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ABSTRACT
Shared Automated Electric Vehicles (SAEVs) are poised to revolutionize
future transportation. However, potential drawbacks, including increased
vehicle usage and the projected shorter vehicle lifespan, introduce crit-
ical factors that may impact efficiency and environmental benefits. This
research introduces a framework that integrates Agent-Based Modelling
(ABM)with Life Cycle Assessment (LCA) for a behaviour-driven SAEV assess-
ment. The ABM simulates regional SAEV operations, informing the LCA
of pre- and post-integration scenarios. Sensitivity analysis on fleet sizes,
system performance metrics, and Global Warming Potential (GWP) refer-
ence values are performed. Findings demonstrate that SAEVs significantly
decrease the fleet size and total travel distance by raising the average travel
per vehicle. SAEVs integration yields a 75–86%dailyGWP reductionwithout
significantly compromising user experience. Over 30 years, fleet replace-
ment needs due to inadequate fleet sizing raised GWP by 170%. Balancing
short and long-term environmental impact requires optimizing fleet size to
achieve sustainable and efficient service delivery.
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1. Introduction

As the transportation sector looks for more sustainable solutions tomobility challenges, Shared Auto-
mated and Electric Vehicles (SAEVs) have emerged as a promising technology that could help reduce
the environmental impact of transportation. However, to ensure that both the benefits of the tech-
nology are realized and that any unintended negative consequences are minimized, it is important to
carefully analyse SAEVs from an environmental perspective.

Potential unintended consequences of SAEVs are intricately linked to the shared and automated
dimension. It is expected that the maximum benefits of automation will be achieved at level 5 of
automation according to the recognized standards (Society of Automotive Engineers (SAE) 2020).
The standards consist of six levels, ranging from no automation (level 0) to full automation (level 5),
allowing the vehicle to operate in any environmental condition or infrastructure state (SAE 2020).

In high levels of automation, the absence of a human driver not only blurs the lines between
autonomous carsharing and ridesharing but also presents challenges in predicting the overall vehicle
demand and their effective contribution to sustainable mobility. Indeed, SAEVs have demonstrated
the potential to reduce air pollution and the number of vehicles needed to provide transportation
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services (Ding et al. 2019). This reduction has the potential to mitigate the environmental impacts
associated with vehicle production and disposal, as demonstrated by Vilaça et al. (2022). However,
the widespread adoption of SAEVs may bring about significant changes within the road transporta-
tion sector, potentially leading to intensive vehicle usage and a potential decline in the use of public
transport alternatives (Wadud, MacKenzie, and Leiby 2016; Axsen and Sovacool 2019). These changes
are primarily dependent on penetration levels, deployment strategies, and user behaviour, thereby
introducing high uncertainty with far-reaching sustainable implications (Jones and Leibowicz 2019;
Garus et al. 2022). Thus, it is crucial to approach this issue froman environmental standpoint, establish-
ing connections between future deployment strategies, expected user behaviour, and environmental
evaluation approaches. Recognizing the absence of extensive research on the environmental aspects
of SAEVs, there is an urgent need for more comprehensive studies that can identify all necessary mea-
sures to pave the way for a sustainable future (Silva et al. 2022). In order to address the research
gap, this paper proposes a methodology that merges the Agent-Based Modelling (ABM) outputs to
enhance the Life Cycle Assessment (LCA) of SAEVs. ABM, a powerful tool for understanding complex
systems such as transportation, provides detailed insights into user behaviours and vehicle deploy-
ment strategies, essential for understanding real-world usage patterns (Berrada and Leurent 2017;
Jing et al. 2020; Li, Rombaut, and Vanhaverbeke 2021; Huang et al. 2022). LCA is widely recognized
as a comprehensive methodology for assessing the environmental impacts of a product, process, or
system throughout its entire life cycle (Curran 2013). However, LCA typically relies on predetermined
assumptions and does not account for the dynamic and complex nature of the human decision-
making processwhich can result in outcomes partially disrupted (Gutowski 2018). To address this ABM
emerges as a valuable approach that can potentially be connected to LCA to capture the complexity
and stochasticity of human behaviour (Hicks 2022). By integrating dynamic, behaviour-driven ABM
outputs into LCA, a more precise assessment of the environmental footprint of SAEVs under various
deployment scenarios can be achieved, ensuring a comprehensive evaluation of their sustainability
impacts.

While the combination of ABM and LCA has been examined across different research fields, as dis-
cussed in the upcoming section, this paper reveals a novel application in the context of transportation,
particularly focusing on SAEVs. Our primary objective is to investigate the genuine influence of user
behaviour and the environmental impacts of SAEVs, offering insights not only in the short term but
also over an extended time horizon. Unlike existing literature, which predominantly concentrates on
urban environments, our research extends to a regional scale, encompassing both urban areas and
peripheral regions characterized by low population density. This distinctive approach aims to address
a notable gap in the current literature. By examining sharedmobility across diverse population densi-
ties, this study aspires toprovide a comprehensiveunderstandingof thepotential societal implications
of SAEVs in various regions with distinct transportation needs.

