBD
problem, emergent design spaces of the design problem with and without the PFM are ready to be observed.

VALIDATING SIMULATION WITH A SBD PROBLEM

Investigating the impact of this new fragility framework on emergent design spaces requires a simple design problem. Test-
ing the framework on a simple problem directs focus on the framework and makes interpretation of results in its early stages



more straightforward. After first describing the problem, it will be used to validate the efficacy of the SBD simulation with-
out yet incorporating the PFM. Once the simulation is validated, it will then be used to assess the vulnerabilities of emer-
gent design spaces for SBD simulations with and without the PFM.

SBD Problem

A design problem has been created for testing the developed fragility framework. As shown in Figure 12, the design prob-
lem involves three different disciplines having some shared input variables and unique output variables. The input variables
are analogous to the different ship characteristics that a discipline has influence over, while the output variables are analo-
gous to the different ship performance characteristics with which a discipline is concerned. Circling back to the marine de-
sign disciplines used as an example in the SET-BASED DESIGN section, Discipline 1 could represent the Weights division,
Discipline 2 could represent the Stability division, and Discipline 3 could represent the Structural division. It is important
to note that only a simple design problem is being investigated right now, and there are numerous other disciplines and sub-
disciplines (e.g. arrangements, powering, seakeeping, maneuvering) that would tie into more complex problems.

Figure 12: Input and output variables for three disciplines of SBD problem

Each one of these disciplines have analyses that calculate the output variables from the input variables to provide insight on
how a potential design solution will perform. For this design problem, arbitrary mathematical equations act as the analyses
for each discipline as shown in equations 6 to 10. These equations are analogous to the different parametric models or de-
sign programs used to evaluate performance metrics of a potential design solution.

Discipline 1:
y1 = 0.8x2

1 + 2x2
2 − x3 (6)

Discipline 2:
y2 = 1.25x5 − 12.5x3

3 + 6.25x2
3 (7)

y3 =
(
x3
4 + x5

)2 (8)

Discipline 3:
y4 = 2x5 + 0.2 sin (25x6)− x

1
5
1 (9)

y5 = x
1
3
1 − cos (3x5) (10)

Each of the input and output variables have requirements that must be satisfied. The bounds on all the input variables are
normalized such that they must fall between 0 and 1. The bounds on the output variables are unique and described as fol-
lows: 0 ≤ y1 ≤ 0.4 or 1.2 ≤ y1 ≤ 1.6, 0.5 ≤ y2 ≤ 0.7, 0.2 ≤ y3 ≤ 0.5, 0 ≤ y4 ≤ 0.5, 0.8 ≤ y5 ≤ 1.6. These



requirements are analogous to the different stakeholder or industry-set design requirements that the design must satisfy. In
marine design, the bounds on the input variables could be normalized length, beam, depth, etc. ranges, while the bounds on
the output variables could be standardized displacement, wind-righting arm, yielding stress, etc. ranges.

The equations and required bounds of the design problem produce the feasible spaces depicted in Figures 13 to 15. In each
of the figures, red points represent discrete design solutions not meeting output requirements, while green points represent
discrete design solutions meeting output requirements. The feasible boundaries are unknown to the designers of each dis-
cipline, so they must form their perceptions of these feasible boundaries solely from the discrete points they decide to test.
The equations and bounds are formulated in such a way that the feasible spaces have complex boundaries for designers of
the SBD simulation to learn.

Validating SBD Simulation Approach

The code simulating SBD decisions needs to be validated to ensure reasonable space reductions are being proposed from
the present information. The aim of the fragility framework is to evaluate the suitability of a space reduction decision based
on the potential for perceptions of feasibility to be altered by new information rather than present information. Even so, if
unreasonable space reductions that neglect infeasible areas and surround feasible areas are proposed, then new information
could not make perceptions any worse, and the framework would never find a reduced design space to be fragile.

Figure 13: Feasible bounds of Discipline 1 depicted
with 2,000 sampled points

Figure 14: Feasible bounds of Discipline 2 depicted
with 2,000 sampled points

Figure 15: Feasible bounds of Discipline 3 depicted with 2,000 sampled points



To validate the SBD code, 200 runs of the SBD problem without the fragility framework were executed. Table A1 shows
all of the user inputs selected for these simulations. Short analysis run times ([2, 3, 4] iterations) relative to a long project
timeline (1000 iterations) were chosen to ensure ample time is given to build up information for proposing reasonable space
reductions. Each discipline was also given the goal of reducing their designs space’s down to at least 5% of their initial size.

