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Glossary

Glossary
Bayes’ theorem Bayes’ theorem is a statistical rule that can be applied when a known probability

P(A) of event A occurring, is related to the occurrence of event B. This is called the conditional
probability: P(A|B). Bayes’ theorem then states:

P(B|A) = P(A|B)P(B)
P(A)

23–25

Central­Nervous­System The central­nervous­system consists of the brain and the spinal cord. In
the Central­Nervous­System, sensory information is processed and reactive (both voluntary and
involuntary) neural control outputs are given. vi, 15

cost function In the context of mathematical optimization, a cost function provides a measure of
wrongness of a model. Minimizing a cost function reveals the variables that are associated with
the optimal (lowest) cost. 4, 28

feedback In a control theory context, feedback is when the output of a system is, usually manipulated
in some way, fed back in to the system. vi, 3, 9, 26–28, 52

Finite­Impulse­Response Finite­Impulse­Response is a performance metric that shows how much
two signals are alike. A VAF of 100% indicates two signals that are the same. It can be calculated
with the following formula: vi, viii, 36, 52, 76

fuzzy control Fuzzy control has been developed in order to convert complex and poorly defined con­
trol tasks done by humans, to a digital controller, by allowing linguistically expressed heuristic
control policies to be converted to fuzzy rules [105] [106]. Fuzzy rules are rules which can be
partially true (as opposed to Boolean rules, which are either true or false), and can therefore be
used to describe uncertainty. 28

group delay The group delay describes the delay of the amplitude envelope of a signal as a function
of frequency. 36, 37

Kalman filter AKalman filter can provide, using knowledge about the system, real­time state estimates
that are usually better than the single measurements alone. 23–25

Linear­Quadratic­Regulator The linear­quadratic­regulator uses the description of the system and
weighting factors to minimize a cost function. If the system description has sufficient fidelity, the
algorithm provides feedback gains that are optimal to the weighting factors, and that stabilize the
system. vi–viii, 4, 28, 52

Linear­Time­Invariant systems A dynamical system is called linear when the output of the system
scales linearly with the input of the system. A system is time invariant when the output is not
dependent on when in time the input is applied. Systems with both characteristics are called
Linear­Time­Invariant systems. vi, 14

manifold In mathematics, a manifold is a type of topological space. It is used to describe complex
structures in the more intuitive and simpler Euclidean space. An often used example of this is
the mapping of the surface of the earth, which is a two­dimensional surface manifold known as a
sphere, to a topological chart, which is a two­dimensional Euclidean space. This can’t be done
for the entire surface of the earth at once, but for smaller area’s of the earth the transformation is
mathematically valid. Hence, for proper charts of the entire planet, we need an atlas. 4

v



vi Acronyms

Model­Predictive­Control Model­predictive­control uses a model to predict and anticipate to future
events for a finite time­horizon. It then optimizes the current control action by minimizing a control
strategy cost function over a receding prediction horizon. vi, 28

neural delay The time delay caused by the transport of signals across the neurons and the time to
process or generate those signals in the CNS. 4, 6

open­loop When a system is in an open­loop configuration, the output of that system is not used to
provide any feedback. 13, 14, 25, 27

optimal control Optimal control is amethod to control a system in such away that an objective function
is optimized. Usually this is done to weigh a certain result or gain against the effort to get there.
A well known optimal control method is the linear­quadratic­regulator. 4, 6

state State variables are variables that evolve through time and describe the ”state” of a system at a
certain time instant. v, 15, 16, 23–28, 42, 52

Variance­Accounted­For Variance­Accounted­For is a performance metric that shows how much two
signals are alike. A VAF of 100% indicates two signals that are the same. It can be calculated
with the following formula:

𝑉𝐴𝐹 = (1 − 𝑣𝑎𝑟(𝑦 − 𝑦̂𝑣𝑎𝑟(𝑦) ) ⋅ 100%

vi, viii, 36, 53, 76

Acronyms
CNS Central­Nervous­System vi, 15, Glossary: Central­Nervous­System

FIR Finite­Impulse­Response viii, 36–39, 52, 54, 59–61, 63, 64, 67, 68, 76, 78, 79, 82, Glossary:
Finite­Impulse­Response

LQR Linear­Quadratic­Regulator vi–viii, 4, 5, 28, 40–42, 45, 48, 52–59, 62–64, 66, 67, 70, 71, 75–77,
81, Glossary: Linear­Quadratic­Regulator

LTI Linear­Time­Invariant 14, Glossary: Linear­Time­Invariant systems

MPC Model­Predictive­Control 28, Glossary: Model­Predictive­Control

VAF Variance­Accounted­For viii, 36–39, 44, 47, 53, 55, 57, 59–65, 67–69, 71, 76, 79, Glossary:
Variance­Accounted­For

Notation and Symbols
𝐴(𝑖, ∶) The 𝑖th row of matrix 𝐴

𝐴(∶, 𝑖) The 𝑖th column of matrix 𝐴

𝐺∗ Human internal model of true model 𝐺

𝑥̃ (Human) Estimate of 𝑥

𝑥̂ (Human) Optimal estimate of 𝑥



Summary
Statistics show that cycling accidents have the biggest (and increasing) contribution to the overall num­
ber of hospital visits related to traffic accidents in the Netherlands. In the majority of these cycling
accidents, no other road users are involved [97].

Because the majority of the cycling accidents are so­called single vehicle accidents, understanding
the control behaviour of the cyclist can spark new insight in to effective preventive measures. This
thesis aims to achieve that by reviewing the current state­of­the­art in bicycle­rider control research
and subsequently proposing a new rider control model that is developed using system identification
techniques.

The first quantitative research in human bicycle control behaviour was done by van Lunteren and
Stassen in the 1970s [54], [87] at the TU Delft1. In the following decades numerous attempts had
been made, primarily to scratch an academic itch.

The literature study into these attempts reveals that no clear consensus is reached on which con­
troller type, control inputs given by the controllers, and the sensory inputs used by the controller result in
the best description of human bicycle control. Furthermore, it is found that sensory dynamics and inte­
gration are only modelled very rudimentary, and only a select few models are fitted using experimental
data. Even less models are validated.

This provides two clear avenues for the advancement of the state­of­the­art:

1. The performance of different controller types and structures in predicting human control behaviour
can be compared using a single experimental data set.

2. More realistic sensory dynamics, integration and delays can be modelled in order to get a deeper
understanding on what sensory channels are used primarily by bicycle­riders.

Given these avenues for advancement, the scope of the literature review is expanded. For all com­
ponents that exist in a generic structure that describes human control of a bicycle, literature is gathered
that could describe the functionality of these components.

The results of the literature review is used to propose a novel bicycle­rider control model structure
of which the block diagram is shown in figure 1. The components of the model structure are:

• Balancing controller: A Linear­Quadratic­Regulator (LQR)­type controller that acts on the esti­
mated states 𝑦̂.

• Neuromuscular dynamics: The relation between the steer torque desired by the rider and the
realized steer torque is described by a neuromuscular model which takes the form of a second
order filter.

• Bicycle dynamics: The bicycle dynamics are described with the linear Whipple bicycle model
[59]. Passive rider dynamics are also included here.

• Sensory dynamics: In this block the dynamics of the various human sensory organs are de­
scribed.

• State estimator: The human sensory fusion and state estimation process is approximated with
a Kalman filter.

• Predictor: Human predictive capabilities, including the feed­forward effect of the own control
actions, are described with a tapped­delay­line predictor.

1Then called the Technische Hogeschool Delft

vii



viii 0. Summary

• Internal model: The notion of an internal model is used to describe the knowledge the bicycle­
rider has of the dynamics and delays present in the system.

Balancing controller Neuromuscular
dynamics Bicycle dynamics

Sensory dynamics

State EstimatorPredictor

Internal model

+
-
+ +

++

Figure 1: This is the system block diagram of the bicycle­rider system. There are several symbols present in the figure that
originate from control theory: the reference roll angle is indicated by the 𝑟, the control input by 𝑢, process noise by 𝑣, the input

delay by 𝜏𝑢, measured outputs by 𝑦, measurement noise by 𝑤, measurement delay by 𝜏𝑠 and the estimated states by 𝑦̂.

For validation, two different experimental data sets during which cyclists are laterally (roll) perturbed
on instrumented bicycles are used: one collected at the UC Davis on both a horse treadmill and in a
sports pavilion and the other collected at the TU Delft on a public cycling path (without other road users).

The human steer response to the perturbation is separated from other effects caused by unknown
disturbances and noise with a non­parametric Finite­Impulse­Response (FIR) model. A structured
system identification approach is used to determine the final model structure components and free pa­
rameter set that approximates the non­parametric model in the best way possible. The data sets are
split in a train set and a test set. The model structure is fitted to the train set. The predictive perfor­
mance is verified by applying the resulting model to the test set.

For the UC Davis data, the resulting model has one rider dependent parameter that describes hu­
man bicycle­balancing control behaviour for the entire evaluated forward velocity range (2­8 m/s). This
parameter is the weight placed on the roll angle in the LQR control algorithm. The single­run training
performance in terms of Variance­Accounted­For (VAF) with the non­parametric model reaches up to
97 %. Test performance incurred a VAF drop, on average, of around 10 %.

The steer responses of the TU Delft experiment can be predicted with a model that has two rider de­
pendent parameters: the weights placed on the roll angle and roll rate in the Linear­Quadratic­Regulator
control algorithm. Training performance reaches up till 83 % and test performance incurred a VAF drop,
on average, of around 7 %.

The major findings are:

• Roll rate is the most important state to be measured. Without a direct roll rate measurement, no
results are found that match the experimental data. This roll rate measurement is likely provided
by the vestibular organ.

• The resulting models from the UC Davis treadmill and pavilion experiments are similar and can
be interchanged at a VAF penalty up to 30 %. For two of the three participants the average VAF
penalty ranged between 0.1 and 7 %.

• The resulting models of the UC Davis and TU Delft experiments are different and can’t be inter­
changed. This can be attributed to the different experimental conditions: upper­body movement
at the TU Delft experiment was unrestricted, whereas upper­body movement was restricted in
the UC Davis experiment.

• Leaving the neural time delay as a free parameter, usually resulted in a fitted delay close to 0s.
By adding a simplistic passive rider model this can be remedied. In that case, the resultant fitted
time delay ranges between 40 and 100 ms.



ix

• The individual participants to the studies show distinct control behaviour, which is captured with
the proposed model.





1
Introduction

Cycling remains an important mode of transport in the Netherlands. Even though the car is the main
mode of transport in the Netherlands, 36 % of the Dutch list the bicycle as the mode of transport most
often used on a typical day [30]. The average Dutch resident cycles in excess of 3 kilometers daily,
which is about 8 % of the total distance covered with any means of transportation [17].

On face value, this love of cycling of the Dutch has only upsides: it is healthy, puts a lower burden
on infrastructure capacity and it has a negligible environmental impact. Hence, many countries try to
take measures to cultivate a similar cycling culture as the one that exists in the Netherlands.

However, in recent years, the discussion on how healthy cycling actually is has intensified in the
Netherlands. If we look at the total number of hospital visits related to traffic accidents, in 70 % of the
cases the mode of transport was a bicycle. Furthermore, this number has increased by 31 % (corrected
for population growth) over the last ten years, which is 13 % higher than overall trend in the number of
hospital visits related to traffic accidents [97].

Up till now, the Dutch government tried the reduce the number of accidents with different measures
mainly focusing on improving the infrastructure and implementing additional legislature such as restrict­
ing the use of mobile phones while cycling.

There are two interesting statistics present behind the data on hospital admissions:

1. More than 40 % of the victims was more than 55 years old, which is more than 10 % higher than
what one would expect based on the amount of distance traveled [17].

2. in 68 % of the cases the accident was a single vehicle accident, meaning that no other road users
were involved. When asked about the cause of their accident, almost half of the victims attributed
the cause to own behaviour such as a lack of attention or a steering error [97].

These two statistics (the relativity high number of victims aged higher than 55 years old, and the high
percentage of single vehicle accidents) open up more trains of thought on where to seek for solutions
for the overall problem of the high injury rate among cyclists. Being a (aspiring) mechanical engineer, it
makes sense to approach this problem from its origin; the rider of the bicycle, and to try to understand
the control behaviour of the bicycle rider with the tools known to mechanical engineers.

There have been numerous attempts to identify the control behaviour of the bicycle rider, both by
mechanical and non­mechanical engineers. Two of those attempts ([63] and [79]) included the exten­
sive validation with an experimental data set that is needed to reach conclusive results. The control
structure used by [63] finds its origin in pilot control models, while in [79] a classical control approach
is used with a PID­like controller.

Both these studies don’t include known human characteristics such as neural time delays and they
do not model the characteristics and integration of the sensory pathways available to humans. Model­
ing these things is important as they affect the stability margin of the rider­bicycle system and can help
explain if the inflated injury rate among elderly might be caused by cognitive or sensory decline.

1



2 1. Introduction

As such, the research objective of the master thesis is to develop a model that includes realistic human
neural and cognitive characteristics to predict control behaviour for stabilizing a bicycle.

Research questions that are related to the research objective are:
1. What bicycle states does the rider use as feedback for the stabilization task?
2. What sensors does the rider use to measure the states of the bicycle?
3. What is the relative importance of these sensors?

Outline of the thesis
The content of this master thesis is roughly divided in three parts:

1. A literature review, where the current­state­of­the­art of bicycle­control modelling (chapter 2) is
determined and the theoretical foundation is laid upon which the realistic human­bicycle model
can be built (chapter 3).

2. The theoretical outline of the proposed approach. In this chapter (4) the procedure which is
used to identify the human­bicycle controller is described.

3. Results. Here (chapter 5), both the intermediate results and the final identified model are pre­
sented.

As an advice to the time­restricted reader, it is possible to largely skip the literature review and only
read the parts of interest. In the following chapters the conclusions of the review are re­iterated with
references back to the relevant section in the review itself.



2
Current state­of­the­art of human bicycle

control modelling
In this chapter the major research contributions to human bicycle control modelling are listed in chrono­
logical order. The chapter leans heavily on the review paper by Schwab and Meijaard [80], were the
then current state­of­the­art of human bicycle control modelling is evaluated. Afterwards, the available
literature is discussed and the ”gap” in the scientific literature on human bicycle control modelling is
elaborated on.

2.1. Chronology
1970­1980
The earliest work done on bicycle rider control modelling and identification is done by van Lunteren
and Stassen ([54], [87]). They developed a bicycle simulator capable of simulating roll, pedalling, and
steering. Furthermore, the body lean angle of the rider was a measured input. They fitted transfer
functions with delays to the data. With this method, they found a 74 ms feedback delay on the steer
angle and a 26 ms feedback delay on the roll angle. For his master thesis research, de Lange [22]
implemented the transfer functions and found the result to be stable without delays (after correcting
some sign errors), but unstable with time delays.

1980­1990
In the eighties, Doyle [27] investigated bicycle riding in a broad sense. He did experiments at different
forward velocities, with blinded and non­blinded participants, and both on self­stable and destabilized
bicycles1. Both based on literature and observations during experiments done with an instrumented
bicycle, he proposed a control algorithm describing human bicycle control. The control law provides
continuous feedback based on roll rate and roll acceleration, in combination with intermittent roll angle
feedback. The control feedback is organised in nested loops with feedback to lateral displacement in
the outer loop, feedback to the heading angle in the middle loop, and feedback to the roll rate in the
inner loop. The inner loop ensures the roll stability of the system. He investigated feedback to the roll
angle, but concluded that there is no evidence to support the proposition that the angle term in the
algorithm is used continuously in order to provide steer angle feedback. Instead, when the roll angle
accumulates beyond a certain threshold, a (discrete) fairly strong pulse is applied to the handlebar in
order to bring the roll angle to zero.

Doyle found early in his research that depriving a rider of vision did not have an influence on riding
ability. Therefore, his experiments were done with the participants being blindfolded. In order to make
sure that bicycle stabilization was solely achieved with control actions from the bicycle rider, he tried to
remove any self stabilizing effects of the bicycle.

1He validated this by comparing the open­loop behaviour of both bicycles, but his destabilized bicycle probably still has some
self­stable characteristics

3



4 2. Current state­of­the­art of human bicycle control modelling

He concluded by inferring a delay between 60 and 120 ms (different between subjects, but constant
for each subject) between the roll rate and steer angle, that the output from the vestibular system must
go almost directly to the controlling muscles, making little or no demand on higher cognitive processes.

Doyle [27] also included neural delays in his model, and investigated the stability region as a func­
tion of input delay, input gain, forward velocity, and rider height and weight characteristics. Generally
speaking, higher delays and higher gains destabilize dynamical systems. This also applies to the
rider­bicycle system. Doyle [27] found that the gain margin did not change significantly as a function
of forward velocity. However, at lower velocities the stability margin is lower. The reason for this is,
that due to the nature of bicycle dynamics, a higher input gain is required at lower speeds to counter
a given lean angle. Therefore, disturbance rejection becomes more difficult at lower forward veloci­
ties. He found that, by including a delay of 120 ms in the model, the results were comparable with the
gathered experimental data.

He concluded that upper­body lean only played a minor part in bicycle stabilization, because even at
small bicycle lean angles, upper­body movements cannot bring the centre of mass onto the correcting
side of the support point.

1990­2000
For his doctoral thesis, Getz [34] developed an internal equilibrium controller. Dynamic inversion is
incorporated into this controller to provide a continuous estimate of the internal equilibrium manifold
location. The internal equilibrium controller makes a neighbourhood of the manifold attractive and
invariant. This results in approximate tracking of time parametrized paths while retaining balance.
Getz applied this method to path­tracking with balancing for a bicycle in [33]. He uses steer angle
and rear­wheel torque as inputs. The downside of this method, is that it is strictly path based. For
determining rider control actions based on bicycle­rider states, this method is probably less suited [80].

2000­2010
Cook [20] wrote an engaging article where he presents a two­neuron network that can path­track and
balance a bicycle. The first neuron outputs a desired lean angle, dependent on the current and desired
heading angles. The second neuron outputs the desired steer torque, with as inputs the lean angle
and rate, the desired lean angle and its own output. The controller works well for a range of forward
velocities, but did not dampen the instabilities that occur in sharp turns or at low forward velocities.

Sharp [81] implemented a Linear­Quadratic­Regulator (LQR) controller with preview in order to
model human stabilization and path­tracking of a bicycle. Sharp [81] found that tight control required
about 2.5 seconds of preview time, whereas loose control extended that requirement without any real
limit. The control tightness was determined by the relative weightings of tracking error and control
power in the cost function of the optimal control computations. Based on literature, Sharp [81] considers
steer torque to be the primary control input. Reviewing that literature, which was primarily focussed
on motorcycles, two arguments were found. The first being that due to the fact that handlebar angles
usually are small, handlebar position control is difficult [83]. The other argument [52] is that steer torque
is a control input to the (assumed to be correct [59]) Whipple bicycle model [100]. It must be noted that
all the references given in the article by Sharp [81] on this subject are circle citations.

Both an optimal LQR controller and a, so­called, intuitive controller were presented in the article
by Schwab et al. [78]. The LQR controller minimizes a cost function were the objective (or state) is
weighed against the control cost. The intuitive controller steers the bicycle into the undesired fall using
a simple control law. At low speeds, feedback proportional to the roll rate, decreasing with increasing
forward velocity, is applied. Above the stable forward velocity range, proportional feedback of the roll
angle, increasing with with forward velocity, is applied. Both controllers used steer torque as in input
to a linear bicycle model. The rider is attached rigidly to the bicycle frame. Additionally, both control
algorithms were extended in order to apply rider upper body control as an additional roll torque input.
The authors found no significant difference in the dynamics between the rigid rider configuration and
the added upper body control configuration. Furthermore, they deemed the feedback gains found with
the LQR controller to be unrealistic because they were outside the range of human capabilities.

2010­2019
Hess et al. [39] developed a bicycle rider model based on pilot models developed in the aerospace
research field. The resulting model is parametrized by five gains, two fixed second­order filters, and
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a preview time. The gains are on the bicycle states roll angle and rate, steer angle, heading angle
and lateral displacement. One second­order filter acts on the rider output and as such represents the
neuromuscular dynamics. The other on the handling quality performance criterion in order to reduce
the magnitudes at frequencies where there would be little power in the visual feedback signal.

The model has multiple nested feedback loops, each for different states of the bicycle model. These
loops were associated with sensory mechanisms present in the rider, and are organised hierarchically
in a way that low­level control tasks such as balancing take preference above higher­level control
tasks such as path­tracking. While the loops were associated with sensory mechanisms, no sensory
dynamics or delays were included in the model. Moore [63] gathered experimental data using an
instrumented bicycle, and applied grey­box system identification techniques to identify the parameters
of a reduced Hess et al. [39] model, where path following is omitted as an control objective. The
fundamental, remnant­free, control response of the rigid­rider under lateral roll perturbations can be
described reasonably well by this model.

A control structure in which the corrective control inputs (steer angle and upper­body lean torque)
are generated proportionally from four different mechanisms is presented in the article by Soudbakhsh
et al. [85]. Three of these mechanism provide reflexive control inputs with increasing delays based on
proprioceptive feedback. The other mechanism (dubbed the neural controller) integrates vestibular,
visual, and proprioceptive signals using static signal weights. Control action is provided by a PID
controller. They combined this model with the model of a stationary bicycle on rollers and did an
stability analysis. They showed that only upper­body lean is insufficient to stabilize the bicycle. The
stability of the bicycle­rider system was found to be greatly affected by variations of the different time
delays present in the model. Based on the stability analysis and literature, they set the short latency
delay to 21 ms, the medium latency delay to 131 ms and the long latency (neural controller) delay to
288 ms.

Using experimental data gathered at different forward velocities on a narrow treadmill while laterally
perturbing the bicycle frame with impulsive forces [63], Schwab et al. [79] presented a rider control
model with muscle dynamics and with steer torque as the control input. The reduced control structure,
which stabilizes the bicycle, has four gains: a gain on, respectively, the lean angle and rate, a gain on
the steer rate, and a gain on the integral of the steer angle. The authors concluded that the gains on the
lean angle and rate corresponds with vestibular and/or visual feedback, and the gain on the steer rate
corresponds with proprioceptive feedback. The gain on the integral of the steer angle is explained to
be similar to a gain on the heading angle, and was deemed to be caused by the narrow treadmill. Time
delays were not included. To understand what the rider was optimizing, a LQR method was applied in
an inverse manner, resulting in the weight factors (instead of feedback gains). These weight factors
indicated that the rider is minimizing control effort at forward velocities below 3 m/s. At higher forward
velocities the rider is minimizing heading error.

Wang and Yi [99] presented a human balancing control model for stabilizing a bicycle using two
proportional­derivative controllers with time delays acting on the roll angle. One providing steer angle
as a control input, and the other upper body movement torque in order for stabilizing the bicycle. A
time delay of 235 ms for steer input and a time delay of 110 ms for upper body lean input are used.
The time delays are based on literature on human spinal stabilization. They validated their model with
experiments done on an instrumented bicycle. While, to the eye, their model matches the results quite
decently, no perturbations were given during the experiments. What constituted as perturbations to the
controller, remains vague.

2.2. Discussion on the current state­of­the­art
Of the models in the literature that are evaluated, all are able to balance a bicycle. Additionally, a
range of models (Getz [33], Cook [20], Sharp [81]), Hess et al. [39]) implemented path tracking as an
additional objective. The research by Doyle [27] is a bit difficult to place here, because the modelling
structure he proposes includes higher level tasks, but only the balancing part seems to be actually
modelled and validated.

A big differentiator amongst the presented models are the control inputs used. Steer torque is used
most often (Doyle [27], Cook [20], Sharp [81], Schwab et al. [78], Hess et al. [39], Schwab et al. [79]).
Steer angle as a control input is used less often (Lunteren and Stassen [54], Getz [33], Soudbakhsh
et al. [85], Wang and Yi [99]). Based on the literature found during this review, no strong case can
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be made for either steer torque or steer angle as an input. A number of models included the torque
generated by upper­body lean as an control input (Lunteren and Stassen [54], Schwab et al. [78],
Soudbakhsh et al. [85], and Wang and Yi [99]). However, multiple arguments ([27], [78], [85]) are made
that upper­body lean does not provide a significant contribution to the control of a bicycle.

The control strategies used can be roughly divided in four different categories: nested multi­loop,
classical state feedback, optimal full state feedback, and other control type controllers. Nested multi­
loop controllers (an example is given in figure 2.1 [39]) are presented by Doyle [27] and Hess et al.
[39]. Nested multi­loop controllers find their origin in the research done by McRuer and Jex [58], and
are applied often for the modelling of aircraft pilots. Hence, they are proven to be able to provide
realistic results when used to model human control behaviour. Classical state feedback controllers
give feedback on the output of models. Provided that riders can sense all the outputs of the bicycle
model used, this could be a realistic method of modelling bicycle rider control behaviour. Classical
feedback control was used in the articles by Lunteren and Stassen [54], Schwab et al. [78], Schwab
et al. [79] and Wang and Yi [99]. Lastly, Getz [33] and Cook [20] used control methods that aren’t
covered in the previous categories. In the review paper by [80], the usefulness for determining rider
control actions based on bicycle­rider states was questioned. The controller developed by Cook [20]
is developed in order to understand the human learning process more. But the author concludes that
more research was necessary, as unsupervised learning yielded unsatisfactory results.