In the subsequent sections, we will delve deeply into the Literature Review (Section 2) and out-
line our proposed integration framework, covering its key components: ABM and LCA methodology
(Section 3). Section 4 will explore the specifics of input data and case study assumptions. The results
and sensitivity analysis will be presented in Section 5. The ensuing discussion of findings takes stage in
Section 6, providing an analysis of the implications and insights from the research. Finally, in Section 7,
we concludewith a summary of key findings, contributions, research limitations, and future directions.

2. Literature Review

With advancements in automated vehicle technology reaching a significant stage and the increasing
spotlight on shared and electric mobility, the scientific community has systematically explored their
dimensions concerning sustainable implications. This literature review undertakes a technical journey
through selected studies delving into advancedmodelling methodologies for shared and automated
mobility, particularly ABM, and assessing their environmental implications through LCA. The review
extends to the current state of the art regarding the integration of ABM and LCA methodologies.
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In short, an ABM simulates a group of independent decision-making agents operating within a
defined environment and temporal context (Bonabeau 2002). Due to its bottom-up approach, it facil-
itates the rapid adaptation of agents’ complexities, characteristics, and aggregation levels (Bonabeau
2002). Thus, ABMmethodology has beenwidely used to represent transport systems’ supply-demand
interactions in different domains such as traffic flow analysis, travel behaviour modelling, transporta-
tion system planning and management, emergent technologies adoption, and possible rebound
effects (e.g. Gurumurthy, Kockelman, and Loeb 2019; Soteropoulos, Berger, and Ciari 2019; Li, Rom-
baut, and Vanhaverbeke 2021; Huang et al. 2022; Sun, Wu, and Chen 2022). Several studies, including
those by Ciari, Milos, and Axhausen (2016), Jager, Agua, and Lienkamp (2017), Becker, Ciari, and
Axhausen (2018), Sheppard et al. (2019) and Wang, Correia, and Lin (2019) have employed ABM to
primarily focus on the operational system performance, infrastructure requirements, impacts on the
power grid, and policy assessments concerning SAEVs. These studies collectively underscore the suit-
ability of ABM for real-world traffic simulations and offer valuable insights to support the development
anddeploymentof futuremobility systems. For instance, Jager, Agua, andLienkamp (2017) introduced
a mobility-on-demand simulation that mirrors SAEV on-demand mobility solutions at an operational
level. While their primary focus was on evaluating the feasibility of operating such a system with high
service levels and vehicle use, they concluded that environmental benefits should only be expected
when carpooling is supported and the energy supply comes from renewable sources, underscoring
the importance of concurrently assessing performance and environmental aspects. In terms of vehicle
performance, SAEVsmayneed to relocate frequently, potentially contributing to increased congestion
(Bösch, Ciari, andAxhausen 2018). A keyparameter for servicemeasurement and customer satisfaction
is the average waiting time. Studies revealed that, with 95% of accepted travel demand, the waiting
times could vary between 5–10 min at an urban scale (Basu et al. 2018; Gurumurthy et al. 2020). The
environmental effects of non-electrified AVs will likely depend on unoccupied repositioning trips that
tend to increase greenhouse gas (GHG) emissions by 25% (Lu et al. 2018). However, service level can
worsen due to vehicle electrification and the type of shared system (Hyland and Mahmassani 2020;
Vosooghi et al. 2020). The electrification of shared and automated vehicles holds limitations such as
vehicle range and charging time, but their environmental benefits have been proven significant. It
is noteworthy that the existing examinations of SAEVs, as reviewed, predominantly focus on static
performance, leaving the dynamic evolution of environmental impacts throughout the SAEV lifecycle
unclear (Silva et al. 2022).

Life Cycle Assessment (LCA) serves as a valuable tool for conducting a holistic environmental evalu-
ation of SAEVs (Chen andKockelman2016; Gawron et al. 2018; Gawron et al. 2019; Vilaça et al. 2022). By
quantifying the environmental impacts at each stage (production, use and end-of-life), LCA provides a
comprehensive understanding of the sustainability of SAEVs, considering factors such as energy con-
sumption, emissions, and resource use. This assessment helps identify hotspots and opportunities for
improvement. However, the life cycle impacts of most products and processes are significantly influ-
enced by human behaviour. In 2016, Chen and Kockelman (2016) conducted pioneering research on
carsharing, bringing attention to life cycle impacts. Their study demonstrates that individuals joining
a carsharing system experience an average reduction of approximately 51% in energy use and green-
house gas (GHG) emissions. Subsequently, Gawron et al. (2018) delved into the life cycle impacts of
Level 4 connected and automated vehicles. Their findings reveal a potential increase in vehicle pri-
mary energy use andGHGemissions by 3–20%due to factors such as heightenedpower consumption,
weight, drag, and data transmission. However, the incorporation of operational effects like eco-driving
and platooning results in a net reduction of up to 9% in energy and GHG emissions. Building on this
research, Gawron et al. (2019) introduced a comprehensive LCA framework for automated technolo-
gies across subsystem, vehicle, and mobility-system levels. The study suggests that an automated
technology fleet could cut cumulative energy and GHG emissions by 60%, primarily driven by the
adoption of electrified powertrains. Additional measures, such as accelerated electrical grid decar-
bonization, dynamic ride-share, extended vehicle lifespan, energy-efficient computing systems, and
faster fuel efficiency improvements for new vehicles, could potentially amplify these reductions to an
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impressive 87%. In a more recent study by Vilaça et al. (2022), the focus expands to comparing the
life cycle impacts of shared and privately owned automated and electric vehicles in interurbanmobil-
ity. The results not only emphasize a reduction of up to 42% in environmental impacts compared to
privately owned automated vehicles but also underscore the broader importance of shared mobility
systems in addressing various environmental concerns beyond GHG emissions.

