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A B S T R A C T

Accurately modeling nonlinearities is becoming increasingly important for mechanical systems,
particularly in the context of system design, model-based control and monitoring systems for
fault diagnosis. In the nonlinear modeling process, a pivotal phase involves pinpointing the
physical locations and quantifying the magnitude of nonlinearities. This paper introduces a
data-driven approach for nonlinearity location and quantification by analyzing nonparametric
frequency response functions. To achieve this objective, measurement locations in mechanical
systems are interpreted as nodes arranged in a dynamic network, and linearization techniques
are employed on the frequency response functions formed from node to node. The efficacy
of the proposed approach and the concept of nonlinearity localization and quantification are
illustrated by numerical simulations and experiments on a flexible beam setup.

. Introduction

The need for nonlinear models is increasingly acknowledged as a fundamental requirement in engineering disciplines. This
cknowledgment is driven by the complex behavior of real-world systems, which often exceeds the capabilities of simplistic linear
epresentations. A comprehensive understanding of nonlinear behavior is essential for various reasons. This understanding allows
ngineers to predict and mitigate potential problems during the design phase, such as structural instability or excessive vibrations [1].
n the other hand, nonlinearities can be strategically leveraged to overcome the performance limitations of linear systems, for

nstance, by novel mechanical design for vibration absorption [2], energy harvesting [3,4], or with nonlinear control [5,6]. However,
any engineering systems, such as precision mechanics, are designed to exhibit dominant linear behavior. In these systems, the

mergence of nonlinear behavior often serves as a symptomatic indicator of underlying faults. These faults can manifest in various
orms, such as wear and tear, material degradation, or structural damage.

Detecting nonlinearities has wide-ranging applications across various domains, serving as a critical tool for monitoring, fault
etection, damage assessment, and predictive maintenance [7,8]. To achieve these goals, it is essential not only to detect the presence
f nonlinearities within the system, but also to quantify their magnitude and precisely pinpoint their location [9,10]. In the field of
echanics, complex nonlinearities such as friction [11], hysteresis [12], or contact nonlinearities [13] are frequently encountered

nd a nonlinearity location approach can be used as first step in the modeling or validation process for highly complex systems [14].
n addition to mechanics, locating nonlinearities is relevant for many other fields such as understand physiological processes in
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biological systems [15], medical diagnosis and treatment, as well as enhancement of acoustical engineering. This interdisciplinary
application underscores the significance of nonlinearity location across various fields and practical applications.

Many systems can be conceptualized as an interconnection of subsystems. Adopting the perspective of interconnected subsystems
s known as the dynamic networks setting. Most of the research on identification in dynamic networks has focused on acquiring

reliable estimates of linear subsystems, employing various techniques and considering different noise assumptions [16,17]. Further
research on dynamic networks focuses on experiment design and input selection [18] or centers around topology detection
echniques. For example, [19] describes the essential information required to recover the network structure from input–output data.

Other approaches include Bayesian methods for sparse network reconstruction [20] or use distance functions specifically tailored
for networks with tree topologies [21]. Beyond the identification of linear systems, substantial progress has been made in the
identification of nonlinearities within mechanical systems in the last decade [22]. State-of-the-art methods enable the handling of
trong nonlinearities in structural dynamics. For instance, both time-domain [23] and frequency-domain [24] subspace identification

algorithms have been applied for nonlinear system identification. Only recently, frequency-domain identification and the dynamic
network perspective were combined [25], allowing for detecting, locating, and quantifying nonlinearities in networks using linear
approximation methods.

Although many advances have been made in the field of nonlinearity identification, many of these approaches require prior
knowledge of the locations of the nonlinearities across the structure of interest. Another common aspect is the definition of an
optimality criterion, which is only valid for a specified class of systems and under specific excitation signal conditions [26,27].
The existing literature on nonlinearity location is relatively limited [15,28] and, besides a nonlinear feedback perspective [29],
lacks a solution for non-parametrically addressing this task. Given that many systems, including complex multi-input multi-output
(MIMO) motion systems, primarily rely on non-parametric frequency response functions for modeling, there is a particular need for
etecting, locating, and quantifying nonlinearities within this framework. Moreover, such approach offers considerable advantages,
s experimental data is cheap to obtain and since it can be applied to a broad range of nonlinear systems with minimal reliance on
rior assumptions and user input.

This article explores the detection, location, and quantification of nonlinearities using dynamic network theory and system
identification, building upon the approach established in [25]. A detailed step-by-step procedure is outlined to guide the process,
and the equivalences between mechanical systems and dynamic networks are illustrated. Additionally, the approach is validated ex-
perimentally. In this context, the Best Linear Approximation (BLA) [30,31], previously employed for nonlinearity detection [32,33],
forms the foundation of the proposed method, however, is now utilized for pinpointing and quantifying nonlinearities. Specifically,
the MIMO BLA framework [34,35] is integrated with the closed-loop [36,37] and process noise [38] framework. This establishes a
omprehensive framework for networked systems.

The main contributions are summarized as follows:

C1: A procedure is described to represent mechanical systems as dynamic networks, which is relevant for the identification of
local modules and for locating and quantifying the magnitude of nonlinear elements.

C2: A detailed step-by-step procedure is described to locate and quantify nonlinearities in MIMO mechanical systems. As outlined
initially in [25], the procedure is based on frequency domain data and builds upon the BLA framework for MIMO systems.

C3: The proposed method is evaluated through simulations and is experimentally validated on a flexible beam setup with a
nonlinearity of varying magnitude.

The remainder of this article is organized as follows. In Section 2 dynamic networks are introduced, and the analogy between
dynamic networks and mechanical systems is presented. Subsequently, the main problem is formulated. In Section 3 the concept
of the BLA is revisited for open-loop single-input single-output (SISO) systems. Next, the focus is shifted to MIMO systems and a
detailed step-by-step description of the proposed method for dynamic networks, based on the BLA concept, is given in Section 4. The
proposed approach is numerically evaluated in Section 5, and applied to an experimental mechanical system in Section 6. Lastly,
Section 7 concludes this paper.

2. System setup and problem formulation

In this section, the general framework of dynamic network identification tailored to mechanical systems is presented, leading to
the formulation of the primary objective of this article.

2.1. Dynamic networks

Consider a dynamic network consisting of 𝑛𝑦 nodes, as illustrated by the example in Fig. 1. These nodes represent the internal
variables of the network. Within this network, the signal associated with each node, represented by 𝑦𝑖(𝑡), is computed as the sum
f all incoming signals

𝑦𝑖(𝑡) =
𝑛𝑦
∑

𝑗=1,𝑗≠𝑖
𝑦𝑖𝑗 (𝑡) + 𝑦𝑢𝑖 (𝑡) + 𝑣𝑖(𝑡), (1)

where 𝑦𝑖𝑗 (𝑡) is the output of subsystem 𝐺𝑖𝑗 , and 𝑦𝑢𝑖 (𝑡) is the output of the subsystem 𝐺𝑢𝑖 , both pointing towards node 𝑖. The input of
subsystem 𝐺𝑖𝑗 is the node signal 𝑦𝑗 (𝑡) and the input of subsystem 𝐺𝑢𝑖 is the external input 𝑢𝑖(𝑡). Each of the SISO subsystems may
be linear or nonlinear. The remaining signal 𝑣 (𝑡) denotes an additive process noise contribution that is assumed to be independent
𝑖
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Fig. 1. A dynamic network consisting of three nodes, indicted with 𝑦𝑖, which are interconnected by dynamic subsystems 𝐺𝑖𝑗 and 𝐺𝑢𝑖 . The node signals are
alculated by summing all incoming signals. The exogenous incoming signals consist of the external inputs 𝑢𝑖 and process noise contributions 𝑣𝑖.