Figure 2.1: Nested multi­loop controller. Here the feedback is given hierarchically: proprioceptive bicycle steer angle feedback
takes preference above vestibular bicycle roll­rate feedback, which again has preference above visual bicycle roll feedback

(source: [39]).

None of the models incorporate sensory dynamics, and only a fewmodels incorporate neural delays
(Lunteren and Stassen [54], Doyle [27], Soudbakhsh et al. [85], and Wang and Yi [99]). In only one
model, preview time for path tracking, is implemented (Sharp [81]), and only one model was suitable
for non­linear control of non­linear bicycle plants (Getz [33]).

Of themodels presented in literature, only a select fewwere validated with, or based on experimental
data of humans controlling a bicycle (Doyle [27], Moore [63], Schwab et al. [79], Wang and Yi [99]).
None of these experimentally validated models use an optimal control approach, and, as mentioned
before, only the model presented by Wang and Yi [99] incorporated time delays in their complete model
structure.

For the benefit of clarity, the sources are categorised in table 2.12.

2.3. Avenues for the advancement of the current state­of­the­art
In the previous section, the characteristics of the current bicycle­rider models are discussed. When
these models are compared to other contemporary human control models (e.g. [94] for human stance
control, or [66] for human driver steering control), it is clear that the modelling of the human sensory
system and the integration of sensor signals can be expanded on. Doing this could give a clearer
picture on the relative importance of the different sensor signals, and can result in more realistic control
behaviour. Furthermore, certain insights and contributions of the different authors can be combined. A
good example is the way how Soudbakhsh et al. [85] modelled the reflexive feedback, or how Sharp
[81] implemented a path­tracking preview time. Moore [63] made the dataset he gathered using his
2Inspired in the table by Kooijman [51] in his PhD thesis
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Table 2.1: Bicycle­rider models found in literature. An asterisk (*) indicates an experimentally validated model.

Model characteristic Balancing Path following

No neural delays Schwab et al. [78], Moore [63]*, Getz [34], Cook [20],

Schwab et al. [79]* Sharp [81], Hess et al. [39]

Neural delays Lunteren and Stassen [54]*, Doyle [27]*, Wang and Yi [99]*

Soudbakhsh et al. [85]

Steer torque Doyle [27]*, Schwab et al. [78], Cook [20], Sharp [81],

Moore [63]*, Schwab et al. [79]* Hess et al. [39]

Steer angle Lunteren and Stassen [54]*, Getz [34], Wang and Yi [99]*

Soudbakhsh et al. [85]

Body lean Lunteren and Stassen [54]*, Wang and Yi [99]*

Schwab et al. [78]

instrumented bicycle publicly available, opening opportunities to validate and improve the controllers
that have not yet been validated with experimental data.





3
Theoretical foundation for bicycle­rider

control modelling

In this chapter a broad literature review is conducted in order to provide a solid theoretical foundation,
that can be used to model a sufficiently complete and realistic human­bicycle system from a control
theory perspective. This foundation can subsequently be used for the purpose of human control iden­
tification.

To illustrate the complexity of human control identification, picture an ordinary control engineer.
When this control engineer is tasked to design a controller to control a certain system, the engineer
quickly sets about to define the system in terms of inputs and outputs. Sensors are selected to measure
outputs, and actuators are selected to give corrective inputs. When the underlying dynamics of the
system are not fully understood, a common method is to give known inputs to the system, and based
on the measured outputs, characterize a system which predicts the transfer from input to output.

When a human does control, the process is similar. Let’s take the relevant example of riding a
bicycle. People are often not capable of outright stabilizing a bicycle when riding one for the first time.
Also, trying to learn by looking at someone else riding a bicycle is not of much use. As is asking a
experienced cyclist. The only option left to learn how, is to hop on one, give some inputs, and by
learning from the response, develop an model of the dynamics of the bicycle which enables us to ride
one. This process happens subconsciously for the most part.

This is a problem: we can’t simply ask someone how he controls a bicycle. But, still we want to
understand how. A method of achieving this is the break the problem up into smaller parts and sub­
processes that we do understand. These can be organised in such a way that together they form a
complete picture of the human­bicycle system we are looking for.

This literature review is partitioned in sections according to these processes and components. The
processes and components are organized in a general feedback structure. How information flows
between them is illustrated in figure 3.1. They can be separated in two groups: the Human­Bicycle
plant, which describes the ”passive” behaviour of the rider­bicycle combination. And the ”active” part,
were cognition and control takes place.

Contemporary research on human control identification, primarily in the aviation and, more recent,
in the automotive industry, focusses on the active part. For human bicycle control this is not neces­
sary valid, because the rider is a big part of the system. Simply by sitting on a bicycle or holding the
handlebars, the rider could passively change the dynamics of the system.

The passive part also includes the dynamics of the actuators and sensors the human has access
to. Next to the ability of our brain to do control, the human actuation and sensory system will define the
limits of human control.

In each section the possibilities are explored, and their suitability for bicycle­rider identification is
evaluated.

9
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Neuromuscular
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Sensory modelState estimation

Objective

Human-Bicycle PlantHuman cognition and control

Passive
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Bicycle
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Figure 3.1: Basic control structure.

3.1. Bicycle model
According to the Oxford Dictionary, a bicycle is a ”vehicle consisting of two wheels held in a frame
one behind the other, propelled by pedals and steered with handlebars attached to the front wheel”. A
bicycle model is a set of equations that describe the dynamic behaviour of this vehicle. The number and
complexity of these equations vary depending on the assumptions they are based on, the modelling
methods used, and the type of bicycle to be modelled.

An interesting characteristic of a lot of bicycles, is that they are self­stable for some conditions
(mainly bicycle geometry and velocity dependent). With self­stable is meant that an uncontrolled bike
does not fall over when exposed to limited perturbations: it ”self­corrects”. An indication if a bicycle
model describes the dynamics of a bicycle correctly, is that the model predicts self­stable behaviour.

Therefore, we can already discern two categories of bicycle models: those that can, and those that
can not predict self­stable behaviour. Extended bicycle models than can predict self­stable behaviour,
but that don’t assume rigid bodies and ideal ”knife­edge” wheel surface contacts, are placed in a third
category.

1. Linear and non­linear bicycle models that don’t describe self­stability correctly.

2. Linear and non­linear rigid­body bicycle models that describe self­stability.

3. Bicycle models that extend the models in category 2 with any type of complexities such as non­
ideal road contact, frame deformations, non­level roads, and so on.

This section on bicycle models is mainly based on four articles which themselves contain literature
reviews: the article by Limebeer and Sharp [52], the article by Meijaard et al. [59], the article by Basu­
Mandal et al. [6] and the review study by Schwab and Meijaard [80].

3.1.1 Linear and non­linear rigid­body bicycle models that don’t describe self­
stability correctly
Bicycle models in this category are not necessary suitable to use as a plant model, as they describe
the stability characteristics of the bicycle incorrectly. However, they can be used as an internal model1.

Meijaard et al. [59] identifies three causes as why models in this category are too limited to describe
self­stability: simplified geometry and/or mass distribution, no steer dynamics because steer is fully
controlled by the rider, or mathematically simplified models.

One of the, if not the first, scientific publication which includes a mathematical description of a
bicycle, is a series of articles by Carlo Bourlet ([8], [9], [10], [11]). These only include a lean equation
(and therefore don’t describe self­stable behaviour), the influence of the gyroscopic moment from steer
rate is omitted, and the model has front­contact geometry issues in the non­linear equations described
in detail in [59]. But other than that, Meijaard et al. [59] concluded that the final linearised lean equation
is correct.

Another type of models in this category are non­linear and linear point­mass bicycle models with
non­holonomic constraints. The origin of these interesting, but simple models is attributed by Mei­
jaard to two articles from Boussinesq ([12], [13]). In the book on dynamics by Timoshenko and Young
1Internal models are introduced in section 3.4
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[89] the Boussinesq model is presented, and in another (easy accessible) literature review paper by
Limebeer and Sharp [52], an analysis of a Boussinesq like model is included. The non­linear and the
linearised constant velocity roll equations of that model are presented in equations 3.1 and equation
3.2 respectively. The definition of the parameters and variables used is visualised in figure 3.2 [52].

ℎ𝜙̈ = 𝑔𝑠𝑖𝑛𝜙 − 𝑡𝑎𝑛𝛿 (𝑣
2

𝑤 + 𝑏𝑣̇𝑤 + 𝑡𝑎𝑛𝜙 (𝑣𝑏𝑤 𝜙̇ −
ℎ𝑣2
𝑤2 𝑡𝑎𝑛𝛿)) −

𝑏𝑣𝛿̇
𝑤𝑐𝑜𝑠2𝛿 (3.1)

𝜙̈ = 𝑔
ℎ𝜙 −

𝑣2
ℎ𝑤𝛿 −

𝑏𝑣
𝑤ℎ 𝛿̇ (3.2)

Figure 3.2: Inverted pendulum bicycle model (source: [52]).

3.1.2 Linear and non­linear rigid­body bicyclemodels that describe self­stability
In this category are models which resemble the so­called Whipple model, of which the linear equations
are proven to be correct by Meijaard et al. [59].

The Whipple model was actually derived by two persons, seemingly independent from each other,
in the same time period. According to Meijaard, Emmanuel Carvallo was the first who described the dy­
namics of an uncontrolled bicycle correctly. He identified the four standard eigenmodes, and presented
the equations for the lower and upper velocity bounds of the self­stable region.

Slightly later than Carvallo, Francis Whipple derived the correct linear equations of motion for a
slightly more elaborated bicycle model than Carvallo, who neglected the mass and moments of inertia
of the front frame.

The model consists of four rigid bodies: two wheels, the rear frame, and the front frame. The wheels
are connected to the rear frame and front frame through ideal pinned connections that constrict all
forces, except moments in the rotation direction of the wheel. The wheels have ideal knife­edge rolling
point contacts with the ground. The frame and front assembly themselves are connected through an
ideal hinge which defines the steering axis. The four parts of themodel and important model parameters
are shown in figure 3.3 [59].

Over the last century a lot of linearised bicycle models are developed in the aforementioned frame­
work, some correct and some incorrect. Widely different methods and coordinate systems are used,
leading the different sets of equations. These sets of equations are hard to compare, except through
eigenvalue analysis. Meijaard et al. [59] presented the ”canonical” linearised equations which describe
the lateral dynamics for the Whipple bicycle model. These equations can be considered as canonical
because two different methods to derive them are used and they also are checked with two non­linear
dynamics simulations. Furthermore, Meijaard provides two benchmark bicycles which can be used for
test cases. Finally, the model is experimentally validated by Kooijman et al. [48], and is shown to be in
fairly good agreement in the forward velocity range of 0 to 6 m/s.
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Figure 3.3: Whipple model naming and parameter convention (source: [59]).

The equations can be written in the same form as general mechanical systems: the forces, or
torques in this case, are proportional to the inertia terms multiplied with accelerations, the damping
terms multiplied with velocities and the stiffness terms multiplied with displacements. Hence, they can
be written as:

Mq̈+ 𝑣C1q̇+ [𝑔K0 + 𝑣2K2]q = T (3.3)

Where q = [𝜙, 𝛿]⊤ and T = [𝑇𝜙 , 𝑇𝛿]⊤. The constant terms (M, C1, K0, K2) follow from the parameters
of the bicycle. C1 is linear with forward velocity, K2 is quadratic with forward velocity 𝑣, and K0 is
proportional to the gravitational acceleration 𝑔.

This linear model has four different modes, of which two are a complex oscillatory eigenvalue pair.
The modes can be found through an eigenvalue analysis and are called capsize, weave and castering.
The capsize mode can be envisioned as the bicycle falling over. The weave mode is an oscillatory
motion of steering lagged by leaning. The last mode is the castering mode, which is always stable
if the forward velocity is positive. Its motion can be compared to the straightening of a wheel on a
shopping cart.

In the paper by Basu­Mandal et al. [6] the literature on bicycle models that describe circular motions
is reviewed. That literature has roughly the same pattern as Meijaard found: a lot of the research
done is either partly complete, nor correct or cross­checked. As a consequence, Basu­Mandal wrote
a complete description of hands­free circular motions of an idealized benchmark bicycle (the same
one as Meijaard used) using two different methods (Lagrange and Newton­Euler). These two sets
of equations are both checked with each other, and match with machine precision. The linearised
Lagrange equations are checked with the equations as derived by Meijaard et al. [59]. The eigenvalues
obtained from the two systems matched to 14 decimal spaces.

The set of equations are quite extensive (34 equations for the Newton­Euler derived model) or
very long (the Matlab m­file is 3.5 MB for the Lagrange’s equations of motion), and are therefore not
included in this literature review. They can be found in the electronic supplementary of the paper by
Basu­Mandal et al. [6].

Turnwald and Liu [90] derived a non­linear bicycle model in the Lagrangian and Hamiltonian frame­
work, yielding a pseudo­Hamiltonian system that also describes self­stable behaviour. This model is
then simplified in structure preserving manner with constant tensors. In this way passivity­based con­
troller and observers can be designed for this non­linear bicycle model. This model was also compared
to the Meijaard benchmark bicycle, to give an indication of validity.

3.1.3 Extended bicycle models
Category 3 models are models that extend upon the previous category bicycle models. A first subcat­
egory amongst these extensions is the modelling of ever more complex tyre behaviour.

A simple approach is to model toroidal shaped wheels instead of the knife­edge contacts used in the
models in the previous two categories. This can both be done as an extension to linear [60] and to non­
linear [98] models. Meijaard and Schwab [60] also considers effects of pneumatic trail and damping
due normal spin at the tyre contact patch.
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The toroidal shape reduces the arm of the gravity force, and thereby slows down the dynamics,
easing the balance task. The added tyre contact force effects did not have a big influence on the
dynamics of a bicycle [80].

Complex tyre models describe tyres that generate forces dependent on normal force, tyre slip and
camber with time lags dependent on wheel velocity and tyre relaxation length. These complex tyre
models can be roughly separated in two categories: physics based models and empirical models. For
bicycle tyres the choice is quite limited and we have to rely on empirical formula’s. Schwab andMeijaard
[80] give a nice overview of the research done on tyre modelling until then. They cite four sources for
the gathered experimental data sets. In the seventies Roland and Lynch [75] measured side­slip and
camber forces. In the last two decades Cole and Khoo [19] measured side­slip forces, Dressel and
Rahman [28] measured side­slip and camber forces, and so did Doria et al. [26]. Dressel and Rahman
[28] also measured tyre relaxation lengths, which was found to be around 0.1m.

The data sets were gathered with different measurement methods, but all measurements were
done dependent on tyre load and tyre inflation pressure. They have the same correlations between
them: with increasing loads, decreasing coefficients and with increasing inflation pressure, increasing
coefficients. Also, side slip coefficients are found to be in rough agreement with each other and where
in the range of 0.8­1.5. This can not be said for the camber coefficients. Roland and Lynch [75] found
camber force coefficients in the range 0.15­0.6, while Doria et al. [26] found coefficients between 1.3­
1.5.

Sharp [82] developed a mathematical model in order to show typical stability characteristics and
how these depend on various parameters values. Sharp found that including a side slip tyre model
introduces a new mode: wobble. Wobble is a fast oscillation of the front wheel around the steering
axis. He found that the natural frequency of wobble to be almost independent of forward velocity and
well damped at low and medium velocities (till approximately 5 m/s). At higher velocities the damping
drops rapidly. The wobble mode is primarily affected by the steer damping coefficient and the tyre
relaxation length. Sharp [82] found that weave stability decreases when a tyre slip is modelled.

Bulsink et al. [16] developed an open­loop bicycle­rider model in the commercial multibody dynam­
ics software ADAMS. They analysed the effect of tyre and rider properties on bicycle stability. The
tyres are modelled based on the data gathered by Doria et al. [26]. Just like Sharp [82], they found that
extending simplified models with a realistic tyre model leads to a notable decrease in the weave sta­
bility and a stabilization of the capsize mode. Furthermore they found that different tyre types and tyre
inflation pressures had little effect on the bicycle’s stability, in the case of riding straight at a constant
forward velocity. Tyre load did have a large effect on bicycle stability.

Frame compliance can also be modelled. In the context of bicycles this is done by adding an extra
degree of freedom in the connection between the rear and front frames which allows lateral bending
[69]. Frame compliance is then simulated by a spring and damper that act on that displacement. In­
cluding frame stiffness introduces, just like adding tyre compliance, the wobble mode. Therefore the
stability of a non­rigid frame bicycle is reduced when compared to a rigid bicycle. Plöchl et al. [69] also
tried to validate the inclusion of frame compliance and lateral­slipping tyres to the linear Whipple model,
and found some agreement. However, the results depended greatly on rider posture, and results indi­
cated that riders were able to damp out, or prevent, wobble easily.

Finally, [60] extended the linear Whipple model to include cycling over a road with a gradient, aero­
dynamic effects and driving and braking torques.

3.1.4 Discussion on the different bicycle models
Both validity and usability are important criteria when selecting a model. Considering validity, Kooijman
et al. [48] found that the linear Whipple bicycle model, as derived by Meijaard et al. [59], agreed with
reality up till a forward velocity of 6 m/s, but was difficult to validate at forward velocities below 3 m/s.
This indicates that extensions to that model are unnecessary within that velocity range. At least for
cycling on level surfaces, with no additional wind effects, with bicycles that are similar to the benchmark
bicycle and for small roll and steer angles. This is proven further by Sharp [82], who found that the
unstable wobble mode can be caused by tyre dynamics, but is well damped below velocities of 5 m/s.
Plöchl et al. [69] found that that riders can prevent or damp out any wobble oscillations quite easily. At
a higher velocity range, a lot of modelling possibilities are available. Unfortunately, validation is lacking.
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Usability is a bit of a vague term that indicates if the model is useful in a system identification and
control context. Here it is true that most system identification and control methods are developed for
Linear­Time­Invariant (LTI) systems. For any model that falls in that category, it will be easier to develop
tailored control and identification algorithms for.

Reviewing the experimental data sets which are to be used for this research, the assumptions that
tie in with the use of the Whipple bicycle model are valid. Namely, the experiments are carried out
with normal city bikes, on level ground, without (to much interference) from the environment and the
measured angles rarely exceed 15 degrees (approximately the point where truncation errors start to
exceed 1%). Also, all the experiments are carried out at constant forward velocities, so a model which
only describes the lateral dynamics is sufficient. Therefore, the Whipple model is the best candidate to
use as a bicycle model.

3.2. Passive rider model
Passive rider models describe behaviour that is not active control behaviour, but does effect the dy­
namics of the bicycle model. This includes control strategies that bypass the usual sensor­control loop,
and by doing that have little to zero delay. Examples of this are posture and muscle co­activation.

Schwab et al. [77] added a passive rider model to the linear Whipple model, without adding any
degrees of freedom. Therefore, only the indices of the constant tensors change. They evaluated two
different postures: a forward leaning posture and a upright posture (see figure 3.4, source: [77]). In the
case of a forward leaned rider posture with stretched arms and hands on the handlebar, the open­loop
dynamics only change marginally. However, an upright rider posture with flexed arms and hands on
the handlebar cause the open­loop dynamics to become unstable.

Figure 3.4: Rider postures: (a) forward leaning and (b) upright (source: [77]).

A remark to the study by Schwab et al. [77], is that they modelled the rider body as a system
of cylinders connected with ideal joints. Therefore, any damping and stiffness effects caused by, for
example, the muscle spindles are not included.

In his PhD dissertation [63], Moore presents an arm model similar to the one proposed by Schwab
et al. [77]. He found it to perform better than the regular Whipple bicycle model.

In a more recent article by Doria and Tognazzo [25], these issues are addressed. They identified
stiffness and damping parameters that are relevant for cycling and lumped them in a biomechanical
model using experimental results. This model was then coupled with the benchmark bicycle model.
They found that uncontrolled damping reduces the self­stability region and that uncontrolled arm stiff­
ness causes the open­loop self stable behaviour of the benchmark bicycle to disappear entirely.

The study done by Schouten et al. [76] provides an outlook on modelling passive human behaviour
that is based on physiological characteristics of the human body. They investigated the dynamic be­
haviour of the neuromusculoskeletal system. Their model consists of transfer functions describing
input­output behaviour and includes afferent feedback of the muscle spindles and Golgi tendon organs,
as well as muscle visco­elasticity. The muscle visco­elasticity is of primary interest here, because it
provides a passive contribution to the dynamic behaviour of the neuromusculoskeletal system. The
afferent feedback of the muscle spindles and Golgi tendon organs less so, because this tends to be
control guided behaviour. They fitted parameters to the model, using an experimental set­up, where
the human was force­perturbed with a manipulator held in the right hand.
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3.3. Sensory model
The purpose of the sensory model is the supply the Central­Nervous­System (CNS), where cognition
and control takes place, with information. In the context of the system overview given in figure 3.1, the
sensory model consist of all the sensors a human has access to, that provide the information necessary
to stabilize a bicycle. It also consist of the neurons and neural pathways connecting the sensors to the
CNS, and any organs that post­process the neural data in order to make it suitable for state estimation.

In this chapter, a short overview of the sensor types, their sensitivity, and the neurons that transmit
the information is given. After that, the sensors that are relevant to bicycling are presented. Finally, the
perception windows and dynamics of the relevant sensors are quantified.

A sensor can be placed in one of three different categories: exteroreceptors, interoreceptors and
homeostasis. The exteroreceptors give information of the state of the outside world. Think of gathering
information on the weather, but also of the velocity of an approaching car. Exteroreceptors also give
information of the state of the human in relation to the outside world. So, our own orientation and
velocity are measured with respect to our surroundings.

Interoreceptors gather information on the posture and movement of the human body. Practically
speaking, they tell us the whereabouts of our limbs. The accelerations acting on us are also measured
by interoreceptors (by the vestibular organ in this case).

The final sensor subset is homoeostasis. They supply internal control loops, of which we are largely
unaware, with sensory information. For example, to manage the pH level in the stomach.

A research question is what sensors are used and their relative importance. In table 3.1, the states
that can exist in any bicycle model are summarised. In table 3.2, all the sensors organs which can
measure these states are listed.

Table 3.1: Bicycle states.

Name Symbols

Bicycle roll angle, rate and acceleration 𝜙, 𝜙̇, 𝜙̈
Bicycle steer angle, rate and acceleration 𝛿, 𝛿̇, 𝛿̈
Bicycle forward position, velocity and acceleration 𝑥, 𝑣, 𝑎
Bicycle lateral position, velocity and acceleration 𝑦, 𝑦̇, 𝑦̈
Bicycle heading angle, rate and acceleration 𝜓, 𝜓̇, 𝜓̈
Roll torque 𝑇𝜙
Steer torque 𝑇𝛿

Table 3.2: Sensors relevant for bicycle control.

Type Name Measured states Symbols

Exteroreceptors Vision Position, velocity, heading 𝜙, 𝜙̇, 𝛿, 𝛿̇,
𝑥, 𝑣, 𝑦, 𝑦̇,
𝜓, 𝜓̇

Interoreceptors Vestibular ­ Semi circular channels Roll rate, heading rate 𝜙̈, 𝜓̈
Vestibular ­ Otoliths Linear accelerations 𝑎, 𝑦̈
Muscle sensors ­ Golgi tendon organs Muscle force 𝑇𝜙, 𝑇𝛿
Muscle sensors ­ Muscle spindles Muscle length and velocity 𝜙, 𝜙̇, 𝛿, 𝛿̇

The sensitivity of the different sensor organs is dependent on three different things: intensity, fre­
quency, and the duration of the signal. Intensity is the magnitude of the signal. E.g., brightness or
loudness. If the intensity is too low, the sensor won’t perceive anything. Too high, and the sensor gets
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damaged. The frequency of the signal has to be in a perceivable range. Think of the wavelength of light,
or the frequency of sounds. Lastly, the duration indicates how long a signal has to be measured in order
for it to be perceived. After the maximum duration for a certain intensity, the sensor gets damaged.
These things can be viewed as thresholds and together can be thought of as a perception window, with
each threshold range on a different axis. If the signal is within the bounds of the perception window,
we can measure it. However, it is still possible that we don’t perceive a certain signal, because our
attention is directed somewhere else, or limited by, for example, sleep deprivation. Generally speaking,
the size of our perception window decreases with age. It is also possible to influence the size of our
perception window. An example is a infra­camera in order to increase our frequency range for vision.
Painkillers would lower the intensity range of our pain receptors. The perception window is visualized
in figure 3.5.
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Frequency 
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Figure 3.5: Sensory system perception window.

The collected information is transmitted from the sensors to the CNS through the afferent nerve
fibres by means of ”spikes”. A spike is generated by the triggering of a sensor or another neuron. In
simple terms, it is a short reversal of the potential of a nerve cell. The information is frequency en­
coded, this means that the number of spikes per second is an indication of sensor activation. The
spikes propagate along the nerve cells with a neural transmission speed as low as 2 m/s and up to 100
m/s. Considering that the longest nerves can have a length in excess of 1 m, the neural transmission
speed can introduce significant delays to the system.