Although LCA provides an in-depth approach to exploring environmental impacts, it typically
relies on predetermined assumptions and does not account for the dynamic and complex nature
of the human decision-making process which can result in outcomes partially disrupted (Gutowski
2018). Thus, to fully capture the complexity and stochasticity of human behaviour, ABM emerges
as a valuable and significant approach that can potentially be connected to LCA (Hicks 2022). The
evidence shows that combined with LCA methods, ABM offers an opportunity to gain insights into
environmental impacts by a better understanding of how changes in individual behaviour and tech-
nology adoption can influence environmental outcomes (Alfaro, Sharp, and Miller 2010; Micolier
et al. 2019).

Davis, Igor, and Dijkema (2009) were the first to demonstrate the integration of LCA and ABM
in a proof-of-concept illustration, particularly within the field of bioelectricity. While ABM and LCA
coupling has beenwidely applied in the energy and agriculture fields, its application in the transporta-
tion field is still relatively limited. Florent and Enrico (2015) integrated ABM into a consequential LCA
to evaluate mobility-related policies; their ABM simulated the car market, including changes in car
fleet composition and hourly usage patterns, which were then used to calculate the environmental
and economic impacts of the policies. Onat et al. (2017) developed an ABM to estimate the future
market share of electric vehicles in the United States, assessing their life-cycle environmental and eco-
nomic impacts. Lu and Hsu (2017) used an ABM to simulate the market share for different transport
modes (aircraft, bus, train) after the introduction of a high-speed railway. The LCA was directly inte-
grated into the ABM model, and foreground data were obtained from existing LCA studies in the
literature.

Several research gaps still exist that need to be addressed to fully realize the potential of the inte-
gration of ABM and LCA, particularly in the context of transportation. Most studies have focused on
estimating themarket share of different transport modes or technologies. To the authors’ knowledge,
no study has used this approach to explicitly model users’ behaviour and emergent mobility systems
such as automated or shared vehicles. This study distinctly addresses these gaps by pioneering the
integrated application of ABM and LCA to evaluate the environmental impact of SAEVs. The objective
of the present paper is twofold: first, to provide an ABM representation of SAEVs at a regional scale,
and second, to develop a conceptual framework for integrating the ABM results into LCA to assess the
environmental impacts of SAEVs. This is a unique perspective that combines the dynamic nature of
ABM, which captures real-world behavioural dynamics, with the typically static and parameter-driven
approach of LCA. Furthermore, our case study application focuses on a large-scale region to interpret
the viability of these services in areas with low population density. This regional context is essential
for understanding the social dimension of sustainability, as factors such as community acceptance
and accessibility becomeparticularly relevant. By addressing these aspects, we aim to contribute valu-
able insights into the potential challenges and opportunities for sustainable mobility solutions in less
densely populated regions. While this study represents a pilot investigation, it serves as a crucial initial
step in our ongoing research endeavours.

3. Methodology

This paper proposes a methodology that combines an ABM and LCA to assess the environmental
impacts of SAEVs in a pooled ridesharing environment. The approach is designed to provide a holistic
understanding of SAEVs’ sustainability implications, taking into account their deployment and usage
patterns. Figure 1 provides an overview of the methodological framework proposed. The method-
ology encompasses a comparative evaluation of the impact of SAEVs, both before and after their
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Figure 1. Methodological framework for integration of ABM into LCA.

integration into the existing mobility system. This entails constructing two ABMmodels: the first rep-
resents the current mobility system and the second replaces private car and bus trips with SAEVs. The
ABM simulates the actual condition and SAEV deployment and usage in a case-study city or region,
generating essential data for the subsequent LCA, such as, vehicle kilometres travelled and SAEV vehi-
cle performance. The data generated by these ABM models will be subject to the inventory analysis
and interpretation phase of the LCA through the analysis employing LCA reference values.

In the following sections, we will break down our methodology step by step. Section 3.1 explains
how the ABM simulation was designed through MATSim simulation platform. Section 3.2 details our
approach for the Life Cycle Assessment (LCA), assessing the global warming potential (GWP) impact of
both scenarios. These sections provide a clear roadmap for understanding and applying the proposed
framework.

3.1. ABM simulation framework

The ABM is developed using the multi-agent simulation platform MATSim – Multi-Agent Transport
Simulation (Horni, Nagel, and Axhausen 2016). MATSim is an activity-based and open-source co-
evolutionary model, implemented in JAVA and specially designed for large-scale scenarios. MATSim
comprises three core process steps: execution, scoring, and replanning (Blamer 2007). The execu-
tion step simulates agents’ movements based on their daily plans; the scoring step evaluates how
each agent’s plan performed by using a utility function (Charypar-Nagel), while the replanning step
adapts daily plans based on the scoring process. The iterative process, derived from the scoring
and replanning steps, was intentionally refrained. The absence of changes across iterations can be
attributed to stable input conditions, consistent agent behaviour, and static demand patterns. This
decision aligns with the research objective of conducting a straightforward and unaltered compari-
son between precisely defined trips. By focusing solely on static elements, this approach allows for a
deeper understanding of the inherent characteristics of the transportation infrastructure, avoiding the
added complexity introduced by iterative agent-level decision-making.
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For initiating the MATSim simulation, a set of inputs are required: (1) a synthetic population of
agents reflecting the socio-economic attributes; (2) a daily activity plan per agent, which describes
the chain of activities that the agent needs to perform; (3) road network attributes and a virtual
environment representative of land use and available transport services.