Fig. 2. A mechanical system with three masses 𝑚𝑖 connected by four linear springs 𝑘𝑗 and dampers 𝑐𝑗 . The positions of the masses are indicated by 𝑥𝑖 and a
force 𝑢𝑖 is applied to each mass.

of external inputs 𝑢𝑗 (𝑡), 𝑗 ∈ 1,… , 𝑛𝑦 and the other noise signals 𝑣𝑘(𝑡), 𝑘 ∈ 1,… , 𝑛𝑦, where 𝑘 ≠ 𝑖. The noise signal 𝑣𝑖(𝑡) is assumed to
e zero-mean and has a finite variance 𝜎𝑣𝑖 . This representation follows the definitions and visualization of [16,39]. Typically, only

the node signals 𝑦𝑖(𝑡) and the input signals 𝑢𝑖(𝑡) are known.

Remark 2.1. Note that in this dynamic network framework, process noise is considered at the network nodes. Therefore, it differs
from pure measurement noise, as the noise in this framework propagates through the submodels.

2.2. From mechanical system to dynamic network

An exact analogy can be made between mechanical systems with a discrete number of masses and a dynamic network. As an
illustration, the underlying linear physical system of Fig. 2 is translated into a network representation.

The networked representation is based on the equations of motion,

𝑚1�̈�1(𝑡) = −𝑘1𝑥1(𝑡) − 𝑘2(𝑥1(𝑡) − 𝑥2(𝑡)) − 𝑐1�̇�1(𝑡) − 𝑐2(�̇�1(𝑡) − �̇�2(𝑡)) + 𝑢1(𝑡), (2a)

𝑚2�̈�2(𝑡) = −𝑘2(𝑥2(𝑡) − 𝑥1(𝑡)) − 𝑘3(𝑥2(𝑡) − 𝑥3(𝑡)) − 𝑐2(�̇�2(𝑡) − �̇�1(𝑡)) − 𝑐3(�̇�2(𝑡) − �̇�3(𝑡)) + 𝑢2(𝑡), (2b)

𝑚3�̈�3(𝑡) = −𝑘3(𝑥3(𝑡) − 𝑥2(𝑡)) − 𝑘4𝑥3(𝑡) − 𝑐3(�̇�3(𝑡) − �̇�2(𝑡)) − 𝑐4�̇�3(𝑡) + 𝑢3(𝑡), (2c)

where �̈�(𝑡) = d2𝑥(𝑡)
d𝑡2 and �̇�(𝑡) = d𝑥(𝑡)

d𝑡 . Taking 𝑝 = d
d𝑡 , and isolating 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡), allows to write the three equations of motion

s

𝑥1(𝑡) =
𝑘2 + 𝑐2𝑝

𝑚1𝑝2 + (𝑐1 + 𝑐2)𝑝 + 𝑘1 + 𝑘2
𝑥2(𝑡) + 1

𝑚1𝑝2 + (𝑐1 + 𝑐2)𝑝 + 𝑘1 + 𝑘2
𝑢1(𝑡), (3a)

𝑥2(𝑡) =
𝑘2 + 𝑐2𝑝

𝑚2𝑝2 + (𝑐2 + 𝑐3)𝑝 + 𝑘2 + 𝑘3
𝑥1(𝑡) +

𝑘3 + 𝑐3𝑝
𝑚2𝑝2 + (𝑐2 + 𝑐3)𝑝 + 𝑘2 + 𝑘3

𝑥3(𝑡) + 1
𝑚2𝑝2 + (𝑐2 + 𝑐3)𝑝 + 𝑘2 + 𝑘3

𝑢2(𝑡), (3b)

𝑥3(𝑡) =
𝑘3 + 𝑐3𝑝

𝑚3𝑝2 + (𝑐3 + 𝑐4)𝑝 + 𝑘3 + 𝑘4
𝑥2(𝑡) + 1

𝑚3𝑝2 + (𝑐3 + 𝑐4)𝑝 + 𝑘3 + 𝑘4
𝑢3(𝑡). (3c)

This description of transfer functions admits the dynamic network representation in Fig. 1, where each position measurement 𝑥𝑖(𝑡)
orms a node signal 𝑦𝑖(𝑡) which is perturbed by the node noise 𝑣𝑖(𝑡). The linear subsystems 𝐺𝑖𝑗 (𝑝) are formed by the relations between
𝑖(𝑡) and 𝑥𝑗 (𝑡) and the linear subsystems 𝐺𝑢𝑖 (𝑝) are formed by the relations between 𝑥𝑖(𝑡) and 𝑢𝑖(𝑡). Hence, after including the node
oise, the node signals are formed by
3 
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Fig. 3. A mechanical system with three masses connected by springs and dampers. In this example, a single nonlinear spring is present between the third mass
nd the fixed world. The positions of the masses are measured and a force is applied to each mass.

𝑦1(𝑡) = 𝐺12(𝑝)𝑦2(𝑡) + 𝐺𝑢1 (𝑝)𝑢1(𝑡) + 𝑣1(𝑡), (4a)

𝑦2(𝑡) = 𝐺21(𝑝)𝑦1(𝑡) + 𝐺23(𝑝)𝑦3(𝑡) + 𝐺𝑢2 (𝑝)𝑢2(𝑡) + 𝑣2(𝑡), (4b)

𝑦3(𝑡) = 𝐺32(𝑝)𝑦2(𝑡) + 𝐺𝑢3 (𝑝)𝑢3(𝑡) + 𝑣3(𝑡), (4c)

which indeed admits the visualization of Fig. 1.
In case nonlinear elements are present, see Fig. 3, the equations of motion will be nonlinear. As a result, the differential equations

annot be casted in the transfer function form which is a reasoning that applies only to linear systems. Still, the system can be
epresented as dynamic network where 𝑦𝑖𝑗 (𝑡) is the output of a (possibly) nonlinear subsystem 𝐺𝑖𝑗 with input 𝑦𝑗 and 𝑦𝑢𝑖 (𝑡) is the
utput of a (possibly) nonlinear subsystem 𝐺𝑢𝑖 with input 𝑢𝑖. In this particular case, the node corresponding to 𝑦3 will be connected
o a nonlinear subsystems whereas the nodes 𝑦1 and 𝑦2 are only connected to linear elements. Hence, this particular system still
dmits the representation in Fig. 1.

Remark 2.2. The primary focus of this work is on mechanical systems, specifically mass–spring-damper systems. However, the
proposed framework is applicable to a wide range of systems, including but not limited to electrical circuits, biological systems,
hydraulic systems, and industrial process plants [40].