In order to implement these sensors in our model, we need a description of the transfer between the to
be perceived signal and the afferent neural response to the CNS. Also, we need to know the perception
window and delay characteristics of each sensor as they can influence the control behaviour. For each
sensor listed in table 3.2, such a representation is given in the subsequent sections.

3.3.1 Visual system
Table 3.2 shows that the visual system is themost versatile sensor, as it canmeasure themost states. In
the context of the human control structure used in this thesis (figure 3.1), the visual system is considered
to be the entire pipeline from eyes to processed data (i.e., position, velocity and heading information)
which can be used by CNS. Therefore, it consists of the eyes, the parts of the brain that processes the
information, and the nerves connecting them with each other and to the CNS. An in­depth neurological
description of the visual system can be found in the book by Purves et al. [72]. Here, we focus on the
perception mechanism and the associated dynamics, thresholds and delays.

The exact mechanism(s) humans use to derive information using the visual system is not fully un­
derstood yet. Generally, it is accepted that we use ”visual­flow” cues of some sort to infer self­motion.
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This both takes place at the central visual field, where our attention is directed, or at the surrounding
peripheral visual field. In the central visual field precise information of the motion of objects is attained,
whereas in the peripheral visual field, more general (non­cognitive) information on ego­motion is gath­
ered [14].

One of the first (if not the first) source to describe visual flows and how humans could use this, is
found in the book by Gibson [35]. Gibson notes that towards the end of World War II2 the hypothesis
was formed, which still to this day has implications. In simple words, Gibson phrased it like this: ”the
visual space should be conceived not as an object or an array of objects, but as a continuous surface
or an array of adjoining surfaces”[35]. In his book, Gibson drew visual flow­fields humans could use to
derive depth andmotion. However, they lacked general mathematical descriptions which were provided
by a great number of papers sparked by the book by Gibson, and more recent, by the developments
for autonomous driving. A fairly recent review of the methods developed to estimate ego­motion using
a visual observer until then is given by Raudies and Neumann [73]. A nice visual representation of
visual flow under the influence of ego­motion can be found in the article by Britten [15], which can be
seen here in figure 3.6.

Figure 3.6: a) Visual flow vectors resultant from movement towards the green X and horizontal eye movement to the right. b)
The resultant visual (or retinal) flow field. (source: [15]).

Another mechanism mentioned in Nash et al. [65], which is slightly different than the other visual­
flow based methods, is described by Zacharias et al. [104]. Here, instead of measuring how the visual
scene flows, the rates of change of vectors between ourselves and certain objects in our visual field
are measured. These can be used to calculate the time before we cross a certain boundary, or collide
with a certain object.

Using the mechanisms above, it can readily be explained that it is possible to determine distances,
translational and rotational velocities, and heading. However, it is more questionable if we measure
accelerations with our visual system, or just infer it from successive attentive visual velocity measure­
ments. Gordon [36] makes the case that the acceleration visual field looks unnatural, and therefore
that acceleration is not a primary visual input. Unfortunately, no research has been found that inves­
tigated time­bound visual acceleration perception thresholds, as delays could be an indication of the
perception mechanism used.

Due to the complexity (and differing possibilities) of the organs and mechanisms involved with visual
perception, it is difficult to give a dynamic representation of the system. Often a unity gain between the
signal and the resulting neural afferent response to the CNS, is assumed.
2During World War 2 the understanding of visual perception was of sudden interest in order to aid aircraft pilots, primarily with
landing when the estimation of the correct distance to the ground was of great importance
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Hosman [40] described the velocity measurement mechanism of humans, based on the work by
Van de Grind [91], as a simple bilocal motion detector (figure 3.7). Each bilocal motion detector is only
sensitive to a single velocity. Therefore, a very large number of motion detectors, each sensitive to
a different velocity, are located in the visual cortex. Furthermore, Van de Grind et al. [92] found that
the bilocal motion detectors could be roughly divided in two groups: one sensitive for higher delays,
which have a constant time delay (𝑇 in figure 3.7) and a varying span between the retinal receptors (𝑆
in the figure 3.7). The other group of bilocal motion detectors is sensitive to lower velocities, of which
the time delays vary, but the retinal receptors have a constant span. The time delay of the detector
varies between 65 ms for higher velocities, and between 1 to 5 seconds for lower velocities. The critical
velocity that divides these two groups cannot be given precisely. Other than the time delay caused by
the characteristics of the bilocal motion detector, an additional delay is introduced by the transmission
time between the visual organs and the CNS and the processing time needed for perception.

Summarizing the above, the unity gain, denoted by 𝐾, extended with the bilocal motion detector
delay 𝜏1, and the neural transmission and processing delay 𝜏2, results in a transfer function of the
following form:

𝐻𝑣𝑖𝑠(𝑠) =
Afferent neural response

Visual stimulus
= 𝐾𝑒−𝑠(𝜏1+𝜏2) (3.4)

It is difficult, if not impossible, to measure the additional delay 𝜏2 directly with some certainty. Usually
the entire delay from stimulus to motor command is measured, and even then it is difficult the discern
between neuromuscular lags and neural processing delays.

An early, well known, source to visual time delays, is the article by McRuer and Jex [58]. He found
by fitting his well known crossover model to simple tracking tasks that visual time delays decreased with
increasing forcing function bandwidth. McRuer and Jex [58] inferred that this was done by tightening
up the neuromuscular loop. In the case of their experiment, that meant that subjects increased their
grip on the control stick. Depending on the dynamics of the controlled element and the forcing function
bandwidth, delays were found to be between 0.1 and 0.5 seconds.

An article that provides some insight in the make­up of the visual perception time delay is written by
Kawakami et al. [46]. They measured the latency of magnetoencephalograph (MEG) response of the
cortical regions involved in visual motion detection to real motion in a wide speed range, and compared
it with the human reaction time to pressing a button for the same objective. MEG response latency was
found to be between 0.1 and 0.2 seconds. Response times were found to be between 0.25 and 0.5
seconds. Both the MEG response latency and reaction time decreased with increasing motion stimulus
speed. One should note that the delay could also depend on the stimulus.

Figure 3.7: Bilocal motion detector, which only activates if the 𝑇 seconds delayed response measured at 𝐹1 coincides at the
comparator 𝐶2 with the response of 𝐹2. (source: [91])

Another interesting avenue to evaluate the visual perception of motion by humans, is through vec­
tion. Previc and Mullen [71] compared the latencies of visually induced postural change and self­motion
perception under identical visual conditions. They found an increase in postural instability several sec­
onds before a subject begins experience vection. The deemed that delay of several seconds in the
postural response to visual field shifts would render it ineffective in helping to prevent most naturally
occurring falls.



3.3. Sensory model 19

In the literature review article by Nash et al. [65], the doctoral thesis of Bigler [7]3 is mentioned. Bigler
used a driving simulator simulator to measure yaw angle and lateral displacement thresholds. He
found the visual system to have a low­pass characteristic, and could be described for both yaw and
sway motions with the following low­pass filter:

𝐻𝑆𝐶𝐶(𝑠) =
Afferent neural response
Visual yaw/sway stimulus

= 0.810
𝑠 + 0.810 (3.5)

3.3.2 Semi­circular­canals
The semi­circular­canals (SCC) are part of the vestibular organ and are sensitive to rotational acceler­
ations. In total there are three canals, which located in each inner­ear approximately perpendicular to
each other. Two types of hair cells in the organ measure deflections of the canals. The afferent neural
response of type I hair cells correlate with the deflection and rate of deflection of the hairs (ciliae) on
the cell. Type II hair cells generate an afferent response which correlates only with the deflection of the
ciliae.

Fernandez and Goldberg [31] formulated a transfer function describing the relationship between
rotational accelerations and the afferent neural response based on the dynamical properties of the
SCC’s and the measurements done on monkeys:

𝐻𝑆𝐶𝐶(𝑠) =
Afferent neural response

Rotational acceleration stimulus
= 𝜏𝑎𝑠
1 + 𝜏𝑎𝑠

⋅ 𝐾(1 + 𝜏𝐿𝑠)
(1 + 𝜏1𝑠)(1 + 𝜏2𝑠)

(3.6)

In his doctoral thesis, Hosman [40] presents parameters for the formula found by ? ] that the describe
the human SCC’s. The parameters were based both on literature review and experimental data he
gathered. He omitted the first part of the transfer function dependent on 𝜏𝑎 (called the adaptation term),
because that part is only important for long duration or very low frequency stimuli. These parameters
are:

• Adaptation time constant 𝜏𝑎 = 80 s

• Neural lead term 𝜏𝐿 = 5.92 s

• Time constant 𝜏1 = 0.11 s

• Time constant 𝜏2 = 0.005 s

• Gain 𝐾 = 5.73

Plotting transfer function 3.6 and the limited transfer function without the adaptation term using the
above parameters, results in the bode diagram shown in figure 3.8. It can be seen that, when the
stimulus frequency is higher than 0.1 rad/s, the SCC’s approximately acts as an integrator. Hence, the
afferent neural response correlates with the rotational velocity instead of rotational acceleration in this
region.

Numerous studies have been done to establish SCCmeasurement thresholds. An overview is given
by Nash et al. [65]. Thresholds were found to be frequency dependent, and between 0.02 to 0.1 rad/s.

In literature, there is a lot of discussion on the vestibular time delay. Some studies find significantly
longer vestibular delays than visual delays (a review of these studies: [5]). While in other studies,
the latency to the onset of the Visual­Occular­Reflex is found to be only 5­9 ms [4]. In a closed­loop
pilot­control experiment, vestibular delays have been found to be lower than visual delays (a 150 ms
difference) [103].

3.3.3 Otoliths
The otoliths measure transversal accelerations4 in three orthogonal axes. They are similar to the
SCC’s, as they also generate a afferent neural response as a function of the deflection and rate of
3Not freely accessible, so the findings of Nash et al. [65] are used
4More correct, but less clear, is using specific force instead of acceleration. The specific force can be found by subtracting the
gravity vector from the acceleration vector acting on the otoliths. In this thesis, when talking about accelerations, the gravity
contribution is never included unless specified otherwise



20 3. Theoretical foundation for bicycle­rider control modelling

-40

-30

-20

-10

0

10

20

M
ag

n
it

u
d
e 

(d
B

)

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

45

90

P
h
as

e 
(d

eg
)

Limited

Complete

Bode diagram SCC transfer function

Frequency  (rad/s)

Figure 3.8: The bode diagram of the transfer function describing the relation between rotational acceleration stimulus and
afferent neural response in red as derived by Fernandez and Goldberg [31] using the parameters found by Hosman [40]. In

blue the transfer function without the adaptation term is used.

deflection of the ciliae on type I and II hair cells. The ciliae extend in a jelly­like layer which contains
calcium­carbonate stones. This layer moves under the influence of transversal accelerations.

Fernandez and Goldberg [32] found, using similar methods as for the SCC’s, the transfer function
describing the transferral velocity stimulus and afferent neural response of monkeys:

𝐻𝑜𝑡𝑜(𝑠) =
Afferent neural response

Transversal acceleration stimulus
= 𝐾1 + 𝐾𝑎𝜏𝑎𝑠1 + 𝜏𝑎𝑠

⋅ 1 + 𝐾𝑣(𝜏𝑎𝑠)
𝐾𝑣

1 + 𝜏𝑚𝑠
(3.7)

However, the term (𝜏𝑎𝑠)𝐾𝑣 makes it difficult to use this transfer function for modelling purposes. There­
fore, often a simplified transfer function is used (first derived by Young and Meiry [101]):

𝐻𝑜𝑡𝑜(𝑠) = 𝐾
1 + 𝜏𝑛𝑠

(1 + 𝜏1𝑠)(1 + 𝜏2𝑠)
(3.8)

Over the years numerous research papers were written ([101], [68], [40], [88])5 that derive the constants
of this transfer function.

In figure 3.9 the bode diagram of transfer functions using the different derived parameters 3.8 is
shown. It can be seen that the the relation between transversal acceleration stimulus and afferent
neural response is quite non­linear.

In similar fashion as with the SCC thresholds, Nash et al. [65] compiled the otolith thresholds of
different studies done on them. There is a less clear frequency­threshold relation as with the SCC’s.
This is attributed by Nash et al. [65] to different experimental methods. The thresholds found are
between 0.02 and 0.09 m/s2.

3.3.4 Golgi tendon organs
Deformation of amuscle tendon correlates with the force generated along that tendon. This deformation
is measured by the Golgi Tendon Organs (GTO’s). Therefore, the afferent neural signal generated by
the GTO’s provides the CNS with information on muscle forces. The first article to model this relation
was by Houk and Simon [42]. Their linear model was of the following form for the measured afferent
responses of the GTO’s located in the legs muscles of cats:

𝐻𝐺𝑇𝑂(𝑠) =
Afferent neural response
Muscle tendon force

= 𝐾(𝑠 + 𝑛1)(𝑠 + 𝑛2)(𝑠 + 𝑛3)(𝑠 + 𝑑1)(𝑠 + 𝑑2)(𝑠 + 𝑑3)
(3.9)

5Based on a recent review paper by Asadi et al. [3]
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Figure 3.9: The bode diagram of the transfer function describing the relation between transversal acceleration stimulus and
afferent neural response (equation 3.8) using the parameters found by the different studies. The gains 𝐾 have been scaled just

as in [65] in order to give comparable outputs.

The Houk and Simon [42] model is still used, however a more complicated non­linear model which
captures the effects of self­ and cross­adaptation was developed by Mileusnic and Loeb [62].

In a literature review on the GTO’s by Jami [43], the characteristics of the GTO’s are described in
depth. Summarizing, the sensitivity of the GTO’s is found to be as low as 5 to 20 𝜇𝑁 for small force
amplitudes, and independent of frequency in a frequency range between 10−1 and 102 Hz. Further­
more, the sensitivity was found to be independent of the tendon dynamics itself. Delays under 10 ms
between tendon stretch and GTO activation were measured.

The bode diagram transfer function described in equation 3.11, using parameters describing the
triceps surae (calf muscle) found by Houk and Simon [42], is shown in figure 3.10.

3.3.5 Muscle spindles
Just like the GTO’s, the muscle spindles are sensors attached to the muscle fibers. There are two
types of afferent nerves connected to the muscles spindles: the Ia and II sensory nerves. The Ia
afferent response correlates with muscle length and velocity. The II afferent response correlates only
with length. A visualization of the frequency encoded afferent signals of both nerves is shown in figure
3.11. The first to derive a model, describing the behaviour of the afferent sensory nerves of the muscle
spindles under isolated conditions, were Poppele and Bowman [70]. They concluded that the behaviour
was linear, and formulated the following transfer functions:

𝐻𝐼𝑎(𝑠) =
Afferent neural response
Muscle length and velocity

= 𝑠(𝑠 + 0.44)(𝑠 + 11.3)(𝑠 + 44)
(𝑠 + 0.04)(𝑠 + 0.816) (3.10)

𝐻𝐼𝐼(𝑠) =
Afferent neural response

Muscle length
= (𝑠 + 0.44)(𝑠 + 11.3)(𝑠 + 44)

(𝑠 + 0.816) (3.11)

These transfer functions are based on a data fit, which in this case resulted in improper transfer func­
tions. These can’t be used as is in a modelling context. The authors of [95] conclude that the above
transfer functions are often to detailed to use in an integrated model. They advice that, for good mod­
elling, it is more important to have realistic time delays and noise levels. For good measure, the bode
diagrams of the Ia and II sensory nerves are included in figure 3.12.

Matthews [57] investigated the delays of the muscle spindles. He found a short latency delay of
25­30 ms for the Ia afferent nerve, and a longer latency delay of 40 ms for the II afferent nerve. This
does not include any neural processing time.
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Figure 3.10: The bode diagram of the transfer function describing the relation between rotational acceleration stimulus and
afferent neural response of the triceps surae as derived by Houk and Simon [42].

Figure 3.11: The frequency encoded response of the II and Ia afferent nerves. The II afferent nerve is mainly sensitive to
length, while the Ia afferent nerve is sensitive to muscle velocity (source: [95]).

Nash et al. [65] reported on the findings by Newberry et al. [67] and Bigler [7]. They found, when
investigating the perception of the steering wheel angle in cars, that the average displacement threshold
was between 0.005 and 0.03 rad.

3.3.6 The effect of multimodality
Up till now, all the sensors and their characteristics have been discussed as separate entities. However,
for the cycling task, it is very likely that different sensors are used together to estimate all the relevant
states. This can have a profound effect on the overall perception window of the rider.

When investigating these effects in more detail, it became clear that there many compounding
effects that influence all dimensions of the perception window (intensity, frequency and duration).

In the research by [86], (optimal) sensory integration of the Otoliths and the SCC’s is proven, which
results in a lowered eccentric rotation perception threshold. Similar findings, but for visual­vestibular
integration are presented in [23].

Using natural motion cues, Karmali et al. [45] found that visual and vestibular perceptual thresholds
each demonstrate better precision at specific frequencies and also exhibit optimal integration. Pre­
cisely, they found that the visual and vestibular thresholds were indistinguishable at 0.05 Hz and 2 Hz,
vision was more precise between 0.1 and 1 Hz and less precise than the vestibular system above 2
Hz.

Zaal et al. [102] found that in a combined pitch tracking and disturbance­rejection task, pitch motion
in addition to visual cues significantly improved tracking performance due to a lower effective time delay.
However, they also noted that this effect is likely task­dependent.
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Figure 3.12: The bode diagram of the transfer functions of the II and Ia afferent nerves. The parameters used are from [70].

3.3.7 Discussion on sensory model selection
A main topic of research should be, to what level of detail a sensory model needs to be implemented.
As found in section 2, were the current state­of­the­art was evaluated, sensory models are not included
in any bicycle model until now.

For all the sensory organs in table 3.2, mathematical descriptions of the sensory dynamics, percep­
tion windows, and neural delays are available. To what degree these descriptions need to be imple­
mented in order to yield realistic overall results, is debatable according to some authors, but at least
the neural delays should be implemented [95]. For bicycle­rider control modelling it depends on how
big the effect is of the sensory dynamics on the closed­loop behaviour of the system. For the control of
a unstable bicycle, for which an unrecoverable fall can occur within seconds, it makes sense that the
neural delays have a large impact on the closed­loop behaviour.

In general, the vestibular delays were found to be lower than visual delays.

3.4. State estimation
As discussed in the previous section, humans have a wide suit of sensors available that can be used
to determine the relevant states of a bicycle­rider system (refer to table 3.2 for an overview of these
states and sensors). In the context of this research, the process of deriving these states of the bicycle
model (e.g., roll, steer, and heading), from measurements done by the human senses, in a way that
mimics human behaviour is called state estimation.

It covers methods to integrate the sensor signals and predict effects of motor actions to improve the
estimation of the states of the bicycle. There are several options, which may be combined, to achieve
this. They are categorised as followed:

• No sensory integration

• Linear weighing of sensory signals

• Bayes’ theorem based

• Kalman filtering based

• Prediction

In this chapter, these five state estimation methods are shortly introduced.
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3.4.1 No sensory integration
The simplest option is to skip integration or estimation steps, and to just provide the states of the bicycle
model directly to the controller. This has some degree of realism, because as found in section 3.3, all the
bicycle states can in theory be measured by the rider. This is the method that is used primarily when
modelling bicycle rider control behaviour. Validated examples are given by Moore [63] and Schwab
et al. [79]).

3.4.2 Linear weighing of sensory signals
Depending on how the human senses are modelled, certain states can bemeasured by multiple senses
(e.g. roll rate by the vestibular and by the visual system). A simple way of fusing multiple sensory
signals, is by assigning weights to them in order to add them up to a weighted sum. Hosman and
Stassen [41] uses this approach to model the perception of a pilot controlling an aircraft. Vestibular
and visual cues are combined using linear weights, which are found using experimental data. The
model Hosman and Stassen [41] uses is shown in figure 3.13.

Figure 3.13: A pilot perception model using linear weightsWc,att,Wc,rate,WP,rate, andWSCC (source: [41]).

In the context of bicycle rider control modelling, linear weighting is used by Soudbakhsh et al. [85].

3.4.3 Bayes’ theorem based
Bayes’ theorem enables you to calculate the probability of an event, using prior knowledge related to
that event. This relation can be described with the following equation:

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) (3.12)

Here, 𝑃(𝐴|𝐵) is the probability of event 𝐴 occurring, given that event 𝐵 already occurred. 𝑃(𝐵|𝐴) is the
reverse of that: the probability that event 𝐵 occurs, given that event 𝐴 already occurred. 𝑃(𝐴) and 𝑃(𝐵)
are the probabilities of event 𝐴 or 𝐵 occurring respectively. Ma et al. [55] wrote a article, describing
the principle of using Bayesian inference, to derive an optimally estimated mean (equation 3.13) and
variance (equation 3.14) from multiple observations in a human context.

𝜇 = 𝜎21
𝜎22 + 𝜎22

𝜇1 +
𝜎21

𝜎21 + 𝜎22
𝜇2 (3.13)

1
𝜎2 =

1
𝜎21
+ 1
𝜎22

(3.14)

3.4.4 Kalman filtering based
A Kalman filter uses knowledge about the process and measurement dynamics of the system, inputs
to the system, and the measured outputs of the system, to get a better estimate6 of the internal states.
6A minimum mean­square error estimate, to be precise
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This makes sense if not all states are (accurately) measured, or multiple measurements of the same
state can be fused.

The Kalman filter is divided in two steps: the predict step and the update step. In the predict step,
the previous state estimate is used to predict the state at the current time­step. In the update step,
this a priori estimate is then combined with the current observed state, in order to yield an improved a
posteriori state estimate.

Assuming that a well­motivated and well­trained human operator behaves in a near optimal manner,
Kleinman [47] developed a model that uses a cascade combination of a Kalman filter, a least mean­
squared predictor, and a set of gains acting on the estimated state. This model provides excellent
agreement between theoretical and measured quantities.

A similar approach was used by van der Kooij et al. [93] in order to model multi­sensory integration
for human stance control. This model was later extended with an adaptive Kalman filter to mimic human
adaptation to noisy measurements [94].

In a review article [29] a detailed case is made that humans integrate information optimally. The
remaining problem is, is that for a Kalman filter to function, process and sensory noise information has
to be provided. In [29], it is argued that it is unlikely that this is prior only information, because that the
sensors can be used in a infinite number combinations of tasks and environments, which causes the
noise characteristics to change. Therefore, it is likely that the noise characteristics are updated on­line.

3.4.5 Prediction
It can be illustrated with a simple example that the human uses some sort of prediction. Let’s consider
someone holding a bottle at a constant position. If that person self­generates a perturbation of the
bottle, this perturbation can be counteracted easily: the grip force is matched and timed with the per­
turbation. If the perturbation has an external origin, this is more difficult. A higher baseline grip force is
required to prevent slippage, and the grip force lags behind the perturbation due to neural time delays.

A good overview of the common interpretation of this mechanism, is given by Marc Jeannerod in
[44]: The notion is that each time the motor centers generate an outflow signal for producing movement,
a ”copy” of this command (the ”efference copy”) is retained. The reafferent inflow signals (from the
sensory system) generated by the movement are compared with the copy. If a mismatch between
the two types of signals is recorded, new commands are generated until the actual outcome of the
movement corresponds to the desired movement. In order to give this mechanism a predictive role,
one must assume the existence of an ”internal model”. This internal model is used to forward simulate
the effects of the action, without waiting for sensory reafference.

A prediction model that aims to mimic human behaviour, is described by Miall et al. [61]. They
suggested that the cerebellum forms two types of internal models. One is a rapid forward predictive
model, predicting the consequences of motor movement. The other model is of the time delays that
exist within the control loop. An adaptation of their model, which mimics a Smith predictor [84], is shown
in figure 3.14. If the internal model is a close match to the plant model, the output of the internal plant
model likely matches the output of the plant. Anymismatch between the two outputs will be corrected by
the delay model. However, a Smith predictor requires the plant to be stable in open­loop configuration
[37]. This limits it’s usefulness for modelling bicycle rider control.