In this study, we have developed two different models. The first model depicts the baseline sce-
nario closely illustrating the actual schedules reported by the population through a comprehensive
survey. Thebaseline scenario encompasses the road trips including cars andpublic transport (i.e. urban
buses). The second model depicts a scenario where all existing road trips are replaced by a door-to-
door pooled ridesharing system designed for light-passenger vehicles. The objective of assuming the
complete transition of all car trips to SAEVs is to examine a representative extreme scenario, providing
a comprehensive analysis of the potential impacts associated with widespread SAEV adoption. This
methodology aligns with established practices in the field, as demonstrated by studies conducted by,
for example, Jager, Agua, and Lienkamp (2017); Martinez and Viegas (2017); Ciari and Becker (2017);
Bischoff,Maciejewsk, andNagel (2017); Sopjani et al. (2020); Lorig, Persson, andMichielsen (2023), who
similarly employed extreme scenarios to examine the potential ramifications of transformative tech-
nological shifts in transportation. This approach allows us to assess the upper limits of the effects of
SAEVs, offering insights into the system’s robustness under maximal automation conditions.

3.1.1. Synthetic population and plans generation
The generation of the synthetic population aims to replicate travel patterns in alignment with estab-
lishedpractices in ABM. Themethodology beginswith data preprocessing for each individual from the
survey data (TIS.PT 2009). While specifics of the survey data are proprietary and not publicly available,
a concise overview of essential characteristics is provided (Section 4). The survey dataset encompasses
diverse information, including but not limited to, demographic details and travel behaviour patterns.
Essential variables such as person ID, origin and destination coordinates, respective zone ID, travel
purpose; mode of transportation; start at home; trip sequence, start time, and coefficient of expansion
were extracted from the dataset. The coefficient of expansion, associated with each person ID, rep-
resents the relationship between the population in each sample extract (residential zone, age group,
and gender) and the number of valid survey responses. This coefficient guides the iterative replication
process for each individual, ensuring a representative synthetic population.

A Java code is developed to iteratively replicate each recorded trip in the survey dataset based on
the coefficient of expansion, adding a new person ID to maintain uniqueness but keeping the origi-
nal ID as well. Notably, each person typically reports more than one trip per day. For the first trip, the
‘start at home’ parameter, indicating the origin of each individual’s first trip, is processed, offering two
options: ‘home’ or ‘other’. Sequences are analyzed to ensure the trip plans follow the reported order.
The expanded records, including the replicated trips, are then systematically written to a new TSV file.
This output file serves as the synthetic population dataset, possessing an expanded size compared to
the original survey data. For transparency and potential debugging, the code includes optional state-
ments to output eachmodified line to the console, aiding in tracking the progression of the replication
process.

3.1.2. Network generation
The transportation network used in this study is derived from OpenStreetMap (OSM) data (Open-
StreetMap Wiki contributors 2017), enabling a representation of the study area’s road infrastructure.
The process involves the transformation of OSM data into a format compatible with MATSim simula-
tion framework. This process is facilitated by public classes and interfaces already implemented in the
core utilities of MATSim: ‘OsmNetworkReader’, ‘CoordinateTransformation’, ‘NetworkCleaner’, ‘Net-
workWriter’. The ‘OsmNetworkReader’ class is employed to read OSM files, extract road information,
and transform it into a format compatible with MATSim. This includes considerations for attributes
such as lanes, free speed, and lane capacity, ensuring a realistic representation of the road network.
Following the initial generation, the Network Cleaner is employed to refine the network structure. This



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 7

process involves the systematic removal of redundant or inconsistent elements, enhancing the over-
all integrity and reliability of the network for subsequent simulation runs. Once the network is refined,
the ‘NetworkWriter‘ class is responsible for translating the simulatednetwork into a standard extensible
markup language (XML). This step is crucial for integration with MATSim’s simulation environment.

3.1.3. Demand-Responsive Transportation (DRT)
To establish the SAEVs ridesharing mode, the Demand-Responsive Transport (DRT) extensions were
used to address the dynamic vehicle allocation problem (Bischoff, Maciejewsk, and Nagel 2017). The
vehicle dispatch algorithm relies on an insertion heuristic, evaluating feasible insertion points for each
incoming request based on constraints like capacity, time window, maximum wait time, and travel
time. The goal is to optimize a given objective function (Bischoff,Maciejewsk, andNagel 2017). In cases
where multiple vehicles are capable of fulfilling the request, the system selects the most appropriate
based on factors such as vehicle capacity, availability, waiting, and detour time.