Figures 16 to 18 show locations of remaining solutions in each discipline’s design space at the end of all 200 runs with the
tan-colored points. The more opaque points show where remaining designs are most commonly found in each discipline at
the end of a run, while the more transparent points show where remaining designs are less commonly found or not found at
all. The surfaces show the feasible bounds of the design problem unknown to designers in the simulation. As can be seen
in each figure, the remaining solutions are most commonly found within or around each discipline’s feasible areas. This
finding shows that remaining designs are being narrowed down to these feasible areas without actual knowledge of them,
indicating that the SBD code is proposing reasonable space reductions.

Figure 16: Locations of remaining design solutions for
Discipline 1 at the end of the simulation

Figure 17: Locations of remaining design solutions for
Discipline 2 at the end of the simulation

Figure 18: Locations of remaining design solutions for Discipline 3 at the end of the simulation



ASSESSING FRAGILITY IN SBD PROBLEM

With the SBD code validated, experiments can be run comparing the emergent design spaces of SBD simulations includ-
ing the PFM to those that do not. As the proposed method does not yet consider the potential of analyses or requirements to
change, random design changes do not need to be introduced to the simulation. The PFM currently only considers the im-
pact that new information arising from newly tested design points in a primary discipline would have on a remaining design
space. The results focus on evaluating the fragility of design spaces following space reductions by tracking remaining de-
signs as the simulation progresses.

Experimental Setup

Experiments are run for two different scenarios. In the first scenario, emergent design spaces with and without the PFM
are compared to each other when a large amount of time has been allotted to the design problem relative to analysis run
times. These test cases will have more time to generate information and presumably form more stable perceptions of design
space behavior before proposing various space reductions. In the second scenario, emergent design spaces with and without
the PFM are compared to each other when little time has been allotted to the design problem relative to analysis run times.
These test cases will have less time to generate information and presumably form less stable perceptions of design space
behavior before proposing various space reductions.

Table 2 highlights the differences made in the simulation between these two scenarios, while all other design parameters
selected for the simulations match up with those shown in Table A1. The first and third test cases do not include any sort
of fragility checks, but the second and fourth test cases include the PFM. Each test case is executed over 200 runs, and the
averages of those runs are observed when examining the emergent design spaces.

Table 2: Independent variables for various test cases of the SBD simulation

Design Parameter User Input Test Case 1 Test Case 2 Test Case 3 Test Case 4
Project timeline (iterations) iters_max 200 200 1000 1000
Fragility check fragility False True False True
Starting Fragility Threshold fragility_shift 0.0 0.2 0.0 0.2

Results and Discussion

While executing the runs of each test case, the total design space remaining and the remaining number of feasible solutions
are tracked across each discipline. Figures 19 to 21 display these results as various percentages. In each figure, the “Total
Space” curves show the average percentage of the remaining design space, the “Feasible Space” curves show the average
percentage of the remaining feasible designs, and the “Feasible-to-Remaining” curves show the ratio of the remaining feasi-
ble designs to the remaining design space, all over the elapsed project time.

One immediate takeaway from each of the figures is that including fragility checks with the PFM does not result in a higher
ratio of feasible designs to space remaining by the end of the simulations. When comparing test cases of the same project
timeline in each figure, the ratio of feasible-to-remaining designs is generally the same or slightly higher for test cases that
do not include fragility checks. For Test Case 1 and Test Case 2 in Discipline 3, the ratio of feasible-to-remaining designs
is much higher (roughly 25%) for simulations without the PFM. While these results may seem deterring, one explanation
for them is there being more total space remaining at the end of the simulations with the fragility checks. In Discipline 3
specifically, there is on average about 10% more designs remaining in Test Case 2 at the end of the simulations than every
other test case. More test cases remaining can result in a lower ratio of feasible-to-remaining designs. This occurrence is
confirmed by the fact that despite its much lower ratio, Test Case 2 has more remaining feasible designs than Test Case 1 at



the end of the simulation for Discipline 3. Regardless, the behavior this work is more concerned with studying occurs for
the emergent design spaces rather than the final design spaces.

Another takeaway is that having more time to explore each discipline’s design space does lead to a higher understanding of
the space. Across each discipline, Test Cases 1 and 2 (having an 80% shorter project time) consistently retain fewer feasible
designs than Test Cases 3 and 4. As Test Cases 3 and 4 have more time to explore areas of their design space before propos-
ing space reductions, they can be more careful about eliminating feasible solutions. It is worth noting that the feasible-to-
remaining design space ratio of Test Case 1 does rapidly catch back up to Test Cases 3 and 4 towards the end of the simu-
lations. While it would require further investigation to confirm this explanation, the smaller dispersion of designs in Fig-
ure 18 than Figure 16 and Figure 17 hints that this behavior may be attributed to the actual equations and requirements es-
tablished for Discipline 3 in the SBD problem. The feasible solutions for Discipline 3 can vary over the entire range of its
unique variable (x6) but has distinct feasible regions for its shared variables (x1 and x5). This coincidence gives designers
of Discipline 3 some more freedom to still find feasible designs in their design space whether or not any sort of premature
design lock-in has occurred for its shared variables.