An other way to model human prediction, is the Tapped Delay Line (TDL). When used together with
an Kalman filter, the TDL provides an optimal state estimate [47]. [94] uses a TDL to model human
postural balancing. It should be noted that a TDL only can be implemented in discrete time. The TDL
is illustrated in figure 3.15. The A* and B* matrices in the figure denote the knowledge the rider has
about bicycle dynamics and are used to forward model the impact of the control actions towards the
prediction horizon. The optimal state estimate 𝑥̂[𝑘], as a function optimal state estimate 𝑥̂[𝑘 − 𝜏𝑠] from
a Kalman filter, the (discrete) delay 𝜏𝑠 ,and the delayed inputs, can be calculated using:

𝑥̂[𝑘] = 𝐴𝜏𝑠𝑥[𝑘 − 𝜏𝑠] +
𝜏𝑠
∑
𝑛=1

𝐴𝑛−1𝐵𝑢[𝑘 − 𝑛] (3.15)

3.4.6 Discussion on the methods of state estimation
Based on the evidence that humans have an optimal and adaptive nature when integrating sensory
information, both Kalman filtering and Bayes’ theorem based integration can be used for modelling
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Figure 3.14: The Smith predictor architecture for a system with delay 𝜏 (adapted from [61]).
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Figure 3.15: Visual representation of a tapped delay line with delay 𝜏𝑠. A* and B* denote the knowledge the bicycle­rider has
of the dynamics of the bicycle and the effect of the control input 𝑢[𝑘] on these dynamics. In this figure, the delayed state

estimate 𝑥̂[𝑘 − 𝜏𝑠] which is optimal if provided by a Kalman filter, is used together with the inputs given during the delay period
𝜏𝑠, to forward calculate the current state 𝑥̂[𝑘].

human state estimation. Linear weighing of the sensory channels also is proven to work, but ties in
less well with the notion of an internal model. Linear weighing also requires some assumptions on
if a state is directly measured by a sensor, or derived from other measurements. The Kalman filter
combines these aspects. Furthermore, the approach to gauge the relative importance of the different
sensory channels laid out by [93], where a Kalman filter is used, could also be applied to this research.
This results in the Kalman filter to be the best candidate for modelling sensory integration. On the use
of a prediction algorithm: it is established that humans do some manner of prediction on the effects of
their control actions. Based on literature, the best way of modelling this, is trough the TDL predictor.

3.5. Control
In what is defined as the control part of human cognition, the states derived in the state estimation block
are compared to the control objective (usually balancing of the bicycle), and corrective control action
is applied when necessary. In this section, the aspects of the controller are divided in three sections.
First, the possible structures in which a controller can placed are discussed. After that, the possible
control methods, where the corrective control action is calculated, are discussed. Lastly, the types of
inputs the controller could use for corrective action to a bicycle model, are discussed.

3.5.1 Control structure
Most often, control is applied through a feedback structure, of which the basic representation is given in
figure 3.16. In layman’s terms: the output of the plant is compared to a certain objective. The controller
then provides a corrective input to reduce any error between the output and objective signals.



3.5. Control 27
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Objective Error Corrective input
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Figure 3.16: Visual representation of a basic negative feedback control structure.

The other, more specialized, scheme that is used often for the modelling of human control, are
multiple­loop controllers. An example is given in figure 3.17. Multiple­loop controllers enable the use of
control methods that were originally developed for single­input­single­output systems to multiple­input­
multiple­output systems. A downside is that multiple­loop controller structures often result in elaborate
and over­determined models, which as a consequence, are difficult to identify [64].

Plant
Objective Corrective input

Secondary process variable

Primary process variable

�2�1

Disturbance

Figure 3.17: Visual representation of a multi­loop controller. Here two loops are included, where the inner loop governs the
feedback to the primary control variable (e.g. roll) and the outer loop governs the feedback to a secondary control variable (e.g.

heading).

3.5.2 Control method
Still to this day, one of the leading works that gives insight on human compensatory control, is given
by McRuer and Jex [58]. They found that a human adopts sufficient lead or lag equalization, so that
the slope of the open­loop response of the combined human and controlled element system is ap­
proximately ­20 dB/decade in the crossover region. Based on this, they proposed a two­parameter
crossover model:

𝑌𝑂𝐿(𝑠) = 𝑌𝑃𝑌𝐶 ≐
𝜔𝑐𝑒−𝜏𝑒𝑠
𝑠 (3.16)

Here, 𝑌𝑃 is the transfer function describing the human controller, 𝑌𝐶 is the transfer function of the con­
trolled element, 𝜔𝑐 is the crossover frequency, and 𝜏𝑒 is the effective time delay (from human controller
input to output of the controlled element). The simplest model that can describe human compensatory
behaviour, is given by McRuer and Jex [58] to be:

𝑌𝑃 = 𝐾𝑃
𝑇𝐿𝑠 + 1
𝑇𝐼𝑠 + 1

𝑒−𝜏𝑒𝑠 (3.17)

In the above formula, 𝑇𝐿 and 𝑇𝐼 are respectively the lead and lag time constants. 𝐾𝑃 is the static gain of
the human controller, and 𝜏𝑒 again is the effective time delay. Depending on the controlled element, a
human adjusts the parameters in such a way that the crossover model is valid in the crossover region.
However, it should be noted that bicycle balancing is not a pure compensatory task.

Another way to model human control, that is more suitable for multiple­input­multiple­output mod­
els, is by using proportional state feedback gains. As noted in section 2, the majority of the models
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developed in order to mimic human bicycle control use proportional state feedback gains. There are
usually chosen based on a data fit to experimental data.

There is evidence that humans optimize their control effort in some way [74]. This can be mimicked
by using a Linear­Quadratic­Regulator (LQR). The LQR algorithm uses a plant model to minimize a
cost function, that weighs undesired state deviations against control effort, to find a state­feedback
controller. A desirable characteristic of the LQR algorithm, is that if the cost function is specified and
the system model is provided, the feedback gains are automatically defined by the algorithm and do
not have to be chosen individually.

Model­Predictive­Control (MPC) is another control method that might be suitable to mimic human
control behaviour. MPC uses a model to predict and anticipate to future events for a finite time­horizon.
It then optimizes the current control action by minimizing a control strategy cost function over a receding
prediction horizon. The same argument as for the LQR controller is valid: humans are known to have
an gain­to­effort control strategy. MPC has been used for human control modelling in motorcycles ([56],
[18]). Both articles used MPC to track a reference roll angle, while Massaro et al. [56] also considered
forward velocity as a reference. MPC has the same desirable characteristic that the LQR algorithm
also has: the feedback gains follow from the algorithm. However, now there are slightly more tunable
parameters, namely additional weighting coefficients in the cost function and the length of the finite time
horizon. Also, because MPC does not calculate a single optimal solution for the whole time horizon (like
LQR), it may reach a suboptimal solution. Of course, for human control modelling this is not necessarily
a downside.

Yet another control method that can be used to model human control behaviour, is fuzzy control.
Fuzzy control has been developed in order to convert complex and poorly defined control tasks done
by humans, to a digital controller, by allowing linguistically expressed heuristic control policies to be
converted to fuzzy rules [105] [106]. Although, the usefulness of fuzzy control for modelling bicycle­
rider control is debatable, since riders of bicycles are not capable of describing their control strategy
in­depth [27].

3.5.3 Control inputs
As revealed in section 2, all themodels had one or two different control inputs. Either steer angle or steer
torque was used, sometimes extended with input generated by upper body movement. There is quite
some disagreement between different bicycle control modelling efforts if steer torque or steer angle
should be considered as an control input. Sharp [81] argued, that because the (validated) Whipple
bicycle model has torques as an input, it is logical that the rider uses torque based control inputs.
However, a simple inverse model can be used to make a angle controller suitable for the Whipple
bicycle model, without affecting the results.

It also is shown to be unlikely that body lean is a control input that is used for the balancing task at
all, except the very lowest cycling speeds [77]. This also is shown qualitatively by Kooijman et al. [50],
who filmed bicycle­riders while cycling.

3.5.4 Discussion on control
A controller that follows the principles established by McRuer and Jex [58], would be very powerful in
it’s predictive capabilities. However, it is likely that McRuer and Jex [58] principles do not hold true,
because bicycle balancing is not a pure compensatory task.

LQR or MPC algorithms also provide enticing control methods, as they don’t rely on determining
individual feedback gains, but on weighing control effort versus task performance. This leaves less free
parameters, and can therefore yield better predictive capabilities. These algorithms can only be placed
in the basic feedback structure, so picking these would exclude a multiple­loop structure. This is not
necessarily a downside due to the aforementioned issues that arise when such a controller structure
is used for system identification purposes.

Fuzzy control is difficult the implement, because it is required to express the control law linguistically.
This is difficult, if not impossible, for rider­control tasks.

It is not important, from a modeling perspective, to differentiate between position or torque control.
Body lean as a control input can be excluded, unless cycling at very low velocities is modeled.
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3.6. Neuromuscular dynamics
The use of neuromuscular dynamics in human control models is widespread (Mulder et al. [64] gives
a nice overview). They are usually used to translate a control command given by a human to the
actual realized control input to the controlled system. Essentially, it is a limitation on the bandwidth of
the human control input and it can described by a model which lumps the neuromuscular and control
inceptor systems together [21]. The resulting model has the form of a second order low pass filter.

In the case of bicycle control, the neuromuscular model describes the relation between the neural
torque command given by the rider (𝑇̂𝑐𝛿 ) and the actual output steer torque (𝑇𝑐𝛿 ). This results in the
following description of the neuromuscular dynamics:

𝐻𝑛𝑚(𝑠) =
𝑇𝑐𝛿 (𝑠)
𝑇̂𝑐𝛿 (𝑠)

= 𝜔2𝑐
𝑠2 + 2𝜁𝜔𝑐𝑠 + 𝜔2𝑐

(3.18)

For bicycle­rider identification, Schwab et al. [79] used shoulder muscle parameters from Happee
et al. [38]: the cut­off frequency 𝜔𝑐 = 2.17 ⋅ 2𝜋 rad/s and the damping coefficient 𝜁 = √2. Moore [63]
found that by adding neuromuscular dynamics, his model gave a better approximation of the experi­
mental data.
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Theoretical outline of the proposed

approach
To reach the research objective, and to answer the secondary research questions, a model has to be
developed that is realistic enough in order to conclusively say which sensor channels are used and what
their relative importance is, but also is general enough to be applied beyond the data it is modelled after.
In this chapter the system identification procedure used to reach the research objective is explained.
This results in a range of model structure choices and free parameters. In the second section, the
modelling aspects, detailing how the model is implemented, are elaborated on.

4.1. System identification
System identification is, in principle, quite a straightforward procedure. It can be divided in three steps:

1. Acquiring suitable data.

2. Model structure selection.

3. Fitting the model structure to the data.

The first step is to acquire data that can be used to fit a model to: an experiment has to be designed
and data has to be collected. Afterwards the data often needs to be pre­processed. For example to
filter out noise, or to remove measurement bias.

The second step is to select a model structure. This starts at an elementary level with the choice
between a between a white­box, grey­box, or a black­box model. White­box models are models where
all information is available a priori. So, governing equations (i.e., themathematical relationship between
the parameters) and their parameters are fully given based on the known nature of the system that has
to be identified. If this yields good results, system identification stops after this step. If not, another
approach is to use a grey­box model. Here, the governing equations are prescribed, but (some of)
the parameters are left free. The equations and their parameters still have a physical interpretation.
The free parameters can then be fitted to the experimental data. The last option is to use a black box
model. Now, only the number of parameters (or order) of the model is prescribed. This results in the
parameters losing all physical meaning. For some applications this is fine, but for the purpose of this
research, only white­box or grey box model structures are applicable, because we are interested in the
underlying phenomena (e.g., the bicycle states that are used by the rider), that result in human control
behaviour. However, this still leaves a lot of more detailed model structure choices open. These options
are covered in more detail in section 4.1.3.

The third step is to fit the model to the data and to validate the model. Fitting is done by defining
a criteria that tells how well the model predicts the actual data. Usually this criterion takes the form of
an error that has to be minimized. The minimization itself can be done with a lot of different methods,
both iterative and non­iterative. Validation is usually done by splitting the experimental dataset in two
parts: a part which is used to fit the parameters, and a part which is used to test the fitted model.

31
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If the performance of the model remains good (i.e., the performance criterion remains above some
predefined limit), the system identification procedure is complete.

What needs to be considered, is that in practice, the results at each step influence the final result.
So, if, for some reason, the performance criterion is not met, the procedure becomes iterative. Then
some, if not all, of the previous steps have to be done again using an alternative approach. The steps,
and the iterative nature of the system identification cycle, are visualized in figure 4.1.
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Figure 4.1: The system identification cycle (adapted from Ljung [53]).

4.1.1. Experiment design and description
Two experiments where conducted with cycling on instrumented bicycles that can be used for system
identification of human balancing of a bicycle. One by Jason Moore (and associates) at the University
of California in Davis. The other by George and Christos at the TU Delft. A good overview of the
experiment done at the UC Davis can be found in the dissertation of Moore [63]. Dialynas et al. [24]
describes the experiment done at the TU Delft. In the following two sections, a summary and an
evaluation of the validity of both experiments are included.

UC Davis experiment
The experiment done at the UC Davis was designed to excite the rider/bicycle system in such a way
that the parameters of the rider control system could be identified. Three different subjects of similar
age, mass and (good) bicycling ability where used. The riders where attached rigidly to the bicycle
frame by means of a harness which restricted upper­body movement, and magnets attached to the
knees of the rider, to prohibit leg movement1. This ensured that the only means to stabilize the bicycle
was through control of the handlebars.

There are two reasons for this. In a study on human control of a bicycle [49], visual observation
showed that very little upper­body lean occurred, and that stabilization is done by steering control
actions. This is an indication that a high fidelity model can be identified with just handlebar control as
an input.

1While [49] found that very little upper­body lean occurred during normal cycling, at speeds below 1.4 m/s (5 km/h) knee move­
ments became very large. Hence the restriction of knee movement.)
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Table 4.1: Overview of the number of runs done in different categories during the UC Davis experiment. A portion of the runs
done are not suitable for identification purposes for various reasons such as corrupted data and large forward velocity changes.

The numbers in brackets indicate the total number of runs done in a certain forward velocity range, while the unbracketed
number indicates runs that are selected for use in the further identification procedures. In the ”Other” category are runs with

other done with other task descriptions.

Environment Treadmill Pavillion
Task description Balance with disturbance Other Balance with disturbance Other
1­2 𝑚/𝑠 0 0 3 (5) 20
2­3 𝑚/𝑠 7 (8) 19 14 (17) 40
3­4 𝑚/𝑠 3 (3) 13 18 (25) 39
4­5 𝑚/𝑠 7 (7) 19 29 (50) 72
5­6 𝑚/𝑠 1 (1) 0 4 (16) 52
6­7 𝑚/𝑠 2 (2) 4 0 2
7­8 𝑚/𝑠 6 (8) 19 0 0
8+ 𝑚/𝑠 0 (3) 3 0 0
Total 26 (32) 77 68 (113) 225

Table 4.2: The sensor suite of the Davis instrumented bicycle

Measurement Sensor type
Roll angle Potentiometer
Steer angle Potentiometer
Roll rate IMU
Yaw rate IMU
Pitch rate IMU
Steer rate Single axis rate gyro
Rear wheel rate Rotary encoder
Steer rate Gyro
Linear accelerations IMU
Lateral perturbation force Load cell
Steer torque Magnetostrictive torque sensor

The second reason is that the Whipple bicycle model does not have upper­body lean as a degree
of freedom. Allowing upper body lean as an additional degree of freedom would probably require an
extension to the Whipple model equations in order to reach matching behaviour of both the predicted
bicycle roll and steer angle. This opens up a whole new can of worms: how the model a free moving
bicycle rider?2

The experimental runs where performed in two different environments: on a horse treadmill and in
a large gymnasium. Both environments had their up and downsides. The horse treadmill was only 1 m
wide and the environment was static. This reduces the fidelity of the environment and could influence
the riders’ control strategy. The gymnasium was limited in space, and runs could only be performed at
a straight sections which was 30 m long. The maximum travel speed was limited to 7 m/s.

The runs where conducted at different forward velocities between 1.4 and 9 m/s (5 and 32 km/h),
during which the bicycle was impulse perturbed by applying a lateral force at the seat post. The direction
of the perturbation was randomized. In table 4.1 an overview is provided of the number of runs done.
The numbers of the runs, according to the labeling system used by Moore, is included in appendix A.5.

The sensor suite on the bicycle was quite extensive. In table 4.2, all the directly measured states
and their respective sensors are listed. The data was collected with a sampling interval of 1/200 s.
Furthermore, the bicycle was equipped with motor, which could keep the bicycle at a constant forward
velocity.

2Realistically is the magic word here. The modelling itself is not that difficult and is not unprecedented. But, to do this properly,
it is likely that a separate experiment is required in order to validate any assumptions made in such a model
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Figure 4.2: A participant of the UC Davis study riding the instrumented bicycle on a horse treadmill (source: [63]).

TU Delft experiment

At the TU Delft, an experiment to identify the importance of torque feedback on the control task was
conducted. In total, fifteen different subjects conducted two types of runs during which the riders were
laterally perturbed. For the first run type, steering feedback was enabled. In the second type of runs
steering feedback was disabled. The riders where not rigidly attached to the bicycle frame. This has the
disadvantages described in the section on the UC Davis experiment. An advantage of not attaching
the riders rigidly to the bicycle frame, is that this is more realistic. In a third type of runs, the steer
motor gave a impulse perturbation. These runs are not used in this research, because they can’t be
compared to the UC Davis runs. Furthermore, the posture of rider on the bicycle influenced the results
greatly. This increases the inter subject variability, which makes fitting a general model even harder
than it already is.

The trials where performed at a public cycling path (without interference from other road users).
This has as a benefit, that this is the actual environment we are interested in, so the fidelity of the
environment is high. However, it also introduces a lot of uncontrolled (and unmeasured) variables,
such as weather and cycling path conditions. These variables could influence the control behaviour of
the cyclist.

The runs where performed at four different forward velocities (2.6, 3.7, 4.5, and 5.6 m/s). During the
runs, the subjects where laterally impulse perturbed bymeans of a rope. This only allowed perturbations
in one direction, but the authors found that this did not influence the results. In table 4.3 an overview
is provided of the number of runs done.

The bicycle itself is not only equipped with the mechanism necessary to influence the steer torque
feedback, but also with additional sensors which measure the states of the bicycle. The sensors are
listed in table 4.4. The sensor suite is less extensive than the one on the Davis instrumented bicy­
cle. Relevant signals, such as roll angle and steer torque, are estimated using the available sensor
channels. The data was collected with a sampling interval of 1/1000 s. Just as the Davis bicycle, the
Delft bicycle is equipped with a motor and cruise control system, which keeps the bicycle at a constant
forward velocity.
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Table 4.3: Overview of the number of runs done during the TU Delft experiment. In the ”Other” category are runs done without
steer feedback or are done with steer perturbations.

Cycling path
Task description Balance with disturbance Other
2.6 𝑚/𝑠 15 30
3.7 𝑚/𝑠 15 30
4.5 𝑚/𝑠 15 30
5.6 𝑚/𝑠 15 30
Total 60 480

Table 4.4: TU Delft instrumented bicycle sensor suite

Measurement Sensor type
Steer angle Rotary encoder
Roll rate IMU
Yaw rate IMU
Pitch rate IMU
Rear wheel rate Rotary encoder
Linear accelerations IMU
Lateral perturbation force Load cell

Figure 4.3: A participant of the TU Delft study riding the instrumented bicycle while being perturbed by George (source: [24]).

4.1.2. Data pre­processing
The general aim of data pre­processing is to create a data set on which system identification methods
can be applied and of which the individual trials can be compared fairly. Three different stages of data
pre­processing are defined:

1. Preliminary data pre­processing

2. Extracting the relevant human response

3. Labelling outliers

Preliminary data pre­processing
In the first stage the raw measurement data is processed in order to have signals that can be used for
further system identification. So, if necessary, the raw measurement data is synchronized, calibrated,
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and filtered. Furthermore, unmeasured states that are required for system identification are estimated.
The processing procedures used are described in Moore [63] and Dialynas et al. [24] for the UC Davis
and the TU Delft experiments, respectively. In this research, these procedures are unaltered.

Extracting the relevant human response
In the second stage of data pre­processing, the aim is to separate the human response to the pertur­
bation from other effects caused by unknown disturbances and noise.

As explained in section 3.5, the rider controls the bicycle primarily through the handlebars, the han­
dlebar steer angle is selected is the relevant human response. Handlebar steer torque is not selected
for three reasons:

1. The steer torque generated by the bicycle rider was not directly measured in the TU Delft exper­
iment.

2. There does not have to be a clear relation between steer torque and steer angle. I.e., it is possible
to end up with a model that predicts the steer torque correctly, but the steer angle incorrectly.
Moore also found this in his research and mentioned two possible causes: the knife­edge, no
side­slip wheel contact assumptions in the Whipple bicycle model and the un­modeled passive
rider contribution. It is easy to get lost in trying the figure out the actual relationship between the
steer torque and the steer angle.

3. The handlebar angle has a very big influence on the heading of the bicycle. [79] found that bicycle
heading might be a control objective of the bicycle rider.

For this research, approximately the same method as in [22] is used, which was fitting a Finite­
Impulse­Response (FIR) model to the experimental bicycle­rider data in order to describe the relation­
ship between the perturbation and the human response. This FIR model is then subsequently filtered
with a 8th order low­pass Butterworth filter with a cut­off frequency of 10 Hz.

The validity of this approach is based on three assumptions:

1. The bicycle­rider system is asymptotically stable.

2. The process noise is uncorrelated with the measurement noise.

3. The human response has a linear relationship with the perturbation.

The last two assumptions are not likely to be strictly true, but in practice the FIR model has a decent
Variance­Accounted­For (VAF) with the raw measurement data. This indicates that only little potentially
useful information is removed from the data.

The approach described by [22] is slightly altered because two problems were encountered when
using it for this research:

1. Upon visual inspection, the low­pass filtering of the FIR model caused smearing.

2. For some of the pavilion runs in the UC Davis data, the perturbations followed each other too
closely. This caused one of the principles of the FIR model to become invalidated: the oscillations
caused by the perturbation do not die out after the number of samples which was prescribed by
[22], because a second perturbation was applied within that sample range (which was 768).

The cause of the first problem was traced to the properties of the Butterworh filter. For the cut­off
frequency used in [22], the filter induces a significant group delays (frequency dependent delays) that
can be between 0.08 and 0.15 seconds, which is in the same order of magnitude as human control
delays. The group delay is plotted in figure 4.4. It can be seen that the 20 Hz cut­off frequency filter
has the same, albeit reduced, issue. Removing the filtering step improves the results in terms of VAF
with the experimental data for all runs in the data­set used by [22], leaving questions to why it is used.
One explanation might be that when the FIR data pre­processing method is applied to the measured
roll angle data from the UC Davis experiment, the unfiltered result is quite noisy. However, also [22]
only used the steer angle to determine the fitting criterion. In this research the filtering step is skipped
entirely.
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The second problem can be solved by reducing the number of samples to 600. This did not have a
big effect (<1% VAF difference for most data) on the VAF of the FIR model with the experimental data.
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Figure 4.4: The group and phase delay are shown, in seconds, as a function of signal frequency for a 10 Hz and a 20 Hz
low­pass filter cut­off frequency. The signal sampling frequency is 200 Hz.

In figure 4.5, a FIR model fitted to a run is shown for three different conditions (filter cut­off frequency
= 10 Hz, filter cut­off frequency = 10 Hz, and no filtering) and for three different FIR sample sizes (200,
400, 600). A run from the UC Davis data set is used, which is sampled at 200 Hz.

This figure gives insight in several things:

• It shows the effect of the group delay induced by the low­pass Butterworth filter.

• There is little difference between the 400 and 600 sample FIR models. This indicates that using
larger sample sizes when calculating the FIR don’t have a big influence on the final FIR model
form.

• The FIR model is unaffected by artifact present in the experimental data (the spike slightly after
2.5 seconds).

The VAF with the experimental data of an unfiltered 600 sample size FIR model for the entire UC
Davis data­set is shown in figure 4.6. Several interesting things can be noted:

• The VAF is, on average, lower for the treadmill data. This is because the run durations are longer
for the treadmill data: a generic pavilion run has between 2 and 5 perturbations, while the treadmill
runs usually have more than 9 perturbations. Therefore the intrasubject variability is filtered out
better for the treadmill data, but the VAF with the experimental data is lower.

• For both environments, the FIR­models fitted to the data generated by Charlie have a variance
that is significantly higher than those of Luke and Jason. This is of course strange, as it essentially
means that for some runs the FIR model can approximate Charlie better than for other runs. This
could indicate that Charlie might not be a proficient bicycle rider, but this is not noted by [63], as
he describes the participants to all have similar cycling ability. Maybe Charlie just has a more
variable way of cycling.
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Figure 4.5: The FIR model fitted to a run is shown for three different conditions (filter cut­off frequency = 10 Hz, filter cut­off
frequency = 10 Hz, and no filtering) and for three different FIR sample sizes (200, 400, 600). The original data is sampled at

200 Hz. Note that the evaluated run has a total length of 60 seconds and contains a total of 7 lateral roll perturbations
perturbations which all contribute to the final FIR model. For visualization purposes, only a small slice of 3.5 seconds of the run

is shown in the figure.
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Figure 4.6: Boxplots of the VAF values of the FIR model with the experimental data.

Outliers
An outlier is a data point that differs significantly from the set of observations it belongs to. A difficult
aspect of data analysis are classifying outliers and how to deal with them. In this case, we want to find
experimental runs that are outliers; in the FIR models that are fitted to these runs to be precise. This is
done by calculating the median FIR model from all runs in a data set. The outliers are then classified
using the VAF’s the individual responses have with this median response.