TheDRTmode is designed to adhere to adoor-to-door scheme, providingpassengerswith a service
closely resembling private transport. Each vehicle is configured to accommodate up to four passen-
gers, a capacity in line with industry standards observed in ridesharing services, such as Uber, and
widely accepted in shared mobility scenarios (Alonso-mora et al. 2017; Zeng et al. 2020). It is impor-
tant to note thatwhile themodel assumes amaximumcapacity of four persons per SAEV, this does not
imply a permanent full-capacity operation. Themodel allows for variations in occupancy levels, reflect-
ing real-world conditions influenced by factors such as time of day, route, and demand fluctuations.
Critical time constraints of this scenario include:

• Passengers are allowed a trip duration 1.5 times longer than their original trip plus an offset of
2-hour threshold.

• Passengers are allowed to wait for DRT service pick-up for up to 20min.

These constraints are strategically implemented to enhance thepassenger experience and improve
overall system efficiency. If any of these constraints are violated, the system is likely to reject the
corresponding DRT requests.

3.2. Life cycle assessment

Traditional LCAs often rely on static system assumptions, providing a snapshot of the existing condi-
tions. However, when assessing transformative technologies, such as emergent systems shaped by
human behaviour, conventional LCA methods may fall short. Dynamic LCA principles guide us in
incorporating behaviour-driven data, allowing us to anticipate changes as technologies evolve (e.g.
Shimako et al. 2018).

In the LCA approach, data from the ABM simulation serves as input. This dataset encompasses crit-
ical aspects such as reference fleet size, vehicle movements, and users served. To assess the impact,
theGlobalWarming Potential (GWP) impact category is selected for itswidespread use in the literature
and its straightforward interpretability. GWP is a metric that relates how much energy the emissions
of 1 ton of a gas will absorb over a given time frame (usually 100 years), in relation to the emissions of
1 ton of carbon dioxide (CO2) (EPA 2023; European Commission, Joint Research Centre, and Institute
for Environment and Sustainability 2010). For comparison, reference values representing the life cycle
GWPof internal combustionenginevehicles (ICEVs) andelectric vehicles (EVs)were sourced fromexist-
ing literature. Table 1 summarizes the reference values used for ICEVs and EVs, including their sources
and key study characteristics. These references offer valuable insights into the primary LCA distinc-
tions between ICEVs and EVs. In this study, the adoption of reference values serves as the foundational
approach to establishing a benchmark rooted in a comprehensive dataset, ensuring comparability.
The functional unit of kilogram CO2 equivalent per kilometre (kg CO2eq./km) was used to quantify and
compare the environmental impact assessment.
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Table 1. Reference Values for ICEVs and EV lifecycle GWP (kgCO2eq./km) and key reference studies characteristics.

Study characteristics Reference values

Reference Scope Impact assessment method Application ICEV EV

(Del Pero, Delogu, and
Pierini 2018)

Cradle-to-Grave Life Cycle Data System (ILCD) ALLIANCE Project 0.203 0.129

(Sisani, Di Maria, and
Cesari 2022)

Cradle-to-Grave ILCD 2011 (MidPoint) IMPACT
2000 (EndPoint)

EURO 6 Italian Fleet 0.300 0.120

(Bieker Georg 2021) Cradle-to-Grave GREET tool State of Art
Average data

Europe Average Vehicle
Characteristics

0.248 0.085

It is important to note that specific assumptions were made in this study to enable meaningful
comparisons. First, we establish a baseline scenario with all ICEVs, while the SAEVs scenario is served
entirely by electric vehicles (EVs). It is assumed that connecting and automating electric vehicleswould
add 8% GWP due to the life-cycle impact of the sensing and computing components (Gawron et al.
2018). Additionally, private vehicles and buses were considered to use the same reference value of
LCA. While it may appear that this comparison between all combustion vehicles and shared electric
options is not entirely equitable, the primary purpose is to provide a range of scenarios that span from
the best to the worst case. This approach helps us explore the potential environmental impact across
a spectrumof possibilities and assess the potential benefits of transitioning to shared electricmobility.

4. Case-Study and Input Data

The proposed methodology is applied to a pilot study in the Coimbra Region, centre of Portugal, as
illustrated in Figure 2. The figure represents the survey area outlined by TIS (2009) and the region
specifically chosen for this pilot case study. The geographical area covered by the pilot study encom-
passes approximately 875 km2, focusing on the most densely populated areas within the Coimbra
region. In 2007, there were 177,157 residents aged 15 and above (TIS.PT 2009). The specific number of
actual residents in the study area cannot be precisely determined due to the particular zone division
made by the survey. However, an estimate suggests around 106,000 residents of active age in 2021
(Instituto Nacional de Estatística (INE) 2022).

The pilot case study emphasizes trips within the urban area of Coimbra and the immediately
adjacent municipality zones, including those between the urban area and directly connected munici-
palities, as well as trips within themunicipalities themselves. Trips tomore distant municipalities were
excluded from the analysis. The average number of daily trips per person stands at approximately
1.74, with 75% of these trips conducted by private car, 14% on foot; 7% using public transport (PT),
and the remaining 4% using other less-representative modes (TIS.PT 2009). Recent studies have indi-
catedminor changes in themodal split, with private car usage andwalking trips decreasing by around
3% and PT increasing by 9% (CIM Coimbra 2016).