Remark 2.3. Consider the equations of motion of the system in Fig. 2. These are described by (3), which can be written in a matrix
representation as

⎡

⎢

⎢

⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 𝐺12(𝑝) 𝐺13(𝑝)
𝐺21(𝑝) 0 𝐺23(𝑝)
𝐺31(𝑝) 𝐺32(𝑝) 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐺𝑥(𝑝)

⎡

⎢

⎢

⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐺𝑢1 (𝑝) 0 0
0 𝐺𝑢2 (𝑝) 0
0 0 𝐺𝑢3 (𝑝)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐺𝑢(𝑝)

⎡

⎢

⎢

⎣

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

⎤

⎥

⎥

⎦

,

where 𝐺13(𝑝) = 𝐺31(𝑝) = 0 since the first and third mass are not directly connected. The traditional MIMO system from inputs to
outputs is represented as

⎡

⎢

⎢

⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑆11(𝑝) 𝑆12(𝑝) 𝑆13(𝑝)
𝑆21(𝑝) 𝑆22(𝑝) 𝑆23(𝑝)
𝑆31(𝑝) 𝑆32(𝑝) 𝑆33(𝑝)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝑆(𝑝)

⎡

⎢

⎢

⎣

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

⎤

⎥

⎥

⎦

,

and relates to the networked representation via 𝑆(𝑝) = (

𝐼 − 𝐺𝑥(𝑝)
)−1 𝐺𝑢(𝑝). The dynamics of the subsystems, i.e., the entries of 𝐺𝑥(𝑝)

and 𝐺𝑢(𝑝), are all second order systems. The entries of 𝑆(𝑝) are all of sixth order. Hence, the dynamics of the entries in the networked
representation are much simpler compared to the dynamics of the entries of 𝑆(𝑝), where the different second order entries are mixed
together as a result of the inverse operator.

2.3. Problem formulation

Consider a dynamic network with 𝑛𝑦 nodes, following the definitions in Section 2.1. The primary objective is to develop a data-
driven method to determine the presence of nonlinearities and pinpoint their locations within a dynamic network. To this end, the
node signals 𝑦𝑖(𝑡), 𝑖 ∈ 1,… , 𝑛𝑦, are given, as well as the corresponding external inputs 𝑢𝑖(𝑡). The secondary objective is to quantify
the extent or magnitude of these nonlinear effects.

The proposed method relies on the following assumptions:

Assumption 1. The system is a fading memory system and belongs to the PISPO (periodic in, same period out) system class [41]
from the external excitation 𝑢𝑖 to all the node signals 𝑦𝑖. For the PISPO system class, the steady-state response to a periodic excitation
with period 𝑇 is periodic with the same period 𝑇 . Systems that produce sub-harmonics, operate with autonomous oscillations,
undergo bifurcation, or exhibit chaos are not considered in this context. However, hard nonlinearities like clipping, dead zones,
relays, and quantizers are permitted [38].
4 
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Fig. 4. The BLA represents a nonlinear system 𝐺 using a LTI contribution 𝐺bla, a stochastic nonlinear contribution 𝑦𝑠, and a noise source 𝑣.

Assumption 2. Every node 𝑖 is excited by an independent external input 𝑢𝑖.

Remark 2.4. Despite these assumptions, nonlinearity location is possible for systems which do not satisfy Assumption 1 such as
he duffing oscillator which behaves like a fading memory system within limited amplitude range or hysteretic systems, however,
n that case the proposed approach for quantification does not directly apply.

3. Best linear approximation

Given the requirement for fast and reliable detection with limited user-intervention, a non-parametric approach is pursued. This
ection briefly reviews the robust BLA framework for open-loop SISO systems and how it is used for nonlinearity detection and
uantification. In the next section, this framework is extended to networked systems.

3.1. System and signal class

As described in Section 2.3, the subsystems 𝐺𝑖𝑗 , 𝐺𝑢𝑖 , have fading memory and belong to the PISPO system class [41]. Amongst
others, this ensures that a periodic input applied to the system results, after a transient period, into a periodic output with the same
periodicity as the input. A detailed mathematical treatment of these aspects is provided in [31].

The measured output signals of these (possibly nonlinear) systems, denoted by 𝑦(𝑡), are obtained as

𝑦(𝑡) = 𝑦0(𝑡) + 𝑣(𝑡), (5)

where 𝑦0(𝑡) is the noiseless system output of the nonlinear dynamic system with input 𝑢(𝑡), and 𝑣(𝑡) is a, possibly colored, zero-mean,
finite-variance noise signal, see Fig. 4.

The zero-mean random phase multisine input signal class is considered in the next sections. Random phase multisines give the
user full control over the amplitude spectrum, but have random phases. Their periodic nature is key in term of noise and nonlinearity
haracterization. Random phase multisines belong to the Riemann-equivalence class of excitation signals. This class contains all

signals that are (asymptotically) Gaussian distributed, and have the same power on each finite frequency interval (for the number
f samples and excited frequencies growing to infinity) [42]. A random multisine signal is defined as

𝑢(𝑡) = 1
√

𝑁

𝑁∕2−1
∑

𝑘=1
𝑈𝑘 cos

(

2𝜋 𝑘𝑓0𝑡 + 𝜙𝑘
)

, (6)

where the phase 𝜙𝑘 is uniformly independently random distributed such that E{𝑒𝑗 𝜙𝑘} = 0, 𝑁 is the total number of points per
eriod, and 𝑓0 is the frequency resolution. For 𝑓𝑠 being the sampling frequency and 𝑇 being the period length, 𝑓0 = 𝑓𝑠∕𝑁 = 1∕𝑇 . A
ommon choice is to select the phases such that they are uniformly distributed between [0, 2𝜋). The amplitudes 𝑈𝑘 can be chosen
o follow a desired amplitude spectrum.

3.2. Best linear approximation definition

The BLA framework approximates a nonlinear system with zero-mean (colored) additive output noise, i.e., following (5), using
 linear time-invariant (LTI) model. The BLA is defined in [30,31] as the LTI model that minimizes the expected least-squares

difference between the measured and the modeled output, hence

𝐺bla(𝑞) = arg min
𝐺(𝑞)

E𝑢,𝑣
{

|�̃�(𝑡) − 𝐺(𝑞) �̃�(𝑡)|2
}

, (7)

where

�̃�(𝑡) = 𝑢(𝑡) − E𝑢 {𝑢(𝑡)} , (8)

�̃�(𝑡) = 𝑦(𝑡) − E𝑢,𝑣 {𝑦(𝑡)} . (9)

Here E𝑢,𝑣 {⋅} denotes the expected value operator with respect to the random variations due to the input 𝑢(𝑡) and the output noise
(𝑡), and 𝐺(𝑞) belongs to the set of all possible LTI systems.
5 
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The approximation of a nonlinear system with 𝐺bla(𝑞) is visualized in Fig. 4. The approximation is the sum of three elements,
amely the output of 𝐺bla, and 2 distinct disturbance contributions. These disturbances are the noise distortion 𝑣(𝑡), which is
ommonly present in the LTI literature, and the stochastic nonlinear distortion 𝑦𝑠(𝑡), also referred to as the noncoherent output [42],

hence,

𝑦(𝑡) = 𝐺bla(𝑞)𝑢(𝑡) + 𝑦𝑠(𝑡) + 𝑣(𝑡). (10)

Equivalently, using a frequency-domain notation the BLA is obtained from

𝐺bla(𝜔𝑘) = arg min
𝐺(𝜔𝑘)

E𝑢,𝑣

{

|

|

�̃�(𝜔𝑘) − 𝐺(𝜔𝑘) �̃�(𝜔𝑘)||
2
}

, (11)

where the approximation consists of the same three contributions, i.e.,

𝑦(𝜔𝑘) = 𝐺bla(𝜔𝑘)𝑢(𝜔𝑘) + 𝑦𝑠(𝜔𝑘) + 𝑣(𝜔𝑘), (12)

with 𝜔𝑘 = 2𝜋 𝑘𝑓0.
The total distortion consisting of the stochastic nonlinear distortion, representing the unmodeled nonlinear contributions, and

he noise contribution is consequently obtained by subtracting the contribution of the best linear estimate from the output as