The classification itself is usually done with methods based on the statistical distribution of the data
set. An example of such a method is removing outliers that are farther away than three times the data
set variance from the mean of a normally distributed dataset. Unfortunately, in this case, the data set
does not have a clear statistical distribution. Therefore, a lot of outlier detection algorithms can’t be
applied. In the end, the following (robust) outlier detection methods are used and compared:

1. Detection based on the Median­Absolute­Deviation (MAD)
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2. Detection based on the Interquartile Range (IQR)

3. Naive detection based on a minimum VAF threshold (TH)

The MAD is the median of the distances between the data points and the median of the data set. It
is formally defined in equation 4.1 for data set 𝑋. A data point is classified as an outlier if it is more than
three Median­Absolute­Deviations away from the median. The IQR is the distance between the 25th
and 75th percentiles. Using the IQR, outliers are defined as data points that are farther than 1.5 times
the IQR away from the 25th or 75th percentile3. Extreme outliers lie farther than 3 times the IQR away.
The IQR, and how it can be used to detect outliers, is visualized in figure 4.7. Both the MAD and IQR
outlier detection methods are robust in the sense that they are not greatly affected by either very high
or very low values. TH outliers are FIR models that have a VAF with the median response that is lower
than a certain threshold. This means that this classifier does not depend on any specific distribution or
spread of the data, but simply marks a data point as an outlier if it has a too low (or none if the VAF is
zero) resemblance to the median. This is an advantage of using the VAF as a criterion.

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|) (4.1)

Q1 Q3Median
Q3 + 1.5 x IQRQ1 - 1.5 x IQR

IQR

Figure 4.7: The IQR outlier detection method visualized. An outlier is a data point that lies beyond either the Q1 ­ 1.5 x IQR or
Q3 + 1.5 x IQR bound

Because the outlier detection methods are a bit questionable statistically speaking, no experimental
data is removed from the test data set. However, extreme IQR outliers are removed from the training
set.

4.1.3. Model structure choice
As mentioned before, only white­box and grey­box model structures are applicable for this research.
The reason for this is straightforward: I am not only interested in input­output behaviour which mimics
a human bicycle rider, but I am also interested in what underlying sensory pathways the human uses.
It is not possible to gain these insights using a black­box model structure.

Furthermore, it is quite naive to assume that a white­box model will be sufficient. There is simply
not enough known about the internal processes of a human to arrive at a fully parametrised model that
accurately predicts human bicycle balancing behaviour. This leaves a grey­box model structure as a
suitable choice for parameter fitting.

Based on the literature review, themodel structure can be divided in several components in a system
block diagram, visualized in figure 4.9. Usually, there are many solutions for each block and these
solutions often have multiple free parameters that can be fitted. Based on the research question and/or
literature review, several choices already can be made:

• The Whipple bicycle model is the best available model to describe the bicycle dynamics (section
3.1)

• At minimum, the sensory delays 𝜏𝑠 should be included in the sensory model (section 3.3)

• Sensory integration and state estimation is best modeled with a Kalman filter (section 3.4)

• Neuromuscular dynamics ought to be included (section 3.6)

3For normally distributed data, the 1.5 ∗ 𝐼𝑄𝑅 bounds envelop 99.3 % of the data.
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The system block diagram is a direct representation of the rider­bicycle system that has to be identified.
The ”locations” of these components are shown in figure 4.8. How the components in figure 4.9 are
implemented and what free parameters are associated with them, is discussed in the following sections.

Figure 4.8: Graphical representation of the bicycle­rider system (adapted from Schwab et al. [77]). The state estimation,
internal model, predictor and controller blocks are processes that originate from the CNS, which consists of the brain and spinal
cord. This is represented by the green circle. The neuromuscular (arm) dynamics and input delay are tied to the yellow circle.
The sensory dynamics and sensory delay that originate from different locations in the human body are indicated by the red

signal signs. Lastly, and straightforwardly, the bicycle dynamics describe the bicycle, which is in the orange circle.

Balancing controller Neuromuscular
dynamics Bicycle dynamics

Sensory dynamics

State EstimatorPredictor

Internal model

+
-
+ +

++

Figure 4.9: This is the system block diagram of the bicycle­rider system. The colors of the blocks corresponds with the colors
in figure 4.8. There are several symbols present in the figure that originate from control theory. The reference is indicated by
the 𝑟, the control input by 𝑢, process noise by 𝑣, the input delay by 𝜏𝑢, measured outputs by 𝑦, measurement noise by 𝑤,

measurement delay by 𝜏𝑠 and the estimated states by 𝑦̂.

Controller
For the reasons mentioned in section 3.5, the controller will be structured in a single­loop4 structure
where feedback is applied with steer torque by (non­scheduling) gains on the estimated state 𝑦̂. Two
methods of determining the feedback gains are considered:

1. Directly fitting the feedback gains to the experimental data.

2. Calculating the gains with the LQR algorithm of which the weights are fitted to the experimental
data.

When feedback gains are fitted directly, the free parameters are the states that exist in the internal
model. The number of free parameters might be reduced evaluating their impact on the performance
criterion.
4While there are multiple loops present in the system block diagram (figure 4.9), the actual feedback is calculated and provided
in a single loop.
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The parameters that define the LQR algorithm are the state and control weighting matricesQ and R.
The weights are on the diagonal of these matrices and penalize state deviations from the reference and
control effort, respectively. The dimension of these matrices depends on the dimensions of the state­
space matrices that define the internal model. As minimum the internal model only contains simplified
bicycle dynamics. If we consider the inverted pendulum bicycle model (section 3.1) as an example of
such a model, the A internal model belongs to ℝ2𝑥2. With the steer angle as an input the B matrix is
then ℝ2𝑥1. In this case the LQR Q and R matrices have dimension 2 and 1, associated respectively.

Because the rider is assumed to have only one control input, namely through manipulation of the
handlebars, the dimension of the R weighting matrix will always be one. This enables us to set it
to a constant value (1), as its effect is only relative to the weights in the Q matrix. Therefore, the free
parameters when the LQR algorithm is used are weighting factors that penalize the states of the internal
model. The number of free parameters might be reduced by setting weighting factors to zero. In that
case, the state that is associated with that weighting factor is not penalized. In theory, one non­zero
weighting factor is sufficient. The only requirement is that the system remains controllable.

Predictor
As discussed in section 3.4, the TDL (Tapped­Delay­Line) algorithm is the algorithm most suitable to
model the predictive capabilities of the bicycle­rider. There are no free parameters to be fitted, only
the selected internal model matters. In terms of model structure choice, the question is whether a
dedicated prediction algorithm improves the results.

Bicycle dynamics ­ Passive rider model
The passive rider model describes the behaviour that is not active control behaviour, but does effect the
dynamics of the bicycle model. This includes control strategies that bypass the usual sensor­control
loop, and by doing that have little to zero delay. Hence, it is included in the bicycle dynamics block in
figure 4.9. Examples of this are posture and muscle co­activation (section 3.2). Note that the the rider
also increases the overall mass, mass distribution and inertia of the bicycle by sitting on it. In the case of
the UC Davis experiment, where the rider is attached rigidly to the bicycle frame, this is control strategy
independent and therefore only depends on the body characteristics of the participants. Practically
speaking, this means that this contribution to the bicycle dynamics does not have to be fitted, but can
simply be calculated based on some measurements of the participants.

The passive rider model is implemented inspired by the papers by Schwab et al. [77] and Doria
and Tognazzo [25]. Rider upper­body lean is not considered for two reasons. The first reason is that
it is unnecessary to include it for the UC Davis experimental dataset, because there upper­body lean
was restricted. The second reason is that, while the TU Delft experiment did not restrict upper­body
lean, the upper­body lean was not measured during the experiment. This means that the active nor
the passive control input given by the upper­body can’t be fitted to the experimental dataset.

Knowing this results in the following addition to the steer equation of the Whipple bicycle model:

M̄ [𝜙̈𝛿̈] + 𝑣C̄1 [
𝜙̇
𝛿̇] + [𝑔K̄0 + 𝑣

2K̄2] [
𝜙
𝛿] = 𝑇𝛿 + 𝐼𝑟𝛿̈ + 𝑐𝑟𝛿̇ + 𝑘𝑟𝛿

M̄, C̄1, K̄0, K̄2 ∈ ℝ1𝑥2
(4.2)

The free parameters are: 𝐼𝑟 as the inertial contribution, 𝑐𝑟 as the damping contribution and 𝑘𝑟 as
the stiffness contribution of the passive rider holding the handlebars.

Neuromuscular dynamics
Neuromuscular dynamics are often included when modelling human control behaviour [64]. In the
model, the neuromuscular dynamics describe the relationship between the efferent motor signal and
the actual output torque generated by both arms on the handlebars5. Effectively, it limits the bandwidth
of the efferent motor signal (and thus can be compared to a filter). It is described by the following
transfer function:
5And because of this, the neuromuscular dynamics do not directly influence the bicycle dynamics. Therefore it’s contribution is
seen as separate to the passive rider model, whereas the passive rider model is included in the bicycle dynamics block in figure
4.9.
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𝐻𝑛𝑚(𝑠) =
𝑇𝑐𝛿 (𝑠)
𝑇̂𝑐𝛿 (𝑠)

= 𝜔2𝑐
𝑠2 + 2𝜁𝜔𝑐𝑠 + 𝜔2𝑐

(4.3)

For bicycle­rider identification, Schwab et al. [79] used shoulder muscle parameters from Happee
et al. [38]: the cut­off frequency 𝜔𝑐 = 2.17 ⋅ 2𝜋 rad/s and the damping coefficient 𝜁 = √2. Moore [63]
found that by adding neuromuscular dynamics, his model gave a better approximation of the experi­
mental data. These parameters are also used for this research.

Internal model
Both a LQR controller type, the Kalman filter state estimator and the prediction algorithm require knowl­
edge of the system dynamics. In a human control context, this knowledge is called the internal model.
Usually, all system dynamics are included in the internal model, which in this case consist of all ”dy­
namics” blocks and delays in the system block diagram (figure 4.9). One could question the validity of
this approach: does the human really has such detailed knowledge about its own dynamics and the
bicycle dynamics? As a part of the model structure choice, the components of the internal model are
either removed or dumbed down. The following (combinations of) possibilities are considered:

• Include all the dynamics present in the plant model (so, the neural, bicycle and sensory dynamics)
in the internal model. This assumes that the human rider has perfect knowledge of his own
bandwidth, the bicycle dynamics and sensor organ characteristics.

• Remove the neuromuscular dynamics from the internal model. Now we assume that the human
does not have knowledge of his own bandwidth.

• Remove the sensory dynamics.

• Simplify the bicycle dynamics.

In order to have an internal model that can be used by the LQR controller, the TDL prediction
algorithm and the Kalman filter state estimator, the internal model is compiled in a state­space repre­
sentation.

Sensory dynamics
For all states that exist in the bicycle model, there exist appropriate sensors that can measure them.
In table 4.5, the bicycle model states are summarized. In table 4.6, all the sensors organs which can
measure these states are listed.

It must be noted, that while these sensors might measure the bicycle states directly, it could be
possible that a derivative measurement actually provides the neural signal used by the human. An ex­
ample: a human uses his vestibular organ to level his head, and (probably) also does this while cycling.
This enables the possibility of the human to use the measurement of the deflection or movement of the
spinal cord as a measure of roll or roll rate of the bicycle. However, in such cases, the importance of
the primary sensor (the vestibular organ in this case) still stands.

Any combination of these sensors, measuring any kind of the states associated with them, may
yield a well performing bicycle model structure. For all of these sensors, there are transfer functions
available that describe their dynamics (section 3.3 provides a more detailed insight in the origins of
these transfer functions).

However, just as the authors of [94] concluded, these transfer functions are in some cases to detailed
to be implemented (primarily the ones describing the muscle spindles, as they are improper, excluding
the possibility to convert them to a state­space notation). It does not make sense to ”cherry pick” certain
sensory dynamics that are convenient to implement in the framework provided by the chosen model
structure.

Also, it is known that when different sensors are used in junction, the overall perception window of
a human changes. This affect is not incorporated in the descriptions found in section 3.3.

Therefore, it is decided to not use the descriptions of any of the sensory dynamics during the identi­
fication procedure, but restrict ourselves to the sensory delays which are assumed to have the biggest
impact.
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Table 4.5: Bicycle states.

Name Symbols

Bicycle roll angle, rate and acceleration 𝜙, 𝜙̇, 𝜙̈
Bicycle steer angle, rate and acceleration 𝛿, 𝛿̇, 𝛿̈
Bicycle forward position, velocity and acceleration 𝑥, 𝑣, 𝑎
Bicycle lateral position, velocity and acceleration 𝑦, 𝑦̇, 𝑦̈
Bicycle heading angle, rate and acceleration 𝜓, 𝜓̇, 𝜓̈
Roll torque 𝑇𝜙
Steer torque 𝑇𝛿

Table 4.6: Sensors relevant for bicycle control.

Type Name Measured states Symbols

Exteroreceptors Vision Position, velocity, heading 𝜙, 𝜙̇, 𝛿, 𝛿̇,
𝑥, 𝑣, 𝑦, 𝑦̇,
𝜓, 𝜓̇

Interoreceptors Vestibular ­ Semi circular channels Roll rate, heading rate 𝜙̈, 𝜓̈
Vestibular ­ Otoliths Linear accelerations 𝑎, 𝑦̈
Muscle sensors ­ Golgi tendon organs Muscle force 𝑇𝜙, 𝑇𝛿
Muscle sensors ­ Muscle spindles Muscle length and velocity 𝜙, 𝜙̇, 𝛿, 𝛿̇

Sensory and input delays
Time delays can have a significant impact on the response of a closed loop system. As described
in chapter 3.3, they are roughly two types of delays in the human controller: the afferent neural­ and
processing delays, and the efferent neural (control/input) delay. Combined they are the effective delay
in the control loop. Depending on what sensory channels are used, the effective delay can vary a lot.
Generally speaking, states are estimated with a higher delay by the visual system than states estimated
with interoreceptor type sensory organs such as the vestibular system.

For bicycling, the states of the bicycle may both be measured by visual system or by the interore­
ceptors listed in table 4.6. The challenge is knowing which sensor type takes preference.

A problem is, is that different available sensory channels can be combined. This not only affects
the sensing accuracy, but also the effective delay in the control loop. In other words: when a human
controls something, he apparently does so with a single control delay. And this control delay is affected
by which combination of sensors are used for the control task.

It is difficult, and might not be realistic, to mimic this fusing effect with a multiple­delay Kalman filter
state estimator (I briefly go into my attempt at this in section 6.4).

A better solution is to approach the problem differently: instead of trying to model the time­fusion of
all different sensory channels realistically, we can try to figure out the control delay of the bicycle rider
and the states that are used by the bicycle rider.

By establishing the delay of the control loop, we can already learn which type of sensor organs are
the most important. An effective delay lower than 0.15 s indicates that interoreceptors are the primary
source of information. An effective delay higher than that does not definitely tells us that the visual
system is used as the primary source of information, but at least tells us that it could be used in that
manner.

Furthermore, we can establish which bicycle states are the most important. For example: if the
model is only supplied with a roll­angle measurement, and that yields good results when compared to
the experimental data, we can note that the vestibular organ is not required for bicycle stabilization (the
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vestibular organ provides rate and acceleration information).

State Estimator
To model human state estimation, a Kalman filter will be used. As mentioned in section 3.4, this method
has precedence in human control modelling. A Kalman filter uses knowledge about the process and
measurement dynamics of the system, inputs to the system, and the measured outputs of the system
to give an estimate the internal model states (usually more accurate than single measurements alone).
For it to work, a model of the plant dynamics, control input dynamics, the measurement dynamics (in
state­space A, B+D and C, respectively) and the covariance matrices of the process and measurement
noise have to be provided: Q and R, respectively.

The models of the various dynamics are present in the internal model of the human, and as such
don’t have to be specified separately. The noise covariance matrices are unique to the Kalman filter.
The process noise covariance matrix Q contains variance and covariance information about the noise
that is caused by unmeasured and unmodelled disturbances (e.g., unevenness in the road surface).
The measurement noise covariance matrix R contains information about the noise caused by the mea­
surement devices (organs in our case). It is difficult to provide this information as a lot these noise
characteristics are unknown and have to be estimated. And then it becomes questionable: does the
human rider estimate these noise characteristics in the same manner? To circumvent this problem,
it is decided to assume the human has no access to noise covariance information, but only to noise
variance information. This causes the Q and R matrices to only have non­zero values on the diagonal.

The size of the Q and R matrices depends on the dimensionality of he provided state­space matri­
ces. The Q matrix has the same dimension as the A matrix of the internal model and the R matrix has
the same dimension as the number of rows in the C matrix of the internal model. The number of rows
in the C matrix is the same as the amount of sensory pathways included in the internal model.

The free parameters are the values on the diagonals of the Q and R matrices.

4.1.4. Model structure and free parameter overview and selection procedure
The structure choices and the available free parameters are listed in tables 4.7 and 4.8, respectively.
Due to the many possibilities, the first step is to reduce the number of model structure choices. We
want to do this while retaining a high number of free parameters, because this helps to ensure that
the search space still encapsulates the global optimum. The global optimum is defined as the model
that describes the entire experimental data set in the best way possible. To account for inter and intra
subject variability, we also want to test as much model structure options as possible on an as large as
possible fraction of the experimental data set. Due to computational constraints6 these two objectives;
trying all model structure combinations with all the parameters left free versus trying them on as much
experimental data as possible, contradict.

By assuming that the effective delay and the controller have, next to the model structure choice,
the most impact on performance7 and that the state­estimation and passive rider model components
have a relatively minor impact, we can limit the number of free parameters to those associated with the
effective delay and the controller.

Now, by following a sequential approach to the structure selection in the order of assumed impor­
tance of the components, we can evaluate the importance of the separate components in terms of
performance. In theory, if the structure is viable in terms of stability, this should result in the highest
possible VAF value for the candidate model structure. When the possibilities are exhausted, the best
candidate model structure is selected as a final model structure. Of this model structure, the remaining
free parameters can be optimized and the free parameters of the controller can be reduced in order
to yield a more general model. The entire procedure is visualized in figure 4.10. The optimization
workflow and how it interacts with the model components in the system block diagram (figure 4.9) is
visualized in figure 4.11.

How large of a fraction of the data set has to be used in order to conclusively fix any model structure

6The total number of model structure choices are, strictly speaking, not the faculty of the total number of possibilities, but there are
certainly thousands of combinations to be evaluated before the entire search space is covered. Even when one function eval­
uation takes less than a second, the time needed to evaluate all possibilities is unpractical because a non­convex optimization
algorithm for a problem with more than 10 free parameters quickly requires 1000+ function evaluations.

7In this research, performance is a measure of how well the model approximates the post­processed data. When an other type
of performance is discussed, such as computational speed, this is stated explicitly.
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option or exclude any free parameter can’t be said in advance as it depends on the variability of the
results.

A downside of the entire approach is, is that it is possible that the global optimum is excluded from
the search space. It is often easier to prove that a certain solution is not the global optimum than
that it is the global optimum. Therefore, we should not exclude common sense and heuristic search
techniques in our search for the best bicycle­rider model.

An already identified common sense based technique, is the possibility to estimate the effective
delay directly from the experimental data or with black­box type models which include delays. This can
be done because both the bicycle states and the rider input were measured during the experiments.
This means that a separate system identification cycle will be conducted in order to determine the
effective time delay, which in turn gives information on what type of sensors are the most important.
These results can then be compared to the results of the grey­box identification described earlier in
this section.

Table 4.7: Model structure choices

Component Options

Controller Feedback gains / LQR

Prediction Included / not included

Internal model Same as plant model / without sensory dynamics /

without neuromuscular dynamics / Simplified bicycle dynamics

Sensor channels Options listed in table 4.5

Table 4.8: Model structure free parameters.

Component Free parameters

Controller Q𝐿𝑄𝑅 or K

State Estimator Q𝐾𝑓 and R𝐾𝑓
Passive rider model 𝐼𝑟, 𝑐𝑟 and 𝑘𝑟
Sensory and input delays 𝜏𝑠𝑒𝑛𝑠𝑜𝑟

Select controller type Select internal model Prediction on/off Select sensor
channels

Sensory dynamics
on/off

Model structure choice

Candidate final
model structure

Optimize Kalman filter
covariance matrices

Select feedback gains
/ LQR weights

Optimize passive
rider model
parameters

Final
model

Reduce free parameters

Figure 4.10: Model structure components and free parameter reduction approach. This diagram visualizes the proposed
step­by­step method to reduce the number of model structure components and free parameters. First, the model structure is
determined iteratively while the parameters associated with the controller are all kept free (so, either all of the LQR weights or
the maximum number of feedback gains). After that, the passive rider parameters and the state estimation parameters are
optimized. Finally, the free parameters of the controller are reduced. The effective delay is always kept as a free parameter.
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Figure 4.11: Model and optimization workflow diagram. All the possible changes and their impact on the model are visualized
in this figure. Also, the iterative nature of the system identification procedure is visible in this block diagram.
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4.1.5. Fitting procedure
Once a candidate model structure and the free parameters are selected, the free parameters have to
be fitted in such a way that the resulting model mimics the experimental data as good as possible,
while preventing overfitting or underfitting8. The ”goodness” of the fit is usually evaluated with a fitting
criterion, which is calculated using a cost function. Depending on the criterion used, this results in a
minimization or maximization problem, which are essentially the same. As mentioned in the introduc­
tion, this problem can both be solved using iterative and non­iterative methods. Here, we focus on
iterative methods, as they are less dependent on model structure choice and more straightforward to
implement.

Optimization method
The free parameters are fitted in two stages. First, due to the unstable nature of the bicycle, a parameter
set has to be found which stabilizes the bicycle. This is done by means of a Genetic Algorithm (GA).
The GA is an iterative optimization method that is based on natural selection. It generates candidate
solutions and, at each iteration, selects the most fit candidates to generate new solutions. Because
a certain amount of randomization is allowed by also allowing some less fit candidates to survive and
through candidate mutations, a GA can find the solution that corresponds to the global optimum.

In theory, using only a GA is sufficient to find the parameters that yield the best solution. However,
the downside of this is, is that this takes an extreme amount of time. Therefore, if the fitness function
stabilizes, which means that a solution has been found which already approximates the experimental
data quite well, the final parameters are found by using a local optimization method. A short introduction
to the various optimization methods can be found in appendix A.3.

Fitting criterion
Each optimization method uses a cost function to evaluate the fitness of a candidate solution. There are
several criteria available that can be used to compare different signals. A straightforward and intuitive
criterion, is to use the VAF criterion. A higher VAF indicates that two signals are more similar, with
a VAF of 100 % indicating two signals that are exactly the same. The VAF can be calculated using
equation 4.4.

𝑉𝐴𝐹 = (1 − 𝑣𝑎𝑟(𝑦 − 𝑦̂𝑣𝑎𝑟(𝑦) ) ⋅ 100% (4.4)

Another, less intuitive criterion, is the Root­Mean­Square­Error (RMSE) criterion. The RMSE is related
to the VAF, as it also indicates how close two signals are together. A RMSE of zero indicates two
signals that are the same. Values larger than zero indicate some measure of difference between the
signals. This value is not normalized, so no direct conclusions can be drawn, except for that larger
values indicate a higher dissimilarity.

𝑅𝑀𝑆𝐸 = √
∑𝑇𝑘=1(𝑦̂𝑘 − 𝑦𝑘)2

𝑇 (4.5)

4.1.6. Model validation
The aim of model validation is to test the predictive capabilities of the fitted model structure. This is
done by splitting the experimental data set in two parts: a part where the model structure is fitted to,
and a part which is used to test the found model. To allow for a fair comparison, it is important is that
the two parts where gathered under the same experimental conditions. The splitting method used in
this thesis is straightforward: the runs are ordered according to the forward velocity. Then, all uneven
runs are placed in the train data set. This mixes the runs both in terms of participants and in date they
were conducted, but also ensures that the test set has runs included evenly over the entire forward
velocity range.

The result is a set of fitted free parameters for each run in the train set. Parameter sets for which
the fitting procedure failed are excluded. The goal is to extract a single forward velocity independent
parameter set from the remaining parameter sets. If a certain parameter is found to be forward ve­
locity dependent, they can be made forward velocity independent with the method described in [22].
8Overfitting means that to many parameters are fitted, which causes the model to lose generality, which results in poor predictive
performance. Underfitting is the reverse of overfitting.
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In a nutshell, this approach is to fit a forward velocity dependent polynomial (preferably a first order
polynomial) to the fitted parameters.

If a parameter is found to be forward velocity independent, the median parameter in the train set is
selected. Using the median instead of an average reduces the impact of possible outliers.

The model validation approach is visualized in figure 4.12.

Train set

Select half of the data

Fit free parameters

Exclude failed fits

Select median
parameters

Preprocessed
data set

Parameter sets

Fit polynomial

Forward velocity 
dependent parameters

Forward velocity 
independent parameters

Apply to the test set

Forward velocity
independent model

Figure 4.12: Validation approach

4.2. Modelling aspects
In this section the implementation of the model is discussed.

4.2.1. Software used
All modelling was done in Matlab. A complete list of dependencies can be found in table 4.9.

Table 4.9: List of dependencies

Dependency name Version
MATLAB 9.7
Control System Toolbox 10.7
System Identification Toolbox 9.11
Signal Processing Toolbox 8.3
Symbolic Math Toolbox 8.4
Optimization Toolbox 8.4
Global Optimization Toolbox 4.2
Statistics and Machine Learning Toolbox 11.6
Curve Fitting Toolbox 3.5.10

4.2.2. Mathematical derivation of the model components
Because the TDL predictor, the Kalman filter and the LQR algorithms are all defined using state­space
system notations, all the descriptions of the dynamics should also be in this format. After the conversion
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of the individual components, they are combined in a single state­space description. For the sake of
readability, they derivations are not included here, but can be viewed in appendix A.