Travel data were sourced from the mobility survey conducted by an external entity (TIS.PT 2009).
This surveywas designed to cover the population residing in themunicipalities of the Coimbra district
and neighbouringmunicipalities with significant connections to Coimbra City. The survey was carried
out between 2008–2009 and it was conducted by phone or at the residents’ homes. Each participant
was asked to describe their daily trips in detail, their modal options available and their level of satisfac-
tionwith the transportmodesused (TIS.PT2009). Tomaintain accuracy, onlyonepersonperhousehold
was surveyed and some questions were incorporated to characterize the household’s socio-economic
status. A total of 3,884 residents in the targetmunicipalities were surveyed, fromwhich 8,468 reported
trips were analyzed and modelled, serving as the foundation for a day-representation model.

Following the synthetic population methodology, we estimated a number of 108,650 people,
resulting in an estimation error of 39%. The simulation is conducted for modelling and understanding
general trends rather than precise predictions. Additionally, due to the magnitude of the case study,
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Figure 2. Pilot case study location: Coimbra region, Portugal.

Figure 3. Representation of the facilities location and characterization.

this percentage of error is considered acceptable. From the reported survey, there is a total of 6,669
different facilities in the region. Figure 3 represents all the facilities considered in the case study and
their categorization, with home and work constituting 41% and 11%, respectively.

To generate a network, data from OpenStreetMap (OSM) was converted into MATSim format.
MATSim networks are composed of nodes interconnected by links, each link has several attributes,
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Figure 4. Relationship between SAEVs fleet size and user performance indicators.

including the number of lanes, free flow speed, and capacity. Information about PT schedules, partic-
ularly urban buses were retrieved from general transit feed specification (GTFS) files, conceded from
the municipal services of urban transports of Coimbra (from Portuguese: SMTUC). There is a standard
approach to importing theGTFS schedule into aMATSimPT supply that canbeused for transit routing.
Agents assigned to PT modes are thus able to experience realistic travel times. Trips by bike, on foot,
by car, and by PT (specifically urban buses) were all modelled. However, for the study, we focused our
analysis on motorized trips (car and PT) which were then replaced by SAEVs.

In the scenario involving SAEVs, all the requested trips are provided by the DRTmode, which in the
context of this study represents automated and electric light passenger vehicles. The DRT fleet begins
the operation from six predetermined link locations within the network. However, vehicles are not
required to return to these initial points after each service, allowing for flexible routing. To determine
the initial fleet size of SAEVs, a set of simulations were executed, wherein the fleet size was incremen-
tally adjusted from 1,000 to 10,000 SAEVs. This range was selected to explore the trade-off between
fleet size and key performance indicators, such as average wait times and trip rejection rates. Sub-
sequently, the DRT fleet size selected for further analysis was based on empirical evidence gathered
from these simulations. As depicted in Figure 4, the data is visually represented, and the outcomes
of the analytical process are demonstrated. This process pinpointed an ideal DRT fleet size of 3,500
SAEVs. This fleet composition is used for subsequent comparison of LCA impacts against the baseline
scenario. Note that, beyond the fleet size identified, the rejection rate may not experience substantial
improvements (see Figure 4). This phenomenon is attributed to trips that are fundamentally challeng-
ing or impossible to complete, regardless of the fleet size. To enhance the robustness of the findings,
sensitivity analyzes will be conducted to explore the implications of extreme fleet size variations.

5. Results

In this section, the results are presented,which aim to compare thebaseline scenario in termsofmobil-
ity performance and LCA with the incorporation of DRT. The simulations are driven by the objective
of understanding and demonstrating with this pilot-case study the potential transformative impact of
DRT on regional mobility patterns and LCA. Considering the baseline scenario, 107,837 agents trav-
elling in the region were modelled which represents a total of 231,239 trips per day. Car and PT trips
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Figure 5. Distribution of car and bus trips in the Baseline Scenario.

represent 68% and 21% of all trips, respectively. Note that a small fraction, 1% of the agents’ plans
were found to be non-executable. This discrepancy can be attributed to incompatibilities or inaccura-
cies inherent in the survey data (e.g. incorrect georeferencing, updates of network context). Figure 5
illustrates the results of the simulation of the baseline scenario, depicting the distribution and peak of
demand for both car and PT throughout the day. This figure is useful for understanding the variations
in transportation demand and serves as a pivotal component for comparative analysis and valida-
tion. While both private cars and public transport experience peaks during rush hours (particularly
07:00–09:00 and 17:00–19:00), public transport showed a more sustained demand throughout the
day. The maximum number of departures occurs between 08:00 and 09:00 with around 2829 agents
departing in private cars and 3660 departures in public transport. It is noteworthy that the simulation
terminates at 24:00, leading to a decline in en-route car demand. This decline may be attributed to
ongoing trips that extend beyond the simulation period.

The motorized trips (car and PT) were replaced by SAEVs in the second ABM.
Table 2 presents a comparative analysis of simulation outcomes between the baseline and DRT

service configurations, the latter employing a fleet of 3500 SAEVs (see Figure 4), herein referred to as
DRT-base. The results demonstrate a remarkable reduction in total distance travelled (63%) and fleet
size (95%) with the introduction of DRT service. Notably, the average distance travelled by individual
agents increases by amere 1%when compared to private car usage. In terms of user and operator per-
spectives, potential drawbacks may relate to service performance metrics, including an average user
wait time of 10min, a 3% trip rejection rate, and the observation that 22% of vehicle travel distance is
unoccupied, while 66% is used at full capacity (carrying 4 passengers). Furthermore, the data reveals
an 807% increase in average kilometres travelled per vehicle in theDRT-base configurationwhen com-
pared to private car usage, and a 68% increasewhen compared to PT. These findings raise implications
regarding the potential need for more frequent fleet maintenance and consequent fleet replacement
in the DRT system to ensure efficient operations.