𝑦𝑡(𝜔𝑘) = 𝑦(𝜔𝑘) − 𝐺bla(𝜔𝑘)𝑢(𝜔𝑘) = 𝑦𝑠(𝜔𝑘) + 𝑣(𝜔𝑘). (13)

The contributions of 𝑦𝑠(𝜔𝑘) and 𝑣(𝜔𝑘) can be separated since the nonlinear distortion 𝑦𝑠(𝑡) is linearly uncorrelated with the input �̃�(𝑡),
i.e.,

(

E𝑢{𝑦𝑠(𝑡)�̃�(𝜏)} = 0 ∀𝑡, 𝜏), however, it is not independent of �̃�(𝑡). On the contrary, the noise distortion 𝑣(𝑡) is both uncorrelated,
.e.,

(

E𝑢{𝑣(𝑡)�̃�(𝜏)} = 0 ∀𝑡, 𝜏), and independent of the input �̃�(𝑡). This fundamental difference enables the separation of nonlinear effects.
ence, the nonlinear distortion and the noise distortion equal

𝑦𝑠(𝜔𝑘) = 𝑦0(𝜔𝑘) − 𝐺bla(𝜔𝑘)𝑢(𝜔𝑘), (14)

𝑣(𝜔𝑘) = 𝑦(𝜔𝑘) − 𝐺bla(𝜔𝑘)𝑢(𝜔𝑘) − 𝑦𝑠(𝜔𝑘). (15)

The nonlinearity of a system can be quantified by the variance of the nonlinear distortion. For this variance estimate the robust BLA
approach can be used [31].

3.3. Measuring the BLA: the robust approach

Two main approaches are available in the literature to determine the BLA and obtain an estimate of the variances of the stochastic
nd noise distortion contributions: the so-called fast approach and robust approach [31]. This section briefly recapitulates the main
spects of the robust approach, as it forms the basis of the proposed nonlinearity location and quantification algorithm.

The key observation that enables the separation between noise and the nonlinear disturbances is that the noise behaves aperiodic,
hile the nonlinear disturbances behave periodic for PISPO systems that are excited by a periodic input. The robust approach relies
n applying 𝑀 different realizations of a random phase multisine signal, see (6), with the same power spectrum and measure 𝑃
teady-state periods of each experiment. For each period of each realization, the frequency response function (FRF) is calculated as

�̂�[𝑚,𝑝]
bla (𝜔𝑘) =

�̃�[𝑚,𝑝](𝜔𝑘)
�̃�[𝑚,𝑝](𝜔𝑘)

, (16)

where �̃�[𝑚,𝑝](𝜔𝑘) and �̃�[𝑚,𝑝](𝜔𝑘) denote the leakage-free discrete fourier transform (DFT) of the 𝑝th period and the 𝑚th realization of
the input and output signals �̃�(𝑡) and �̃�(𝑡) respectively. The sample mean over the 𝑃 periods is then computed as

�̂�[𝑚]
bla (𝜔𝑘) = 1

𝑃

𝑃
∑

𝑝=1
�̂�[𝑚,𝑝]
bla (𝜔𝑘). (17)

Subsequently, taking the sample mean over the 𝑀 realizations gives the BLA estimate as

�̂�bla(𝜔𝑘) = 1
𝑀

𝑀
∑

𝑚=1
�̂�[𝑚]
bla (𝜔𝑘). (18)

The sample variance can be taken over the 𝑃 periods to obtain the variance as a result of noise for the 𝑚th experiment as

𝜎[𝑚]𝐺bla,𝑣

2
(𝜔𝑘) = 1

𝑃 (𝑃 − 1)
𝑃
∑

𝑝=1

|

|

|

�̂�[𝑚,𝑝]
bla (𝜔𝑘) − �̂�[𝑚]

bla (𝜔𝑘)
|

|

|

2
. (19)

The sample variance can also be computed of the 𝑀 realizations in order to examine the combined effect due to noise and
onlinearities on the averaged BLA as

𝜎2𝐺bla,𝑡
(𝜔𝑘) = 1

𝑀(𝑀 − 1)
𝑀
∑

𝑚=1

|

|

|

�̂�[𝑚]
bla (𝜔𝑘) − �̂�bla(𝜔𝑘)

|

|

|

2
, (20)

where the subscript of 𝜎2𝐺bla,𝑡
(𝜔𝑘) refers to the total effect. Hence, taking the variance over the periods quantifies the noise level in

he measurements. Taking the variance over the different realizations quantifies the combined influence of the nonlinearities and
6 
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the noise on the FRF. The variance in (19) only considers one experiment. Taking the mean of this sample variance over the 𝑀
experiments gives the noise variance on the averaged BLA as

𝜎2𝐺bla,𝑣
(𝜔𝑘) = 1

𝑀2
1

𝑃 (𝑃 − 1)
𝑀
∑

𝑚=1

𝑃
∑

𝑝=1

|

|

|

�̂�[𝑚,𝑝]
bla (𝜔𝑘) − �̂�[𝑚]

bla (𝜔𝑘)
|

|

|

2
. (21)

The estimate of the variance due to the stochastic nonlinear distortion 𝑦𝑠, can now be separated, and is given by

𝜎2𝐺bla,𝑠
(𝜔𝑘) =

⎧

⎪

⎨

⎪

⎩

(

𝜎2𝐺bla,𝑡
(𝜔𝑘) − 𝜎2𝐺bla,𝑣

(𝜔𝑘)
)

if 𝜎2𝐺bla,𝑡
(𝜔𝑘) > 𝜎2𝐺bla,𝑣

(𝜔𝑘),

0 if 𝜎2𝐺bla,𝑡
(𝜔𝑘) ≤ 𝜎2𝐺bla,𝑣

(𝜔𝑘).
(22)

Remark 3.1. Note that the variances are so-called sample variances explaining the 𝑃 − 1 and 𝑀 − 1 factors. In order to quantify
the variability of the mean BLA estimate (18), extra factors 𝑀 and 𝑃 have been introduced in the sample variances (19) and (20).
These BLA estimate variances can be scaled back to the output level to obtain the estimates of the variance of 𝑦𝑠 and 𝑣 using

𝜎2𝑦𝑠 (𝜔𝑘) = 𝑀 𝜎2bla,𝑠 ||𝑢(𝜔𝑘)||
2 , (23)

𝜎2𝑣 (𝜔𝑘) = 𝑀 𝑃 𝜎2bla,𝑣 ||𝑢(𝜔𝑘)||
2 . (24)

The system under test is considered to be nonlinear in case a nonzero 𝜎2𝑦𝑠 (𝜔𝑘) variance is present. Since this is a variance estimate
ver the different frequencies, one can also observe in which frequency range the system is most nonlinear.

4. Nonlinearity location methodology

The BLA approach presented in Section 3 is posed for open-loop SISO systems and enables the detection and quantification
of nonlinearities. In contrast, for pinpointing the origin of nonlinearities in MIMO systems, the system has to be considered in
the framework of dynamic networks. A key assumption to properly apply the standard BLA framework is that the noise sources
isturbing the input and the output of each subsystem must be uncorrelated. This assumption is violated in a dynamic network
ecause the noise sources propagate through the subsystems. Consequently, the BLA of the network cannot be calculated directly.