4.2.3. Discretization
The plant is discretized using zero­order­hold with a sampling frequency of 200 Hz. This sampling fre­
quency is selected because it is the minimum frequency at which the experimental data set is collected.
To verify that this approach does not introduce significant truncation or discretization errors, an analysis
is done which compares several numeric integration methods and sampling frequencies.

The system is evaluated for a duration of ten seconds with a step input. In figure 4.13 it can be seen
that the discretized system has a final error for this situation of 10−10 rad when compared with ODE4
and ODE8 numeric integration methods. This is deemed acceptable.
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5
Results

As discussed in the previous chapter, the first step to a viable rider control model is to reduce the number
of model structure choices. To give insight in this process, intermediate results and their implications
are also discussed in this chapter. This is done for each model structure component for which a choice
had to be made (refer to table 4.7 for an overview of the choices and to figure 4.10 for the approach).
Afterwards, the final model structure is presented. This model structure is then applied to the available
data sets, of which the results are presented. For the sake of readability, the results are interpreted
as they are presented. The overarching interpretations, implications and limitations are discussed in
chapter 6.

5.1. Fitting method
While for the global optimization step the Genetic Algorithm is used, for the subsequent local optimiza­
tion method two different optimization algorithms were tried and compared: interior­point optimization
and pattern­search optimization. In terms of the quality of the optimum found, pattern­search optimiza­
tion outperformed interior­point optimization. A downside of pattern­search optimization covariance
based parameter reduction methods can’t be used, because it is a gradient free optimization method.
Also, just like other polling based optimization methods, pattern search optimization slows down quite
a bit with an increasing number of parameters. Up till five free parameters is manageable, meaning
that overnight optimization of an entire data set is possible.

It is important that the optimization method finds a global optimum, defined as the parameters set
that yields the best performance score in the entire search space. This is difficult (read: impossible
for our problem) to prove, so we limit ourselves to a more practical definition of a ”good” optimum:
the optimization method should reliably find the same optimum for multiple random starting conditions.
This is verified by running the optimization algorithm multiple times.

The settings used for the optimization algorithms are in table 5.1.

Table 5.1: Genetic algorithm and pattern search settings

Max generations / iterations Tolerance Cross­over fraction [%] Pop. size Stall generation
GA 100 0.001 85 150 35
PS 2500 0.001 N.A. N.A. N.A.

In figure 5.1, the performance of the GA is illustrated.

5.1.1. Remarks on parameter bounds
While it is possible to leave the optimization problem unbounded, the GA population size can be kept
smaller if the parameters are bounded. The reason for this is that both a larger initial population size and
bounded parameters increase the chance of finding viable solutions. But, increasing the population size
has as downside that it increases the computation time required. The GA generally fails to converge if

51
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Figure 5.1: This figure shows the evolution of the performance criterion as a function of generations. Note that the optimization
problem has been recast as a minimization problem.

no viable solutions are found within the fist few generations. Of course, care has to be taken that the
bounds don’t influence the optimum found.

Generally, the lower bounds are set at 0.001. The upper bounds are set at 950.000 and 0.5 for the
Linear­Quadratic­Regulator (LQR) weights and effective delay, respectively.

5.2. Model structure selection
5.2.1. Controller
Two different controller types are applied to the experimental data sets: fitting the feedback gains
directly, or using the LQR algorithm to determine optimal feedback gains based on the weighting factors.
Structure wise, both controller types are the same, as they both give state­feedback. However, both
conceptually and in practice there are differences:

1. The LQR algorithm has a higher dependency on the correctness of the plant model used, whereas
determining individual feedback gains can ”capture” the in­correctness of the model within the
gains. However, when the plant model is correct, the LQR algorithm requires less free parameters
to be fitted (minimally only one to calculate all the feedback gains for all forward velocities), and
thus results in a more general model.

2. Due to the issues mentioned above, the LQR algorithm has reduced performance when the plant
model is less correct.

3. Gains determined with the LQR algorithm are more likely to stabilize the plant, this simplifies the
parameter fitting procedure.

4. The weights in the LQR algorithm are penalties on state deviations. Knowing which states are
penalized the most, gives insight in the control strategy the rider uses.

The second point is illustrated in figure 5.2. Here, the two controller types are fitted (in both cases
leaving all state weights/gains free) to the Finite­Impulse­Response (FIR) model of a pavilion run in
the UC Davis data set for two different scenarios. In the first scenario, the bicycle dynamics model
based on the UC Davis experiment is used. For the second scenario, this model is altered by remov­
ing the cross­terms in the mass, damping and velocity independent stiffness matrices of the Whipple
model equations. The velocity dependent cross­term in the stiffness matrix is halved for good measure.
Essentially, this leaves a simplified model, which is somewhat reminiscent of the inverted pendulum
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bicycle model (3.1). It can be seen that both control methods perform well with an intact bicycle model,
but the LQR controller degrades more when the bicycle model is simplified.

This effect also causes problems when fitting model structures to the TU Delft data. The LQR type
controller does not perform well for that data. This can be caused because in that experiment the
upper­body movement of the riders is not restricted. It is difficult to compare the raw data of both ex­
periments fairly (different perturbation sizes, different riders, different bicycle, different environment),
but it looks like that the roll angles are higher for the TU Delft experiment. This is likely due to the
roll­motion of the bicycle frame being less stiff.

Concluding, the LQR algorithm will be used as a controller. It should result in better fitting perfor­
mance and more insight in the control strategy used by the rider. Due to the issues with the TU Delft
data and the experimental conditions of the UC Davis experiment match the chosen model structure
better, we will focus on the UC Davis data­set for further model structure choices.
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Figure 5.2: The above plots show a comparison between both controller types fitted using a), a known to be reasonably
correct plant model, and b), a simplified plant model. The Variance­Accounted­For (VAF) drop for the feedback gain controller

is a lot lower (−15.7%), than the VAF drop of the LQR controller (−34.1%).

5.2.2. Internal model
In this section, the results of the various internal model options applied to the experimental data set are
discussed. Starting with an internal model were the descriptions of all dynamics present in the plant
model (neural, bicycle and sensory dynamics) are included in the internal model, the options are:

• Simplify the bicycle dynamics.

• Remove the neuromuscular dynamics from the internal model.

Simplify the bicycle dynamics
As the previous section illustrated, the performance of the LQR algorithm depends on the correctness
of the systemmodel provided. When the plant model is kept the same, and just the fidelity of the internal
model is reduced, both the feedback gain controller and the LQR controller quickly become unable to
stabilize the plant. This can be attributed to the reduced performance of the Kalman filter. Finding a
combination of a simplified plant model and Kalman filter settings is an extensive process which has
yet to be described in literature. Therefore, after some initial trials, this is not further pursued.
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Remove the neuromuscular dynamics from the internal model
The question is if the human rider has ”internal” knowledge of the transfer between the efferent motor
signal and the actual output torque. Comparing two model structures, one without the neuromuscular
dynamics included in the internal model, and one with the neuromuscular dynamics included, revealed
that a description of the neuromuscular dynamics need to be included in the internal model to reach a
stabilizing controller.

This is in line with other research into human control which include neuromuscular dynamics (such
as the research by McRuer). In their research the human controller is usually mimicked by state feed­
back gains of some sort are used. It is explained in section 5.2.1 that the feedback gains fitted with this
procedure account for the effect of the neuromuscular dynamics if they are included in the model.

While the use of neuromuscular dynamics in models describing human control behaviour is widespread
(refer to [64] for an overview) and it’s importance in bicycle control modeling was already noted by [63],
it is nice to see those findings verified. In figure 5.3, a quick and dirty comparison for a single experi­
mental run is shown.

The figure features the result of model structure fitted to a single run from the UC Davis data. Free
parameters were the weighting factors of the LQR algorithm and the effective neural delay.

It can be seen that the difference between bothmodels is quite significant, telling us that the literature
is correct.
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Figure 5.3: A comparison between a model which includes neuromuscular dynamics (both in the internal model and in the
plant) and a model which does not include neuromuscular dynamics. Do note that the results are only plotted for a small time
range. The original run, to which the FIR model is fitted, is over 80 seconds long and includes nine lateral perturbations.

Final internal model form
The final internal model has the components listed in table 5.2. The states of the neuromuscular
dynamics (which is derived in appendix A) correspond with the steer torque and steer torque rate
that is given as input to the bicycle. These states can be penalized in the LQR algorithm. This can be
interpreted as a penalty on control effort.

Table 5.2: Internal model components

Component States
Bicycle dynamics 𝜙, 𝛿, 𝜙̇, 𝛿̇
Neuromucsular dynamics 𝑇, 𝑇̇
Heading 𝜓
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5.2.3. Prediction
As established in chapter 3.4, humans are capable of predicting the effects of their actions. After
some experimentation with turning the prediction algorithm on and off for various runs, the impact of
including the prediction algorithm never had a negative effect. Depending on the set effective delay and
the forward velocity it either had a marginal impact (around 5 % negative VAF difference for effective
delays below approximately 0.06 seconds) or it went off a cliff into instability.

For this reason, the prediction algorithm is included in the final model structure.

5.2.4. Sensory channels used
The bicycle model that is used is described by four states: the roll and steer angle, and their derivatives.
By enabling different combinations of sensory channels measuring these states, a combination can be
found which gives the best fit to the experimental data. This is done while leaving all the other possible
free parameters free: the LQR algorithm can place a weight on all states and the sensory delay is left
free to be fitted. A downside of this is, is that it results in a high computational demand, increasing
the time before the optimization algorithms find a solution. To reduce the required time to a practical
amount, the combinations of sensory channels are only tried for a limited number of runs across the
entire forward velocity range.

The resulting best sensory channel combinations are in table 5.3. Using 𝜙̇ and 𝛿 as measurement
channels results in the best performance in all of the runs for which the combinations where tried. No
forward velocity dependency is found. Other things, not shown in the table, can also be learned from
the results:

• Simulations without the roll rate as a sensory input failed to reach VAF values higher than 20 %.
And only using the steer angle or steer rate as a sensory input never results in a successful fit to
the experimental data. Therefore, it is likely that roll­rate is the most important measured quantity.

• Adding sensory channels beyond the roll and steer rates reduced VAF. This is also interesting,
because this should only increase the accuracy of the estimated states, indicating that some
degree of inaccuracy in state estimation increases fidelity. Note that this inaccuracy does not
have to originate from the sensory dynamics, but could also be caused by process or sensor
noise. The inaccuracy of the estimate is mainly present in the roll angle estimation, which is
overestimated. The effect is illustrated in figure 5.4.

• The fitted sensory delay always approached zero. This is of course quite a shame, and likely
is because the passive rider dynamics are not included in the model structure. This is further
discussed in section 5.3.4.

Table 5.3: Best sensory channel combinations.

Run ID Best combination VAF [%] 𝑣 [m/s] Environment Rider
249 𝜙̇ + 𝛿 85 2.2 Treadmill Jason
489 𝜙̇ + 𝛿 88 2.2 Pavilion Jason
253 𝜙̇ + 𝛿 88 4.2 Treadmill Jason
661 𝜙̇ + 𝛿 91 4.2 Pavilion Luke
670 𝜙̇ + 𝛿 83 4.5 Pavilion Luke
TUD 1 𝜙̇ + 𝛿 87 2.5 Cycling path Blond
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Figure 5.4: In this figure the true bicycle states (blue) and the estimated bicycle states (purple) are plotted together with the
lateral perturbation force (red).

5.2.5. Model structure summary
Using the lessons learned in the preceding sections, a model structure with the following components
and free parameters was selected:

Table 5.4: Model structure choices

Component Options

Controller LQR

Prediction Included

Internal model Whipple bicycle model with neuromuscular dynamics

Table 5.5: Model structure free parameters.

Component Free parameters

Balancing controller Q𝐿𝑄𝑅 (7)

State estimator Q𝐾𝑓 (2) and R𝐾𝑓 (7)

Neural sensory and input delays 𝜏𝑠𝑒𝑛𝑠𝑜𝑟 (1)
Passive rider model 𝐼𝑟, 𝑐𝑟 and 𝑘𝑟

5.3. Reduce free parameters
To prevent over fitting and to reduce simulation times, the number of free parameters should be reduced.
In following section, the importance of the free parameters associated with the passive rider model, the
state estimator and the controller are evaluated.

5.3.1. Controller
A property of the LQR algorithm is that it is not required to put weights on all states or inputs. Because
the weights are relative, and there is only one control input, the weight on the control input is kept
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constant. By trying different combinations of LQR weights that are left free to be fitted, we can find the
best performer. Good performance is defined as a set of weights that have good predictive capabilities:
they represent the entire data set well.

Time­wise, it is not possible to train and test each controller weight combination for each envi­
ronment (treadmill, pavilion, cycling path) in order to find the best performer. Some experimentation
revealed the following things:

• As expected, leaving all weights free yields the best VAFwhen they are fitted to experimental data,
but when the controller defined by those weights is tested with another slice of the experimental
data, the results are not satisfactory: the free parameters are overfitted.

• Good performing weight combinations are different for the UC Davis and TU Delft data. This is
likely because the Whipple bicycle model that is used in both cases is incorrect for the TU Delft
data (due to the upper­body movement not being restricted). This confirms that the data­sets
can’t be compared directly.

• A single weight on the roll angle or the heading already yields quite good training results for the
UC Davis data for both the treadmill and pavilion environments.

• Two weights are required for good results with the TU Delft data gathered on the cycling path.

• A weight on the heading angle generally makes predictive performance worse.

• There seem to be differences in control behaviour between different subjects.

Because one or two LQR weights already yield good training performance, the search is limited to
combinations of one or two weights. Well performing combinations are shown in tables 5.6, 5.7 and
5.8.

Across the environments, weights placed on the roll rate and roll angle perform best. However, for
the UC Davis data, only placing a weight on roll already yields good results. Because of the enticing
prospect of describing human bicycle balancing with only one fitted parameter, the detailed results of
that study are presented and compared in the next sections.

The results of the TU Delft data are also presented, but for the case when 𝑄(𝜙), 𝑄(𝜙̇) are selected
as free parameters.

Table 5.6: The standard deviation 𝜎 and the mean 𝜇 for train and test treadmill data of different LQR weights left as free
parameters. Note that only 1 test subject (Jason) was compared to reduce the effects of inter­subject variability.

Train VAF Test VAF
Q weights on 𝜇[%] 𝜎[%] 𝜇[%] 𝜎[%]
𝜙 85.0 7.8 77.6 10.9
𝛿 55.3 11.0 39.9 11.2
𝜙̇ 32.4 9.0 33.2 8.4
𝛿̇ 0 0 0 0
𝑇 15.0 22.6 13.8 22.5
𝑇̇ 0 0 0 0
𝜓 87.0 10.9 63.6 20.8
𝜙, 𝜓 90.9 5.5 63.6 20.8
𝑇̇, 𝜓 89.8 7.6 69.6 22.4
𝜙, 𝜙̇ 86.7 7.3 78.6 10.8

5.3.2. State estimation
It is decided to keep the measurement and process noise covariance matrices of the Kalman filter as
identity matrices. This is done for the following reasons:

• Because during the model structure evaluations discussed until now, the model performs well
without altering them.

• Sensory noise is not modeled.
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Table 5.7: The standard deviation 𝜎 and the mean 𝜇 for train and test pavilion data of different LQR weights left as free
parameters. Note that only 1 test subject (Luke) was compared to reduce the effects of inter­subject variability.

Train VAF Test VAF
Q weights on 𝜇[%] 𝜎[%] 𝜇[%] 𝜎[%]
𝜙 65.5 23.7 55.6 27.7
𝛿̇ 25.6 17.4 15.2 4.4
𝑇 16.6 22.7 11.3 21.4
𝜓 58.9 34.9 49.9 36.5
𝜙, 𝜙̇ 74.4 13.2 55.4 27.8

Table 5.8: The standard deviation 𝜎 and the mean 𝜇 for train and test cycling path data of different LQR weights left as free
parameters. Note that only 1 test subject (Blond) was compared to reduce the effects of inter­subject variability.

Train VAF Test VAF
Q weights on 𝜇[%] 𝜎[%] 𝜇[%] 𝜎[%]
𝜙, 𝜙̇ 79.5 3.1 73.6 8
𝜙, 𝛿̇ 18.5 35 0 0
𝜙, 𝛿 84.7 5.5 72.1 15.9

• It greatly reduces the number of free parameters (even if only the diagonal values of the noise
covariance matrices are left free).

5.3.3. Sensory delay
As discussed in section 4.1.3, it is likely that the sensory delay both has an big impact on the results,
and gives an indication of which sensory pathways are the most important for the balancing task.

Unfortunately, as discovered, the fitted sensory delay tends to go to zero in the simulations done
up till now. This is likely due to failing to model the passive rider dynamics correctly.

Because of this, it does not make sense to leave the sensory delay as a free parameter.

5.3.4. Passive rider model
The lack of a decent passive rider model is the prime candidate for causing the fitted sensory delay to
go to zero. Unfortunately, it is not practical to optimize the passive rider parameters for overall train­test
performance. This is because the plant and internal models change for each cost function evaluation,
which excludes the possibility to do parallel computations in Matlab. This increases the duration of a
optimization, for for example all treadmill runs, to multiple days if not weeks.

The papers by [78] and [25] present some inertia, stiffness and damping values that could be in­
corporated in the bicycle model. Initial results are promising and are shown in figure 5.5, for which two
model structures with a 0.1 s delay are fitted. In one model structure the bicycle model has increased
steering inertia and stiffness terms inspired by [78] and [25] (the steer inertia is increased by 1𝑘𝑔 ⋅ 𝑚2
and the steer stiffness is increased by 200𝑁𝑚/𝑟𝑎𝑑 . The bicycle model in the other model structure is
unaltered.

The figure reveals that the steer angle remains constant as the bicycle is perturbed. However, for
the model structure without passive rider dynamics, this is not the case: the handlebar steers out of the
fall. This is because the steer and roll angles can influence each other. This movement is prevented
by including passive rider dynamics in the model.

Unfortunately, due to time constraints, the prospects of this method could not be explored elabo­
rately. But the model structure with the added passive as described above is applied to a slice of the
data set in section 5.4.4.
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Run 249, forward velocity: 2.2 m/s, sensory delay 0.1 s
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Figure 5.5: The FIR model fitted to the experimental data of run 247 are compared with a fitted model structures with and
without added passive rider dynamics. The passive rider dynamics are included in a simplistic fashion: the steer intertia and

stiffness terms are increased by 1𝑘𝑔 ⋅𝑚2 and 200𝑁𝑚/𝑟𝑎𝑑, respectively. In the top figure the entire response to a perturbation
is shown. A detail of the first 0.5 seconds after the perturbation is shown in the bottom figure.

5.4. Validation
The results of the application of the chosen model structure to the experimental data sets are covered
in this section. For the sake of brevity the data is presented in four steps:
1. The FIR models fitted to the experimental data are shown and outliers are marked. Also, the

variability between the FIR models is evaluated.
2. Train and test results: the predictive performance of four different median controllers and the

median effective delay applied to different slices of the data is shown. The four different median
controllers and effective delay originate from the following partitions of the data:

• Test data
• MAD outlier excluded data
• IQR outlier excluded data
• TH outlier excluded data

3. The distribution of the fitted parameters is visualized and the median controllers are presented in
a table, with the median controller being the fitted LQR weight.

4. The forward velocity dependent feedback gains that result from the median controller are shown
and compared with the results from the trained data.

The first step gives insight in the variability of the experimental data set. The variability between
the FIR models is an easy performance criterion: the test­set median controller should have a lower
variability and a higher average VAF. At the second step this is verified. If the median controller does
not perform better, the parameters are likely to be overfitted. The third and fourth step are used to
gain insight in the fitted controller: are there things that can be improved? Is there a forward velocity
dependency? How do the individual participants compare?

5.4.1. UC Davis experiment ­ Treadmill
The model structure is fitted to the data used in [79]. This is a subset of the treadmill data consisting
of 14 runs of one participant (Jason). These runs where conducted at forward velocities between 2.1
and 7.4 m/s.

Additionally, the model structure is fitted to runs of the other two participants of the UC Davis ex­
periment (Luke and Charlie). Unfortunately, they have done only a few runs (6 for Luke and 5 for
Charlie).

1) FIR model distribution and outliers
In figure 5.6, the results of the application of the different outlier detection algorithm is shown. Both
the MAD and IQR algorithms mark the same high forward velocity runs as outliers, but upon visual
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inspection this does not make a lot of sense.
The naive threshold­based outlier detection algorithm tend to mark runs that are done at forward

velocities lower than 3.5 m/s. The only exception is a high speed run done at 7 m/s (for which the
optimization procedure failed to find a solution).

While not directly clear in the figure, the amplitude of the steer angle decreases with increasing
forward velocity. Also, it can be seen that some of the runs exceed steering angles of 15 degrees.
These are the runs done at forward velocities lower than 3.5 m/s. As mentioned before, this is non­
ideal for the linear Whipple plant model.

Lastly, the fitted FIR models indicate there is quite a bit of variance between the runs. This is further
illustrated in figure 5.7, where the VAF distribution of the fitted FIR models to the median FIR model is
shown in a boxplot. The median test­set controller should at the very least perform better than this.

In the end, all runs are retained in the data­set. For obvious reasons, the run for which the fitting
procedure failed is excluded from the train data.
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Figure 5.6: A comparison of the FIR models fitted to all raw pavilion data sets. The outliers for the different outlier detection
algorithms are marked in red. The runs for which the rider­model failed to find a good fit are marked with blue crosses.
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Figure 5.7: This plot shows the VAF distribution of the fitted FIR models to the median FIR model. The variance of this data set
is 𝜎2 = 34.7%2

2) Train and test results
The four different median controllers are extracted from the results and plotted together with the train
results in figure 5.8. The spread of the data can be viewed in the boxplot in figure 5.9. The test results



5.4. Validation 61

are shown in terms of standard deviation and mean in table 5.9 .

A couple things can already be noted:

• There is no clear forward velocity dependency.

• The runs done by Charlie can not be identified well and the quality of the fit is worse than that
of the median FIR model. The variability of the runs done by Charlie was already noted in the
previous chapter and is likely the cause of this.

• If we don’t consider Charlie, the VAF drop between train and test data is quite low, with a drop of
10 % for the data from Jason and even increasing for the data from Luke. This confirms that the
fitted model structure can approximate the data for the entire velocity range with only one fitted
parameter.

• The outlier detection algorithms are not of a big help. Even when no outliers are excluded, the
test and train data are quite close together in terms of VAF.

• The roll and steer angle VAF values are similar for the test results.
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Figure 5.8: The performance of the train and test procedures in terms of the VAF . On the second x­axis, the velocity
distribution associated with the run numbers is shown. For each test result, the participant that generated the data is marked.
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Figure 5.9: The train and test performance in terms of VAF visualized in boxplots for the pavilion data.
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Table 5.9: The standard deviation 𝜎 and the mean 𝜇 VAF values for the treadmill data.

5.9.1: Steer angle VAF for both the train and test data
sets.

Train 𝛿 VAF Test 𝛿 VAF
𝜇[%] 𝜎[%] 𝜇[%] 𝜎[%]

All 73.7 22.0 65.6 25.8
Luke 66.2 20.1 73.4 10.9
Charlie 49.3 31.8 33.7 38.0
Jason 85.0 7.8 75.9 12.4

5.9.2: Roll angle VAF for the test data set.

Test 𝜙 VAF
𝜇[%] 𝜎[%]

All 68.5 19.0
Luke 71.4 16.9
Charlie 67.8 5.6
Jason 67.5 24.8

3) Distribution of the fitted parameters
The distribution of the fitted free parameters are visualized in figure 5.10 and 5.11. Table 5.10 contains
the values of the median controllers of the different subjects and the test set.
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Figure 5.10: The distribution of the fitted free parameters visualized in boxplots.
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Figure 5.11: The distribution of the fitted roll angle LQR weights are plotted as a function of the forward velocity.

Table 5.10: The median LQR weights for the test set and the individual participants.

𝑄(𝜙)
Test set ­ median controller 795
Luke data ­ median controller 878
Charlie data ­ median controller 476
Jason data ­ median controller 3090



5.4. Validation 63

4) Velocity dependent feedback gains

From the analysis of the results in the previous two points, the fitted parameters appear to not be
forward velocity dependent. However, the feedback gains that are calculated with the LQR algorithm
are forward velocity dependent. In figure 5.12 these feedback gains are plotted together with the results
from the individual model fits. It can be seen that the median controllers (both from the test­set and the
entire data set) approximate the trends visible in the data.
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Figure 5.12: The median LQR controllers fitted to the test set and to all data are displayed here in terms of the resultant
velocity dependent feedback gains. The results from the training procedure are displayed with dots of the appropriate color.