Figure 6 illustrates the total GWP in tonnes of CO2 equivalent (tonnes CO2 eq.) per day for both the
baseline and the DRT-base scenario. It is important to emphasize that the GWP reference values for
the baseline scenario are linked to ICEVs, whereas those for the DRT-base scenario are associated with
EVs. As observed, the introduction of theDRT service consistently resulted in daily GWP improvements
of 75%, 84%, and 86% for reference values according to Del Pero, Delogu, and Pierini (2018), Sisani, Di
Maria, and Cesari (2022) and Bieker Georg (2021), respectively, highlighting the immediate positive
environmental impact of the mobility service.
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Table 2. Simulation Results – Baseline Scenario vs. DRT.

Scenarios Mode No. Trips No. Agents
Total distance
travelled (km)

Average distance
per agent
(km/agent) No. Vehicles

Average distance
per vehicle
(km/vehicle)

Baseline Private Car 156,147 72,426 1,164,374 16.1 72,426 16.1
PT (urban buses) 48,524 25,909 222,317 8.6 2,552 87.1

DRT-Base SAEVs 193,621 90,440 511,523 16.3 3,500 146.1

Figure 6. GWP (tonne CO2 eq.) comparison – Baseline vs. DRT-base.

Beyond the comparison of the Baseline and DRT-base scenarios, we conducted a detailed analy-
sis of the DRT system’s performance under extreme fleet size scenarios. Starting from the DRT-base
configuration (3500 SAEVs), fleets of 1000 and 10,000 SAEVs were assessed and compared (Figure 7).
Adjusting the fleet size did not result in a strictly proportional increase or decrease in GWP. In com-
parison to the DRT-base, a 71% reduction in fleet size led to a 30% decrease in daily GWP, yet this
was coupled with a decline in service quality, marked by a 23% ride rejection rate (as observed in
Figure 4). Conversely, an 186% increase in fleet size decreased daily GWP by 2%, without significant
changes in service performance compared to theDRT-base. It becomes evident that smaller DRT fleets
showcase an enhanced capability to reduce daily GWP, while larger fleets balance the added envi-
ronmental costs of more vehicles on the road with a decrease in the intensity of vehicle use. Indeed,
the intensified usage resulting from a reduced DRT fleet size, as indicated by the increased average
kilometres travelled per vehicle, raises concerns about potentially offsetting the observed environ-
mental benefits due to the more frequent need for fleet replacement. To thoroughly understand
these dynamics, Figure 8 displays the GWP of each fleet scenario (baseline and different DRT composi-
tions) for a 30-year lifespan, considering a fixed vehicle lifetime of 150,000 km per vehicle (both ICEVs
and EVs) as Petrauskienė, Skvarnavičiūtė, and Dvarionienė (2020). This long-term analysis, accounting
for fleet replacement needs, revealed significant variations in normalized GWP values across differ-
ent fleet sizes and operational intensities. Over a 30-year timeframe, the larger DRT fleet size (10,000
SAEVs) emerged as the only configuration capable of reducing GWP when compared to the base-
line scenario, achieving reductions of 9–51% considering the different reference values. In contrast,
the DRT-base scenario with 3500 SAEVs and the DRT scenario composed of 1000 SAEVs revealed to
increase 46–170% and 150–364%, respectively.
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Figure 7. GWP (Tonnes CO2 eq.) comparison of different scenarios of DRT fleet.

Figure 8. Total GWP (Tonnes CO2 eq.) for each fleet scenario over 30 years timeframe.

These outcomesoffer valuable insights into the implications of integratingDRT into regionalmobil-
ity patterns and conducting life cycle assessment within this context. The notable observation from
the simulations is the substantial impact of the DRT service on regional travel patterns, the significant
decrease in overall travel distance highlights the transformative potential of DRT in influencing travel
behaviour across the region. This underscores the importance of considering user daily trips informa-
tion when evaluating the practicality and attractiveness of a regional DRT service. Furthermore, these
insights emphasize the significance of fleet sizing in alignmentwith expected user behaviour, life cycle
impacts, and the interrelated lifespan of the vehicles. Understanding the complex interplay between
these factors is crucial for optimizing DRT operations. The life cycle assessment results underscore the
need for a comprehensive approach that not only addresses immediate operational efficiency but also
considers long-term sustainability and user-centric aspects.
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6. Discussion

The passenger transport system is undergoing notable changes due to the increasing use of electrified
and automated vehicles, alongside the growing of on-demand shared mobility. A key challenge in
shaping future mobility is encountered in regions with low or sparse demand. Here, alternative on-
demand solutions canplay a crucial role, aligningwith the threepillars of sustainability: environmental,
economic, and social. Central to this research are the fundamental questions: Can the efficiency gains
associatedwith shared and electricmobility substantially reduce LCA impacts in regions characterized
by lower demand?Can sustainablemobility be promotedwithout compromising the user experience?