To circumvent this issue, a three-step methodology is followed, first introduced in [25]. Instead of estimating the BLA of an open-
loop SISO system, the method aims to identify the BLA of the subsystems present in the nonlinear dynamic network. To identify the
network nodes that are directly connected to nonlinear elements, the measured node-to-node dynamics are linearized using the BLA
framework as conceptually visualized in Fig. 5. This is achieved by combining the BLA framework for systems operating in closed
oop [37] and the BLA framework for process noise [38], and the BLA framework for MIMO systems [34,35]. The noise variance

and the stochastic nonlinear distortion variance are computed of every network node signal. This multi-stage approach avoids the
introduction of bias as a result of correlated noise contributions due to the presence of feedback loops in the dynamic network.

In summary, the proposed methodology for nonlinearity location comprises three primary steps, which will be elaborated upon
in the following subsections.

1. Calculate the BLA from inputs to nodes and simulate the noise-free linearized system outputs;
2. Calculate the BLA from nodes to nodes and simulate the node-to-node approximate dynamics;
3. Conduct a residual analysis along the frequency axis using the variance of the total distortions 𝜎2𝑡,𝑖(𝜔𝑘) and the variance of

the noise distortions 𝜎2𝑣,𝑖(𝜔𝑘). Any difference is attributed to a nonlinearity-induced variance. In contrast to the standard BLA
approach, the residual analysis is performed at the signal level instead of on the basis of FRFs.

4.1. Step 0: Measurements and data generation

To perform the networked BLA analysis, the dynamics between the network nodes have to be estimated. To this end, all the
network nodes are excited simultaneously using orthogonal multisine excitations, as outlined in [43]. Note that the network nodes
also function as the system outputs, and thus an equal amount of inputs and outputs is used, i.e., 𝑛𝑢 = 𝑛𝑦.

Similar to the random phase multisine introduced in Section 3, the user first selects the frequencies to be excited and a random
phase multisine signal is generated for each input 𝑢𝑖. To perform MIMO FRF identification with 𝑛𝑢 inputs and outputs, 𝑛𝑢 experiments
re constructed of which the inputs are stacked as

𝑈 (𝜔𝑘) =
⎡

⎢

⎢

⎢

⎢

𝑢1,1(𝜔𝑘) 𝑢1,2(𝜔𝑘) … 𝑢1,𝑛𝑢 (𝜔𝑘)
𝑢2,1(𝜔𝑘) 𝑢2,2(𝜔𝑘) … 𝑢2,𝑛𝑢 (𝜔𝑘)

⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

, (25)
⎣

𝑢𝑛𝑢 ,1(𝜔𝑘) 𝑢𝑛𝑢 ,2(𝜔𝑘) … 𝑢𝑛𝑢 ,𝑛𝑢 (𝜔𝑘)⎦
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Fig. 5. A fully populated nonlinear dynamic network (left) and its BLA (right). The BLA represent the nonlinear network modules 𝐺𝑖𝑗 using LTI models denoted
s 𝐺bla,𝑖𝑗 . Furthermore, 𝑦𝑖𝑠 corresponds to a stochastic nonlinear contribution, and 𝑣𝑖 corresponds to a noise source.

with 𝑢𝑖,𝑐 = 𝑒
− 𝑗2𝜋(𝑖−1)(𝑐−1)

𝑛𝑦 𝑢𝑖 describing the orthogonal multisine excitation, where 𝑖 refers to the input channel number and 𝑐 refers to
the experiment number. Hence, each row denotes a particular input channel and each column represents a new experiment. The
resulting output data is stacked similarly as

𝑌 (𝜔𝑘) =
⎡

⎢

⎢

⎢

⎢

⎣

𝑦1,1(𝜔𝑘) 𝑦1,2(𝜔𝑘) … 𝑦1,𝑛𝑦 (𝜔𝑘)
𝑦2,1(𝜔𝑘) 𝑦2,2(𝜔𝑘) … 𝑦2,𝑛𝑦 (𝜔𝑘)

⋮ ⋮ ⋱ ⋮
𝑦𝑛𝑦 ,1(𝜔𝑘) 𝑦𝑛𝑦 ,2(𝜔𝑘) … 𝑦𝑛𝑦 ,𝑛𝑦 (𝜔𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

, (26)

where 𝑦𝑖,𝑐 refers to the 𝑖th output channel and the 𝑐th experiment.

Remark 4.1. Note that two distinct notations are used in the subscripts. Comma-separated supscripts such as 𝑦𝑖,𝑐 indicate the 𝑖th
output channel and the 𝑐th experiment, whereas 𝑦𝑖𝑗 indicates the internal signal from node 𝑗 to node 𝑖.

In total 𝑀 realizations and 𝑃 periods of this combined experiment will executed. Of the 𝑃 periods, the last 𝑃 = 𝑃−𝑃t r ansient steady
state periods are used, i.e., the first 𝑃t r ansient periods are discarded. Here, 𝑌 [𝑚,𝑝](𝜔𝑘) and 𝑈 [𝑚](𝜔𝑘) denote the 𝑚th realization and 𝑝th
period of the combined experiment, and similarly 𝑦[𝑚,𝑝]𝑖,𝑐 (𝜔𝑘) and 𝑢[𝑚]𝑖,𝑐 (𝜔𝑘) denote its entries. The 𝑝 index is dropped for the input
signals, as they are identical over all periods. Hence, a total of 𝑀 𝑛𝑦 experiments are performed, each containing 𝑃 𝑁 steady-state
samples.

4.2. Step 1: BLA analysis from inputs to nodes

The first step consists of calculating the MIMO BLA from all external inputs to the node signals. The BLA of a subsystem,
represented by 𝑆bla,𝑖𝑗 (𝜔𝑘), captures the relationship from input 𝑗 to node 𝑖 with a transfer function, offering the best linear
pproximation in a least-squares sense. The complete 𝑛𝑦 × 𝑛𝑢 BLA, labeled as 𝑆bla(𝜔𝑘), is determined from

𝑆bla(𝜔𝑘) = arg min
𝑆(𝜔𝑘)

E𝑢,𝑣

⎧

⎪

⎨

⎪

⎩

𝑛𝑦
∑

𝑖=1

|

|

|

|

|

|

�̃�𝑖(𝜔𝑘) −
𝑛𝑢
∑

𝑗=1
𝑆𝑖𝑗 (𝜔𝑘) �̃�𝑗 (𝜔𝑘)

|

|

|

|

|

|

2⎫
⎪

⎬

⎪

⎭

. (27)

The expectation E𝑢,𝑣 {⋅} is taken with respect all possible realizations of the input signals 𝑢𝑗 and noise signals 𝑣𝑖, within the considered
ignal class.

In practice this is realized by computing

�̂�bla(𝜔𝑘) = 1
𝑀
∑

𝑃
∑

𝑌 [𝑚,𝑝](𝜔𝑘)�̃� [𝑚,𝑝]−1(𝜔𝑘), (28)

𝑀 𝑃 𝑚=1 𝑝=1

8 
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where 𝑌 and �̃� are the zero-mean equivalent signals of (25) and (26), and thus

�̂�bla(𝜔𝑘) =
⎡

⎢

⎢

⎢

⎢

⎣

𝑆bla,11(𝜔𝑘) 𝑆bla,12(𝜔𝑘) … 𝑆bla,1𝑛𝑢 (𝜔𝑘)
𝑆bla,21(𝜔𝑘) 𝑆bla,22(𝜔𝑘) … 𝑆bla,2𝑛𝑢 (𝜔𝑘)

⋮ ⋮ ⋱ ⋮
𝑆bla,𝑛𝑦1(𝜔𝑘) 𝑆bla,𝑛𝑦2(𝜔𝑘) … 𝑆bla,𝑛𝑦𝑛𝑢 (𝜔𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

. (29)