5.4.2. UC Davis experiment ­ Pavilion

The pavilion data­set consists of 68 runs conducted at forward velocities between 1.8 and 5.7 m/s.
Runs of all three participants are included. The same steps are that are used for the treadmill data, are
used here.

1) FIR model distribution and outliers

Reviewing the FIR models in 5.13, it can be seen that the optimization procedure failed to find fits with
the experimental data for several runs (marked with blue crosses). Three of these are high speed (5.6
m/s) runs done by Jason. None of the outlier detection algorithms marked these runs, so the failure to
fit to these runs is likely a failure of the model structure choice.

Just as for the treadmill data, there are no obvious outliers present in the data, but runs were
nevertheless marked by the MAD and IQR outlier detection algorithms. The naive VAF threshold outlier
detection algorithm marked runs below a forward velocity of approximately 3.5 m/s. Again, not of much
use. It just tells us that the control behaviour for balancing a bicycle is speed dependent.
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Figure 5.13: A comparison of the FIR models fitted to all raw pavilion data sets. The outliers for the different outlier detection
algorithms are marked in red. The runs for which the rider­model failed to find a good fit are marked with blue crosses.
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Figure 5.14: This plot shows the VAF distribution of the fitted FIR models to the median FIR model. The variance of this data
set is 𝜎2 = 34.1%2

.

2) Train and test results

Reviewing both figure 5.15 and 5.16, the following remarks can be made:

• There is no clear forward velocity ­ LQR weight relationship.
• The train and test performance in terms of VAF is about 10 % worse when compared to the
treadmill data.

• The train and test performance is quite decent for Luke and Jason, but not for Charlie. This is
similar to the findings with the treadmill data.

The standard deviation 𝜎 and the mean 𝜇 VAF values are presented in table 5.11. Just as with the
treadmill results, the pavilion test results are similar for the roll and steer angle.
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Figure 5.15: The performance of the train and test procedures in terms of the VAF . On the second x­axis, the velocity
distribution associated with the run numbers is shown. For each test result, the participant that generated the data is marked.

Luke Charlie Jason

Subject name

0

10

20

30

40

50

60

70

80

90

100

V
ar

ia
n
ce

-A
cc

o
u
n
te

d
-F

o
r 

[%
]

Train set

Luke Jason Charlie

Subject name

0

10

20

30

40

50

60

70

80

90

100

V
ar

ia
n
ce

-A
cc

o
u
n
te

d
-F

o
r 

[%
]

Test set

Figure 5.16: The train and test performance in terms of VAF visualized in boxplots for the pavilion data.

Table 5.11: The standard deviation 𝜎 and the mean 𝜇 VAF values for the pavilion data.

5.11.1: Steer angle VAF for both the train and test data
sets.

Train 𝛿 VAF Test 𝛿 VAF
𝜇[%] 𝜎[%] 𝜇[%] 𝜎[%]

All 65.6 23.7 55.6 27.7
Luke 77.3 12.5 73.1 17.1
Charlie 53.2 21.9 27.9 22.0
Jason 60.2 31.4 49.6 26.3

5.11.2: Roll angle VAF for the test data set.

Test 𝜙 VAF
𝜇[%] 𝜎2[%2]

All 58.5 24.3
Luke 72.7 16.4
Charlie 32.5 26.4
Jason 56.6 14.7

3) Distribution of the fitted parameters
The distribution of the fitted free parameters are visualized in figure 5.17 and 5.18. Figure 5.18 confirms
that there is no apparent forward velocity dependency.

Table 5.12 contains the values of the median controllers of the different subjects and the test set.
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Figure 5.17: The distribution of the fitted free parameters visualized in boxplots. The first four boxplots show the data
distribution of the free LQR weight factors, the last boxplot show the distribution of the fitted sensory delay.
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Figure 5.18: The distribution of the fitted roll angle LQR weights are plotted as a function of the forward velocity.

Table 5.12: The median LQR weights for the test set and the individual participants.

𝑄(𝜙)
Test set ­ median controller 1925
Luke data ­ median controller 1536
Charlie data ­ median controller 3303
Jason data ­ median controller 2760

4) Velocity dependent feedback gains

Plotting the median controller of the test­set and the median controllers of the different participants in
figure 5.19 confirms the remarks at the previous points. The gains determined with the training data
are variable, but still are grouped together for each subject. Which results in three median controllers
that are different from each other (also visible in table 5.12). The median controller from the data from
Luke lies closest to the median test­set controller.
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Figure 5.19: The median LQR controllers fitted to the test set and to all data are displayed here in terms of the resultant
feedback gains. The results from the training procedure are displayed with dots of the appropriate color.

5.4.3. TU Delft experiment
The model structure is now applied to a part of the TU Delft experimental data, but now with the roll
and roll rate LQR weights left as free parameters. The data of three participants is selected, who all did
a single run at each of the four different forward velocities (2.5, 3.7, 4.5 and 5.5 m/s). One participant
did another run at 5.5 m/s.

1) FIR model distribution and outliers
In figure 5.20 all the fitted FIR models are plotted. There are no clear outliers present in the selected
data. The naive VAF threshold algorithm simply marks the three low forward velocity runs of all par­
ticipants. Other than for UC Davis data, the fitting procedure never failed to find a fit to any of the
runs.

In figure 5.21 the distribution of the fitted FIR models to the median FIR model is shown.
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Figure 5.20: A comparison of the FIR models fitted to all raw pavilion data sets. The outliers for the different outlier detection
algorithms are marked in red. The runs for which the rider­model failed to find a good fit are marked with blue crosses.
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Figure 5.21: This plot shows the VAF distribution of the fitted FIR models to the median FIR model. The variance of this data
set is 𝜎2 = 35.8%2

.

2) Train and test results

Reviewing both figure 5.22 and 5.23, the following remarks can be made:

• There does seem to be a forward­velocity dependency. The threshold based outlier detection
algorithm, were low forward velocity runs are excluded, performs better at higher forward veloci­
ties.

• The train and test performance in terms of steer angle VAF is about 10 % worse when compared
to the treadmill data.
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Figure 5.22: The performance of the train and test procedures in terms of the VAF . On the second x­axis, the velocity
distribution associated with the run numbers is shown. For each test result, the participant that generated the data is marked.
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Figure 5.23: The train and test performance in terms of VAF visualized in boxplots for the cycling path data.

The standard deviation 𝜎 and the mean 𝜇 VAF values are presented in table 5.13. Comparing the
test steer and roll angle VAF values confirms that the unaltered Whipple bicycle model is not valid for
this experiment.

Table 5.13: The standard deviation 𝜎 and the mean 𝜇 VAF values for the cycling path data.

5.13.1: Steer angle VAF for both the train and test data
sets.

Train 𝛿 VAF Test 𝛿 VAF
𝜇[%] 𝜎[%] 𝜇[%] 𝜎[%]

All 77.2 5.0 70.7 8.6
Blond 79.5 3.1 66.6 13.0
Koen 72.1 21.9 73.4 0
Marco 79.4 3.5 73.9 2.8

5.13.2: Roll angle VAF for the test data set.

Test 𝜙 VAF
𝜇[%] 𝜎[%]

All 46.8 14.8
Blond 58.2 12.4
Koen 37.2 0
Marco 38.5 12.5

3) Distribution of the fitted parameters
The distribution of the fitted free parameters are visualized in figure 5.24 and 5.25. Figure 5.25 confirms
that there is a forward velocity dependency.

Table 5.14 contains the values of the median controllers of the different subjects and the test set.
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Figure 5.24: The distribution of the fitted free parameters visualized in boxplots.
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Figure 5.25: The distribution of the fitted LQR weights (roll angle on the left, roll rate on the right) are plotted as a function of
the forward velocity.

Table 5.14: The median LQR weights for the test set and the individual participants.

𝑄(𝜙) 𝑄(𝜙̇)
Test set ­ median controller 2706 1442
Blond data ­ median controller 17407 10051
Koen data ­ median controller 2136 1375
Marco data ­ median controller 2501 1311

4) Velocity dependent feedback gains
In figure 5.26 these feedback gains are plotted together with the results from the individual model fits.
It is clear (especially if you look at the data from Koen and Marco) that the data collected at 5.7 m/s are
distinct from the gains calculated with the median controllers.

The median controller of Blond is very different from the median controllers from Koen and Marco,
indicating a different control strategy.
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Figure 5.26: The median LQR controllers fitted to the test set and to all data are displayed here in terms of the resultant
feedback gains. The results from the training procedure are displayed with dots of the appropriate color.
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5.4.4. Initial results passive rider
In this section a model structure with (simple) passive rider dynamics is applied to the runs also used
in [79], which are UC Davis runs done by Jason on the treadmill.

The specific settings are:

• Added ”arm” inertia: 1 𝑘𝑔 ⋅ 𝑚2.

• Added ”arm” stiffness: 200 𝑁𝑚/𝑟𝑎𝑑.

• Free parameters: LQR weights 𝑄(𝜙), 𝑄(𝛿̇) and neural sensory delay 𝜏𝑠.

Train and test results
The boxplots of the steer angle VAF with the non­parametric model is in figure 5.27 and the standard
deviation 𝜎 and the mean 𝜇 VAF values are presented in table 5.15.

The training performance is better when compared to the model structure without passive rider
dynamics (91.4 % against 75.9 % VAF). However, the testing performance has degraded more (74.0
% against 75.9 % VAF). This can be attributed to the increase in free parameters (3 versus 1).

The roll angle VAF also is about 5 % worse when compared to the earlier results.
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Figure 5.27: The train and test performance in terms of VAF visualized in boxplots for the treadmill data.

Table 5.15: The standard deviation 𝜎 and the mean 𝜇 VAF values for Jason on the treadmill.

5.15.1: Steer angle VAF for both the train and test data
sets.

Train 𝛿 VAF Test 𝛿 VAF
𝜇[%] 𝜎[%] 𝜇[%] 𝜎[%]

Jason 91.4 4.7 74.0 17.3

5.15.2: Roll angle VAF for the test data set.

Test 𝜙 VAF
𝜇[%] 𝜎2[%2]

Jason 62.8 33.5

Distribution of the fitted parameters
The distribution of the fitted free parameters are visualized in figure 5.28. In figure 5.29, the fitted
parameters are plotted as a function of the forward velocity they are fitted at. The LQR weight on the
steer rate is clearly forward velocity dependent. The LQR weight on the roll angle and the fitted neural
delay also seem the have a dependency on the forward velocity, albeit less strong.

Table 5.16 contains the values of the median controllers of the train set and the test set.
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Figure 5.28: The distribution of the fitted free parameters visualized in boxplots.
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Figure 5.29: The distribution of the fitted LQR weights and neural delay (left to right: roll angle, steer rate, neural delay) are
plotted as a function of the forward velocity.

Table 5.16: The median LQR weights for the test set and the individual participants.

𝑄(𝜙) 𝑄(𝜙̇) Neural delay [s]
Test set ­ median controller 208278 1475 0.076
Jason data ­ median controller 386168 1475 0.072

Velocity dependent feedback gains

In figure 5.30 these feedback gains are plotted together with the results from the individual model fits.
The fits are approximated reasonably well by the the median test­set controller, but especially the gains
on the steer rate, torque and torque rate could be captured better by the median controllers.
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Figure 5.30: The median LQR controllers fitted to the test set and to all data are displayed here in terms of the resultant
feedback gains. The results from the training procedure are displayed with dots of the appropriate color.





6
Discussion

In the previous chapter the findings that can be attributed to single model components or experimental
settings were presented and interpreted. In this chapter the different experiments are compared and
discussed.

6.1. Model structure selection
Control and estimation algorithms
It is interesting that a combination of optimal control (the LQR) and optimal estimation (the Kalman
filter and the TDL (Tapped­Delay­Line) predictor) yields good results. While I’ve seen multiple papers
hypothesizing or proving this ([93] being the most similar, but for human stance control), I have not seen
this model structure implemented and validated for human control of an element anywhere in literature.

In this model structure, the Kalman filter noise co­variance matrices are the main thing that may
need to be specified further. Based on the already good results they are left as identity matrices, but
further investigating their influence may yield more realistic results. It could be possible that there is an
interaction between the selected sensory channels and the co­variances of the noise associated with
them.

They could also be used to investigate sensory degradation, as a higher noise co­variance corre­
sponds to a more unreliable sensor.

Internal model
Results show that the internal model has to incorporate all dynamics present in the model for the best
fitting performance. For both the bicycle dynamics and the neuromuscular dynamics this does make
some sense: we need to know the relationship between the bicycle states and steer input. Also,
knowing the our own control bandwidth limitations seems logical.

Sensory channels
The number of sensory channels is limited to two: the steer angle and the roll rate. Increasing the
number of channels did not necessarily improve the results or even degraded performance. Apparently,
some degree of inaccuracy is beneficial for the results. The exact reason for this is unclear. It could be
that with other Kalman filter noise co­variances matrices this effect does not occur. It could also be that
it can be influenced by the addition of a passive rider model, as the over estimation of the roll angle
occurs only in the short moments right after the perturbation has been applied.

The results all had one thing in common: the roll rate channel is crucial in order to reach realistic
results. Note that stabilizing a bicycle is perfectly possible without a roll rate measurement, it just
doesn’t yield results comparable to the experimental data.

6.2. Identified rider models
Individual subjects
Even though only one free parameter is fitted, which should limit the risk of over­fitting, from the results
it is clear that there are differences between the subjects. These differences are both present for the
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UC Davis and TU Delft data.

For the UC Davis data, the model structure does well at capturing the control behavior of Luke and
Jason for both environments, besting the variability and performance of the median Finite­Impulse­
Response (FIR) model. But, the results of Charlie are very variable. This is to be expected, considering
there also is a greater variability in the raw data from Charlie (figure 4.6 in section 4.1.2). The strict
and LTI framework of this model structure and data­prepossessing procedure is not able to grasp the
control behaviour of Charlie.

The TU Delft data required the number of free LQR weight parameters to be increased to two, be­
cause no successful fits where found with only one free LQR weight. The training performance is
stable, with Variance­Accounted­For (VAF) values around 75­80 %. This is quite decent, given the
dependence of the LQR and Kalman filter algorithms on a correct plant model. This indicates that the
control behaviour is different, but that the model structure is able to account for this.

The roll angle VAF values are significantly lower, confirming that the for experiment conducted at the
TU Delft, the Whipple bicycle model should be extended to account for the free upper body movement.

The fitted parameters where found to be velocity dependent, with both parameters fitted to the high
speed 5.7 m/s runs to be distinctly higher than those fitted to the lower speed runs. Therefore, this
jump was not linear.

UC Davis treadmill and pavilion comparison
The results across both environments can be compared because the runs are conducted by the same
subjects. This is done in figure 6.1, were the forward velocity dependent feedback gains are plotted for
the median controllers of all subjects for both environments. This shows:

1. There are clear differences in control strategy between the different subjects.

2. The median controllers of Luke and Jason are similar between both environments. This indicates
that the control strategy changes little.

We can further confirm this by applying the median controllers of the treadmill data to the pavilion
data and visa­versa. The results of this procedure are shown in table 6.1. It is clear that that Charlie
switches control strategies for the different environments. However, due to the variability of his results
this probably is not a significant result.

For Luke, and especially for Jason, the controllers can be switched without a large penalty in VAF
with the experimental data.

Table 6.1: In this table the original test results and the switched median controller test results are shown for all runs and for the
runs separated according to the participants.

Test Treadmill Pavilion
Original mean test VAF 69.9 % 53.2 %
Switched controller mean test VAF 53.0 % 46.7 %

Luke original mean test VAF 64.1 % 74.4 %
Switched Luke controller mean test VAF 57.3 % 67.4 %

Charlie original mean test VAF 49.1 % 40.8 %
Switched Charlie controller mean test VAF 20.5 % 18.9 %

Jason original mean test VAF 79.8 % 50.8 %
Switched Jason controller mean test VAF 78.9 % 50.7 %
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Figure 6.1: Forward velocity dependent feedback gains on the bicycle states. In this plot, the median test­set controllers and
the median controllers from both the treadmill and pavilion data are included.

Comparison of all identified controllers
By calculating the forward velocity dependent feedback gains that result from the fitted LQR weights,
we can compare the controllers in all three environments (treadmill, pavilion and cycling path)1. This is
plotted in figure 6.2. It becomes very clear from this figure that the identified controllers of the TU Delft
data are very different than those identified by the UC Davis data.
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Figure 6.2: The forward velocity dependent feedback gains calculated with the median controllers from the UC Davis and TU
Delft experimental data.

Comparison with the rider control identification paper by [79]
The results from the treadmill data of Jason can be directly compared with the results from [79]. The
average training performance is about 5 to 10 % worse for the model structure that is presented in this
thesis. However, one must consider that this model structure is only fitted with one free parameter for
the entire forward velocity range and is also optimized for testing performance. The model in [79] uses
four free parameters which are optimized for each individual run.

1The passive rider results are excluded because the bicycle model parameters are very different for those results.
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The addition of a passive rider model
The results indicate that including a passive rider model increases the fidelity of the identified models:
a sensory delay can be left as a free parameter and yields a fitted delay that is within human control
capabilities. This is done with a very simplistic passive rider model.

There fitted parameters show signs of a forward velocity dependency. For the neural delay (which
decreases with increasing forward velocity) this could point to tightening control behaviour of the rider.

Better parameters with the current passive rider model, or a more advanced (e.g., steer angle
dependent and/or forward velocity dependent) passive rider model are likely to improve the testing
performance.

6.3. Discussion on the experimental methods of the UC Davis and
TU Delft experiments

It is difficult to come to a final judgment on quality of the experiments. Both have their positives and
negatives, which will be discussed below.

Remarks on the UC Davis pavilion experiment
The results show that the variability between the FIR models fitted to the treadmill data is similar to the
variability of those fitted to the pavilion data (treadmill 𝜎2 = 34.7%2, 𝑁 = 35 and pavilion 𝜎2 = 35.8%2,
𝑁 = 68). This while the evaluated forward velocity range is smaller (treadmill: 2.2­7.4 m/s, pavilion:
1.8­5.6 m/s) and the data set is bigger (treadmill: 35 runs, pavilion: 68 runs). Therefore, this is an
indication that the pavilion data is more variable.

This could be caused by the experimental method. The runs in the pavilion were of a rather short
duration during which usually only two or three perturbations are applied. Also, the participants imme­
diately had to make a 90 degree turn at the end of the their run on the slippery pavilion surface.

Remarks on the TU Delft pavilion experiment
I think the experimental procedure and setup of the TU Delft experiment was not strict enough to be
really useful for this research. The participants where not given time to train before the experimental
data was acquired. This increases the intrasubject variability. Only pull­type perturbations were given
and the person giving the perturbations was visible to the participant. This increases the risk that the
rider trains a response specific to the experiment. Lastly, the upper body movement was left free, but
not measured. This causes the identified controllers to be dissimilar but also makes it impossible to
determine the control strategy guiding the upper­body movement.

I do like the environment of the TU Delft experiment: a long and undisturbed cycling path. Also,
given the difference in identified controllers, upper body movement has an influence on control be­
haviour: gains of a greater magnitude are required to match the found steer angles. It is interesting to
investigate this effect on stability.

Discussion on the type perturbation used during the experiments
Designing a proper perturbation to enable the unique identification of a human controller can be quite
difficult. Usually, for the identification of a (assumed to be linear) human controller for pure tracking or
disturbance compensation tasks, a sum­of­sinusoids perturbation signal is applied. If done properly,
this method allows to filter out noise introduced by the test subject and results in models valid around
the frequency ranges of the applied sinusoids [96]. It is assumed that linearity can be approximated
when the subjects are well trained and the perturbation signal is random appearing and devoid of any
large spikes.

The impulse­like perturbations applied during the UC Davis and TU Delft experiments do not meet
those conditions. The risk of this is, is that a bicycle rider model is identified which is only valid for this
particular perturbation. Due to the objective of this research, which is to identify a rider model that can
be used for fall prevention, this does not need to be a big problem. At least, if the perturbation (and other
experiment conditions) match the scenario we are interested in. Well, falling over essentially reduces
to an increasing roll angle from which the rider fails to recover. The perturbation used initiates this
process, and would result in a fall in the case of an uncontrolled bicycle2. So at least, the perturbation
triggers behaviour that ought to be a bit realistic. However, in practice, the fall is usually not initiated
2The perturbation is large enough that even a bicycle in it’s self­stable velocity range will fall over
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by a roll perturbation, but by a a disturbance of the steer assembly. Furthermore, a lot of the falls
occur during mounting and dismounting of the bicycle. Both are scenarios which might not be properly
excited with a roll perturbation.

A more valid perturbation would be a steer perturbation. However, the effect of such a perturbation
greatly depends on the posture of the bicycle­rider. A ”stiff” posture, for example if the rider leans
on the handlebars or has co­contracted his arm muscles, will cause a way lower steer angle change
(assuming a steer torque perturbation) when compared to a rider with a ”soft” posture.

Also, this research assumes that the human response scales linearly with the perturbation. Because
all of the perturbations where roughly of the same magnitude, it is not possible to verify this.

6.4. Other findings
In this section I briefly touch upon some findings during my search towards to best bicycle rider control
model.

FIR Model
Initially the same two data preprocessing steps were taken as in [22], these steps are:

1. Fit a non­parametric FIR model to the experimental data. Note that, when applicable, the exper­
imental data is already detrended and calibrated.

2. Smooth the resulting data with a 8th order low­pass Butterworth filter with a cut­off frequency of
20 Hz.

The smoothing step incurs a group delay between 0.08 and 0.15 seconds (at a 200 Hz sampling fre­
quency), which is significant for human control and skewed a lot of early results.

The fitting performance of the FIR model is also a bit haphazard3. The UC Davis Pavilion and TU
Delft cycling path experimental data is approximated by the FIR model with VAF values between 70
and 100 %. This indicates that little potentially useful data is discarded.

However, the FIRmodel fitting performance is worse for the UCDavis treadmill data with VAF values
ranging between 35 and to 80 %.

It is difficult to say something smart about this. The good performance of the FIR model with the UC
Davis pavilion data can in part be attributed to the short pavilion run durations, during which only few
(usually less than four) perturbations are applied. This increases the risk of the FIR model also fitting
to variable human control behaviour, which would be discarded in runs of a longer duration.

This could explain the worse performance of the FIR model with the UC Davis treadmill runs, which
are of a longer duration. But the same could be said for the TU Delft cycling path runs, which are also
of a longer duration, but are approximated well with the FIR model.

An explanation could be, that the treadmill experiment did cause some non­linear rider control be­
haviour, which can’t be captured by the linear FIR model. This important to consider when attributing
a certain confidence to the findings.

The fitting performance of the FIR model shows the same trend of variability that also is visible in
the fitting performance of the final model structure. So, the FIR models fitted the Luke and Jason runs
are less variable than those fitted to Charlie runs.

As an alternative to the non­parametric FIR model, ARX and ARMAX type models were tried as an
alternative. However, these models performed worse than the FIR model, unless very high degree (N
= 300+) models are used, which increases the computational time beyond a practical limit.

Adaptive Kalman filter
Because it generally is assumed that humans fuse the measured states optimally and do some sort of
on­line signal reliability estimation, the use of an adaptive Kalman filter is a logical avenue to pursue.

Such an adaptive Kalman filter algorithm [1] was implemented with some initial success. But for runs
done at velocities lower than 6 m/s, it struggled to achieve stable results. The reason seemed to be that
3The detailed results can be looked up in section 4.1.2
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the noise co­variance matrix (which now follows from the algorithm in stead of being provided by the
user) converges to a form during the period before the perturbation that results in wrong state estimates
once the perturbation is applied to the system. Hence, the adaptive Kalman filter was dropped.

Multiple delay Kalman filter
With a normal Kalman filter, each sensory pathway is combined as they arrive irrespective of the sen­
sory delay. But, because there are multiple different delays associated with the different sensory path­
ways, it could make sense to account for this. To do this, the sensory channels should be combined
in such a way that measurements done at the same time are combined instead of combining the mea­
surements as they arrive in the ”brain”. Unfortunately, this is easier said than done, because as a
more delayed measurement is introduced to the Kalman filter, the noise co­variance matrices have to
be updated to the current time recursively. The method described by [2] is used to do this in a way
that is somewhat easy on memory and computational requirements. The algorithm worked fine for
a minimum working example, but applying it to the more complex model proved to be difficult. After
some tinkering and given that the impact of the method on the results was doubtful, it was scratched.
With time, I’m confident that the algorithm can be implemented successfully, but I think just assuming
a single effective delay is a more scientifically founded approach.

Steer torque feedback
During the research, there was a lot of discussion on the importance of torque feedback. Personally,
I think that it is unlikely that torque feedback provides direct information on the complete state of the
bicycle. If we review the Whipple bicycle equations, it is impossible to reconstruct an unique set of
bicycle states only knowing the steer torque. The same is true of one wants to reconstruct the magni­
tude of the perturbation, again only knowing the steer torque. The feedback off4 TU Delft experiment
reinforces my belief that this is true.