Circling back to the fragility aspect of the simulations, the total space remaining results show that simulations including
the PFM support a more gradual reduction of design spaces with less lock-in than simulations neglecting fragility checks.
For most of Discipline 1’s reduction time and for all of Discipline 2 and 3’s reduction time, simulations including fragility
checks maintain a larger remaining design space than simulations without them. The PFM is effectively delaying the space
reduction process and forcing disciplines to really consider the potential consequences of a space reduction before they
commit to it. Those consequences are being realized at the “notches” in Test Case 1 and 3’s total space curves just past the
40% elapsed timeline, primarily in Disciplines 2 and 3.

The rapid decline in total space remaining and apparent change in pace at each notch suggests the disciplines are eliminat-
ing infeasible areas of their design spaces without much hesitation and then finding themselves locked in on the design so-
lutions that remain. While design changes are not introduced in the experiments conducted for this work, the design spaces
of Test Cases 1 and 3 find themselves very vulnerable at this point to new information stemming from slight changes to
requirements or analyses. Whereas the design spaces of Test Cases 2 and 4, who do consider the consequences stemming
from new and conflicting information, are more prepared to handle design changes. Test Case 4 in Discipline 2 does see a
similar notch in its total space remaining curve at the same elapsed project time. However, it tries to correct for this rapid
space reduction to a greater extent than Test Cases 1 and 3, almost to the point of meeting back up with the total space re-
maining curve of Test Case 2 at 70% of its elapsed timeline. For what Test Case 2 sacrifices in extra space retained at the
end of SBD process, it makes up for in flexibility to handle new information.

As a whole, the results are encouraging and support introducing a step for fragility assessment to support DIMs making
space reduction decisions. Using the PFM to make these fragility checks is a promising first attempt, but it is by no means
perfect. The PFM meets many of the framework requirements laid out in Table 1, but it is still lacking in a few areas. Namely,
the PFM has no such network component that considers vulnerabilities of interdependent disciplines, it does not account for
the possibility of calculated output values or design requirements shifting, and it is not yet built to identify any component-
based fragilities. Furthermore, the PFM has only been tested for space reduction decisions of a simple design problem in-
volving just three interconnected disciplines. To really justify the PFM’s incorporation into the space reduction process, it
needs to be proven against more comprehensive design problems while tracking metrics such as the diversity of remaining
design spaces to better substantiate claims of rapid convergence and lock-in. Future work will focus on addressing each of
these shortcomings.



Figure 19: Size of Discipline 1’s total design space, feasible design space, and feasible design space relative to
remaining design space over the elapsed project time

Figure 20: Size of Discipline 2’s total design space, feasible design space, and feasible design space relative to
remaining design space over the elapsed project time



Figure 21: Size of Discipline 3’s total design space, feasible design space, and feasible design space relative to
remaining design space over the elapsed project time

CONCLUSIONS

The intent of this work is to introduce a framework to help DIMs make more informed space reduction decisions in SBD
by considering the vulnerabilities of remaining design spaces to new information. The framework, or Probabilistic Fragility
Model (PFM), uses present perceptions of feasibility formed from sampled points in a design space to gauge the potential
and likelihood for those perceptions to be altered by new information. An automated SBD simulation is built to observe
the emergent design spaces of a space reduction process including the PFM against one that does not for a simple design
problem involving three interdependent disciplines. When tracking their emergent design spaces, initial results indicate
that the framework could be a useful tool for delaying space reduction decisions and preventing designers from fixating on
certain design solutions while new knowledge is still integrating with existing knowledge. Such a framework could become
a critical final step to ensuring space reduction decisions are made with both present and future information in mind.
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APPENDIX A

Table A1: User Inputs established in Python for validating SBD simulation

Simulation Parameters Parameter Values
problem_name ‘SBD1’
iters_max 1000
sample ‘uniform’
search_factor 100
total_points 10000
run_time [2, 3, 4]
exp_parameters array([0.2, 2.2, 1.0, 0.95])
part_params {‘cdf_crit’: [0.1, 0.1], ‘fail_crit’: [0.0, 0.05], ‘dist_crit’: [0.2, 0.1], ‘disc_crit’: [0.2, 0.1]}
dtc_kwargs {‘max_depth’: 2}
gpr_params {‘length_scale_bounds’: (1e-2, 1e3), ‘alpha’: 0.00001}
bez_point {‘P0’: (0.0, 1.0), ‘P1’: (0.5, 0.8), ‘P2’: (1.0, 0.0)}
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