The obtained BLA estimate (27) allows to calculate a noise-free and nonlinear distortion-free linear approximation �̄�𝑖(𝜔𝑘) of the
node signal 𝑦𝑖(𝜔𝑘). In particular, �̄�𝑖,𝑐 (𝜔𝑘) and 𝑦𝑖,𝑐 (𝜔𝑘) denote the frequency content of the signals corresponding to the 𝑐t h experiment.

he approximated incoming signals of node 𝑖 are computed through

�̄�[𝑚]𝑖,𝑐 (𝜔𝑘) =
𝑛𝑦
∑

𝑗=1
�̂�bla,𝑖𝑗 (𝜔𝑘)𝑢

[𝑚]
𝑗 ,𝑐 (𝜔𝑘). (30)

4.3. Step 2: BLA analysis from nodes to nodes

A second FRF estimation is carried out to obtain the estimates between nodes, considering the noise-free node signals �̄�𝑖 as inputs,
and taking into account the direct contributions of the forcing signals 𝑢𝑖. This results in BLA estimates 𝐺bla,𝑖𝑗 (𝜔𝑘) from node 𝑗 to
ode 𝑖 and 𝐺bla,𝑖𝑢(𝜔𝑘) from the system input 𝑖 to node 𝑖, obtained from

𝐺bla,𝑖𝑗 (𝜔𝑘), 𝐺bla,𝑢𝑖 (𝜔𝑘) = arg min
𝐺𝑖𝑗 , 𝐺𝑢𝑖

E𝑢,𝑣

⎧

⎪

⎨

⎪

⎩

𝑛𝑦
∑

𝑖=1

|

|

|

|

|

|

�̄�𝑖(𝜔𝑘) − 𝐺𝑢𝑖 (𝜔𝑘)𝑢𝑖(𝜔𝑘) −
𝑛𝑦
∑

𝑗=1, 𝑗≠𝑖
𝐺𝑖𝑗 (𝜔𝑘) �̄�𝑗 (𝜔𝑘)

|

|

|

|

|

|

2⎫
⎪

⎬

⎪

⎭

. (31)

In practice, the estimates per node are obtained as

�̂�bla,𝑖(𝜔𝑘) = 1
𝑀

𝑀
∑

𝑚=1
𝑌 [𝑚]
𝑖 (𝜔𝑘)𝑍𝑖

[𝑚]−1(𝜔𝑘), (32)

where

�̂�bla,𝑖(𝜔𝑘) =
[

𝐺bla,𝑢𝑖 (𝜔𝑘) 𝐺bla,𝑖1(𝜔𝑘) … 𝐺bla,𝑖(𝑖−1)(𝜔𝑘) 𝐺bla,𝑖(𝑖+1)(𝜔𝑘) … 𝐺bla,𝑖𝑛𝑦 (𝜔𝑘)
]

, (33)

𝑌 [𝑚]
𝑖 (𝜔𝑘) =

[

�̄�𝑖,1(𝜔𝑘) �̄�𝑖,2(𝜔𝑘) … �̄�𝑖,𝑛𝑦 (𝜔𝑘)
]

, (34)

𝑍[𝑚]
𝑖 (𝜔𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑖,1(𝜔𝑘) 𝑢𝑖,2(𝜔𝑘) … 𝑢𝑖,𝑛𝑦 (𝜔𝑘)
�̄�1,1(𝜔𝑘) �̄�1,2(𝜔𝑘) … �̄�1,𝑛𝑦 (𝜔𝑘)

⋮ ⋮ ⋱ ⋮
�̄�𝑖−1,1(𝜔𝑘) �̄�𝑖−1,2(𝜔𝑘) … �̄�𝑖−1,𝑛𝑦 (𝜔𝑘)
�̄�𝑖+1,1(𝜔𝑘) �̄�𝑖+1,2(𝜔𝑘) … �̄�𝑖+1,𝑛𝑦 (𝜔𝑘)

⋮ ⋮ ⋱ ⋮
�̄�𝑛𝑦 ,1(𝜔𝑘) �̄�𝑛𝑦 ,2(𝜔𝑘) … �̄�𝑛𝑦 ,𝑛𝑦 (𝜔𝑘)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (35)

Note that (32) to (35) are calculated for each node separately.
The frequency content of the node signals can now be calculated using the node-to-node and input-to-node linear approximate

escription 𝐺bla,𝑖𝑗 (𝜔𝑘), 𝐺bla,𝑢𝑖 (𝜔𝑘) of the network dynamics as

̄̄𝑦[𝑚,𝑝]𝑖,𝑐 (𝜔𝑘) = 𝐺bla,𝑢𝑖 (𝜔𝑘)𝑢𝑖,𝑐 (𝜔𝑘) +
𝑛𝑦
∑

𝑗=1,𝑗≠𝑖
𝐺bla,𝑖𝑗 (𝜔𝑘)𝑦

[𝑚,𝑝]
𝑗 ,𝑐 (𝜔𝑘). (36)

Observe that the difference between ̄̄𝑦[𝑚,𝑝]𝑖,𝑐 and 𝑦[𝑚,𝑝]𝑖,𝑐 is the noise and stochastic nonlinear contribution on that particular node, the
noise and stochastic nonlinearity contributions on node 𝑖 coming from the other nodes have been taken into account as they are
present in the measured 𝑦[𝑚,𝑝]𝑗 ,𝑐 signal. This allows for the nonlinearity location through residual analysis in the next subsection.

4.4. Step 3: Residual analysis and nonlinearity location

By comparing the simulated node signals ̄̄𝑦[𝑚,𝑝]𝑖,𝑐 and the corresponding measurements 𝑦[𝑚,𝑝]𝑖,𝑐 over multiple periods and realizations,
a residual analysis can be conducted. In contrast to the classical BLA analysis discussed in Section 3, where variances are computed
based of the mean BLA, in this context, variances are computed of the residuals signals. For the analysis, the phase-rotated
xperiments, indicated with subscript 𝑐, are stacked for each realization 𝑚. To this end, consider ̄̄𝑦[�̃�,𝑝]𝑖 and 𝑦[�̃�,𝑝]𝑖 , with �̃� = 1,… , �̃�
nd �̃� = 𝑀 𝑛𝑦.

Considering the residual 𝑒[�̃�,𝑝]𝑖 (𝜔𝑘) = ̄̄𝑦[�̃�,𝑝]𝑖 (𝜔𝑘) − 𝑦[�̃�,𝑝]𝑖 (𝜔𝑘) at node 𝑖, the variances of the total distortions 𝜎2𝑡,𝑖(𝜔𝑘), the variance of
the noise distortions 𝜎2𝑣,𝑖(𝜔𝑘), and the variance of the nonlinear distortions 𝜎2𝑠,𝑖(𝜔𝑘) are separated following a similar reasoning as in
Section 3.3. Hence, averaging over the periods 𝑃 and realizations �̃� gives
9 
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𝑒[�̃�]𝑖 (𝜔𝑘) = 1
𝑃

𝑃
∑

𝑝=1
𝑒[�̃�,𝑝]𝑖 (𝜔𝑘), (37)

𝑒[𝑝]𝑖 (𝜔𝑘) = 1
�̃�

�̃�
∑

�̃�=1
𝑒[�̃�,𝑝]𝑖 (𝜔𝑘). (38)

The total distortion due to noise and stochastic nonlinearities, 𝜎2𝑡,𝑖(𝜔𝑘), is obtained by taking the variance of the residuals over
he realizations. The noise distortion, 𝜎2𝑛,𝑖(𝜔𝑘), is obtained by taking the variance of the residuals over the periods. The stochastic
ontribution, 𝜎2𝑠,𝑖(𝜔𝑘), can then be obtained by taking the difference of these two.