However, what I can imagine to be true, is that torque is a powerful mechanism to provide information
on the angle of the handlebars, as it is on the ”level” of the acceleration of the handlebars. In the case
of this model, this information is essentially supplied in the form of the control input.

6.5. Relevance
The results presented in this thesis do not yield results that are relevant to society immediately. How­
ever, a high fidelity model describing human bicycle balancing can be used to investigate the stability
margins before an unrecoverable fall occurs for various situations. For example, to investigate the ef­
fect of sensory degradation, or the effect of bicycle design on the stability margins. The results of these
experiments can be used for tailored measures to reduce the injury rate among cyclists.

The results also indicate that human cycling experiments done on a treadmill are a viable alterna­
tive to experiments done in environments with a less strict restriction on lateral movement. This is of
course useful if you want to do further bicycle research in a controlled and convenient environment.

Lastly, having a good model structure that can be fitted to experimental results is important when de­
veloping steer assist bicycles as it allows the investigation of behavioral changes and the simulation of
combined effects.

4In this experiment only the combined inertia of the handlebars and arms of the participants was left as a ”source” of feedback
torque



7
Conclusion and further research

7.1. Conclusion
Based on the results and discussion, a few things become clear:

• Using LQR and estimation (Kalman filter and TDL predictor) algorithms in combination with mod­
elled neuromuscular dynamics and the linear Whipple bicycle model yields a model structure that
is able to describe human bicycling for all evaluated forward velocities.
For the UC Davis data, one rider dependent parameter is sufficient: a LQR weight placed on the
roll angle. Successfully fitting a model structure to the TU Delft data requires two rider dependent
parameters: LQR weights placed on the roll angle and the roll rate.

• Leaving the neural delay is a free parameter in the model structure without passive rider dynamics
does not yield a realistic delay. For model structure with passive rider dynamics, the estimated
delay ranges between 0.04 and 0.1 seconds. This is in agreement in earlier studies into human
bicycle balancing [87][27].

• Roll rate and the handlebar angle of the bicycle provide enough information to the rider to control
the bicycle in a realistic manner. With the roll rate being the primary measurement as realistic
results can’t be achieved with only handlebar information. Using other states either reduces the
performance or does not increase performance.
The handlebar angle might originate both from the muscle spindles as from the Golgi tendon
sensor organs.
The roll rate can both be estimated by the vision and vestibular organs. It is likely that it is a com­
bination of both, but given the fast control behaviour and circumstantial evidence, the vestibular
organ is likely to be the most important.

• Preliminary results indicate that there is not a lot of difference between the UC Davis treadmill
and pavilion experiments.

• Even though the above points are true for all subjects, the participants tend to have distinct control
behaviour.

7.2. Further research and recommendations
1. The most interesting avenue for further improvement of this model are passive rider models. I’ve

had some success with a simple model, but a more elaborate model or better parameters of the
simple model are likely to improve the results.

2. The influence of the spectral density matrices of the Kalman filter can be investigated. This in
order to increase the fidelity of the model, but also investigate the impact of sensory degradation.
An adaptive Kalman filter might be worthwhile to try here, but the problem touched upon in the
discussion must be addressed.
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3. From the TU Delft experiment, it also became clear that unrestricted upper body movement
caused a significant change in control behaviour. This conflicts with earlier research which was
done without perturbations. It is definitely interesting to research the impact of upper body move­
ment on perturbed cycling: is it merely a passive change in the dynamics of the bicycle or is it
active control behaviour?

4. There might be better alternatives to the FIR model used for data pre­processing. The biggest
problem is that the bicycle­rider system is open­loop unstable, making it difficult to select a valid
black­box model structure.

5. Knowing that a large part of the bicycle accidents are single vehicle accidents that either happen
during mounting and dismounting of the bicycle or are caused by a short perturbation to a part of
the steering assembly, conducting an experiment tailored to such conditions might provide new
insights into the actual cause of a lot of cycling accidents.

6. At forward velocities that are lower than approximately 3.5 m/s, the steer angles start to exceed
15 degrees. This causes the Whipple bicycle model to be increasingly non­correct due to non­
linear effects. If more research is done in this low forward velocity range, it makes sense to test
the impact of using a non­linear Whipple bicycle model.
As a next step, it is then interesting to test this non­linear plant model with a linear and a non­
linear internal model. If the non­linear internal model performs a lot better, this indicates that our
internal model is non­linear both in forward velocity and in the roll and steer angle. If not, then it
is only non­linear in forward velocity.

7. Because the conclusion of this thesis indicates that the vestibular organ is the primary source of
information for the rider, it is interesting to conduct an experiment with blindfolded cyclists.

8. It is interesting to do a more extensive comparison between the treadmill and pavilion experi­
ments. If they truly are similar, further research into bicycle control becomes a lot easier. Although
I wouldn’t want to ride on a treadmill, blindfolded.

9. It is interesting to conduct the same experiments again, but with perturbations of varying magni­
tudes. This should yield information on how the human response scales. When further research
is conducted in accident prevention, this information is important.
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A.1. Derivation of system state­space matrices
A.1.1. Plant model
Whipple bicycle model
The canonical linearised equations which describe the lateral dynamics for the Whipple bicycle model
with coefficients as derived by Meijaard et al. [59] can be written as:

Mq̈+ 𝑣C1q̇+ [𝑔K0 + 𝑣2K2]q = T (A.1)

Where q = [𝜙, 𝛿]⊤ and T = [𝑇𝜙 , 𝑇𝛿]⊤. This translates in the continuous time following state­space
model:

[q̇(𝑡)q̈(𝑡)] = [
0 I

−M−1(𝑔K0 + 𝑣2K2) −M−1𝑣C1
] [q(𝑡)q̇(𝑡)] + [

0
M−1] f (A.2)

In short and making a distinction between perturbation torque T𝑒 and rider input torque T𝑐:

ẋ𝑏 = A𝑏x𝑏 + B𝑏(T𝑒 + T𝑐)
y𝑏 = C𝑏x𝑏

(A.3)

Additional bicycle model states
The heading angle and lateral displacement, velocity and acceleration of the bicycle can be interesting
information for the rider to use for the control task. These states can be expressed as a function of the
lateral bicycle model states (A.2):

𝜓̇(𝑡) = 𝑣 cos(𝜆)
𝑤 𝛿(𝑡) + 𝑐

𝑤 𝛿̇(𝑡)
𝑦̇𝑝(𝑡) = 𝑣𝜓(𝑡)
𝑦̈𝑝(𝑡) = 𝑣𝜓̇(𝑡)

The heading angle and the global coordinates can now be found found by integrating the heading rate 𝜓̇
of the bicycle and the lateral velocity 𝑦̇𝑝 of the rear wheel contact point over time. A.4 is the state­space
representation with can be appended to the state equations of the linear bicycle model (A.2).

[
𝜓̇(𝑡)
𝑦̇𝑝(𝑡)
𝑦̈𝑝(𝑡)

] = [
0 𝑣 cos(𝜆)

𝑤 0 𝑐 cos(𝜆)
𝑤 0 0 0

0 0 0 0 0 0 1
0 𝑣2 cos(𝜆)

𝑤 0 𝑣𝑐 cos(𝜆)
𝑤 0 0 0

]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜙(𝑡)
𝛿(𝑡)
𝜙̇(𝑡)
𝛿̇(𝑡)
𝜓(𝑡)
𝑦𝑝(𝑡)
𝑦̇𝑝(𝑡)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.4)
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Written in a compact form, with the new states denoted as xℎ𝑦:

[ ẋ𝑏ẋℎ𝑦] = [
A𝑏 0
Aℎ𝑦,𝑏 Aℎ𝑦,ℎ𝑦

] [ x𝑏xℎ𝑦] (A.5)

Neuromuscular dynamics
The relation between the steer torque desired by the rider (𝑇̂𝑐𝛿 ) and the realized steer torque (𝑇𝑐𝛿 ) can
described by a neuromuscular model which lumps the neuromuscular and control inceptor systems
together [21]. In the Laplace domain, the neuromuscular dynamics are described by the following
transfer function:

𝐻𝑛𝑚(𝑠) =
𝑇𝑐𝛿 (𝑠)
𝑇̂𝑐𝛿 (𝑠)

= 𝜔2𝑐
𝑠2 + 2𝜁𝜔𝑐𝑠 + 𝜔2𝑐

(A.6)

For this research shoulder muscle parameters from from Happee et al. [38] are used: the cut­off fre­
quency 𝜔𝑐 = 2.17 ⋅ 2𝜋 rad/s and the damping coefficient 𝜁 = √0.5. This transfer function can be written
in a convenient (as it leaves an intact physical interpretation of the states) continuous state­space phase
variable form:

[𝑇̇
𝑐
𝛿 (𝑡)
𝑇̈𝑐𝛿 (𝑡)

] = [ 0 1
−𝜔2𝑐 −2𝜁𝜔𝑐] [

𝑇𝑐𝛿 (𝑡)
𝑇̇𝑐𝛿 (𝑡)

] + [ 0𝜔2𝑐 ] 𝑇̂
𝑐
𝛿 (𝑡) (A.7)

𝑇𝑐𝛿 (𝑡) = [1 0] [𝑇
𝑐
𝛿 (𝑡)
𝑇̇𝑐𝛿 (𝑡)

] (A.8)

Written in a compact form, with 𝑦𝑛𝑚 as the realized steer torque.

ẋ𝑛𝑚 = A𝑛𝑚x𝑛𝑚 + B𝑛𝑚𝑇̂𝑐𝛿
𝑦𝑛𝑚 = C𝑛𝑚x𝑛𝑚

(A.9)

A.1.2. Sensory model
Semi­circular­canals
Fernandez and Goldberg [31] formulates a Laplace domain transfer function which describes the rela­
tionship between stimulus angular acceleration and the afferent neural response:

𝐻𝑆𝐶𝐶(𝑠) =
𝜏𝑎𝑠

(1 + 𝜏𝑎𝑠)
⋅ 𝐾(1 + 𝜏𝐿𝑠)
(1 + 𝜏1𝑠)(1 + 𝜏2𝑠)

(A.10)

With parameters:

• Adaptation time constant 𝜏𝑎
• Neural lead term 𝜏𝐿
• Time constant 𝜏1
• Time constant 𝜏2
• Gain 𝐾

This response of this transfer function correlates with rotational velocity denoted as 𝜔̃. The transfer
function can be rewritten in the following form:

𝐻𝑆𝐶𝐶(𝑠) =
𝜔̃(𝑠)
𝛼(𝑠) =

𝑇0𝑠2 + 𝑇1𝑠
𝑠3 + 𝑇2𝑠2 + 𝑇3𝑠 + 𝑇4

(A.11)

With:

• 𝑇0 =
𝐾𝜏𝐿
𝜏1𝜏2

• 𝑇1 =
𝐾
𝜏1𝜏2
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• 𝑇2 =
𝜏𝑎𝜏1+𝜏𝑎𝜏2+𝜏1𝜏2

𝜏𝑎𝜏1𝜏2

• 𝑇3 =
𝜏𝑎+𝜏1+𝜏2
𝜏𝑎𝜏1𝜏2

• 𝑇4 =
1

𝜏𝑎𝜏1𝜏2

This transfer function can be written in observable canonical form which also outputs a derivative of
the afferent neural response. This derivative correlates with rotational acceleration denoted as 𝛼̃. The
output is delayed with a neural delay 𝜏𝑆𝐶𝐶.

[
𝛼̃(𝑡)

𝑥̇𝑆𝐶𝐶,2(𝑡)
𝑥̇𝑆𝐶𝐶,3(𝑡)

] = [
−𝑇2 1 0
−𝑇3 0 1
−𝑇4 0 0

] [
𝜔̃(𝑡)

𝑥𝑆𝐶𝐶,2(𝑡)
𝑥𝑆𝐶𝐶,3(𝑡)

] + [
𝑇0
𝑇1
0
] 𝛼(𝑡)

[𝜔̃(𝑡 + 𝜏𝑆𝐶𝐶)𝛼̃(𝑡 + 𝜏𝑆𝐶𝐶)] = [
1 0 0
−𝑇2 1 0] [

𝜔̃(𝑡)
𝑥𝑆𝐶𝐶,2(𝑡)
𝑥𝑆𝐶𝐶,3(𝑡)

] + [ 0𝑇0] 𝛼(𝑡)

(A.12)

Short:

ẋ𝑆𝐶𝐶 = A𝑆𝐶𝐶x𝑆𝐶𝐶 + B𝑆𝐶𝐶𝛼
y𝑆𝐶𝐶 = C𝑆𝐶𝐶x𝑆𝐶𝐶 + D𝑆𝐶𝐶𝛼

(A.13)

Otoliths
Where the SCC’s respond to rotational accelerations, the otoliths respond to translational accelerations.
Fernandez and Goldberg [31] proposed the following transfer function which describes the relation
between translational acceleration and the afferent neural response:

𝐻𝑜𝑡𝑜(𝑠) = 𝐾
1 + 𝐾𝑎𝜏𝑎𝑠
1 + 𝜏𝑎𝑠

⋅ 1 + 𝐾𝑣(𝜏𝑣𝑠)
𝐾𝑣

1 + 𝜏𝑚
(A.14)

The (fractional) exponent in the numerator makes implementation difficult. Therefore, in a lot of re­
search on human modelling a simplified transfer function based on the physical nature of the otoliths is
used A.15. This transfer function is also used for this research. It functions as an accelerometer, with
the translational acceleration denoted by 𝑎 and the measured translational acceleration denoted by 𝑎̃.

𝐻𝑜𝑡𝑜(𝑠) =
𝑎̃(𝑡)
𝑎(𝑡) = 𝐾

1 + 𝜏𝑛𝑠
(1 + 𝜏1𝑠)(1 + 𝜏2𝑠)

(A.15)

This transfer function can be converted to a state­space representation (OCF):

[
̇𝑎̃(𝑡)

𝑥̇𝑜𝑡𝑜(𝑡)] = [
−𝑇2 1
−𝑇3 0] [

𝑎̃(𝑡)
𝑥𝑜𝑡𝑜,2(𝑡)] + [

𝑇0
𝑇1] 𝑎(𝑡)

𝑎̃(𝑡 + 𝜏𝑜𝑡𝑜) = [1 0] [ 𝑎̃(𝑡)
𝑥𝑜𝑡𝑜,2(𝑡)]

(A.16)

With:

• 𝑇0 =
𝐾
𝜏1𝜏2

• 𝑇1 =
𝐾𝜏𝑛
𝜏1𝜏2

• 𝑇2 =
𝜏1+𝜏2
𝜏1𝜏2

• 𝑇3 =
1

𝜏1𝜏2

Short:

ẋ𝑜𝑡𝑜 = A𝑜𝑡𝑜x𝑜𝑡𝑜 + B𝑜𝑡𝑜𝑎
𝑦𝑜𝑡𝑜 = C𝑜𝑡𝑜x𝑜𝑡𝑜

(A.17)
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Visual system
The visual system estimating position and velocity can be represented by a low­pass filter with cut­off
frequency 𝜔𝑐 = 0.810 rad/s [65]:

𝐻𝑣𝑖𝑠(𝑠) =
𝜔𝑐

𝑠 + 𝜔𝑐
(A.18)

In state­space representation:

⎡
⎢
⎢
⎢
⎣

̇𝜃̃(𝑡)
̇𝜔̃(𝑡)
̇𝜓̃(𝑡)
̇𝑦̃𝑟𝑤(𝑡)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

−𝜔𝑐 0 0 0
0 −𝜔𝑐 0 0
0 0 −𝜔𝑐 0
0 0 0 −𝜔𝑐

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝜃̃(𝑡)
𝜔̃(𝑡)
𝜓̃(𝑡)
𝑦̃𝑟𝑤(𝑡)

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

𝜔𝑐 0 0 0
0 𝜔𝑐 0 0
0 0 𝜔𝑐 0
0 0 0 𝜔𝑐

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝜃(𝑡)
𝜔(𝑡)
𝜓(𝑡)
𝑦𝑟𝑤(𝑡)

⎤
⎥
⎥
⎦

(A.19)

⎡
⎢
⎢
⎣

𝜃̃(𝑡 + 𝜏𝑣𝑖𝑠)
𝜔̃(𝑡 + 𝜏𝑣𝑖𝑠)
𝜓̃(𝑡 + 𝜏𝑣𝑖𝑠)
𝑦̃𝑟𝑤(𝑡 + 𝜏𝑣𝑖𝑠)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝜃̃(𝑡)
𝜔̃(𝑡)
𝜓̃(𝑡)
𝑦̃𝑟𝑤(𝑡)

⎤
⎥
⎥
⎦

(A.20)

Short:

ẋ𝑣𝑖𝑠 = A𝑣𝑖𝑠x𝑣𝑖𝑠 + B𝑜𝑡𝑜 [
x𝑏
xℎ𝑦

]

y𝑣𝑖𝑠 = C𝑣𝑖𝑠x𝑣𝑖𝑠
(A.21)

A.1.3. Combined description
The combined plant takes the form of:

[
𝑥̇𝑏
𝑥̇𝑛𝑚
𝑥̇𝑠
] = A [

𝑥𝑏
𝑥𝑛𝑚
𝑥𝑠
] + B1𝑇̂𝑐𝛿 + B2 [

𝑇𝑒𝜙
𝑇𝑒𝛿
] (A.22)

[𝑦𝑏𝑦𝑠] = C [
𝑥𝑏
𝑥𝑛𝑚
𝑥𝑠
] + D [𝑇

𝑒
𝜙
𝑇𝑒𝛿
] (A.23)

Where input matrices B1 and B2 describe the relation between a state change and input steer torque
by the rider and the perturbation torques respectively. The states of the sensory dynamics (𝑥𝑆𝐶𝐶, 𝑥𝑣𝑖𝑠
and 𝑥𝑜𝑡𝑜) are denoted by 𝑥𝑠.

The sensory dynamics can be incorporated by noting that the derivative of the sensory state vector
x𝑠 can be written as:

ẋ𝑆𝐶𝐶 = A𝑆𝐶𝐶x𝑆𝐶𝐶 + B𝑆𝐶𝐶𝛼
𝛼 = 𝜙̈ = A𝑏(3, ∶)x𝑏 + B𝑏(3, ∶)(T𝑐 + T𝑒)

(A.24)

ẋ𝑣𝑖𝑠 = A𝑣𝑖𝑠x𝑣𝑖𝑠 + B𝑣𝑖𝑠 [𝜃 𝜔 𝜓 𝑦𝑟𝑤]
⊤

[𝜃 𝜔 𝜓 𝑦𝑟𝑤]
⊤ = [𝑥𝑏,1 𝑥𝑏,2 𝑥ℎ𝑦,1 𝑥ℎ𝑦,2]

⊤ (A.25)

ẋ𝑜𝑡𝑜 = A𝑜𝑡𝑜x𝑜𝑡𝑜 + B𝑜𝑡𝑜𝑎
𝑎 = 𝑦̈𝑟𝑤 = Aℎ𝑦,𝑏(3, ∶)x𝑏

(A.26)

The neuromuscular dynamics can be incorporated by noting that:

ẋ𝑏 = A𝑏x𝑏 + B𝑏(∶, 2)𝑇𝑐𝛿 + B𝑏T
𝑒

ẋ𝑛𝑚 = A𝑛𝑚x𝑛𝑚 + B𝑛𝑚𝑇̂𝑐𝛿
(A.27)
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Resulting in a final continuous time state­space representation of the plant:

⎡
⎢
⎢
⎢
⎢
⎣

ẋ𝑏
ẋℎ𝑦
ẋ𝑛𝑚
ẋ𝑆𝐶𝐶
ẋ𝑜𝑡𝑜
ẋ𝑣𝑖𝑠

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A𝑏 0 [B𝑏(∶, 2) 0] 0 0 0
Aℎ𝑦,𝑏 Aℎ𝑦,ℎ𝑦 0 0 0 0
0 0 A𝑛𝑚 0 0 0

B𝑆𝐶𝐶A𝑏(3, ∶) 0 [B𝑆𝐶𝐶B𝑏(3, 2) 0] A𝑆𝐶𝐶 0 0
B𝑜𝑡𝑜Aℎ𝑦,𝑏(3, ∶) 0 0 0 A𝑜𝑡𝑜 0

[B𝑣𝑖𝑠(1 ∶ 2, 1 ∶ 2) 0
0 0] [B𝑣𝑖𝑠(3 ∶ 4, 3 ∶ 4) 0

0 0] 0 0 0 A𝑣𝑖𝑠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

x𝑏
xℎ𝑦
x𝑛𝑚
x𝑆𝐶𝐶
x𝑜𝑡𝑜
x𝑣𝑖𝑠

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0
0

B𝑛𝑚
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

𝑇̂𝛿 +

⎡
⎢
⎢
⎢
⎢
⎣

B𝑏
0
0

B𝑆𝐶𝐶B𝑏(3, ∶)
0
0

⎤
⎥
⎥
⎥
⎥
⎦

[𝑇
𝑒
𝜙
𝑇𝑒𝛿
]

(A.28)

[
y𝑆𝐶𝐶
y𝑜𝑡𝑜
y𝑣𝑖𝑠

] = [
D𝑆𝐶𝐶A𝑏(3, ∶) 0 [D𝑆𝐶𝐶B𝑏(3, 2) 0] C𝑆𝐶𝐶 0 0

0 0 0 0 C𝑜𝑡𝑜 0
0 0 0 0 0 C𝑣𝑖𝑠

]

⎡
⎢
⎢
⎢
⎢
⎣

x𝑏
xℎ𝑦
x𝑛𝑚
x𝑆𝐶𝐶
x𝑜𝑡𝑜
x𝑣𝑖𝑠

⎤
⎥
⎥
⎥
⎥
⎦

+ [
D𝑆𝐶𝐶B𝑏(3, ∶)

0
0

] [𝑇
𝑒
𝜙
𝑇𝑒𝛿
]

(A.29)

A.2. FIR model
With a FIR model, output data 𝑦(𝑡) can be estimated using the measured input 𝑤(𝑡) and output 𝑦(𝑡)
data. The general model is described by:

𝑦̂(𝑡) =
𝑚

∑
𝑘=1

𝑔̂(𝑘) ⋅ 𝑤(𝑡 − 𝑘) + 𝑣(𝑡) (A.30)

With 𝑦̂ as the (optimaly) estimated output data, the (optimally selected) coefficients 𝑔̂, the measured
inputs 𝑤, the noise 𝑣 and the number of coefficients 𝑚. Equation A.30 can be written out in a matrix
form: ŷ = Fx+ v, with:

ŷ = [𝑦̂(1) … 𝑦̂(𝑛)]𝑇

x = [𝑔̂(1) … 𝑔̂(𝑚)]𝑇

y = [
𝑤(1 − 1) … 𝑤(1 −𝑚)

⋮ ⋱ ⋮
𝑤(𝑛 − 1) … 𝑤(𝑛 −𝑚)

]

v = [𝑣(1) … 𝑣(𝑛)]𝑇

We want choose the parameters in x such a way, that the estimated output 𝑦̂ matches the measured
output 𝑦(𝑡) as close as possible. A common method for this is to pose this problem as the following
linear least squares problem, were the objective function 𝑆 (which has to be minimized) is given by:

𝑆(x) = ‖y− Fx‖2 (A.31)

The optimal solution, in a linear least squares sense, then is:

x̂ = (F𝑇F)−1F𝑇y) (A.32)

A.3. Optimization algorithms
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Pattern­search optimization

Pattern­search optimization methods do not require a cost­function that is differentiable. Instead it
evaluates the cost function around the provided initial condition (i.e., the initial point). Which points
it exactly evaluates depends on the mesh size. It does this until the cost of a certain point is lower
than the initial cost (so not all points around the initial condition might be evaluated). The process then
repeats for the new point, but with a mesh size that is larger by some expansion factor. In the case that
at the new point, no lower cost around that point is found, the mesh is sized down with some contraction
factor. This process repeats until a stopping criteria is reached. The stopping criteria usually are a limit
on the amount of function evaluations, the minimum mesh size, or the decrease in cost.

Genetic­Algorithm optimization

The GA is an iterative optimization method that is based on natural selection. It generates candidate
solutions and, at each iteration, selects the most fit candidates to generate new solutions. Because
a certain amount of randomization is allowed by also allowing some less fit candidates to survive and
through candidate mutations, a GA can find the solution that corresponds to the global optimum.

A.4. Graphs

SCC ­ Roll rate comparison

In figures A.1 and A.2 the results of two separate optimization procedures are included. The VAF of
the non­SCC optimization is 94.8 % with the SCC optimization. The VAF with the experimental data
dropped with 0.2 %.
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Figure A.1: Roll and steer angle as a function of time with no sensory dynamics.
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Figure A.2: Roll and steer angle as a function of time with SCC sensory dynamics.

A.5. Experimental runs used
The run ID’s according to the number scheme by Moore of the evaluated runs are included here.

UC Davis treadmill

Figure A.3: Runs from Luke used for validation.

Figure A.4: Runs from Charlie used for validation.
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Figure A.5: Runs from Jason used for validation.

UC Davis pavilion

Figure A.6: Runs from Luke used for validation.
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Figure A.7: Runs from Charlie used for validation.

Figure A.8: Runs from Jason used for validation.
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