Insights from this study shed light on the consequences of integrating DRT into regional mobil-
ity patterns and conducting LCA within this context. The transition from a scenario dominated by
privately owned cars to the introduction of SAEVs service reveals compelling details regarding the
system’s performance metrics and user experience. The substantial decrease in total distance trav-
elled (63%) and the remarkable reduction of 95% in fleet size underscores the transformative impact
of DRT. On a daily basis, this reflects a reduction of 75–86% of GWP compared to the actual scenario.
However, certain performance metrics, such as rejection rate and user wait time, require attention.
Strategies to address these issues may involve optimizing routes, refining scheduling algorithms, or
implementing user incentives to manage demand peaks.

Assessing fleet size and the impact of these choices over a long-term period becomes pivotal. The
study underscores the implications of increased kilometres travelled per vehicle in the lower fleet size
DRT configuration, raising concerns about more frequent fleet maintenance and renewal needs for
efficient operations. Over a 30-year horizon, the study indicates that scenarios with larger fleets could
offer superior GWPbenefits, whereas smaller fleetsmight be less advantageous, evenwhen compared
to the baseline scenario of private ICEVs. These trade-offs are more pronounced in large case studies
and low-demand areas. These trends have been demonstrated by previous studies. Namely, Morfeldt
and Johansson (2022), revealing that if vehicles can withstand more use without significantly impact-
ing their lifespan, it would contribute to a substantial reduction in carbon emissions. Moreover, Saleh
et al. (2022) showed that higher levels of sharing increase emissions due to empty mileage associated
with vehicle relocation and higher deterioration leads to a higher fleet turnover. Beyond contribut-
ing to the understanding of the transformative impact of DRT on regional mobility, this research
emphasizes the need for a comprehensive approach to optimizing SAEVs. This involves considera-
tions for performance metrics, fleet and system sizing, user experience, and long-term environmental
implications.

7. Conclusion

This paper introduces a comprehensive and integrated approach to analyse the environmental
impacts of shared automated and electric vehicles (SAEVs) in interurban mobility scenarios. By com-
bining agent-based modelling (ABM) and life cycle assessment (LCA), this study delves into the com-
plex dynamics of Demand-Responsive Transportation (DRT) services and their relationship between
mobility performance and environmental impact.

In this research, we conduct a comparative evaluation of GlobalWarming Potential (GWP) between
the baseline and the DRT scenario, where traditional Internal Combustion Engine Vehicles (ICEVs),
including private cars and buses, were replaced by SAEVs. By assuming a complete transition of all car
trips to SAEVs,we aim to analyse the potential impacts of this extreme scenario, providing insights into
the upper bounds of SAEV effects and assessing system robustness under maximal conditions. While
we acknowledge that real-world adoption may vary, examining this extreme case offers valuable per-
spectives on the potential range of outcomes. The transition to SAEVs resulted in daily GWP reduction
of 75%, 84%, and86%.While promising, these reductions shouldbe viewedwithin thebroader context
of environmental sustainability, considering user performance requirements and long-term vehicle
lifetime. Moreover, adjusting the fleet sizes in the DRT system yielded non-linear GWP outcomes.
Varying the fleet size in either direction did not result in a proportionate increase or decrease in GWP
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due to the reflection of higher intensity use (more kilometres driven by each vehicle). A crucial out-
comeof this research is the identification of aDRT fleet size (3500 SAEVs) that reflects the best trade-off
between key performance indicators (averagewait time and trips rejection rate). Beyond this fleet size,
further increases had limited effects on both daily GWP and system performance. However, a 30-year
perspective revealed larger fleets offered better LCA performance, reflecting less intensity use and
reduced replacement needs.

These findings have significant policy implications, yet it is crucial to first acknowledge certain
limitations. The study’s synthetic population currently simplifies demand flows by replicating the
same origin-destination pairs at the same time, potentially oversimplifying the ridesharing scenario.
Future work aims to refine this by introducing a more diverse synthetic population to better rep-
resent real-world demand dynamics. Moreover, the study is constrained by the lack of a detailed
lifecycle breakdown in the reference values for LCA. Future studies should aim to disaggregate GWP
into distinct lifecycle phases, enhancing our understanding and enabling targeted emission mitiga-
tion strategies. Additionally, caution is warranted in extrapolating findings due to specific case study
constraints, including geographical boundaries, passenger demand patterns, and operational param-
eters. The analysis also did not incorporate operational constraints of electric vehicles (EVs), requiring
careful consideration when extending findings to other settings. Future work will extend the analysis
to explore mode choice dynamics, providing valuable insights to broaden the scope and applicability
of our research.

Policy implications extend beyond environmental considerations alone. Policymakers and trans-
port planners must weigh not only the mobility benefits but also the environmental consequences
when designing and implementing SAEVs services. The methodological framework proposed in this
study establishes a structured approach for assessing the effective impacts of emergent mobility
solutions. Recognizing the potential for skewed interpretations and greenwashing in LCA, policymak-
ers must uphold a more substantial understanding of the holistic impact of emerging technologies.
Moreover, environmental sustainability should not be pursued at the expense of social and economic
equity. By employing this methodology to regulate the impacts of on-demand shared mobility, pol-
icymakers can commit to providing more equitable services, especially in rural areas. It becomes
imperative to direct attention to remote areas where integrated transportation solutions might prove
inadequate, even if this requires a heightened initial investment to accommodate higher fleet levels,
as observed in this case study.
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