In frequency domain, the total distortion equals

𝜎2𝑡,𝑖(𝜔𝑘) = 1
𝑃 (�̃� − 1)

𝑃
∑

𝑝=1

�̃�
∑

�̃�=1

(

𝑒[�̃�,𝑝]𝑖 (𝜔𝑘) − 𝑒[𝑝]𝑖 (𝜔𝑘)
)2

, (39)

and the variance due to noise equals

𝜎2𝑣,𝑖(𝜔𝑘) = 1
�̃�(𝑃 − 1)

�̃�
∑

�̃�=1

𝑃
∑

𝑝=1

(

𝑒[�̃�,𝑝]𝑖 (𝜔𝑘) − 𝑒[�̃�]𝑖 (𝜔𝑘)
)2

. (40)

With these, the variance due to stochastic nonlinearities is obtained from the difference, i.e.,

𝜎2𝑠,𝑖(𝜔𝑘) =
{

𝜎2𝑡,𝑖(𝜔𝑘) − 𝜎2𝑣,𝑖(𝜔𝑘) if 𝜎2𝑡,𝑖(𝜔𝑘) > 𝜎2𝑣,𝑖(𝜔𝑘),
0 if 𝜎2𝑡,𝑖(𝜔𝑘) ≤ 𝜎2𝑣,𝑖(𝜔𝑘).

(41)

The level of the estimated nonlinear variance 𝜎2𝑠,𝑖 quantifies the nonlinear distortion at each network node. With the nonlinearity
evels at each node, the nonlinear part of the dynamic network can be pinpointed by comparison between the nodes. If no
onlinearity is present at a given node, the total distortion equals the noise distortion.

5. Simulation study

This section demonstrates the proposed three-step nonlinearity location method from Section 4 applied to the three-mass system
from Fig. 3 where the nonlinear element between the third mass and the fixed world is a cubic spring. Before applying the three-step
method, the classical MIMO BLA framework is applied to illustrate that the classical method does not allow nonlinearity location,
but only detection.

The physical properties of the system are equal to 𝑚1 = 1 kg, 𝑚2 = 0.8 kg, and 𝑚3 = 1.2 kg, with spring constants 𝑘1 = 2 ⋅ 104

N/m, 𝑘2 = 3.5 ⋅ 104 N/m, 𝑘3 = 5 ⋅ 104 N/m, and 𝑘4 = 8 ⋅ 104 N/m. The nonlinear spring constant 𝑘nl = 1 ⋅ 108 N∕m3, and the damping
constants are uniformly assigned as 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 8 Ns/m.

The system is excited with three multisines which are simultaneously applied to the three masses, which are initialized at zero.
hese signals excite the system at all frequencies in the 5–100 Hz frequency range with a root-mean-square amplitude of 50 N
nd a random uniformly distributed phase. The position signals, i.e., the node signals, are generated using a nonlinear Newmark

integration algorithm [44] with a sampling frequency of 5000 Hz. Each experiment has 4 periods with 𝑁 = 8192 samples each. The
xperiment is repeated for 𝑀 = 10 different realizations, i.e., �̃� = 30 experiments, of which the last 𝑃 = 2 steady-state periods are

used for the following analysis. The resulting displacement is measured and corrupted with a white Gaussian noise signal such that
he signal-to-noise ratio is 40 dB.

First, the BLA estimate �̂�bla is computed from the inputs to the nodes using the robust BLA method, i.e., (28) in practice. This
LA is depicted in Fig. 6 together with the underlying system without nonlinearity.

Nonlinearities can be detected and quantified in the classical MIMO BLA setting from inputs to network nodes. This can
be achieved using the analysis presented in Section 4.4, but with residuals based on �̄�[𝑚,𝑝]𝑖,𝑐 obtained from (30) instead of ̄̄𝑦[𝑚,𝑝]𝑖,𝑐 .

he resulting node signals and distortions are presented in Fig. 7. The nonlinear distortion is above the noise distortion for all
network nodes indicating dominant nonlinear behavior. Yet, only a single nonlinear element is present. Therefore, the traditional
input-to-node BLA analysis is not adequate for pinpointing the location of the nonlinear element.

Next, the node-to-node BLA �̂�bla is estimated using (32). This BLA is depicted in Fig. 8 together with the underlying true node-
to-node dynamics corresponding to the imposed dynamic network structure from Fig. 1. Note that these node-to-node dynamics are
of low order compared to the dynamics from the inputs to the nodes in Fig. 6, c.f. (3), and that the imposed dynamic network does
ot include the entries �̂�bla,13 and �̂�bla,31.

Finally, the approach for the detection, location and quantification of Section 4.4 is applied. The result is depicted in Fig. 9, which
reveals that the nonlinear distortion is smaller compared to the noise distortion at nodes 1 and 2, suggesting predominantly linear
ystem behavior of the connected elements. In sharp contrast, at node 3, the situation is reversed, indicating dominant nonlinear
istortions compared to the noise distortion. In conclusion, from Fig. 9 is inferred that a nonlinear element affects the three-mass

system dynamics, and that it is attached to the third mass 3 on one side and grounded on the other side. Note that due to the nature
f the elements present in the example, i.e., springs and dampers, it is evident that no nonlinear element is present between the

second and third mass as such nonlinear element would result in a nonlinear distortion affecting the second node.
10 
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Fig. 6. The BLA from the inputs to nodes �̂�bla ( ) of the three mass–spring-damper system with cubic spring from Fig. 3 and the true underlying system without
nonlinearity, i.e., 𝑆 with 𝑘nl = 0 ( ).

Fig. 7. Nonlinearity detection in the three-mass–spring-damper system using the classical input-to-node dynamics. The spectra of the node signals 𝑦𝑖(𝜔𝑘) ( ), the
total distortion levels 𝜎2

𝑡,𝑖(𝜔𝑘) ( ), the distortions due to noise 𝜎2
𝑣,𝑖(𝜔𝑘) ( ), and the nonlinear distortions 𝜎2

𝑠,𝑖(𝜔𝑘) ( ), are depicted. Since the nonlinear distortion is
above the noise floor, dominant nonlinearity is detected.
11 
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Fig. 8. The BLA of the node-to-node dynamics �̂�bla ( ) of the three mass–spring-damper system from Fig. 3 and the true underlying node-to-node dynamics with
𝑘nl = 0 ( ). Note that the imposed dynamic network structure from Fig. 1 does not include the entries �̂�bla,13 and �̂�bla,31.

Fig. 9. Nonlinearity detection in the three-mass–spring-damper system using the node-to-node dynamics. The spectra of the node signals 𝑦𝑖(𝜔𝑘) ( ), the total
distortion levels 𝜎2

𝑡,𝑖(𝜔𝑘) ( ), the distortions due to noise 𝜎2
𝑣,𝑖(𝜔𝑘) ( ), and the nonlinear distortions 𝜎2

𝑠,𝑖(𝜔𝑘) ( ), are depicted. Dominant nonlinear dynamics are
observed at the third node since the nonlinear distortion is larger than the noise distortion.
12 
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6. Experimental validation

This section demonstrates the nonlinearity location methodology from Section 4 applied to the flexible beam system from
Fig. 10. The beam is 500 × 20 × 2 mm, is suspended with wire flexures, and is actuated with three current-driven voice-coil
actuators. The deflection is measured with five contactless fiberoptic sensors. The outer two and the middle sensor are used for
the following experiment. A schematic drawing is depicted in Fig. 11, which illustrates the free degrees of freedom. Next to the
internal deformation, the beam can translate and is free to rotate, see [45] for further details.

By means of an artificial control loop, a nonlinear cubic spring force is added between the fixed world and the third
actuator–sensor pair. This is done by manipulating the third input as

𝑢3 = 𝑢3,o − 𝑘nl
(

𝑦3 − 𝑦3,r
)3 , (42)

where 𝑢3 is the applied input, 𝑢3,o is the non-manipulated input, and 𝑦3,r is the relaxed position of the cubic spring. Similar to the
numerical demonstration from Section 5, multisine signals are simultaneously applied to the three masses which excite the system
in the 0.25–500 Hz band with a root-mean-square amplitude of 0.02 A. The system is measured at 4096 Hz and �̃� = 6 experiments
are repeated over 𝑃 = 6 periods of 4 s of which the last 𝑃 = 3 steady state periods are used. These measurements are repeated for
three different cubic spring constants where 𝑘nl ∈ {0, 1, 10}.

To be able to perform the nonlinearity location, the networked BLA setting is considered. As the system under test in this case
is a distributed system, and not a lumped system such as the numerical example in Section 5, a dense network with dynamic
interconnections between every node is considered. This particular network structure is depicted in Fig. 5. Each of the output
measurements corresponds to one of the network nodes and each node is excited by 𝑢𝑖 through the submodel 𝐺𝑢𝑖 .

Fig. 10. Prototype experimental flexible beam setup. The moving part is indicated by a and is suspended by wire flexures b . The deflection is measured
with five contactless fiberoptic sensors of which three are used c and the setup is actuated with three current-driven voice coils d . A cubic stiffness is
artificially added between fixed world and the third actuator–sensor pair.

Fig. 11. Visualization of the flexible beam setup from Fig. 10. The actuator and sensor locations are indicated by 𝑢𝑖 and 𝑦𝑖 respectively. During excitation, the
beam translates, rotates, and exhibits flexible behavior.
13 



K. Classens et al. Mechanical Systems and Signal Processing 224 (2025) 112124 
Fig. 12. The BLA from the inputs to nodes �̂�bla ( ) obtained for the 𝑘nl = 1 setting and a FRF measured of the system without nonlinearity, i.e., �̂� with 𝑘nl = 0
( ).

Fig. 13. Nonlinearity detection in the flexible beam system with 𝑘nl = 1 using the classical MIMO BLA approach with input-to-node dynamics. The spectra of
the node signals 𝑦𝑖(𝜔𝑘) ( ), the total distortion levels 𝜎2

𝑡,𝑖(𝜔𝑘) ( ), the distortions due to noise 𝜎2
𝑣,𝑖(𝜔𝑘) ( ), and the nonlinear distortions 𝜎2

𝑠,𝑖(𝜔𝑘) ( ), are depicted.
Since the nonlinear distortion is above the noise floor, dominant nonlinearity is detected in the system. Pinpointing the precise location is not possible using
the classical approach.

In the first step, the BLA estimate �̂�bla is calculated from inputs to the nodes using the robust BLA method, that is, using (28).
This BLA is depicted in Fig. 12 for the 𝑘nl = 1 case. The first resonance relates to the wire flexures that suspend the beam and the
second resonance around 32.5 Hz is the first internal mode of the beam.

A naive nonlinearity analysis from input to node, as is done by the classical MIMO BLA framework, results in the detection
of nonlinearity in all three measurement locations, as shown in Fig. 13. Although such an analysis allows for the detection and
quantification of the nonlinearity present in the system, it clearly does not allow to pinpoint the location of the nonlinearity since
the nonlinear distortion is larger than the noise distortion at every node.

Finally, the three-step approach for detection, location, and quantification of Section 4.4 is applied. Using these networked BLAs,
a detailed distortion analysis at the node level is possible in a networked setting. The results depicted in Figs. 14–16 for 𝑘nl = 0,
𝑘 = 1, and 𝑘 = 10 respectively.
nl nl
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Fig. 14. Networked BLA nonlinearity analysis on the measurement nodes obtained for the 𝑘nl = 0 setting. The spectra of the node signals 𝑦𝑖(𝜔𝑘) ( ), the total
distortion levels 𝜎2

𝑡,𝑖(𝜔𝑘) ( ), the distortions due to noise 𝜎2
𝑣,𝑖(𝜔𝑘) ( ), and the nonlinear distortions 𝜎2

𝑠,𝑖(𝜔𝑘) ( ), are depicted. No dominant nonlinear dynamics are
observed since the noise distortion has a higher or equal contribution with respect to the nonlinear distortion.

Fig. 15. Networked BLA nonlinearity analysis on the measurement nodes obtained for the 𝑘nl = 1 setting. The spectra of the node signals 𝑦𝑖(𝜔𝑘) ( ), the total
distortion levels 𝜎2

𝑡,𝑖(𝜔𝑘) ( ), the distortions due to noise 𝜎2
𝑣,𝑖(𝜔𝑘) ( ), and the nonlinear distortions 𝜎2

𝑠,𝑖(𝜔𝑘) ( ), are depicted. Dominant nonlinear dynamics are
observed at the third node because the nonlinear distortion is significantly above the noise distortion.

Fig. 16. Networked BLA nonlinearity analysis on the measurement nodes obtained for the 𝑘nl = 10 setting. The spectra of the node signals 𝑦𝑖(𝜔𝑘) ( ), the total
distortion levels 𝜎2

𝑡,𝑖(𝜔𝑘) ( ), the distortions due to noise 𝜎2
𝑣,𝑖(𝜔𝑘) ( ), and the nonlinear distortions 𝜎2

𝑠,𝑖(𝜔𝑘) ( ), are depicted. An increased nonlinear distortion is
observed at the third node since the magnitude is higher compared to Fig. 15.
15 
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Without nonlinear spring, i.e., 𝑘nl = 0, no dominant source of nonlinearity is detected because the noise distortion is almost equal
o the total distortion in Fig. 14. In contrast to the numerical example provided in Section 5, some weak low-frequency nonlinearity

is detected. This distortion is most likely attributed to other non-idealities that are present in the setup. When the nonlinear spring
tiffness is increased to 𝑘nl = 1, a ∼10 dB clearance is observed between the estimated noise level and the nonlinear distortion
t the third node, see Fig. 15. Furthermore, the nonlinearity is mainly active at the resonance frequency associated to the third
ode. This corresponds to the presence of a nonlinear spring at that location in the physical setup. In case 𝑘nl = 10, see Fig. 16, the

magnitude is even larger indicating a nonlinearity of larger magnitude. In conclusion, the proposed algorithm does not only locate
the nonlinearity, but also quantifies the nonlinearity over the considered frequency range.

7. Conclusion

This paper presents a non-parametric frequency domain approach to locate nonlinearities and quantify its magnitude. The
nonlinear system is conceptualized as a dynamic network and a residual analysis is conducted based on residuals between the
measurement data and the linearized node-to-node dynamics. The graphical output consists of frequency-domain graphs per
measurement location, allowing to easily detect and pinpoint the origin of the nonlinear behavior, which is essential during
the system design phase and after commissioning machines for the purpose of fault detection and isolation. The efficacy of the
proposed approach is demonstrated through numerical simulations and experimental validation. In conclusion, this approach offers
a systematic and quantitative means to evaluate the impact of nonlinearity across a broad spectrum of nonlinear systems.
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